Návrh managementu rizik při práci s tekutým kovem
Prohlášení

Místopřísežně prohlašuji, že jsem celou diplomovou práci vypracoval samostatně a uvedl veškerou použitou literaturu.

V Ostravě dne 19. 4. 2013

Bc. Jan Prnka
Na tomhle místě bych rád poděkoval vedoucí mé diplomové práce paní Ing. Miluši Váchové, Ph.D. za zprostředkování kontaktů, mnoho užitečných rad a připomínek, které mi při vypracování diplomové práce poskytla. Také bych rád poděkoval všem zaměstnancům firmy ArcelorMittal Ostrava, a.s. a hlavně panu Bc. Aleši Szökemu za ochotu a spolupráci.
ANOTACE

Cílem diplomové práce je návrh managementu rizik při práci s tekutým kovem na vybraném provoze Vysokých pecí ve společnosti ArcelorMittal Ostrava a. s.. Ke splnění cíle jsem využil systematickou metodu analýzy rizik pracovních úrazů a poškození zdraví, která je specifická pro ArcelorMittal Ostrava a. s.. Pomocí této metody jsou identifikována, analyzována a vyhodnocována rizika v rámci všech pracovních, výrobních a technologických činností ArcelorMittal Ostrava a. s..

Klíčová slova: tekutý kov, vysoká pec, riziko, identifikace a hodnocení rizika, bezpečnostní opatření

ANNOTATION

The aim of the Master thesis is the proposal for risk management when working with molten metal on a selected service of the blast furnace of the company ArcelorMittal Ostrava a. s. To accomplish the set aim I have used a systematic method of the risk analysis of work injuries and damage to health which is specifically used within ArcelorMittal Ostrava a. s. Using the method mentioned above, I am able to identify, analyse and evaluate the risks within all fields of the industry – the working, producing and technological ones – that the company uses.

Key words: molten metal, blast furnace, risk, risk identification and analysis, safety measures
Obsah

1 Úvod ...1

2 Právní předpisy ..2

2.1 Zákoník práce ...2

2.1.1 Povinnosti zaměstnavatele ..2

2.1.3 Školení zaměstnanců ..4

2.1.4 Osobní ochranné pracovní prostředky, pracovní oděvy a obuv, mycí, čisticí a dezinfekční prostředky a ochranné nápoje ...5

2.1.5 Povinnosti zaměstnavatele při pracovních úrazech a nemočech z povolání5

2.1.6 Práva a povinnosti zaměstnance ...6

2.2 Další právní předpisy ...7

3 Princip výroby železa ..10

3.1 Redukce oxidů ..10

3.2 Tavení železa ..11

3.3 Struska a její odlévání ...12

4 Technologie výroby surového železa ve Vysokých pecích14

4.1 Odpich surového železa ..14

4.2 Lití strusky ...16

4.3 Odlévání ..17

5 Rozbor pracovní úrazovosti za 5 let ..19

6 Management rizik ..21

6.1 Identifikace nebezpečí ...21
6.1.1 Výběr posuzovaného systému a určení jeho parametrů ..21
6.1.2 Soupis činností vyskytujících se na daném úseku ..21
6.1.3 Definování pracovních činností ..21
6.1.4 Nebezpečí - zdroj rizika ...22
6.1.5 Popis možných scénářů ...23
6.2 Hodnocení rizik ..23
 6.2.1 Určení pravděpodobnosti vzniku nehodové události23
 6.2.2 Určení závažnosti rizika ...24
 6.2.3 Matice pravděpodobnosti a závažnosti ..25
 6.2.4 Počáteční hodnota rizika ..25
 6.2.5 Přijetí opatření k nápravě ...26
 6.2.6 Zbytková hodnota rizika ..27
 6.2.7 Seznamování s riziky ...27
7 Identifikace a vyhodnocení rizik pracovních činností s tekutým kovem28
 7.1 Příprava před odpichem ...28
 7.1.1 Příprava koryta ...28
 7.1.2 Příprava kyvného žlabu strusky ...31
 7.1.3 Příprava kyvného žlabu železa ..34
 7.1.4 Nabíjení ucpávačky ..37
 7.2 Odpich tekutého železa ...40
 7.2.1 Vrtání odpichového otvoru pece ..40
7.2.2 Vrtání odpichového otvoru pece ruční vrtačkou

7.2.3 Čištění koryta a žlabu během odpichu

7.2.4 Posun pojízdných mísičů a struskových pánví

7.2.5 Ucpání pece

7.3 Odlévání pojízdných mísičů

7.3.1 Kontrola chladící vody, čerpadel, potrubí

7.3.2 Příprava koryta, pískování, cementování koncové části koryta a nálevky

7.3.3 Práce se sbíječkou, čerpadlem

7.3.4 Uchycení vozu pro klopení

7.3.5 Lití kovu

7.4 Práce ve 4 směnném provozu

7.3.1 Práce v nočních hodinách

8 Navrhovaná opatření

9 Závěr
1 Úvod

Bezpečnost a ochrana zdraví při práci je nedílnou částí všech činností výrobních i nevýrobních v organizaci. Je také měřítkem úrovně péče o zaměstnance. Požadavky na bezpečnost práce a ochranou zdraví jsou zakotveny v základních dokumentech České republiky v Ústavě a Listině základních práv a svobod.

Cílem politiky státu v oblasti bezpečnosti a ochrany zdraví při práci je prevence. Proto základními požadavky kladené na zaměstnavatele, uvedené v zákoně č. 262/2006 Sb., zákoniku práce, ve znění pozdějších předpisů, se dotýkají prevence rizik. Cílem diplomové práce je navržení účinného systému řízení rizik při práci s tekutým kovem na vybraném hutním provozu tak, aby daného cíle prevence, bylo dosaženo. Pro svoji závěrečnou práci jsem si vybral provoz Vysokých pecí ve společnosti ArcelorMittal Ostrava a. s., který je součástí celosvětového koncernu ArcelorMittal, ve výrobě a produkcí železa a oceli.

Práce na vysokých pecích patří svým charakterem mezi velmi nebezpečné a rizikové i v samotné hutní výrobě. Vysoké pecce jsou charakteristické zejména prací s tekutým kovem a tedy riziky z těchto prací plynoucí. Dalším rizikem je riziko sálavého tepla, riziko požáru i výbuchu v případě styku tekutého kovu s vodou. V souvislosti s těmito nebezpečími a riziky nejsou zanedbatelná i psychosociální rizika. Nelze se divit, že zaměstnanci jsou v tak nebezpečném prostředí provozu Vysokých pecí neustále pod psychickou zátěží z nebezpečnosti a namáhavosti dané práce. S ohledem na exponovanost nebezpečných situací a velikost míry rizika jsou na tento provoz kladeny větší požadavky na bezpečnost a ochranu zdraví při práci. Větší požadavky jsou kladeny také na řídící management, na systém monitorování a provádění kontrol jednotlivých pracovišť a činností. Jak vyplývá z rozborů úrazovosti, přes všechna opatření, dochází na pracovištích k pracovním úrazům.

Pro návrh účinného systému řízení rizik využijí systematickou metodu analýzy rizik pracovních úrazů a poškození zdraví, která je zavedena ve společnosti ArcelorMittal Ostrava a. s.. Cílem mé závěrečné práce je vyhodnotit všechna rizika v souvislosti s prací s tekutým kovem. Výsledkem bude návrh opatření k eliminaci, nebo ke snížení účinnosti rizik.
2 Právní předpisy

2.1 Zákoník práce

Zákon č. 262/2006 Sb., zákoník práce, ve znění pozdějších předpisů. Je základním bezpečnostním předpisem, který upravuje pracovněprávní vztahy mezi zaměstnancem a zaměstnavatelem. [1]

2.1.1 Povinnosti zaměstnavatele

Základní povinnosti zaměstnavatele je pečovat o BOZP zaměstnanců a všech ostatních osob, které se s jeho vědomím zdržují v jeho organizaci. Tuto odpovědnost mají ze zákona všichni vedoucí na všech stupních řízení.

Zaměstnavatel je povinen v rámci prevence vyhledávat, analyzovat a vyhodnocovat všechna možná rizika a přijímat opatření k jejich eliminaci nebo snížení hodnoty. Zaměstnavatel je povinen vyhledávat i rizika, která nejsou upravena žádným obecně platným právním předpisem nebo nezávaznou normou. Dále je jeho zákonnou povinností:

- nepřipustit, aby zaměstnanec vykonával zakázané práce a práce, jejichž náročnost by neodpovídala jeho schopnostem a zdravotní způsobilosti,
- informovat zaměstnance o tom, do jaké kategorie byla jím vykonávaná práce zařazena, kde kategorizaci prací upravuje zvláštní právní předpis (§ 37 zákona č. 258/2000 Sb., o ochraně veřejného zdraví),
- zajistit, aby práce v případech stanovených zvláštním právním předpisem vykonávali pouze zaměstnanci, kteří mají platný zdravotní průkaz, kteří se podrobili zvláštnímu očkování nebo mají doklad o odolnosti vůči nákaze a odbornou způsobilost,
sdělit zaměstnancům, u kterého poskytovatele pracovnělékařských služeb jim budou poskytnuty pracovnělékařské služby a jakým druhům očkování a jakým preventivním prohlídkám a vyšetřením souvisejícím s výkonem práce jsou povinni se podrobit, umožnit zaměstnancům podrobit se těmto očkováním, prohlídkám a vyšetřením v rozsahu stanoveném zvláštními právními předpisy nebo rozhodnutím příslušného orgánu ochrany veřejného zdraví,

nahradit zaměstnanci, který se podrobí preventivní prohlídce, vyšetření nebo očkování, případnou ztrátou na výdělku, a to ve výši průměrného výdělku, popřípadě ve výši rozdílu mezi náhradou mzdy nebo platu podle § 192 nebo nemocenským a průměrným výdělkem,

zajistit zaměstnancům, zaměstnancům v pracovním poměru na dobu určitou, zaměstnancům agentury práce dočasně přiděleným k výkonu práce k jinému zaměstnavateli, mladistvým zaměstnancům, podle potřeb vykonávané práce dostatečné a přiměřené informace a pokyny o bezpečnosti a ochraně zdraví při práci podle tohoto zákona a podle zvláštních právních předpisů (§ 37 zákona č. 258/2000 Sb., o ochraně veřejného zdraví), zejména formou seznámení s riziky, výsledky výhodnocení rizik a s opatřeními na ochranu před působením těchto rizik, která se týkají jejich práce a pracoviště,

zabezpečit, aby zaměstnanci jiného zaměstnavatele vykonávající práce na jeho pracovištích obdrželi před jejich zahájením vhodné a přiměřené informace a pokyny k zajištění bezpečnosti a ochrany zdraví při práci a o přijatých opatřeních, zejména ke zdolávání požárů, poskytnutí první pomoci, evakuaci fyzických osob v případě mimořádných událostí a rizicích,

jestliže při práci přichází v úvahu expozice rizikovým faktorům poškozujícím plod v těle matky, informovat o tom zaměstnankyně. Těhotné zaměstnankyně, zaměstnankyně, které kojí, a zaměstnankyně-matky do konce devátého měsíce po porodu je dále povinen seznámit s riziky a jejich možnými účinky na těhotenství, kojení nebo na jejich zdraví a učinit potřebná opatření, včetně opatření, která se týkají snížení rizika psychické a fyzické únavy a jiných druhů psychické a fyzické zátěže spojené s vykonávanou prací, a to po celou dobu, kdy je to nutné k ochraně jejich bezpečností nebo zdraví dítěte,
umožnit zaměstnanci nahlížet do evidence, která je o něm vedena v souvislosti se zajišťováním bezpečnosti a ochrany zdraví při práci,

zajistit zaměstnancům poskytnutí první pomoci,

nepoužívat takového způsobu odměňování prací, při kterém jsou zaměstnanci vystaveni změněnému nebezpečí újmy na zdraví a jehož použití by vedlo při zvyšování pracovních výsledků k ohrožení bezpečnosti a zdraví zaměstnanců,

zajistit dodržování zákazu kouření, alkoholu a návykových látek na pracovištích stanoveného zvláštním právním předpis (Zákon č. 379/2005 Sb., o opatření k ochraně před škodami působenými tabákovými výrobky, alkoholem a jinými návykovými látkami). [1, 2, 3]

2.1.3 Školení zaměstnanců

Zaměstnavatel je povinen zajistit zaměstnancům školení o právních, ostatních předpisech a rizicích k zajištění bezpečnosti a ochrany zdraví při práci, které doplňují jejich odborné předpoklady a požadavky pro výkon práce, které se týkají jimi vykonávané práce a vztahují se k rizikům, s nimiž může přijít zaměstnanec do styku na pracovišti, na kterém je práce vykonávána, a soustavně vyžadovat a kontrolovat jejich dodržování. Školení o bezpečnosti práce a ochrany zdraví, podle věty první, je zaměstnavatel povinen zajistit při nástupu zaměstnance do práce, a pak periodickými školeními podle harmonogramu organizace (protože musí školit soustavně) a dále při změně

- pracovního zařazení,
- druhu práce,

při zavedení nové technologie nebo změny výrobních a pracovních prostředků nebo změny technologických anebo pracovních postupů,

v případech, které mají nebo mohou mít podstatný vliv na bezpečnost a ochranu zdraví při práci,

po pracovním úrazu apod.. [1]
2.1.4 Osobní ochranné pracovní prostředky, pracovní oděvy a obuv, mycí, čisticí a dezinfekční prostředky a ochranné nápoje

Zaměstnavatel povinen poskytnout zaměstnancům osobní ochranné pracovní prostředky pouze v případě, že nelze zajistit kolektivní ochranu. **Osobní ochranné pracovní prostředky** jsou ochranné prostředky, které musí chránit zaměstnance před riziky, nesmí ohrožovat jejich zdraví, nesmí bránit při výkonu práce. V prostředí, v němž oděv nebo obuv podléhá při práci mimořádnému opotřebení nebo znečištění nebo plní ochrannou funkci, přísluší zaměstnanci od zaměstnavatele jako osobní ochranné pracovní prostředky též pracovní oděv nebo obuv.

Zaměstnavatel je povinen poskytovat zaměstnancům mycí, čisticí a dezinfekční prostředky na základě rozsahu znečištění kůže a oděvu tj. na pracovištích s nevyhovujícími mikroklimatickými podmínkami, v rozsahu a za podmínek stanovených prováděcím právním předpisem, též ochranné nápoje.

Zaměstnavatel je povinen udržovat osobní ochranné pracovní prostředky v použitelném stavu a kontrolovat jejich používání.

Osobní ochranné pracovní prostředky, mycí, čisticí a dezinfekční prostředky a ochranné nápoje přísluší zaměstnanci od zaměstnavatele bezplatně. Poskytování osobních ochranných pracovních prostředků nesmí zaměstnavatel nahrazovat finančním plněním. [1, 8]

2.1.5 Povinnosti zaměstnavatele při pracovních úrzech a nemocech z povolání

Zaměstnavatel, u něhož k pracovnímu úrazu došlo, je povinen objasnit příčiny a okolnosti vzniku tohoto úrazu za účasti zaměstnance, pokud to zdravotní stav zaměstnance dovoluje, svědků a za účasti odborové organizace a zástupce pro oblast bezpečnosti a ochrany zdraví při práci a bez vážných důvodů neměnit stav na místě úrazu do doby objasnění příčin a okolností vzniku pracovního úrazu a následně vše zaznamenat do knihy úrazů nebo vyhotovit záznam podle doby neschopnosti zaměstnance (*NV č. 201/2010 Sb., o způsobu evidence úrazů, hlášení a zasílání záznamu o úraze*). [1, 5]
2.1.6 Práva a povinnosti zaměstnance

Zaměstnanec má **právo na zajištění bezpečnosti a ochrany zdraví při práci**, na informace o rizicích jeho práce a na informace o opatřeních na ochranu před jejich působením a informace musí být pro zaměstnance srozumitelná.

Zaměstnanec je **oprávněn odmítnout výkon práce**, o níž má důvodně za to, že bezprostředně a závažným způsobem ohrožuje jeho život nebo zdraví, popřípadě život nebo zdraví jiných fyzických osob, kde takové odmítnutí není možné posuzovat jako neplnění povinnosti zaměstnance.

Zaměstnanec má **právo podílet se na vytváření bezpečného a zdraví neohrožujícího pracovního prostředí**, a to zejména uplatňováním stanovených a zaměstnavatelem přijatých opatření a svou účastí na řešení otázek bezpečnosti a ochrany zdraví při práci.

Každý zaměstnanec je povinen **dbát podle svých možností o svou vlastní bezpečnost**, o své zdraví i o bezpečnost a zdraví fyzických osob, kterých se bezprostředně dotýká jeho jednání, případně opomenutí při práci. Znalost základních povinností vyplývajících z právních a ostatních předpisů a požadavků zaměstnavatele k zajištění bezpečnosti a ochrany zdraví při práci je nedílnou a **trvalou součástí kvalifikačních předpokladů zaměstnance.**

Zaměstnanec je povinen:

- účastnit se školení zajišťovaných zaměstnavatelem zaměřených na bezpečnost a ochranu zdraví při práci včetně ověření svých znalostí,
- podrobit se preventivním prohlídkám, vyšetřením nebo očkováním stanoveným zvláštními právními předpisy,
- dodržovat právní a ostatní předpisy a pokyny zaměstnavatele k zajištění bezpečnosti a ochrany zdraví při práci, s nimiž byl řádně seznámen, a řídit se zásadami bezpečného chování na pracovišti a informacemi zaměstnavatele,
➢ dodržovat při práci stanovené pracovní postupy, používat stanovené pracovní prostředky, dopravní prostředky, osobní ochranné pracovní prostředky a ochranná zařízení a svěvolně je neměnit a nevyřazovat z provozu,

➢ nepožívat alkoholické nápoje a nezneužívat jiné návykové látky na pracovištích zaměstnavatele a v pracovní době i mimo to pracoviště, nevstupovat pod jejich vlivem na pracoviště zaměstnavatele, nekouřit na pracovištích a v jiných prostorách, kde je to zakázáno,

➢ oznamovat svému nadřízenému vedoucímu zaměstnanci nedostatky a závady na pracovišti, které ohrožují nebo by bezprostředně a závažným způsobem mohly ohrozit bezpečnost nebo zdraví zaměstnanců při práci, zejména hrozící vznik mimořádně události nebo nedostatky organizačních opatření, závady nebo poruchy technických zařízení a ochranných systémů určených k jejich zamezení,

➢ s ohledem na druh jím vykonávané práce se podle svých možností podílet na odstraňování nedostatků,

➢ bezodkladně oznamovat svému nadřízenému vedoucímu zaměstnanci svůj pracovní úraz, pokud mu to jeho zdravotní stav dovolí, a pracovní úraz jiného zaměstnance, popřípadě úraz jiné fyzické osoby, jehož byl svědkem, a spolupracovat při objasňování jeho příčin,

➢ podrobit se, na pokyn oprávněného vedoucího zaměstnance písemně určeného zaměstnavatelem, zjištění, zda není pod vlivem alkoholu nebo jiných návykových látek. [1]

2.2 Další právní předpisy

Zákon č. 309/2006 Sb., kterým se upravují další požadavky bezpečnosti a ochrany zdraví při práci v pracovněprávních vztazích a o zajištění bezpečnosti a ochrany zdraví při činnosti nebo poskytování služeb mimo pracovněprávní vztahy (zákon o zajištění dalších podmínek bezpečnosti a ochrany zdraví při práci), ve znění pozdějších předpisů. Tento zákon navazuje na zákoník práce v oblasti dalších podmínek pro zajištění bezpečnosti a ochrany zdraví při práci. Určuje požadavky na pracoviště a pracovní prostředí, výrobní a pracovní prostředky a zařízení, organizaci práce, pracovní postupy a bezpečnostní značky.
Dále řeší rizikové faktory na pracovišti a zabývá se odbornou způsobilostí při zajišťování úkolů v prevenci rizik a zvláštní odbornou způsobilostí při práci na technických zařízeních. [4]

Zákon č. 258/2000 Sb., o ochraně veřejného zdraví, ve znění pozdějších předpisů. Tento zákon určuje povinnost kategorizovat práce, upřesňuje požadavky kategorizace a dále vymezuje rizikové práce. [2]

Nařízení vlády č. 378/2001 Sb., kterým se stanoví bližší požadavky na bezpečný provoz a používání strojů, technických zařízení, přístrojů a nářadí, ve znění pozdějších předpisů. Stanovuje povinnosti zaměstnavateli v dokumentaci a rozsahu kontroly provozovaným zařízením a předpisuje minimální požadavky na bezpečný provoz a používání zařízení v závislosti na příslušném riziku vytvářeném daným zařízením. [7]

Nařízení vlády č. 495/2001 Sb., kterým se stanoví rozsah a bližší podmínky poskytování osobních ochranných pracovních prostředků, mycích, čisticích a dezinfekčních prostředků, ve znění pozdějších předpisů. Toto nařízení vlády vymezuje, jaké jsou osobní ochranné pracovní prostředky, jaký mají účel, jak je používat a dále použití prostředků k jejich údržbě. [8]

Nařízení vlády č. 101/2005 Sb., o podrobnějších požadavcích na pracoviště a pracovní prostředí, ve znění pozdějších předpisů. Nařízení vlády, které udává podrobnější požadavky na zajištění bezpečnosti a ochrany zdraví při práci v pracovním prostředí a specifikuje požadavky na mechanickou odolnost staveb, střech, příček, stropů, podlah, pracoviště, kde se vyskytuje prach, a další. [9]

Vyhláška č. 432/2003 Sb., kterou se stanoví podmínky pro zařazování prací do kategorií, limitní hodnoty ukazatelů biologických expozičních testů, podmínky odběru biologického materiálu pro provádění biologických expozičních testů a náležitosti hlášení prací s azbestem a biologickými činiteli, ve znění pozdějších předpisů.
Všechny uvedené právní předpisy mají obecný charakter upravující povinnosti provozovatelů strojů a zařízení a povinnosti vůči zaměstnancům. Konkrétní předpis týkající se dané problematiky je pouze vyhláška č. 48/1982 Sb., ve znění pozdějších předpisů, která ovšem neřeší celou technologii výroby surového železa. [11]
3 Princip výroby železa

Po vsazení surovin do vysoké pece dochází k postupnému poklesu vsázky v závislosti na výrobních parametrech a na množství odpouštěného surového železa a strusky. Postupně, jak klesá vsázka, roste také teplota v šachtě pece a probíhá redukce kovonosné vsázky. Jelikož většina železa ve vsázce je ve formě oxidů, pro přiblížení teorie vysokopecního pochodu si uvedeme pouze redukci oxidů. Redukce může být přímá nebo nepřímá, přímá redukce se liší od nepřímé jen tím, že probíhá při vyšších teplotách, a že vyžaduje přívod tepla zvenčí. Zároveň i v tom, že redukce oxidů probíhá i při styku rozžhaveným uhlíkem (koksem). [23]

Obrázek 3.1 - Popis vysoké pece [20]

3.1 Redukce oxidů

V oblasti nepřímé redukce probíhají chemické pochody do teploty 800 °C na tomto chemickém principu:

Při teplotě větší, než 570 °C probíhá redukce:

$$\text{Fe}_2\text{O}_3 = \text{Fe}_3\text{O}_4 = \text{FeO} = \text{Fe}$$

Při teplotě pod 570 °C se Fe$_3$O$_4$ redukuje přímo v železo:
$\text{Fe}_2\text{O}_3 = \text{Fe}_3\text{O}_4 = \text{Fe}$

V obou případech probíhají tyto redukce na základě těchto chemických rovnic:

$3 \text{Fe}_2\text{O}_3 + \text{CO} = 2 \text{Fe}_3\text{O}_4 + \text{CO}_2$

$\text{FeO} + n \text{CO} = 6 \text{FeO} + 2 \text{CO}_2 + (n-2) \text{CO}$

$6 \text{FeO} + n \text{CO} = 6 \text{Fe} + 6 \text{CO}_2 + (n-6) \text{CO}$

V oblasti **přímé redukce** probíhá tento proces při teplotách **nad 1100 °C** na základě těchto chemických rovnic:

$\text{FeO} + \text{CO} = \text{Fe} + \text{CO}_2$

$\text{CO}_2 + C_{\text{koks}} = 2 \text{CO}$

V oblasti **neprímé i přímé redukce** probíhají redukce oběma možnými způsoby. Chemický princip jednotlivých redukcí je uveden výše v této kapitole. [23]

Obrázek 3.2 - Teplotní rozmezí vysoké pece

3.2 Tavení železa

V dolní části šachty a v rozporu vysoké pece je již vyredukováno železo v podobě železné houby, která obsahuje málo uhlíku (pod 1%), teplota tání železné houby je příliš vysoká (kolem 1450°) a není ji možno v této části pece dosáhnout. V rozporu pece dochází
k intenzivnějšímu styku železné houby s uhlíkem, který vznikl pravděpodobně podle rovnice \(2\ CO = C + CO_2\). Zvýšeným rozpouštěním uhlíku v železe se snižuje jeho teplota tání a začnou se objevovat první kapičky surového železa. Nauhlíčování jistě probíhá také oxidem uhelnatým (CO\(_2\)), který může pronikat do nitra železné houby. Vzniklé kapky surového železa stékají do nístěje a po cestě se setkávají se žhavým uhlíkem paliva. [23]

Nauhlíčování nevyžaduje, jako složka vysokopecního pochodu, zvláštní pozornost, protože probíhá samočinně a obsah uhlíku v surovém železe se sám upraví podle obsahu ostatních prvků, které doprovázejí železo v rudách. [23]

3.3 Struska a její odlévání

Železné rudy obsahují vedle sloučenin železa doprovodné horniny, které jsou obvykle těžkotavitelné, takže by při obvyklých teplotách, dosažitelných ve vysoké peci, zůstávaly v tuhém stavu, nebo by byly tak husté a špatně tekuté, že by jejich odstraňování z vysokých pecí bylo obtížné nebo dokonce nemožné.

Struska nejen odstraňuje hlušiny z pece, ale má taky velký vliv na průběh vysokopecního pochodu a na složení surového železa.
Vytvoření strusky z hlušin rud, přísad a popela koksu není tak jednoduché, jak by se snad na první pohled zdálo. Vznik strusky můžeme rozdělit na dvě fáze, a to na vytvoření prvotní strusky a strusky konečné, jejíž složení se upravuje až v nístěji pece.

Struskotvorné látky obsažené ve vsázce klesají zvolna pecí a ohřívají se postupně na vyšší a vyšší teploty proudem horkých plynů, proti nimž klesají. Při určitých teplotách měknou hlavní složky struskotvorných látek a dochází k jejich těsnějšímu vzájemnému styku. Při tom nastává slinutí jednotlivých částic a případné vzájemné chemické působení, jehož vlivem se na místech vzájemného styku vytváří tekutá prvotní struska, která pak již podporuje tvorbu dalšího množství strusky.

Hlavní složky strusky jsou SiO$_2$ (oxid křemičitý), Al$_2$O$_3$ (oxid hlinitý) a CaO (oxid vápenatý), vedle nichž obsahuje prvotní struska oxidy železa a manganu, a to často ve značném množství. Prvotní struska by měla vyniknout až po skončení redukce oxidů železa a po roztavení vzniklého železa. Ve skutečnosti se však struska tvoří ještě před ukončením redukce železa a vzniká tak železnatá struska, která pak již podporuje tvorbu dalšího množství strusky.

Převody prvotní strusky do dolních částí vysoké pece, přičemž se oxidy železa a manganu v ní obsažené redukují. Současně se zvyšuje obsah vápna, které do ní postupně přechází. Tím se zvyšuje teplota tání strusky a snižuje se její tekutost.

Pod výfučnými přichází tato struska do styku s popelem paliva, který mění její chemické složení a vzájemný poměr hlavních složek, t.j. (Al$_2$O$_3$ + SiO$_2$) : CaO i poměr Al$_2$O$_3$: SiO$_2$ a vzniká tak struska konečná, jejíž konečné složení se ještě upraví stykem se surovým železem. Kromě hlavních oxidů obsahuje konečná struska ještě MgO, MnO, MnS, CaS, P$_2$O$_5$ a jiné sloučeniny. [23]
4 Technologie výroby surového železa ve Vysokých pecích

Závod č. 12 firmy ArcelorMittal Ostrava a. s. se nachází téměř uprostřed podniku ArcelorMittal Ostrava a. s. a skládá se z provozů Aglomerace, Vysoké pece a Struskové hospodářství. Provoz Vysokých pecí je tvořen samotnými vysokými pecemi a obslužným hospodářstvím, kde spadá licí stroj a čistírna plynu. Samotný výrobní cyklus je popsán v příloze č. 2.

Provoz vysokých pecí je tvořen čtyřmi vysokými pecemi v liniovém uspořádání se společným odsunem tekutých produktů, zásobníky rudy a čistírnou plynu, celkem 15 - i ohřívači větru. K vysoké peci č. 3 a č. 4 náleží dvě odlévárné severní a jižní, kde dohromady tvoří pracovní plošinu. Vysoká pec č. 1 a č. 2 má pouze jižní odlévárnu. Dále ke každé peci náleží zavážka na příslušnou suroviny do vysokých pecí a velín s řídícím systémem. Příslušné suroviny do zásobníku zavážky je prováděn z rudného mostu spadajícího pod závod Aglomerace.

Metalurgický kokos je dopravován k vysokým pecím pásovou dopravou s možností havarijního krytí potřeb koku surových pecí železničními vozy v první přípojce. Rudná část vsázky je dopravována do soustavy 48 rudných zásobníků.

Odsun surového železa od vysokých pecí je zajišťován pojízdnými mísiči (veronikami) do ocelárny pro další zpracování nebo na licí stroj ke zpevnění. Struska je odsunována od pecí pomocí struskových pávní pro další zpracování do provozu Struskového hospodářství. Vysokopecní (kychtový) plyn je po částečném odstranění prachu v prášníku vysoké peci dočišťován mokrým způsobem na čistírně plynu a dále potrubními rozhledy vedoucí na spotřebu v rámci podniku.

Na licím stroji se surové železo vylévá z pojízdného mísiče (veroniky) na žlab a z něj do kokil (vaniček), kde se chladení vodou a odtlity (housky) vypadávají z nekonečných pásů na skluzu a odtud do přistavených železničních vagónů. [23, 24, 25]

4.1 Odpich surového železa

Před začátkem odpichu se musí provést kontrola funkce železové ucpávačky, hydraulické vrtáčky, připravenost a zajištění pojízdných mísičů včetně struskových pávní. Odpichový otvor a hlavní železový žlab s odlučovačem surového železa a dalšími návazními žlaby musí být řádně upraveny a využity. Za provedení této kontroly zodpovídá 1. tavič.
První tavič řídí a volí způsob provedení odpichu. Odpovídá za bezpečné provedení odpichu. V případě nestandardního průběhu odpichu řídí odpich přímo na plošině mistr vysoké pece a přebírá odpovědnost za bezpečné provedení odpichu.

Provrťování se provádí hydraulickou vrtačkou, popřípadě vrtačkou potahovanou elektrickým vrátkem. Jeden pracovník obsluhuje ovládání vrátku a druhý pracovník (pracovníci) směřuje vrtačku do odpichového otvoru. Pracovník usměrňující vrtačku při vrtání a vytahování musí být vybaven všemi danými ochrannými pomůckami. Při vytahování vrtačky musí použít dlouhého háčku.

Vrtání hydraulickou vrtačkou provádí 1. tavič, 2. tavič nebo zaučený zástupce. Před vrtáním se musí obsluha vrtačky přesvědčit, zda se v bezprostřední blízkosti vrtačky nikdo nenachází mimo jím pověřené osoby spolupracující při vrtání. Nepodaří-li se otevření odpichového otvoru vrtáním, provede se jeho otevření propalováním kyslíkovým kopí.

Otevírání předvrtného odpichového otvoru se provádí kyslíkovým kopí (brener), napojenými na kyslíkovou hadici. Hadice na kyslík musí být atestována a opancérována řádně šroubením s fibrovým těsněním napojená na kyslíkový rozvod, za což zodpovídá mistr vysoké pece.

Usměrňování a uvolňování toku železa musí být prováděno jen předem nahnátým a vysušeným nářadím.

Obecně je zakázáno používat kyslíkového kopí k uvolňování toku železa. Při nutném použití „breneru“ k některým činnostem (měření úrovně tekutého Fe v pánvi, pročištěování
železové, popřípadě struskové výpusti), musí být tento náležitě vysušen a nahřát. Pracovník při manipulaci nesmí uchopit kyslíkovým kopím za volný konec dlaní pro možnost exploze.

Ve výjimečných případech lze použít kyslíkového kopí k uvolnění toku železa v železovém kyvném žlabu (jižní odlévárny vysokých pecí č. 3 a č. 4) a to za předpokladu, že pracovník bude stát mimo objekt krytu kyvného žlabu a bude vybaven všemi předepsanými ochrannými osobními pracovními prostředky pro pálení kyslíkovým kopí. Během odpichu (toku železa) je zakázáno se přibližovat nebo zacházet přes struskové nebo železové licí žlaby.

Při podebírání „válků“ železnou tyčí je nutno předvídat možnost exploze z případné vlhkosti vystýlky. Pracovník provádějící tuto činnost si musí počínat zvlášť opatrně s ohledem na zvýšenou možnost rozstřiku tekutého kovu a strusky.

Druhý tavič v průběhu odpichu je povinen zkontrolovat plnění pojízdných mísičů (veronik) a včas provést převedení toku surového železa do dalšího pojízdného mísiče. Pojízdné mísiče nesmí být přepřížovány. Mohou být napouštěny max. 20 cm pod hrdlo. Při silném toku železa musí usměrnit tok na dva mísiče, případně dát znamení 1. taviči k přitažení pece.

Při uvolňování toku tavenin v železových žlabech musí pracovník, který tuto činnost provádí, sledovat tok tekutých produktů tak, aby nedošlo k vytvoření hráze a tím přelévání žlabů.

Je přísný zákaz do tekutých produktů házet jakékoliv předměty. Všem pracovníkům je zakázáno zdržovat se při odpichu surového železa a strusky v ose odpichového otvoru. [21, 23, 24, 25]

4.2 Lití strusky

Na provoze Vysokých pecí je vybavena výpustí strusky pouze vysoká pec č. 2, ale tato výpust se neužívá. Z vysokých pecí se vypouští pouze struska „spodní“ společně se surovým železem. Struska je „lehčí“ než tekuté železo, a proto se nachází na horním povrchu a tzv. plave. Díky tomu se odděluje od tekutého železa na principu rozdílných měrných hmotností a je odváděna pomocí vytvořených žlabů na odlévací plošinu.

Struska u vysokých pecí je odlévaná pomocí kyvných žlabů do pánví struskových vozů na dvou kolejích, kde posun struskových vozů je prováděn elektrovozy, které jsou dávkově ovládány z ovládacích pultů umístěných na odlévacích plošinách nad kyvným žlabem. Po nalití strusky do pánve se kyvný žlab překloní do druhé pánve na vedlejší kolej. Na kolej, kde strusková pánev byla dolita, se provede posun struskového vozu elektrovozem pod kyvný žlab. Tento postup se opakuje až do naplnění všech struskových pánví, nebo do konce odpichu.

Při odpichu železa, kdy není možné struskové pánve na spodní strusku dokonale vysušit a nachází se voda a jejichž přistavení pod pec bylo z provozních důvodů nevyhnutelné, tak je nutné po rozhodnutí prvního taviče postupovat s krajní opatrností, nezdržovat se v prostoru části konců struskových pánví a dodržovat následný postup. Kde napouštění je třeba provádět postupně tak, že se napustí malá část strusky a kyvný žlab se překlopí na druhou kolej. Toto se provádí dle potřeby několikrát, až se větší část vody odpáří. Napouštění je možno provést na dve pánve najednou a při dalším napouštění strusky postupovat tak, že se pouští střídavě do jedné, nebo do druhé pánve. O možnosti, pouštění strusky z hlediska množství vody v pánvích, rozhodne první tavič. [23, 24, 25]

4.3 Odlévání

Dopravu pojízdného mísíče od vysokých pecí na licí stroj provádí závodní doprava ArcelorMittal Ostrava a. s. Před přistavením pojízdného mísíče musí se osa hrdla pánev krýt s osou žlabu. Po přistavení pojízdného mísíče dojde k napojení na pojízdný elektrovůz, který přistaví pojízdný mísíč přesně nad licí nálavku a po odlibi si přisune další. Elektrovůz je ovládán z panelu na plošině. Pojízdný mísíč se zachytí lanem klopníčkých vratku, jistícím lanem za čepy na plášti, odjistí se zámek pojízdného mísíče. Probije se případný ztuhly škraloup na povrchu tekutého železa a následně se začne mísíč naklánět. Lije se zvolna, aby rozstřik byl minimální a pánev se správně naplnily.

Před vlastním odléváním se spustí po zvukové signalizaci motory pásů, aby se pásy protočily naprázdno a připadná voda, či sníh se odstranil, a aby kokily byly suché a surové železo v nich nevyvařilo.
Chladící voda se spustí na pásy čerpadlem č. 1 nebo č. 2 a zároveň dochází k napuštění pániček tekutým kovem. Vystřikovače se uvedou v činnost, jakmile přijdou prázdné horké kokilké na své cestě zpět nad rotující kotouče vystřikovačů. Jejich správná činnost musí být zajišťována po celou dobu lití. Musí se kontrolovat usazeniny na dně a zavímat provést jejich odstranění a vyčištění. Také je nutné kontrolovat stav potrubí karbidového vápna a zajišťovat jeho čistotu profukováním stlačeným vzduchem. Rovněž stav usazení ve studni je nutné kontrolovat a při zvednutí vápených a grafitových usazenin do blízkosti sacích košů je také nutné studnu i přepadovou jímkou řádně vyčistit. Housky padají přes pevné a pohyblivé skluzy do přístavených železničních vagónů. Veškeré práce při odlévání surového železa provádí odlévač společně s osádkou licího stroje.

Při ukončení odlévání se vyprázdněné pojízdné mísiče postaví do původní polohy klopcem vrátkem, zajistí se pojistkou a sejmou se lana. Elektrovůz odjede do parkovací polohy.

Při dojetí prázdných pániček pod sprchy se zastaví voda. Nechá se projít pásy ještě jednou otáčkou, přičemž vystřikovače jsou ještě v činnosti. Potom se vypnou motory, vystřikovače a pásy se zastaví. Ukončení lití se ohlásí na výrobní dispečink vysokých pecí, provede se řádná kontrola celého zařízení, v zimě především vypuštěné chladicí vody z potrubí, provede se úklid a příprava pracoviště k dalšímu odlévání.

Za rozdělení úkolů celému kolektivu licího stroje a za řádný průběh odlévání od přistavení pojízdného mísiče až po úklid odpovídá v plné míře odlévač. [23, 24, 25]
5 Rozbor pracovní úrazovostí za 5 let

První vážnější úraz se stal mistrovi vysoké pece na pracovní plošině vysoké pece č. 4 a došlo k popálení 2. stupně v oblasti břicha, levé horní končetiny a ožehnutí pravé horní končetiny. Stalo se, když zaměstnanec prováděl vizuální kontrolu práce výfučen a žhavého dmyšních soustav. Po zkontrolování dmyšné soustavy došlo v okamžiku, když stál zaměstnanec naproti dané soustavě k uvolnění matice průzoru, ve které je umístěno sklíčko pro kontrolo hoření ve výfučeně. Přítom byl zaměstnanec zasažen tlakem horkého větru, který způsobil výše uvedené zranění. Zraněný odešel do odpočívárny, odkud byl následně převezen rychlou záchranou službou k lékařskému ošetření do nemocnice. Zaměstnanec byl vybaven všemi předepsanými ochrannými osobními pracovními prostředky. Charakter zranění si nevyžádal pracovní neschopnost, přesto mu byla přidělena náhradní práce. Po tomto incidentu byly provedené technické opatření a to tím, že se vyměnily všechny opotřebené úchyty matic sklíček. Dále organizační opatření a to: důsledné kontroly opotřebení úchyty matic pozorovacích soustav, zákaz pohybu nepovolaným osobám na pracovní plošině vysokých pecí a provádět kontrolu výfučen pouze zaměstnance vysokopecních plášťů s přilbou s odolným ochranným štítem. Dále se proškolili a upozornili zaměstnanci na provozu Vysokých pecí s možnými riziky kontroly kolem vysokých pecí a dále byla do bezpečnostního pokynu zařazena věta: „Při kontrolách závitu a jiných činnostech v blízkosti dyšných otvorů stát mimo jejich osu.“

Druhý vážnější úraz se stal na vysoké peci č. 4 a to 2. taviči, kdy došlo k popálení obličeje 2. stupně. Došlo k tomu, když zaměstnanec usměrňoval železou tyčí tok surového železa na východní koncovce kyvného železového žlabu z důsledku zabránění propálení pláště pojízdného mísíče. Při této činnosti došlo k uvolnění slítku a k nekontrolovanému toku surového železa mimo hrdlo pojízdného mísíče. Při vytečení surového železa mimo mísič došlo k výronu horkých plyňů. Tyto plyny při stoupání zasáhly pracovníka v obličeji pod ochranným pokoveným štítem. Zraněný byl převezen do nemocnice a zranění si vyžádalo pracovní neschopnost. Dále bylo zavedeno technické opatření a to zavedení úplné nového osobního ochraného pracovního prostředku a to celoobličejové kukly pro taviče. Dále organizační opatření a to: Provedení nové analýzy rizik na danou činnost, umístění výstražné
figuriny s údaji o úrazu. A dále byli všichni zaměstnanci provozu Vysokých pecí proškoleni s daným rizikem a stanovenými opatřeními.

Tabulka 5.1 - Úrazovost provozu Vysokých pecí za roky 2008 - 2012

<table>
<thead>
<tr>
<th>Rok</th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>VI.</th>
<th>VII.</th>
<th>VIII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1 066 829</td>
<td>2</td>
<td>1,87</td>
<td>1</td>
<td>0,94</td>
<td>0</td>
<td>0,00</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>875 778</td>
<td>10</td>
<td>11,42</td>
<td>2</td>
<td>2,28</td>
<td>431</td>
<td>0,49</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>1 124 434</td>
<td>13</td>
<td>11,56</td>
<td>3</td>
<td>2,67</td>
<td>666</td>
<td>0,59</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>1 163 979</td>
<td>17</td>
<td>14,61</td>
<td>4</td>
<td>3,44</td>
<td>433</td>
<td>0,37</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>1 143 604</td>
<td>13</td>
<td>11,37</td>
<td>4</td>
<td>3,50</td>
<td>768</td>
<td>0,67</td>
<td>0</td>
</tr>
</tbody>
</table>

Legenda:

I. – Odpracované hodiny
II. – Celkový počet pracovních úrazů
III. – Celková četnost pracovních úrazů
IV. – Počet úrazů s pracovní absencí
V. – Četnost absenčních úrazů
VI. – Zameškané dny
VII. – Četnost zameškaných dnů
VIII. – Smrtné úrazy

Použité vzorce:

Celková četnost pracovních úrazů = \(\frac{\text{Celkový počet pracovních úrazů} \times 1\,000\,000}{\text{Počet odpracovaných hodin}} \)

Četnost absenčních úrazů = \(\frac{\text{Počet úrazů s pracovní absencí} \times 1\,000\,000}{\text{Počet odpracovaných hodin}} \)

Četnost zameškaných dnů = \(\frac{\text{Počet zameškaných dnů} \times 1\,000}{\text{Počet odpracovaných hodin}} \)
6 Management rizik

Management rizik je řada logických kroků usnadňujících systematickým způsobem vyhledat všechna nebezpečí posuzovaného procesu, pracovní činností, technologického postupu apod.

Identifikace nebezpečí – zdrojů rizika, odhalení míst, jevů, stavů, které mají potenciál způsobit poškození zdraví

Hodnocení rizika – stanovení velikosti a odhad pravděpodobnosti poškození zdraví. [22]

6.1 Identifikace nebezpečí

6.1.1 Výběr posuzovaného systému a určení jeho parametrů

Prvním krokem analýzy je výběr a určení posuzovaného systému, tj. konkrétní oblasti, technologického zařízení, stroje nebo procesu, který bude posuzován. Rovněž je třeba určit parametry mající vliv na posouzení rizik (např. práce ve výšce – nebezpečí pádu z výšky apod.). U každého takového systému je nutno zvážit, zda povaha posuzovaného systému nevyžaduje přítomnost technického specialisty, jehož znalosti daného oboru je pro komplexní identifikaci rizik žádoucí (např. revizní technik zdvihacího zařízení při analýze zdvihacích zařízení nebo osoba odborně způsobilá v oblasti chemických látek a prostředků při prověřování činností s chemikáliemi). [22]

6.1.2 Soupis činností vyskytujících se na daném úseku

Pro potřeby analýzy rizik jsou používány provozní názvy profesi. Daný seznam nebezpečných činností musí být adresný na jednotlivé profese, proto je nutné nejdříve vypsat činnosti, které jsou společné pro všechny zúčastněné profese a u činností, které jsou vykonávány pouze některými ze zaměstnanců, napsat ke konci listu a doplnit patřičnou poznámkou – tedy, kdo ji vykonává. [22]

6.1.3 Definování pracovních činností

Tato analýza je založená na zkoumání činností, kdy se rozhoduje, jakou má činnost míru rizika. Pro systematické zkoumání je vhodné postupovat dle toku materiálu (pokud to je možné) nebo dle jiného kontinuálního procesu. Tím by mělo být zaručeno, že při
vyjmenovávání jednotlivých činností nebude na nic zapomenuto.

Činnosti, při kterých nebylo shledáno žádné ohrožení na zdraví či životě, do databáze vůbec nevypisujeme.

Práce (činnosti) vykonávané jinými zaměstnanci (př. zaměstnanci jiného závodu, jeřábík X vazač) vepisujeme pouze tehdy, vyvolávají-li ohrožení pro profese, které hodnotíme.

Druhy činností:

a) **Rutinní** – činnosti, které jsou běžnou součástí denních aktivit. Za rutinní činnosti lze tedy považovat ty, které zaměstnanec provádí alespoň 1x za směnu, nebo i méně často, pokud zabírají podstatnou část pracovní doby (př. obsluha zařízení, čištění, výměna dílů …).

b) **Nahodilé** – činnosti, které zaměstnanci provádí zřídka, ale v jistých intervalech se opakují (př. 1x za týden) a již je v minulosti několikrát prováděl.

c) **Abnormální** – činnosti, které nikdo předem nepředpokládal a jsou vyvolány mimořádným stavem nebo neočekávanou změnou. Tyto činnosti nejsou podchyceny v žádné dokumentaci a zpravidla vyžadují nestandardní postupy.

Je-li to možné, seřazujeme činnosti právě podle jejich pravidelnosti, tedy od činností rutinních až po činnosti abnormální vyskytující se opravdu jen ojediněle. Při konzultacích se zaměstnanci je nutné zdůraznit, že právě nahodilé (často poruchové stavy) jsou z hlediska systematické analýzy rizik velmi důležité, protože právě při těchto činnostech vznikají taková ohrožení, která mají často za následek vážná zranění. [22]

6.1.4 Nebezpečí - zdroj rizika

6.1.5 Popis možných scénářů

Tento údaj slouží k detailnímu popisu ohrožení, které vzniká při aktivaci nebezpečí. Tímto popisem také jednoznačně určíme, při jakých okolnostech k ohrožení dochází a jaké podmínky musí být splněny.

Je nutné zahrnovat i ta ohrožení, která již byla jakýmkoliv způsobem minimalizována. Např. riziko hluku od zařízení se nezbavíme ani při používání chráničů sluchu, riziko zůstává, jelikož chrániče nemusí být použity. Stejně tak je tomu i s kryty a ochrannými zařízeními – riziko zůstává, jelikož i tato zařízení mohou selhat.

Analýza rizik není vztažená na lehkomyšlná jednání osob a porušování bezpečnostních předpisů ze strany zaměstnanců i zaměstnavatele. [22]

6.2 Hodnocení rizik

6.2.1 Určení pravděpodobnosti vzniku nehodové události

Pravděpodobnost vzniku nehodové události je prvním z faktorů, které ovlivňují hodnotu rizika. Nabývá hodnot od „nepravděpodobné“ až „očekávané“. Míra pravděpodobnosti je vypočítávána z dílčích složek, které po vzájemné kombinaci vytvoří danou strukturu. Ta je pak rozhodovacím kritériem pro volbu míry pravděpodobnosti vzniku nehody. Struktura kombinací jednotlivých složek je znázorněna v tomto obrázku [22]:

![Obrázek 6.1 - Struktura kombinací jednotlivých složek k určení pravděpodobnosti](image-url)
Míra pravděpodobnosti je určována z těchto složek [22]:

a) Frekvence (trvání) expozice nebezpečí – nabývá hodnot „zřídka/krátké trvání“ a „časté/dlouhé trvání“. Určujeme tím, jakou dobu je zdroj rizika aktivován.

b) Určení, jak často může docházet k nehodám během expozice – nabývá hodnot „málo“, „středně“ a „velmi“. Tuto složkou vyjadřujeme, zdali po přiblížení k aktivnímu zdroji rizika může docházet k přenosu jeho negativního působení na člověka a jak často.

c) Zvážení, zdali je možné se nebezpečí vyhnout, či ne – v případě, že vznik nehodové události a přenos na exponovanou osobu (osoby) je věcí mžikovou, z čehož je zřejmé, že možnost vyhnutí zde není. V případě, že od vzniku nehodové události a přenosu na člověka uplyne čas, kdy je možné zareagovat a jednat tak, aby nedošlo k poškození na zdraví, pak se jedná o případ, kdy je možné se nebezpečí vyhnout.

Nadefinování, kolik osob je ohroženo – nabývá hodnot jedna a více. Jde o určení, kolik osob by bylo zraněno při vzniku nehodové události. [22]

6.2.2 Určení závažnosti rizika

Druhým faktorem pro stanovení hodnoty rizika je závažnost poškození zdraví. Míra závažnosti nám určuje, jak velký dopad bude mít nehoda na zdraví zraněné osoby. Tento faktor nabývá hodnot „Malá“ až „Značná“. Jakým způsobem se rozhoduje o závažnosti je vysvětleno v následující tabulce [22]:

Tabulka 6.1 - Závažnost nehod

<table>
<thead>
<tr>
<th>Závažnost nehod</th>
<th>Stupeň</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malá Požádej poskytnout první pomoc</td>
<td>1</td>
</tr>
<tr>
<td>Malé oděrky, nebo pořezání, modřiny, podráždění očí prachem, bolest hlavy</td>
<td></td>
</tr>
<tr>
<td>Střední Lékařský zátkor a několik dní absence</td>
<td>2</td>
</tr>
<tr>
<td>Popáleniny, vymknutí, wkákninová zlomenina</td>
<td></td>
</tr>
<tr>
<td>Velká Dlouhodobá nemocenská nebo vážné zranění</td>
<td>3</td>
</tr>
<tr>
<td>Amputace, vážné zlomeniny, otravy</td>
<td></td>
</tr>
<tr>
<td>Značná Smrt nebo způsobení tvále invalidity nebo nemoci z povolání</td>
<td>4</td>
</tr>
<tr>
<td>Rakovina, rozsáhlé následky, které mohou vest k trvalé invaliditě, nebo smrti</td>
<td></td>
</tr>
</tbody>
</table>
6.2.3 Matice pravděpodobnosti a závažnosti

Hodnocení rizikových faktorů je určováno maticí pravděpodobnosti a závažnosti (viz. Obrázek 6.2), kdy čím vyšší je pravděpodobnost vzniku nehodového děje a současně jeho závažnost, tím vyšší je hodnota rizika. [22]

<table>
<thead>
<tr>
<th>Pravděpodobnost</th>
<th>Závažnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Střední</td>
<td>Značné</td>
</tr>
<tr>
<td>Střední</td>
<td>Střední</td>
</tr>
<tr>
<td>Okrajová (přijatelné)</td>
<td>Střední</td>
</tr>
<tr>
<td>Triviální (přijatelné)</td>
<td>Okrajová (přijatelné)</td>
</tr>
</tbody>
</table>

Hodnota rizika nabývá těchto hodnot:

a) Triviální
b) Okrajová
c) Střední
d) Značná
e) Nepřípustná

Na každé z nich je nutné reagovat jiným způsobem. Tímto se zabývá kapitola 5.2.4. [22]

6.2.4 Počáteční hodnota rizika

Na základě vstupních dat, která byla vložena, je automaticky vypočítána tzv. „počáteční hodnota rizika“. Dle velikosti počáteční hodnoty rizika se musí přístupovat k nápravným opatřením s různou váhou a urgencí. Toto stanovuje následující tabulka [22]:

<table>
<thead>
<tr>
<th>Pravděpodobnost</th>
<th>Závažnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Střední</td>
<td>Značné</td>
</tr>
<tr>
<td>Střední</td>
<td>Střední</td>
</tr>
<tr>
<td>Okrajová (přijatelné)</td>
<td>Střední</td>
</tr>
<tr>
<td>Triviální (přijatelné)</td>
<td>Okrajová (přijatelné)</td>
</tr>
</tbody>
</table>

Obrázek 6.2 - Matice pravděpodobnosti a závažnosti
<table>
<thead>
<tr>
<th>Hodnota</th>
<th>Typy and naléhavost nápravných opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivinìní</td>
<td>Není třeba provádět žádné opatření a udržovat záznamy dokumentů.</td>
</tr>
<tr>
<td>Okrajová</td>
<td>Žádné další kontroly nejsou nutné. Podle povahy pracoviště můžeme vyhledávat bezpečnější způsoby řešení. Je potřeba monitorovat stav, abychom se ujistili, že kontroly jsou uskutečňovány.</td>
</tr>
<tr>
<td>Sřední</td>
<td>Měly by být vynaloženo úsilí pro snižení rizik, ale není třeba jich dosáhnout za jakoukoliv cenu a v omezeném čase. Toto by mělo být rozumně změřen a navrženo. Opatření pro snižení rizik by měla být provedena v definovaném čase. Je potřeba monitorovat stav, abychom se ujistili, že kontroly jsou uskutečňovány.</td>
</tr>
<tr>
<td>Značná</td>
<td>Práce by neměli začít, dokud nebude riziko sníženo. Pro snižení rizika by měly být vynaloženy nemalé zdroje. Tam, kde jsou rizika vyvolávána při kontinuální činnosti, opatření by měla být přijata co nejrychleji.</td>
</tr>
</tbody>
</table>

6.2.5 Přijetí opatření k nápravě

a) Technická – technická nápravná opatření fungují jako bariéra v přenosu zdroje rizika na vystavované osoby. V praxi to tedy mohou být různé kryty, zámky, senzory a čidla v součinnosti s elektronickými změnami chodu zařízení aj. mechanismy. Dále je technickým opatřením odstranění zdroje rizika nebo výměna za méně nebezpečná. Technická opatření mají zpravidla vyšší schopnost snižovat hodnotu rizika.

b) Organizační – organizační nápravná opatření mění způsob práce nebo stanovují jasná pravidla v technologických postupech a procedurách (včetně příslušného technického vybavení), které vedou ke zvýšení bezpečnosti provozu. Organizační opatření zavádime pouze v případě, že nelze snižovat riziko technicky.

c) Kombinace uvedených opatření
Při přijímání opatření platí zásady priority, to znamená, že přednostně jsou uplatňována opatření kolektivní ochrany a technická, a v případech, kdy to není současnými dostupnými prostředky možné, jsou přijímána opatření individuální ochrany. [22]

6.2.6 Zbytková hodnota rizika

Po přijetí nápravných opatření se hodnota rizika přirozeně snižuje. Každé nápravné opatření má však jinou schopnost snižovat riziko. Proto je nutné zvážit, zdali je hodnota zbytkového rizika již přijatelná, pokud ne, je třeba snižovat riziko i nadále.

I přesto, že je hodnota zbytkového rizika triviální nebo okrajová, nesmíme zapomenout, že podmínky, za kterých byla rizika hodnocena, se mohou kdykoliv změnit. Proto je třeba i tato rizika vést stále v patrnosti a nepodečnovat je. [22]

Obrázek 6.3 - Zbytková hodnota rizika

6.2.7 Seznamování s riziky

Povinností zaměstnavatele, vyplývající se zákoníku práce, je seznamovat zaměstnance s riziky na daném pracovišti. Proto je nutné včlenit databází zbytkových rizik do řízených dokumentů společnosti ArcelorMittal Ostrava a. s. (bezpečnostních pokynů, regulativ osobních ochranných pracovních prostředků, místních provozních řádech skladu, apod.) a zajistit, aby zaměstnanci na všech stupních byli proškoleni a uvědoměni o rizicích, kterým jsou vystavováni a jaké jim plynou povinnosti pro provádění bezpečné práce. [22]
7 Identifikace a vyhodnocení rizik pracovních činností s tekutým kovem

OOPP (Osobní ochranné pracovní prostředky) – ochranné prostředky, které musí chránit zaměstnance před riziky, nesmí ohrozovat jejich zdraví, nesmí bránit při výkonu práce a musí splňovat požadavky stanovené prováděcím právním předpisem, kterým je nařízení vlády č. 21/2003 Sb., kterým se stanoví technické požadavky na osobní ochranné prostředky pro výrobce a distributory. [1, 10]

7.1 Příprava před odpichem

Oblast analýzy: Vysoká pec č. 1 – č. 4

Profese: 1. tavič, 2. tavič, 3. tavič + jeřábník, 1. struskař, 2. struskař, strojník pásové zavážky

7.1.1 Příprava koryta

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí

Popis ohrožení: nerovnosti na plošině, písku, prachu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední

Opatření: použití předepsané pracovní obuví, pořádek na pracovišti

Hodnota zbytkového rizika: okrajová

b) popálení

Popis ohrožení: zbytky žhavého materiálu (horký písek), konstrukce technologie
Frekvence trvání expozice nebezpečí: časté
<table>
<thead>
<tr>
<th>Pakety hodnot</th>
<th>Střední</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počáteční hodnota rizika:</td>
<td>střední</td>
</tr>
<tr>
<td>Hodnota zbytkového rizika:</td>
<td>střední</td>
</tr>
<tr>
<td>Opatření:</td>
<td>použití OOPP – nehořlavý ochranný oděv (blůza, kalhoty), kožené rukavice s certifikací pro svářeče a s odolností proti odření</td>
</tr>
</tbody>
</table>

c) Tření nebo odření
<table>
<thead>
<tr>
<th>Pakety hodnot</th>
<th>Střední</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počáteční hodnota rizika:</td>
<td>střední</td>
</tr>
<tr>
<td>Hodnota zbytkového rizika:</td>
<td>okrajová</td>
</tr>
<tr>
<td>Opatření:</td>
<td>použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření</td>
</tr>
</tbody>
</table>

d) Naražení
<table>
<thead>
<tr>
<th>Pakety hodnot</th>
<th>Střední</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počáteční hodnota rizika:</td>
<td>střední</td>
</tr>
<tr>
<td>Hodnota zbytkového rizika:</td>
<td>okrajová</td>
</tr>
</tbody>
</table>
e) intoxikace

Popis ohrožení: Při úniku CO z odpichových otvorů, foukacích forem

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná

Opatření: použití detektoru CO

Hodnota zbytkového rizika: střední

f) pády předmětů a materiálů

Popis ohrožení: Pád krytu při jeho zvedání jeřáblem, materiálu při manipulaci s jeřáblem

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: značná

Počáteční hodnota rizika: značná

Opatření: zákaz vstupu do pracovního prostoru jeřábu, dbát na dodržení zakázaných manipulací vazačů

Hodnota zbytkového rizika: střední

g) prach

Popis ohrožení: Poletující grafit, prach

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední

Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

h) podchlazení / přehřátí organizmu

Popis ohrožení: sálové teplo

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob: více

Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední

Opatření: použít O OPP – ohnivzdorný oblek

Hodnota zbytkového rizika: okrajová

7.1.2 Příprava kyvného žlabu strusky

Typ práce: rutinní - provozní stav

Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí

Popis ohrožení: nerovnosti na plošině, písku, prachu

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob: více

Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední

Opatření: použít předepsané pracovní obuv, pořádek na pracovišti

Hodnota zbytkového rizika: okrajová

b) popálení

Popis ohrožení: zbytky žhavého materiálu (horký písek, struska), žlabu

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo
c) tření nebo odření
Popis ohrožení: O konstrukci plošiny, žlabu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ohnivzdorný oblek, kožené rukavice s certifikací pro svářeče a s odolností proti odření
Hodnota zbytkového rizika: okrajová

d) naražení
Popis ohrožení: O konstrukci plošiny, žlabu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření
Hodnota zbytkového rizika: okrajová

e) intoxikace
Popis ohrožení: Při úniku CO z odpichových otvorů, foukacích forem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná

Opatření: použití detektoru CO
Hodnota zbytkového rizika: střední

f) pád z výšky nebo do hloubky (> 1,5 m)
Popis ohrožení: Z ochozu kolem struskového koryta
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: velká
Počáteční hodnota rizika: střední
Opatření: nevstupovat za ochranná zábradlí
Hodnota zbytkového rizika: střední

g) prach
Popis ohrožení: Poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití O OPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

h) podchlazení / přehřátí organizmu
Popis ohrožení: Sálavé teplo
7.1.3 Příprava kyvného žlabu železa

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí
Popis ohrožení: nerovnosti na plošině, písku, prachu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ohnivzdorný oblek
Hodnota zbytkového rizika: okrajová

b) popálení
Popis ohrožení: zbytky žhavého materiálu (horký písek, železo)
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: střední
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ohnivzdorný oblek, kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: střední

c) tření nebo odření
Popis ohrožení: o konstrukci plošiny, žlabu, nářadí
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: okrajová

d) naražení
Popis ohrožení: o konstrukci plošiny, žlabu, nářadí
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: okrajová

e) intoxikace
Popis ohrožení: při úniku CO z odpichových otvorů, foukacích forem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití detektoru CO
Hodnota zbytkového rizika: střední

f) pády předmětů a materiálů
Popis ohrožení: pád krytu žlabu při jeho odstranění jeřábem, slitků
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: značná
Počáteční hodnota rizika: značná
Opatření: zákaz vstupu do pracovního prostoru jeřábu, dodržovat zakázané manipulace vazačů
Hodnota zbytkového rizika: střední

g) prach
Popis ohrožení: poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

h) podchladení / přehržání organizmu
Popis ohrožení: sálavé teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ohnivzdorný oblek
Hodnota zbytkového rizika: okrajová

7.1.4 Nabíjení ucpávačky

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí
Popis ohrožení: nerovnosti na plošině, písku, prachu
Frekvence trvání expozice nebezpečí: častě
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití předepsané pracovní obuví, pořádek na pracovišti
Hodnota zbytkového rizika: okrajová

b) naražení
Popis ohrožení: o konstrukci ucpávačky
Frekvence trvání expozice nebezpečí: častě
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová
Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření
Hodnota zbytkového rizika: triviální
c) tření nebo odření

Popis ohrožení: o konstrukci ucpávačky

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá

Počáteční hodnota rizika: okrajová

Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: triviální

d) střih

Popis ohrožení: otvor pro ucpávací hmotu a píšt

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: velká

Počáteční hodnota rizika: střední

Opatření: zajištění agregátu proti náhodnému spuštění

Hodnota zbytkového rizika: střední

e) vymrštění (zařízení nebo materiálu)

Popis ohrožení: ucpávací hmoty

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: střední

Počáteční hodnota rizika: střední
Opatření: použití OOPP – nehořlavý ochranný oděv (blůza, kalhoty), kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: střední

f) podchlazení / přehřátí organizmu

Popis ohrožení: sálavé teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední

Opatření: použití OOPP – ohnivzdorný oblek

Hodnota zbytkového rizika: okrajová

g) intoxikace

Popis ohrožení: při úniku CO z odpichových otvorů, foukacích forem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná

Opatření: použití detektoru CO

Hodnota zbytkového rizika: střední

h) prach

Popis ohrožení: Poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor

Hodnota zbytkového rizika: okrajová

ch) karcinogeny
Popis ohrožení: při kontaktu s ucpávací hmotou
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední
Opatření: použití OOPP – nehořlavý ochranný oděv (blůza, kalhoty), kožené rukavice s certifikací pro svářeče a s odolností proti odření

Hodnota zbytkového rizika: okrajová

7.2 Odpich tekutého železa

Oblast analýzy: Vysoká pec č. 1 – č. 4
Profese: 1. tavič, 2. tavič, 3. tavič + jeřábník, 1. struskař, 2. struskař, strojník pásové zavážky

7.2.1 Vrtání odpichového otvoru pece

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) vymrštění (zařízení nebo materiálu)
Popis ohrožení: rozstřik žhavého železa
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: středně
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: střední
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa, zákaz pohybu osob v prostoru odpichu

Hodnota zbytkového rizika: střední

b) vtažení nebo zachycení
Popis ohrožení: vrtačkou při pohybu v jejím manipulačním prostoru
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední
Počáteční hodnota rizika: střední
Opatření: stát jen vně manipulačním prostoru
Hodnota zbytkového rizika: okrajová

c) popálení
Popis ohrožení: žhavým kovem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa, zákaz pohybu osob v prostoru odpichu
Hodnota zbytkového rizika: střední

d) opaření
Popis ohrožení: horkými plyny při odpichu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

e) podchlazení / přehřátí organismu
Popis ohrožení: sálavé teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – podvlíkačky proti tepelným účinkům a odvodu vlhkosti z těla, ohnivzdorný oblek a ochranný štít
Hodnota zbytkového rizika: okrajová

f) hluk
Popis ohrožení: při vrtání odpichového otvoru
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – chrániče sluchu
Hodnota zbytkového rizika: okrajová

g) prach
Popis ohrožení: poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
<table>
<thead>
<tr>
<th>Nebezpečí</th>
<th>Počet ohrožených osob</th>
<th>Míra závažnosti rizika</th>
<th>Počáteční hodnota rizika</th>
<th>Opatření</th>
<th>Hodnota zbytkového rizika</th>
</tr>
</thead>
<tbody>
<tr>
<td>h) naražení</td>
<td>ne</td>
<td>malá</td>
<td>okrajová</td>
<td>použití OOPP – ochranné brýle se skleněným zorníkem, respirátor</td>
<td>okrajová</td>
</tr>
<tr>
<td>ch) tření nebo odření</td>
<td>ne</td>
<td>malá</td>
<td>okrajová</td>
<td>použití OOPP – rukavice pro práci s tekutým kovem</td>
<td>triviální</td>
</tr>
<tr>
<td>i) výbuch, požár</td>
<td>ne</td>
<td>malá</td>
<td>triviální</td>
<td>použití OOPP – rukavice pro práci s tekutým kovem</td>
<td>triviální</td>
</tr>
</tbody>
</table>

Popis ohrožení: o konstrukci vrtačky

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob: jedna

Míra závažnosti rizika: malá

Počáteční hodnota rizika: okrajová

Opatření: použití OOPP – rukavice pro práci s tekutým kovem

Hodnota zbytkového rizika: triviální

Popis ohrožení: při kontaktu tekoucího kovu s mokrým povrchem, vodou, částicemi prachu

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použítí OOPP – kompletní výbava proti rozstříku žhavého železa, dodržovat bezpečnostní postup při přípravě koryta
Hodnota zbytkového rizika: střední

j) snížení viditelnosti
 Popis ohrožení: při vrtání odpichového otvoru a výronu horkých kovů
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: málo
 Je možnost vyhnout se nebezpečí: ne
 Jaký je počet ohrožených osob: jedna
 Míra závažnosti rizika: malá
 Počáteční hodnota rizika: okrajová

k) intoxikace
 Popis ohrožení: při úniku CO z odpichových otvorů, foukacích forem
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: málo
 Je možnost vyhnout se nebezpečí: ne
 Jaký je počet ohrožených osob: více
 Míra závažnosti rizika: velká
 Počáteční hodnota rizika: značná
 Opatření: použítí detektoru CO
 Hodnota zbytkového rizika: střední

l) psychická zátěž
 Popis ohrožení: stres z namáhavé a nebezpečné práce
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: málo
 Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: dodržovat bezpečnostní přestávky, pitný režim
Hodnota zbytkového rizika: okrajová

7.2.2 Vrtání odpichového otvoru pece ruční vrtačkou

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) vymrštění (zařízení nebo materiálu)
Popis ohrožení: rozstřik žhavého železa
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa
Hodnota zbytkového rizika: střední

b) popálení
Popis ohrožení: žhavým kovem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa
Hodnota zbytkového rizika: střední
c) opaření
Popis ohrožení: horkými plyny při odpichu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

d) podchlazení / přehřátí organizmu
Popis ohrožení: sálavé teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – podvlíkačky proti tepelným účinkům a odvodu vlhkosti z těla, ohnivzdorný oblek a ochranný štít
Hodnota zbytkového rizika: okrajová

e) hluk
Popis ohrožení: při vrtání odpichového otvoru
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – chrániče sluchu
Hodnota zbytkového rizika: okrajová
f) prach
Popis ohrožení: poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použít OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

g) naražení
Popis ohrožení: o konstrukci vrtačky
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová
Opatření: použít OOPP – rukavice pro práci s tekutým kovem
Hodnota zbytkového rizika: triviální

h) tření nebo odření
Popis ohrožení: o konstrukci vrtačky
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová
Opatření: použít OOPP – rukavice pro práci s tekutým kovem
Hodnota zbytkového rizika: triviální
ch) výbuch, požár

Popis ohrožení: při kontaktu tekoucího kovu s mokrým povrchem, vodou, částicemi prachu

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa, dodržovat bezpečnostní postup při přípravě koryta

Hodnota zbytkového rizika: střední

i) snížení viditelnosti

Popis ohrožení: při vrtání odpichového otvoru a výronu horkých kovů

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá

Počáteční hodnota rizika: okrajová

j) intoxikace

Popis ohrožení: při úniku CO z odpichových otvorů, fokacích forem

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná
Opatření: použití detektoru CO

Hodnota zbytkového rizika: střední
k) psychická zátěž

Popis ohrožení: stres z namáhavé a nebezpečné práce

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední
Opatření: dodržovat bezpečnostní přestávky, pitný režim

Hodnota zbytkového rizika: okrajová

l) dotykem „živých“ a „neživých“ částí

Popis ohrožení: při poruše elektro části vrtačky

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední

Počáteční hodnota rizika: střední
Opatření: použít OOPP – rukavice pro práci s tekutým kovem, pravidelné revize zařízení

Hodnota zbytkového rizika: okrajová

7.2.3 Čištění koryta a žlabu během odpichu

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí

Popis ohrožení: na nesrovnalostech na plošině, písku, prachu

Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
| Jaký je počet ohrožených osob: | více |
| Míra závažnosti rizika: | malá |

Počáteční hodnota rizika: střední

Opatření: použití předepsané pracovní obuvi, pořádek na pracovišti

Hodnota zbytkového rizika: okrajová

b) vymrštění (zařízení nebo materiál)

Popis ohrožení: rozstřik žhavého železa

- **Frekvence trvání expozice nebezpečí:** časté
- **Jak často může docházet k nehodám během expozice:** málo
- **Je možnost vyhnout se nebezpečí:** ne
- **Jaký je počet ohrožených osob:** více
- **Míra závažnosti rizika:** velká

Počáteční hodnota rizika: značná

Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa

Hodnota zbytkového rizika: střední

c) popálení

Popis ohrožení: žhavým kovem

- **Frekvence trvání expozice nebezpečí:** časté
- **Jak často může docházet k nehodám během expozice:** málo
- **Je možnost vyhnout se nebezpečí:** ne
- **Jaký je počet ohrožených osob:** více
- **Míra závažnosti rizika:** velká

Počáteční hodnota rizika: značná

Opatření: použití OOPP – kompletní výbava proti rozstříku žhavého železa

Hodnota zbytkového rizika: střední

d) opaření

Popis ohrožení: horkými plyny při odpichu

- **Frekvence trvání expozice nebezpečí:** časté
- **Jak často může docházet k nehodám během expozice:** málo
- **Je možnost vyhnout se nebezpečí:** ne
- **Jaký je počet ohrožených osob:** více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

e) podchlazení / přehřátí organizmu
Popis ohrožení: sálové teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – podvlíkačky proti tepelným účinkům a odvodu vlhkosti z těla, ohnivzdorný oblek a ochranný štít
Hodnota zbytkového rizika: okrajová

f) hluk
Popis ohrožení: při vrtání odpichového otvoru
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – chrániče sluchu
Hodnota zbytkového rizika: okrajová

g) prach
Popis ohrožení: poletující grafit, prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

h) pády předmětů a materiálů
Popis ohrožení: pád krytu při jeho zvedání jeřáblem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: značná
Počáteční hodnota rizika: značná
Opatření: zákaz vstupu do pracovního prostoru jeřábu, dodržovat zakázané manipulace vazačů
Hodnota zbytkového rizika: střední

ch) výbuch, požár
Popis ohrožení: při kontaktu tekoucího kovu s mokrým povrchem, nářadím, vodou, částicemi prachu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa, dodržení bezpečnostního pokynu při přípravě koryta
Hodnota zbytkového rizika: střední

i) snížení viditelnosti
Popis ohrožení: při výronu horkých plynů v prostoru kyvného žlabu
Frekvence trvání expozice nebezpečí: časté
j) utonutí, udušení

Popis ohrožení: při výronu horkých plynů v prostoru kyvného žlabu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: značná
Počáteční hodnota rizika: nepřijatelná
Opatření: zákaz vstupu do prostoru kyvného žlabu během odpichu
Hodnota zbytkového rizika: značná

k) vibrace

Popis ohrožení: použití pneumatického nářadí
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová
Opatření: použití OOPP – antivibrační rukavice, střídání zaměstnanců
Hodnota zbytkového rizika: triviální

g) psychická zátěž

Popis ohrožení: stres z namáhavé a nebezpečné práce
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: dodržovat bezpečnostní přestávky, pitný režim
Hodnota zbytkového rizika: okrajová

7.2.4 Posun pojízdných mísiců a struskových pánví

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) vtažení nebo zachycení
Popis ohrožení: při posunu pojízdným mísicem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: dbát zvýšené opatrnosti, nevstupovat do průjezdného profilu pojízdného mísíče
Hodnota zbytkového rizika: okrajová

b) vymrštění (zařízení nebo materiálu)
Popis ohrožení: rozstřik tekutého kovu při plnění pojízdného mísíče
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití O OPP – kompletní výbava proti rozstřiku žhavého železa, zákaz vstupu do prostoru plnění pojízdného mísíče v kolejišti

Hodnota zbytkového rizika: okrajová

c) popálení

Popis ohrožení: Při plnění pojízdného mísíče tekutým kovem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná

Opatření: použití O OPP – kompletní výbava proti rozstřiku žhavého železa, zákaz vstupu do prostor plnění pojízdných mísíčů v kolejišti

Hodnota zbytkového rizika: střední

d) opaření

Popis ohrožení: Při výronu horkých plynů
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná

Opatření: použití O OPP – kompletní výbava proti rozstřiku žhavého železa, zákaz vstupu do prostor plnění pojízdných mísíčů v kolejišti

Hodnota zbytkového rizika: střední

e) naražení

Popis ohrožení: při ručním připojování spřáhla el. vozu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední
Počáteční hodnota rizika: střední
Opatření: použít OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření, použít nářadí pro připojování
Hodnota zbytkového rizika: okrajová

e) tření nebo odření
Popis ohrožení: při ručním připojování spáhla el. vozu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová
Opatření: použít OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření
Hodnota zbytkového rizika: triviální

e) prach
Popis ohrožení: při plnění pojízdných misíčů tekutým kovem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použít OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

e) výbuch, požár
Popis ohrožení: při kontaktu tekoucího kovu s mokrým povrchem, nářadím, vodou, částicemi prachu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká

Počáteční hodnota rizika: značná
Opatření: zákaz vstupu do prostoru plnění pojízdných mísiců v kolejišti

Hodnota zbytkového rizika: střední

7.2.5 Ucpání pece

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) naražení

Popis ohrožení: o konstrukci plošiny, ucpávačky
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední
Opatření: použití OOPP – rukavice pro práci s tekutým kovem

Hodnota zbytkového rizika: okrajová

b) tření nebo odření

Popis ohrožení: o konstrukci plošiny ucpávačky
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: **střední**
Opatření: použít OOPP – rukavice pro práci s tekutým kovem
Hodnota zbytkového rizika: **okrajová**

c) vymrštění (zařízení nebo materiálu)
Popis ohrožení: rozstřik tekutého kovu, výron ucpávací hmoty při ucpávání
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: **značná**
Opatření: použít OOPP – kompletní výbava proti rozstříku žhavého železa
Hodnota zbytkového rizika: **střední**

d) popálení
Popis ohrožení: tekutým kovem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: **značná**
Opatření: použít OOPP – kompletní výbava proti rozstříku žhavého železa
Hodnota zbytkového rizika: **střední**

e) uklouznutí, upadnutí, zakopnutí
Popis ohrožení: na nesrovnalostech na plošině, písku, prachu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: **střední**
Opatření: předepsána pracovní obuv, pořádek na pracovišti
Hodnota zbytkového rizika: okrajová

f) opaření
Popis ohrožení: při úniku chlazení vody
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použítí OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

h) pády předmětů a materiálu
Popis ohrožení: při vyjetí ucpávací tyče
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: dbát zvýšené opatrnosti
Hodnota zbytkového rizika: okrajová

h) podchlazení / přehřátí organismu
Popis ohrožení: sálavé teplo
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OPP – podvlíkačky proti tepelným účinkům a odvodu vlhkostí z těla, ohnivzdorný oblek a ochranný štít

Hodnota zbytkového rizika: okrajová

ch) dotykem „živých“ a „neživých“ částí

Popis ohrožení: při poruše elektro částí ucpávačky (ovládání)
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední

Počáteční hodnota rizika: střední
Opatření: použití OPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření, pravidelné revize zařízení

Hodnota zbytkového rizika: okrajová

i) vtažení nebo zachycení

Popis ohrožení: ucpávačkou při pohybu v jejím pracovním prostoru
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední

Počáteční hodnota rizika: střední
Opatření: stát jen vně manipulačního prostoru

Hodnota zbytkového rizika: okrajová

j) hluk

Popis ohrožení: při provozu ucpávačky
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – chráníče sluchu
Hodnota zbytkového rizika: okrajová

k) prach
Popis ohrožení: poletující grafit a prach
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor
Hodnota zbytkového rizika: okrajová

l) intoxikace
Popis ohrožení: při úniku CO z odpichových otvorů, foukacích forem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: velká
Počáteční hodnota rizika: značná
Opatření: použití detektoru CO
Hodnota zbytkového rizika: střední

m) psychická zátěž
Popis ohrožení: stres z namáhavé a nebezpečné práce
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: malo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: malá
Počáteční hodnota rizika: okrajová

7.3 Odlévání pojízdných mísíčů

Oblast analýzy: Lící stroj

Profese: předák licí plošiny, odlévač, jeřábník, strojník

7.3.1 Kontrola chladící vody, čerpadel, potrubí

Typ práce: rutinní - provozní stav

Zdroj rizika:

a) opaření

Popis ohrožení: při úniku horké páry z potrubí

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob:

Míra závažnosti rizika:

Počáteční hodnota rizika: střední

Opatření: použití OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření, pravidelné revize zařízení, ochranné brýle se skleněným zorníkem, provádění předepsaných revizí zařízení

Hodnota zbytkového rizika: okrajová

b) uklouznutí, upadnutí, zakopnutí

Popis ohrožení: na kluzkém a nerovném povrchu

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: středně

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob:

Míra závažnosti rizika:

Počáteční hodnota rizika: střední
Opatření: použití předepsané pracovní obuvi, dbát zvýšené opatrnosti, pravidelně udržovat daný prostor

Hodnota zbytkového rizika: okrajová

7.3.2 Příprava koryta, pískování, cementování koncové části koryta a nálevky

Typ práce: rutinní - provozní stav

Zdroj rizika:

a) uklouznutí, upadnutí, zakopnutí

Popis ohrožení: na kluzkém a nerovném povrchu

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: středně

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob:

Míra závažnosti rizika:

Počáteční hodnota rizika: střední

Opatření: použití předepsané pracovní obuvi, dbát zvýšené opatrnosti, pravidelně udržovat daný prostor

Hodnota zbytkového rizika: okrajová

b) naražení

Popis ohrožení: o konstrukci technologie

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Je možnost vyhnout se nebezpečí: ne

Jaký je počet ohrožených osob:

Míra závažnosti rizika:

Počáteční hodnota rizika: okrajová

b) alternativní

Popis ohrožení: pískování, cementování, při provozu technologie

Frekvence trvání expozice nebezpečí: časté

Jak často může docházet k nehodám během expozice: málo

Míra závažnosti rizika:

Počáteční hodnota rizika: okrajová
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:

Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem, respirátor

Hodnota zbytkového rizika: okrajová

d) hluk

Popis ohrožení: při pískování, cementování, při provozu technologie
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:

Počáteční hodnota rizika: střední
Opatření: použití OOPP – chrániče sluchu

Hodnota zbytkového rizika: okrajová

e) intoxikace

Popis ohrožení: při vyhřívání koncové části koryta plynem
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:

Počáteční hodnota rizika: značná
Opatření: použití detektoru CO, pravidelná revize zařízení, dodržovat pracovní postup, dbát zvýšené opatrnosti

Hodnota zbytkového rizika: střední

f) vymrštění (zařízení nebo materiál)

Popis ohrožení: při pískování, cementování, při provozu technologie, rozstřik vápna
7.3.3 Práce se sbíječkou, čerpadlem

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) vibrace

Popis ohrožení: při práci se sbíječkou
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob: jedna
Míra závažnosti rizika: střední

Počáteční hodnota rizika: okrajová
Opatření: použití OOPP – antivibrační rukavice
Hodnota zbytkového rizika: triviální

b) vymrštění (zařízení nebo materiál)

Popis ohrožení: při uvolnění hadice
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: střední
Opatření: provádění pravidelných revizí zařízení, kontrola upevnění hadic před použitím, OOPP – pracovní oděv, rukavice, ochranné brýle se skleněným zorníkem
Hodnota zbytkového rizika: okrajová

7.3.4 Uchycení vozu pro klopení

Typ práce: rutinní - provozní stav
Zdroj rizika:

a) tření nebo odření
Popis ohrožení: o konstrukci vozu při uvazování řetězu
Frekvence trvání expozice nebezpečí: častě
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: okrajová
Opatření: použítí OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření, pravidelné revíze zařízení
Hodnota zbytkového rizika: triviální

b) popálení
Popis ohrožení: o konstrukci vozu
Frekvence trvání expozice nebezpečí: častě
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: střední
Opatření: použítí OOPP – kožené rukavice s certifikací pro svářeče a s odolností proti odření, pravidelné revíze zařízení
7.3.5 Lití kovu

Typ práce: rutinní - provozní stav

Zdroj rizika:

a) vymrštění (zařízení nebo materiálu)
 Popis ohrožení: rozstřik tekutého kovu
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: středně
 Je možnost vyhnout se nebezpečí: ne
 Jaký je počet ohrožených osob: více
 Míra závažnosti rizika: střední
 Počáteční hodnota rizika: značná
 Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
 Hodnota zbytkového rizika: střední

b) popálení
 Popis ohrožení: o žhavý tekutý kov, litou formu
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: středně
 Je možnost vyhnout se nebezpečí: ne
 Jaký je počet ohrožených osob: více
 Míra závažnosti rizika: střední
 Počáteční hodnota rizika: značná
 Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
 Hodnota zbytkového rizika: střední

c) uklouznutí, upadnutí, zakopnutí
 Popis ohrožení: na nerovném povrchu licí plošiny
 Frekvence trvání expozice nebezpečí: časté
 Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: střední
Přijatá opatření: udržovat pracoviště v čistotě, funkční osvětlení pracoviště
Hodnota zbytkového rizika: okrajová

d) výbuch, požár
Popis ohrožení: při kontaktu žhavého kovu s vodou
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: středně
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: značná
Opatření: nářadí pro usměrnění toku musí být zahřáté a vysušené,
použití OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

e) prach
Popis ohrožení: poletující grafit z litého kovu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: středně
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:
Počáteční hodnota rizika: střední
Opatření: použití OOPP – ochranné brýle se skleněným zorníkem,
respirátor
Hodnota zbytkového rizika: střední

f) tepelné záření nebo jiné jevy (el. obloukem, účinky zkratů, přetížení)
Popis ohrožení: od tekutého kovu
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: málo
Je možnost vyhnout se nebezpečí: ne
Jaký je počet ohrožených osob:
Míra závažnosti rizika:

Počáteční hodnota rizika: střední
Opatření: použití OOPP – kompletní výbava proti rozstřiku žhavého železa
Hodnota zbytkového rizika: střední

7.4 Práce ve 4 směnném provozu

Oblast analýzy: celý provoz Vysokých pecí
Profese: všechny na provozu vysokých pecí

7.3.1 Práce v nočních hodinách

Typ práce: rutinní - provozní stav
Zdroj rizika:

f) stres

Popis ohrožení: narušení biorytmu nočními směnami
Frekvence trvání expozice nebezpečí: časté
Jak často může docházet k nehodám během expozice: středně
Je možnost vyhnout se nebezpečí: ano
Jaký je počet ohrožených osob: více
Míra závažnosti rizika: malá

Počáteční hodnota rizika: střední
Opatření: preventivní lékařské prohlídky 1 x ročně
Hodnota zbytkového rizika: střední
8 Navrhovaná opatření

Na provoze Vysokých pecí se pracuje kontinuálně s tekutým kovem a struskou, proto není jednoduché za provozu navrhnout technická opatření, což by vyžadovalo zastavení provozu vysoké pece, a to je ekonomicky nevýhodné.

Na místech provozu, kde hrozí největší riziko nebezpečí a nemusí se vcházet do těchto prostor, tak je navrhnut zákaz vstupu, a to hlavně do prostoru kde dochází k manipulaci jeřábu, kdy může vypadnout přenášený materiál, dále striktně se nesmí vstupovat za zábradlí, a to hlavně na pracovní plošině vysoké pece, kde by mohlo dojít k pádu do toku tekutého železa nebo strusky. Dále platí zákaz vstupu osob v prostoru před odpichovým otvorem a vstupu do pracovního prostoru kyvného žlabu během odpichu, kde musí být viditelné bezpečnostní tabule se zákazem vstupu, protože může dojít k rozstřiku velkého množství tekutého železa nebo strusky, což by mohlo mít smrtné následky.

Zaměstnanci musí být každodenně před začátkem pracovní doby proškolováni, seznamování s riziky, pracovními postupy, organizací práce a dbát na obezřetnost, kde na vše musí dohlížet a důsledně kontrolovat mistr Vysoké pece.

Taviči a struskaři na svých pracovištích vykonávají práce za podmínek, kdy nejsou dodrženy přípustné mikroklimatické podmínky stanovené zvláštním právním předpisem (NV č. 361/2007 Sb., v platném znění) a míra tepelné zátěže vyžaduje omezení celkové doby této práce v jedné osmihodinové směni na dobu kratší než 8 hodin. Na pracovištích dochází k překračování limitních hodnot tepelné zátěže a je nutný režim práce a odpočinku. Důležité je doplňovat tekutiny, jelikož za těchto podmínek dochází k obrovské ztrátě tekutin v těle.

Jelikož se nedá předejít styku s tekutým kovem kolektivním technickým opatřením, musí zaměstnanci chránit osobními ochrannými pracovními prostředky. Z výše uvedené analýzy rizik je zřejmé, že všechny osobní ochranné pracovní prostředky spadají dle Nařízení vlády č. 21/2003 Sb., technické požadavky na osobní ochranné prostředky, ve znění pozdějších předpisů do kategorie III, což znamená velké riziko (Ochrana proti nenaprovitelným škodám a smrtelným nebezpečím např. poškození chemikáliemi, roztraveným kovem atd.) Proto doporučuji pro jednotlivé činnosti na osobní ochranné prostředky podle technických českých nebo evropských norem tyto požadavky:
Činnosti při práci při odpichu, mezi odpichy a odlévání tekutého kovu, kdy dochází k přímému nebo nepřímému styku s tekutým kovem.

- základní vrstva oděvu tzv. první vrstva na pokožce (podvlíkačky) musí být ze 100 % bavlny a musí splňovat certifikaci EN ISO 14116 (materiály a sestavy materiálů s omezeným šířením plamene),
- ochranný nehořlavý oděv (blůza, kalhoty) splňující požadavky ČSN EN 340 a EN 470 – 1,
- nejvrchnější vrstva oděvu plášť bude z pohliníkovaného aramidového materiálu poskytují zaměstnanci maximální ochranu proti kontaktnímu a sálavému teplu i před účinky přímého plamene a postřikem rozatavenými kovy. Hliníková vrstva chrání, ale má i reflexní funkci pro odraz sálavého a proudícího tepla. Musí splňovat podmínky EN ISO 11612 A B1 C4 E1 a dále EN 531,
- z ochrany nohou je nutné použít kamaše se stejnými minimálními požadavky jako na plášť,
- přilba na hlavu z materiálu polykarbonátu zesílený skelnými vláky proti ochraně před postříkem tekutého kovu, který aniž by došlo k jakémukoliv poškození helmy steče po povrchu helmy, a doporučil bych ochranné rukavice pro ochranu před kontaktním teplem, působením plamene, sálavým teplem a postříkem tekutého kovu splňující EN 407 4444X4
- ochranné boty tzv. slévárenská pérka, které musí být bez šněrování a rychle vyzouvací a musí splňovat normu EN 345 S2. Doporučil bych pro tuto činnost obuv ATLAS Shoes, pro práci do těžkého pracovního prostředí. Tenhle typ obuvi je momentálně nejmodernější a nejvyspělejší na celosvětovém trhu. Je výborně řešena ergonomicky a s tím souvisí výborný komfort pro nohu zaměstnance a navíc je taky vybavena, oproti užívané obuvi, ocelovou špicí pro ochranu prstů.
9 Závěr

Cílem diplomové práce bylo identifikovat, vyhodnotit a navrhnout opatření k eliminaci rizik při práci s tekutým kovem na vybraném hutním provoze Vysokých pecí společnosti ArcelorMittal Ostrava a. s.. Ve své práci jsem použil metodiku systematické analýzy rizik používané v ArcelorMittal Ostrava a. s. a to zejména z toho důvodu, aby mé výsledky práce byly aplikovatelné v uvedené organizaci. Tato analýza rizik je oproti oficiálním metodám více přizpůsobená hutním provozům a práci s tekutým kovem. Z provedené analýzy vyplývá, že na provozu Vysokých pecí jsou hodnoty rizik extrémně vysoké a navrhovaná opatření pouze míru rizika snižují na akceptovatelnou hodnotu.

Mou snahou bylo vyčerpávajícím způsobem popsat všechny činnosti provozu Vysoké pece spojené s prací s tekutým kovem zaměstnanců tohoto provozu. Vzhledem k tomu, že u převažujících činností nelze použít kolektivní ochranu a technické zabezpečení zaměstnanců při práci s tekutým kovem, navrhuji ve svých opatření používání speciálních osobních ochranných pracovních prostředků. V navrhovaných opatřeních jsem poukázal i na kvalitu a provedení těchto osobních ochranných pracovních prostředků.

Při studijních návštěvách společnosti jsem zjistil, že bezpečnost práce a ochrana zdraví je na velmi dobré úrovni. ArcelorMittal Ostrava a. s. má zavedeny mezinárodní i národní systémy řízení bezpečnosti a ochrany zdraví při práci.
Použité zdroje

Seznam obrázků

Obrázek 3.1 - Popis vysoké pece
Obrázek 3.2 - Teplotní rozmezí vysoké pece
Obrázek 3.3 - Odtok tekutého železa a strusky
Obrázek 3.4 - Odtok tekutého železa
Obrázek 6.1 - Struktura kombinací jednotlivých složek k určení pravděpodobnosti
Obrázek 6.2 - Matice pravděpodobnosti a závažnosti
Obrázek 6.3 - Zbytková hodnota rizika

Seznam tabulek

Tabulka 5.1 - Úrazovost provozu Vysokých pecí za roky 2008 - 2012
Tabulka 6.1 - Závažnost nehod
Tabulka 6.2 - Počáteční hodnota rizika

Seznam příloh

Příloha č. 1 - Zdroje rizik
Příloha č. 2 – Výrobní cyklus