Zadání bakalářské práce

Petra Ivánková

Student: Petra Ivánková
Studijní program: B3922 Ekonomika a řízení průmyslových systémů
Studijní obor: 6208R123 Ekonomika a management v průmyslu
Téma: Vehicle Routing Problem, jeho modifikace a metody řešení
Vehicle Routing Problem, its modifications and solving methods

Zásady pro vypracování:
Proveďte průzkum VRP a jeho modifikaci z dostupné literatury. Na základě literární rešerše představte metody řešení těchto problémů se zaměřením na biologii inspirované optimalizační metody.

Seznam doporučené odborné literatury:
Odborný časopis: International Journal of Soft Computing and Engineering

Formální náležitosti a rozsah bakalářské práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí bakalářské práce: Mgr. Martin Čech

Datum zadání: 29.11.2013
Datum odevzdání: 30.04.2014

doc. Ing. Radim Lenort, Ph.D.
vedoucí katedry

prof. Ing. Ludovít Dobrovský, CSc., Dr.h.c.
děkan fakulty
Zásady pro vypracování bakalářské práce

I.

Bakalářskou prací (dále jen BP) se ověřují vědomosti a dovednosti, které student získal během studia, a jeho schopnosti využívat je při řešení teoretických i praktických problémů.

II.

Uspořádání bakalářské práce:

1. Titulní list
2. Originál zadání BP
3. Zásady pro vypracování BP
4. Prohlášení + mistopřísežné prohlášení
5. Abstrakt + kličová slova český a anglicky
6. Obsah BP
7. Textová část BP
8. Seznam použité literatury
9. Přílohy

ad 1) Titulní list je koncipován podle požadavků příslušné oborové katedry.
ad 2) Originál zadání BP obdrží student na oborové katedře.
ad 3) Tyto „Zásady pro vypracování bakalářské práce“ následují za originálem zadání BP. („Zásady pro vypracování bakalářské práce“ jsou ke stažení na webových stránkách fakulty).
ad 4) Prohlášení + mistopřísežné prohlášení napsané na zvláštním listu (ke stažení na webových stránkách fakulty) a vlastnoručně podepsané studentem s uvedením data odevzdání BP. V případě, že BP vychází ze spolupráce s jinými právníky a fyzikálními osobami a obsahuje citlivé údaje, je na zvláštním listě vloženo prohlášení spolupracující právníka nebo fyzikální osoby o souhlasu se zveřejněním BP.
ad 5) Abstrakt a kličová slova jsou uvedena na zvláštním listu český a anglicky v rozsahu max. 1 strany pro obě jazykové verze.
ad 6) Obsah BP se uvažuje na zvláštním listu. Zahrnuje názvy všech číslovaných kapitol, podkapitol a částí textové části BP, odkaz na seznam přílohy a seznam použité literatury, s uvedením příslušné stránky. Předpokládá se desetinné číslování.
ad 7) Textová část BP obvykle zahrnuje:
 • Úvod, obsahující charakteristiku řešeného problému a cíle jeho řešení v souladu se zadáním BP;
 • Vlastní rozpracování BP (včetně obrázků, tabulek, výpočtů) s dílčími závěry, vhodně členěné do kapitol a podkapitol podle povahy problému;
 • Závěr, obsahující celkové hodnocení výsledků BP z hlediska stanoveného zadání. BP nemusí obsahovat experimentální (aplikacní) část. BP bude zpracována v rozsahu min. 25 stran (včetně obsahu a seznamu použité literatury).

Text musí být napsán vhodným textovým editorom počítače po jedné straně bilého neleského papíru formátu A4 při respektování následující doporučené úpravy - písmo Times New Roman (nebo podobné) 12b; řádkování 1,5; okraje – homi, dolní – 2,5 cm, levý – 3 cm, pravý 2 cm. Fotografie, schémata, obrázky, tabulky musí být očíslovány a musí na
ně být v textu poukázáno. Budou zařazeny průběžně v textu, pouze je-li to nezbytně nutné, jako přílohy (viz ad 9).
Odborná terminologie práce musí odpovídat platným normám. Všechny výpočty musí být přehledně uspořádány tak, aby každý odborník byl schopen přezkouset jejich správnost.
U vzorců, údajů a hodnot převzatých z odborné literatury nebo z praxe musí být uveden jejich pramen - u literatury citován číselným odkazem (v hranatých závorkách) na seznam použité literatury. Nedostatky ve způsobu vyjadřování, nedostatky gramatické, neopravené chyby v textu mohou snížit klasifikaci práce.

ad 8) BP bude obsahovat alespoň 10 literárních odkazů, z toho nejméně 3 v některém ze světových jazyků.
Seznam použité literatury se píše na zvláštním listě. **Citaci literatury je nutno uvádět důsledně v souladu s ČSN ISO 690.** Na práce uvedené v seznamu použité literatury musí být uveden odkaz v textu BP.

ad 9) Přílohy budou odsahovat jen ty části (speciální výpočty, zdrojové texty programů aj.), které nelze vhodně včlenit do vlastní textové části, např. z důvodu ztráty srozumitelnosti.

III.

Bakalářskou práci student odevzdá ve dvou knihašky svázaných vyhotoveních, pokud katedra garantující studijní obor neurčí jiný počet. Vnější desky budou označeny takto:

Nahora:

Vysoká škola báňská - Technická univerzita Ostrava

Fakulta metalurgie a materiálového inženýrství

*Katedra ..

Uprostřed:

BAKALÁŘSKÁ PRÁCE

Dole:

Rok
Jméno a příjmení

Kromě těchto dvou knihašky svázaných výtisků odevzdá student kompletní práci také v elektronické formě do IS EDISON. Práce vložená v elektronické formě do IS EDISON se musí zcela shodovat s prací odevzdanou v tiskové formě.

IV.

Nesplnění výše uvedených zásad pro vypracování bakalářské práce může být důvodem nepřijetí práce k obhajobě. O nepřijetí práce k obhajobě rozhoduje v tomto případě garant příslušného studijního oboru. Tyto zásady jsou závazné pro studenty všech studijních programů a forem bakalářského studia fakulty metalurgie a materiálového inženýrství Vysoké školy báňské – Technické univerzity Ostrava od akademického roku 2013/2014.

Ostrava 29. 11. 2013

Prof. Ing. Ľudovít Dobrovský, CSc., Dr.h.c.
Děkan fakulty metalurgie a materiálového inženýrství
VŠB-TU Ostrava

ZASADY.DOC
PŘÍLLAŠENÍ

Prohlašuji, že

- jsem byl(a) seznámen(a) s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. - autorský zákon, zejména §35 - užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního (§60 - školní dílo);

- beru na vědomí, že Vysoká škola báňská - Technická univerzita Ostrava (dále jen VŠB - TUO) má právo nevýdlečně ke své vnitřní potřebě bakalářskou práci užít (§35 odst. 3);

- souhlasím s tím, že bakalářská práce bude archivována v elektronické formě v databázi Ústřední knihovny VŠB - TUO a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že udaje o bakalářské práci budou zveřejněny v informačním systému VŠB-TUO;

- bylo sjednáno, že s VŠB - TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona;

- bylo sjednáno, že užit své dílo - bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB - TUO, která je oprávněna v takovém případě ode mnie požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB - TUO na vytvoření díla vynaloženy (až do jejich skutečné výše);

- beru na vědomí, že odevzdáním své bakalářské práce souhlasím s jejím zveřejněním podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (Zákon o vysokých školách) bez ohledu na výsledek její obhajoby.

Místopříležitě prohlašuji, že jsem celou bakalářskou práci vypracoval(a) samostatně.

V Ostravě, 29. 4. 2019

podpis (jméno a příjmení studenta)
PODĚKOVÁNÍ

Ráda bych poděkovala svému vedoucímu bakalářské práce Mgr. Martinovi Čechovi za odborné vedení, cenné rady, trpělivost a ochotu, kterou mi v průběhu zpracování práce věnoval.
ABSTRAKT

KLÍČOVÁ SLOVA:
Vehicle Routing Problem; Biologií inspirované algoritmy; Kombinatorická optimalizace; Modifikace VRP

ABSTRACT

The main goal of this bachelor’s thesis is to enable the reader to have a closer look at an area of problems called the Vehicle Routing Problem. This quite a new problem, which was defined in the fifties of the 20th century, lies in founding an optimal route for a vehicle fleet. In the first part there are mentioned basic facts about the Vehicle Routing Problem, its history and two more problems that are closely related to it. In the next part, basic modifications and their limitations are described. The third part is devoted to optimization methods of solution. It analyses and compares the existing methods such as exact heuristic and metaheuristics methods with concentration on the bio-inspired algorithms.

KEYWORDS:
Vehicle Routing Problem; Bio-inspired algorithms; Combinatorial optimization; Modifications VRP
OBSAH

ÚVOD ... 2

1 ZÁKLADNÍ CHARAKTERISTIKA VRP ... 4
 1.1 Historie .. 6
 1.2 Problém obchodního cestujícího .. 7
 1.3 Problém naplňování zásobníku .. 8

2 MODIFIKACE VRP .. 10
 2.1 Capacitated VRP ... 11
 2.2 VRP withTimeWindows .. 12
 2.3 Multiple Depot VRP .. 13
 2.4 VRP Pick- up and Delivering .. 14
 2.5 Split Delivery VRP ... 16
 2.6 Stochastic VRP .. 16
 2.7 Periodic VRP ... 17
 2.8 Příklad modifikací .. 18

3 OPTIMALIZAČNÍ METODY ŘEŠENÍ .. 21
 3.1 Heuristiky ... 22
 3.2 Meta-heuristiky .. 23
 3.3 Biologii inspirované metody .. 24
 3.3.1 Genetický algoritmus ... 25
 3.3.2 Optimalizace mravenčí kolonii ... 27

ZÁVĚR ... 30

SEZNAM POUŽITÉ LITERATURY ... 31
ÚVOD

Cílem mé bakalářské práce je vytvoření vyčerpávající rešerše Vehicle Routing Problem, jeho modifikací a metod řešení z dostupné odborné literatury se zaměřením na biologii inspirované metody. Má práce vychází především z rešerše zahraniční literatury, jelikož česká literatura týkající se tohoto tématu není obsáhlá. Motivace pro řešení tohoto tématu vychází z jeho praktického využití.

Tato práce je rozčleněna do tří hlavních kapitol. V první kapitole jsou uvedeny základní fakta, historie a dva problémy, které s VRP úzce souvisí. Prvním z nich je Problém obchodního cestujícího, který je zobecněním VRP. A druhým je Problém naplňování zásobníku, který řeší, jak efektivně uspořádat zboží do rozvozních aut.

Ve druhé kapitole jsou klasifikovány základní modifikace VRP a vysvětleny jejich omezení. V poslední podkapitole, tj. 2.8, je představen reálný příklad pro ilustraci všech modifikací, s kterými se běžně setkáváme. V této podkapitole je také popsáno možné využití VRP v metalurgii. Pro úspěšné implementace problému je důležitá schopnost modifikovat a upravovat klasické VRP, protože jen zřídka se stává, že dvě firmy stojí před totožným problémem. Naplánovaný rozvoz záleží na dalších procesech, které probíhají v podniku a mohou se značně lišit i u podobných společností.

Třetí kapitola je věnována metodám řešení VRP se specializací na biologii inspirované algoritmy. Metody řešení jsou rozděleny, dle tabulky 3, do tří kategorií na exaktní metody, heuristiky a meta-heuristiky. Heuristiky prohledávají pouze omezený prostor řešení, ale produkují relativně dobrá řešení za přijatelný čas. U meta-heuristik je kladen důraz na hlubší prohledávání prostoru řešení v blízkosti potencionálního, kvalitního řešení. Meta-heuristiky
přináší kvalitnější řešení než heuristiky za cenu delšího výpočtu. V třetí kapitole jsou podrobněji popsány genetické algoritmy a algoritmus mravenčí kolonie.
ZÁKLADNÍ CHARAKTERISTIKA VRP

Vehicle Routing Problem (VRP) je všeobecný název pro celou třídu kombinatorických optimalizačních problémů, které se často vyskytují v oblasti dopravy, distribuce a logistiky. VRP spadá do kategorie NP-Těžkých problémů, což znamená, že úsilí vynaložené na vyřešení daného problému exponenciálně roste s velikostí problému. Proto se pro hledání řešení daných problémů používají nejčastěji heuristiky nebo meta-heuristiky. I když tyto metody nenachází optimální řešení, jsou výhodné, jelikož generují řešení blízké optimálnímu v přijatelném čase. Hlavním cílem VRP je co nejefektivněji distribuovat zboží k zákazníkovi, to znamená minimalizovat náklady, případně čas. Úkolem je najít nejkratší cestu z centrálního depa, uspokojit požadavky všech zákazníků (navštívit je) a vrátit se zpět do depa. VRP je znázorněn níže na obrázku 1. Je zde centrální sklad, zákazníci, kteří jsou označeni křížkem a spojeni do tří okružních tras.

Obr. 1 Vehicle Routing Problem

Vehicle Routing Problem byl zveřejněn na konci padesátých let dvacátého století. Danzing a Ramser Chyba! Nenalezen zdroj odkazů.poprvé zveřejnili článek o VRP, kterým formulovali přístup k řešení VRP pomocí algoritmů. Klasický Vehicle Routing Problem je jedním z nejznámějších problémů kombinatorické optimalizace. Díky studiu VRP vzniklo několik přesných a heuristických metod, které mohou být použity nejen pro VRP.

VRP je hlavním problémem v oblasti dopravy, distribuce a logistiky. Každý den se s VRP potýká tisíce firem a organizací, které se zabývají dodávkami a sběrem zboží nebo osob. Pro některé společnosti může doprava a distribuce tvořit velké procento hodnoty zboží. Proto
využití počítačových metod pro optimalizaci VRP může vést k významným úsporám v rozmezí od 5% do 20% z celkových nákladů, jak uvádí ve své knize Tóth a Vigo [3].

VRP výzkum je považován za jeden z velkých úspěchů operačního výzkumu, který se jím zabývá více než 50 let. Firmy, které nabízí programy pro optimalizaci VRP, tvrdí, že potenciál úspor nákladů je ve výši 5% až 30%. Mimo dopravu se VRP používá pro další důležité aplikace jako například v robotice nebo VLSI designu [8].

Tab. 1 Základní modifikace VRP

<table>
<thead>
<tr>
<th>MODIFIKACE</th>
<th>ZKRATKA NÁZVU</th>
<th>OMEZENÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitated VRP</td>
<td>CVRP</td>
<td>KAPACITA</td>
</tr>
<tr>
<td>VRP with Time Windows</td>
<td>VRPTW</td>
<td>ČASOVÁ OKNA</td>
</tr>
<tr>
<td>Multiple Depot VRP</td>
<td>MDVRP</td>
<td>NĚKOLIK SKLADŮ</td>
</tr>
<tr>
<td>VRP with Pick-Up and Delivering</td>
<td>VRPPD</td>
<td>MOŽNOST VRÁCENÍ ZBOŽÍ</td>
</tr>
<tr>
<td>Split Delivery VRP</td>
<td>SDVRP</td>
<td>NĚKOLIK AUT</td>
</tr>
<tr>
<td>Stochastic VRP</td>
<td>SVRP</td>
<td>NAHODILOST HODNOT</td>
</tr>
<tr>
<td>Periodic VRP</td>
<td>PVRP</td>
<td>PRAVIDELNOST</td>
</tr>
</tbody>
</table>

S VRP úzce souvisí dva problémy, kdy jedním z nich je Problém obchodního cestujícího (TSP), jeden z nejznámějších logistických problémů. Problému obchodního cestujícího je věnována podkapitola 1.2, kde lze nalézt podobnější informace.
Druhým je problém naplňování zásobníku. Zaobírá se přípravou zboží předtím, než je distribuováno k zákazníkům. Přípravou je myšleno třídění zboží do kontejnerů, ve kterých je následně přepravováno. Třídění má několik metod, které jsou popsány v podkapitole 1.3.

Jak už bylo řečeno, VRP je logistický problém. Význam logistiky se zrodil ve vojenství a postupně se dopracoval až do dnešního pojetí logistiky. V současnosti je možno mluvit o dvou oblastech, kde je logistika široce uplatňována a to vojenská a hospodářská. Hospodářská logistika vznikla ze zkušeností vojenské po druhé světové válce, ale je to právě hospodářská logistika, která je VRP bližší. Zahrnuje všechny činnosti počínaje vývojem produktu, přes nákup, zásobování, výrobu, až po distribuci k zákazníkům [4].

Existuje mnoho variant, jak lze logistiku definovat. Například podle Evropské logistické asociace je logistika oorganizace, plánování, řízení a výkon toků zboží vývojem a nákupem počínaje, výrobou a distribucí podle objednávky finálního zákazníka konče tak, aby byly splněny všechny požadavky trhu při minimálních nákladech a minimálních kapitálových výdajích. Logistiku je možné použít na široké množství problémů. Takže je třeba chápat logistiku obecně jako disciplínu s mnoha aktivitami.

Efektivní logistika je v dnešní společnosti stále důležitější. V Evropské Unii odvětví dopravy činí více než 10 % HDP a zaměstnává 10 milionů lidí [5].

1.1 Historie

Jak už bylo zmíněno, Vehicle Routing Problem byl zveřejněn na konci padesátých let dvacátého století. Poprvé došlo k formulaci algoritrického přístupu a k řešení problému v roce 1959 matematiky G. B. Dantzigem a R. H. Ramserem v článku The Truck Dispatching Problem, který byl publikován v Management Science [2]. Tento článek se zabývá distribucí benzinu pro čerpací stanice. Od té doby rostl zájem o VRP a z malé skupiny matematiků se rozvinula široká škála výzkumníků z různých oborů zapojených do této oblasti.

V následujících letech došlo ke vzniku několika heuristických metod založených na různých principech, včetně peněžních úspor, geografické blízkosti a párování zákazníků. Snad nejslavnější heuristika v této kategorii vznikla v roce 1964. Autoři této heuristiky Clarke a Wright formulovali heuristiku úspor, která odolala zkoušce času, protože je rychlá,
jednoduchá a poměrně přesná [6]. Tato metoda řešení je omezená počtem zákazníků. Lze ji použít pro 30 až 100 zákazníků.

Vývoj přesných algoritmů pro VRP vzrostl v osmdesátých letech. Christofides, MingoZZi a Toth v roce 1981 zveřejnili dva dokumenty, které měly základ v matematickém programování [7]. První z těchto dokumentů navrhl algoritmus založený na dynamickém programování, zatímco druhý dokument je založen na dvou matematických formulacích využívající Q- cest a k- nejkratších koster. Laporte, Desrochers a Nobert o několik let později vydali článek [8], který popisuje celočíselné lineární programování pro VRP. Tento článek se zabývá kapacitou a omezením vzdálenosti. Toto řešení je možno použít až pro 60 zákazníků (míst).

Rozvoj moderních heuristik pro VRP začal v roce 1990 s příchodem meta-heuristik. Je třeba říci, že studium VRP podnítilo růst a porozumění několika meta-heuristicckých konceptů, které jsou nyní známy. Výzkum v této oblasti byl velmi rychle roztržštěn.

1.2 Problém obchodního cestujícího

Problém obchodního cestujícího (Travelling Salesman Problem – TSP) je jedním z nejintenzivněji studovaných problémů ve výpočetní matematice, a přesto není známa žádná účinná metoda řešení pro obecný případ. Vyřešení tohoto problému by přineslo úspory v řádech milionů až miliard korun podnikům, v průmyslu, leteckým společnostem a mnoha dalším [10]. Tento problém je možno aplikovat na mnoho praktických situací v průmyslu, logistice a na aktivity spojené s přepravou. Proto je tato úloha jednou z nejznámějších optimalizačních metod.

Problém obchodního cestujícího na první pohled působí jednoduše. Tento problém lze definovat jako obchodního cestujícího, který má mapu s městy a ty musí navštívit. K dispozici má také vzdálenost mezi jednotlivými městy. Problém spočívá v nalezení nejkratší uzavřené

Přestože dopravní aplikace jsou nejpřirozenější prostředí pro TSP, jednoduchost modelu vedla k mnoha zajímavým aplikacím i v jiných oblastech. Klasickým příkladem je plánování stroje na vrtání otvorů v desce nebo do jiných předmětů [13]. V tomto případě vrtané otvory jsou města a náklady na cestování je čas potřebný pro přesun vrtací hlavice z jednoho otvoru k druhému. Technologie pro vrtání se liší v mnoha odvětvích, ale když doba jízdy vrtacího zařízení tvoří významnou část celkového výrobního procesu, pak TSP může hrát roli při snížování nákladů.

1.3 Problém naplňování zásobníku

Problém naplňování zásobníku (Bin Packing Problem) je další ze známých problémů, na které můžeme v logistice narazit. Obecně je možno si tento problém vysvětlit jako otázku, jak nejlépe uspořádat zboží určené k přepravě do kontejnerů, aby se kontejnerů použilo nejméně. Tento problém je velmi komplexní, protože zde máme na mysli trojrozměrné předměty v trojrozměrném prostoru. Tudíž je nutné vzít v potaz, že není důležité jen, ve kterém zásobníku předměty budou, ale také jak tam budou uspořádány.

K řešení tohoto problému bylo navrženo několik heuristik, které se liší možností použít i výsledným uspořádáním [12]. Heuristika First-Fit je nejjednodušší metodou naplňování zásobníku, ale i přesto se jedná o používanou a oblibenou metodu. Při použití této metody jsou vkládány položky do zásobníku v pořadí, které je dáno. To znamená, že první položka je umístěna do prvního zásobníku. Algoritmus se tedy stále vrací, je zadán rekurentsí. Samozřejmě je nutné vzít v potaz kapacitu zásobníku, tudíž pokud je kapacita nad kapacitou prvního zásobníku, je vložena do druhého. Třetí položka je první vkládána do prvního zásobníku, a pokud je nad kapacitu tohoto zásobníku, musí se použít třetí a tak dále, ale vždy je potřeba zachovat pořadí.
2 MODIFIKACE VRP

Tab. 2 Klasifikace modifikací dle podkapitol

<table>
<thead>
<tr>
<th>Modifikace VRP</th>
<th>Základní popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Capacitated VRP</td>
<td>Capacita vozidla je omezená</td>
</tr>
<tr>
<td>2.2 VRP with Time Windows</td>
<td>Zákazník požaduje být obsloužen v určitou dobu (časovém okně).</td>
</tr>
<tr>
<td>2.3 Multiple Depot VRP</td>
<td>Dodavatel má několik skladeň, které jsou umístěny na různých místech.</td>
</tr>
<tr>
<td>2.4 VRP with Pick-Up and Delivering</td>
<td>Zákazník má možnost poslat zboží zpět na sklad.</td>
</tr>
<tr>
<td>2.5 Split Delivery VRP</td>
<td>Zákazník může být obsloužen několika auty.</td>
</tr>
<tr>
<td>2.6 Stochastic VRP</td>
<td>VRP je stochastické, hodnoty jsou nahodilé (počet zákazníků, nároky zákazníků, čas).</td>
</tr>
<tr>
<td>2.7 Periodic VRP</td>
<td>Dodavatel uskutečňuje rozvoz pravidelně v určitých dnech.</td>
</tr>
</tbody>
</table>

Z prostředí praxe přichází požadavky a vznikají přidavná omezení. Taková omezení vždy existovala. Problém byl v tom, že výpočetní postupy nestačily na náročnost problémů, které obsahovaly více omezení. S postupem doby vznikly kvalitní exaktní metody a heuristiky, které umožňují řešit modifikace s několika omezeními. Je třeba si uvědomit, že každá modifikace uvedená v této kapitole je ilustrací nějakého omezení. V realitě většinou tyto
modifikace neexistují samostatně, ale navzájem se propojují, tudíž vytváří modifikace, které obsahují mnohé omezení. Proto se současný výzkum zaměřuje na složitější modifikace, aby bylo možné nalézt kvalitní řešení v omezeném čase.

V současnosti VRP nabízí velké množství heuristických a meta-heuristických přístupů. VRP je studováno pro jeho široké použití a důležitost při stanovování efektivní strategie pro snížování nákladů [13]. Náklady na dopravu lze minimalizovat snížením celkové ujeté vzdálenosti nebo snížením počtu vozidel [14]. Současně dostupné metody mají limit 50-100 zákazníků (míst) v závislosti na požadavcích a modifikacích VRP [13].

Omezení tvoří komponenty VRP. Každá dopravní úloha je tvořena vozidly a jejich vlastnostmi, zákazníky a jejich požadavky a dopravní sítí.

- **Vozidla**: Vozidla tvoří omezující podmínky, jelikož vozový park může být homogenní nebo nehomogenní. Limitující mohou být také jiné vlastnosti jako je váha (vozidla nemohou využívat některé trasy) nebo kapacita.
- **Zákazníci**: Zákazníci požadují určité množství, které musí být dodáno v určitou dobu. Jedná se o časové okno (time window), ve které, musí být zákazník obsloužen. Časové okno může být jedno nebo více nespojitých.

2.1 Capacitated VRP

Capacitated Vehicle Routing Problem je zobecněním klasického VRP. CVRP lze definovat tak, že všechna vozidla mají stejnou kapacitu a v žádném bodě své jízdy ji nesmí překročit. Řešení CVRP toto omezení ve výpočtu musí zohlednit. Tato modifikace zahrnuje hledání souboru tras, které začínají i končí v depu a zároveň musí spravovat všechny známé požadavky zákazníků na minimální tranzitní náklady s ohledem na kapacitu vozidla.

Tak jako klasické VRP i CVRP je problém operačního výzkumu a kombinatorické optimalizace [15]. CVRP je jednou ze tříd rozvozních problémů, kde vozidla mají omezenou kapacitu. Klient může být obsloužen pouze jedním vozidlem. Pro všechna vozidla je sklad totožný. Capacitated VRP má ze všech modifikací nejblíže ke klasickému VRP, jelikož má malý počet omezujících podmínek.

Od roku 1957, kdy byl problém publikován, bylo vyzkoušeno mnoho přístupů, jak problém exaktně či heuristicky řešit. CVRP je v současnosti prozkoumán snad nejvíce ze všech
modifikací VRP. CVRP je možné řešit exaktními metodami maximálně pro 100 zákazníků [16]. Heuristické metody jsou schopny tento problém řešit přibližně pro 1200 zákazníků [17]. Nejúčinnější heuristiky vznikají kombinací celočíselného programování a prohledáváním prostoru [17] [18].

CVRP tvoří jádro logistického plánování a v posledních dvou desetiletích byl rozsáhlé studován [19]. Byly definovány lepší algoritmy, tudíž jsou řešitelné i případy, pro které před nedlouhou dobou nebylo známo řešení. Je navrženo mnoho modelů řešení, kde většina z navržených algoritmů předpokládá, že počet vozidel je neomezený [20]. Cílem takovýchto modelů je získat řešení, které buď minimalizuje počet vozidel, nebo celkové náklady na cestování. Nicméně společnosti, které VRP řeší, mají ve skutečnosti omezený počet vozidel, který je pevně dán [21]. Pro reálné plánovače tras je tento problém prakticky nepoužitelný, protože opomíjí příliš mnoho reálných omezení. CVRP lze najít spíše v oblasti robotiky.

Následující podkapitoly se věnují jedné ze základních modifikací VRP, které jsou shrnuty na příkladu v poslední podkapitole 2.8.

2.2 VRP with Time Windows

Tato podkapitola je věnována Vehicle Routing Problem s časovými okny (VRPTW), což je závažný problém vyskytující se v mnoha distribučních systémech. VRPTW se od klasického VRP liší v tom, že zákazník si určí časové okno (časový interval), ve kterém chce být obsloužen a dodavatel takový požadavek musí dodržet. Z toho vyplývá, že čím je časové okno užší, tím složitější je nalézt řešení pro dodavatele.

VRPTW lze popsat jako problém navrhování nejméně nákladné trasy vozidel se začátkem i koncem své trasy v tomtěž depu, tak aby každý zákazník byl obsloužen právě jednou v předem stanoveném časovém okně. Všechny vozy jsou homogenní a celková poptávka nesní překročit kapacitu vozidel [22]. Cílem VRPTW je najít řešení, které minimalizuje počet použitých vozidel, součet doby jízd a čekací doby potřebné k zásobování všech zákazníků v jejich požadované době. VRPTW se může pojít i s dalšími vedlejšími omezeními a vytvářet nové modifikace jako například Vehicle Routing Problem with Multiple Trips and Time Windows. Kromě omezení časového okna je v této modifikaci zahrnuto, že vozidla mohou provádět více cest, ale vždy začít a končit v depu [23].
Je třeba si také uvědomit, že VRPTW má omezení co se týče uskutečnění. Každá cesta musí začínat a končit v časovém okně. Obsluha zákazníka musí započít v časovém okně a trvá nějakou dobu. Mohou nastat dvě nežádoucí situace:

- Dodavatel dorazí k zákazníkovi před časovým intervalem a musí čekat.
- Dodavatel dorazí k zákazníkovi po časovém intervalu a zákazníka již nemůže obsloužit, což prodlužuje dobu jízdy a tím i náklady [22].

Z hlediska ošetření toho, že zákazník nebude obsloužen, pokud dodavatel dorazí po době časového okna, je definována modifikace VRP with Soft Time Window. Tato modifikace nezpůsobí nepřípustnost řešení, ale přidá penále do výsledné ceny. Dalším omezením proveditelnosti je vykládka zboží. Nejefektivnější řešení je, aby obsluzující vozidlo přijelo k prvnímu zákazníkovi na počátku časového intervalu, jelikož nějakou dobu trvá vykládka zboží. Pokud by dodavatel k prvnímu zákazníkovi dorazil ke konci časového intervalu, je vysoká pravděpodobnost, že by nestihl další zákazníky obsloužit v časovém okně.

VRPTW je předmětem pozornosti vědců od roku 1970 a bylo vydáno mnoho dokumentů o jeho metodách řešení. VRPTW byl rozsáhle studován v posledních letech za použití analytických optimalizačních technik, heuristikých a meta-heuristikých přístupů [24]. Pro řešení jsou také používány genetické algoritmy, nicméně nezaručují optimální řešení v každém případě. Složitost VRPTW, ale také široká použitelnost v reálných situacích dala vzniknout technikám, které jsou schopny produkovat vysoce kvalitní řešení v omezeném čase, nejčastěji jde o nové heuristické přístupy nebo meta-heuristiky [22].

2.3 Multiple Depot VRP

Multiple Depot Vehicle Routing Problem je VRP s více sklady. Každé vozidlo může začít svou trasu v libovolném skladu, ale v tomže musí svou jízdu i končit. Každý zákazník je navštíven právě jednou. Celková poptávka nesmí přesáhnout kapacitu vozidla [25]. Každý sklad je dostatečně velký pro skladování veškerého zboží pro zákazníky [26]. Omezení pro tuto modifikaci tudiž představuje více skladů než jeden, což znázorňuje obrázek 2 níže. Je zde zobrazeno deset zákazníků, kteří jsou seskupeni na základě jejich vzdálenost od depa. V tomto příkladě zákazníci 1,2,3,5,7 jsou přiřazeni ke skladu A, zatímco zákazníci 4,6,8,9,10 jsou obsluhováni ze skladu B.
Cílem tohoto problému je najít trasy vozidel tak, aby všichni zákazníci byli navštíveni a nejvýhodněji přiřazeni do skladů za účelem minimalizovat náklady z hlediska počtu tras a celkové ujeté vzdálenosti, protože se vzdálenosti je spojena cena [27]. Každému zákazníkovi bude přidělen sklad na základě jeho vzdálenosti od depa. K řešení Multiple depot VRP se nejčastěji používají biologicky inspirované algoritmy, kterým se věnuje podkapitola 3.3.

Některé heuristické metody nachází téměř optimální řešení během několika sekund. Přesné algoritmy se pro řešení této modifikace používají výjimečně [28] [29]. Nejnovější výsledky přesných metod pro MDVRP uvedli Baldacci a Mingozzi [30]. Většina autorů se zaměřuje na vývoj heuristických metod, které naleznu rychlé a kvalitní řešení [31].

2.4 VRP Pick-up and Delivering

Vehicle Routing Problem Pick-up and Delivering (VRPPD) je v překladu VRP s vyzvednutím a doručením. V této modifikaci má zákazník možnost nějakou část doručeného výrobku vrátit
zpět. VRPPD je možné provést v případě, že celkové množství zboží pro každou trasu nepřekročí kapacitu vozidla, které obsluhuje danou trasu a vozidlo má dostatečnou kapacitu pro sběr i dovoz zákazníkům.

Toto omezení je složitější a může vést ke špatnému využití kapacit vozidel, prodloužení trasy nebo k potřebě většího vozového parku. VRPPD je možno definovat jako vozový park s omezenou kapacitou, který musí obsloužit řadu zákazníků. Všechna vozidla začínají i končí ve skladu. Každý zákazník může požadovat dodání, vrácení zboží nebo obojí. Žádné zboží není doručováno navzájem mezi zákazníky. Všichni zákazníci jsou navštíveni právě jednou. Cílem je opět minimalizovat náklady s ohledem na již zmíněné omezení. Často používaným zjednodušením této modifikace je, že každé vozidlo musí dodat všechno zboží dříve, než ho začne vyzvedávat [32].

VRP Pick-up and Delivering byl představen v roce 1989 v článku The multiple vehicle routing problem with simultaneous delivery and pick-up points [33], který popisuje doručení i vyzvednutí zboží, přičemž shromažďovaný náklad musí být vrácen do depa. Tento problém byl vysvětlen na příkladu láhví od mléka. Plné láhve musí být doručeny a všechny prázdné vráceny zpět do depa.

TSP Pick-up and Delivering je stejný problém jako VRPPD, pokud se počet vozidel rovná jedné. Jakmile problém obsahuje více vozidel než 1, lze hovořit pouze o VRPPD. Hlavní vlastnost, díky které se od sebe tyto dva problémy liší, je kapacita [32].

V průběhu posledních třiceti let se méně než 10% výzkumu VRP věnuje problematice, kde vozidla mají dvě fáze, to znamená, že jsou schopná vyzvednout i dodat. VRPPD není prozkoumán zdaleka tolik jako ostatní varianty VRP [34].

Hollis, Forbes, Douglas [35] zastávají názor, že v poslední době praktické příklady využívající heuristiky aplikované na VRP mají za následek úsporu provozních nákladů ve výši 10%. Hybridní genetický algoritmus byl použit pro řešení VRP jelikož poskytuje lepší řešení, než jiné algoritmy získané pomocí genetických algoritmů. Casco, Golden a Wasil definovali tento problém a zkoumali některé základní konstruktivní algoritmy (viz kapitola 3) založené na heuristikách úspor, které zavedli Clarke a Wright [36]. Přehled různých řešení pro VRPPD je uveden v článku, který napsal Rizzoli a kolektív [37].
2.5 Split Delivery VRP

Split Delivery VRP hledá řadu tras, které minimalizují náklady a omezení. Split Delivery spočívá v tom, že každý zákazník může být obsloužen více než jednou, na rozdíl od klasického VRP [38]. Tudíž je dán jeden sklad a vozový park s určitou kapacitou, jejíž trasa začíná a končí ve stejném skladu. Každý zákazník může být obsloužen více vozidly, pokud je to prospěšné. Prospěšné to je, pokud řešení vede ke snížení celkových nákladů. To znamená, že dělená poptávka je přípustná [39]. Součet poptávky nesmí překročit celkovou kapacitu vozidel.

U většiny případů VRP se předpokládá, že požadavek zákazníka je menší nebo roven kapacitě vozidla a že zákazník musí být obsloužen právě jedním vozidlem. Pokud požadavek zákazníka překračuje kapacitu vozidla, zákazník musí být navštíven více než jednou. Takové doručení může být výhodné použít v případě, že je snížen počet vozidel [40].

SDVRP byl v literatuře představen jen před několika lety. Byly navrženy heuristické i přesné algoritmy pro řešení této modifikace. SDVRP je velmi náročný problém, který lze v současné době řešit pouze pro případy s méně než 30 zákazníky[39]. Gendreau, Hertz a Laporte definovali vyhledávací algoritmus pro CVRP, který dobře funguje i na tento problém [38]. Dror a Trudea [41], [42] navrhli heuristický algoritmus pro SDVRP, který ukázal možnost dělené dodávky, která může přinést značné úspory. A to jak v celkové ujeté vzdálenosti, tak v počtu použitých vozidel [43].

2.6 Stochastic VRP

Stochastic VRP lze označit jako náhodný problém. SVRP vzniká, když jedna nebo více části problému obsahuje náhodnou proměnnou. Cílem je minimalizovat počet vozidel a součet doby jízd, které jsou potřebné pro obsloužení všech zákazníků s náhodnými hodnotami [44]. Nejčastěji vyskytující se druhy SVRP jsou:

- SVRP s náhodnými zákazníky: Počet zákazníků je náhodný.
- SVRP s náhodnými požadavky: Poptávka každého zákazníka je náhodná.
- SVRP s náhodnou dobou: Časy na doručení zboží a na přesun jsou náhodné veličiny.
Pro SVRP s náhodnými požadavky platí, že skutečná poptávka každého zákazníka je známá, až když vozidlo dorazí na místo. Rovněž se předpokládá, že poptávka nepřesahuje kapacitu vozidla. Vozidlo navštěvuje zákazníky v daném pořadí. Řidič si sám musí určit, zda jet k dalšímu zákazníkovi nebo se vrátit do depa a doplnit zboží, aby měl dostatek pro dalšího zákazníka [45]. Pro řešení SVRP jsou zapotřebí dvě fáze. Distributor má naplánovanou pevnou trasu a vzhledem k stochastické povaze tuto trasu upravuje. Tudíž plánuje sekundární strategii, aby byli uspokojeni všichni zákazníci [46].

Literatura o SVRP ukazuje různé přístupy k řešení problému. Mnoho studií nepovažuje za možnost preventivní doplňování, jako jsou články [47] [48], ve kterých jsou použity přístupy stochastického programování. Tyto články [49] [50] pro řešení navrhují jednoduché heuristiky. Pouze Teodorovič a Pavkovič [51] navrhují pro použití meta-heuristiky, kterými jsou simulované žíhání [44]. Ve skutečnosti jsou stochastické případy velmi zajímavé pro praktické použití.

2.7 Periodic VRP

Periodic Vehicle Routing Problem (PVRP) je modifikace, ve které se návštěvy zákazníků v daném intervalu opakují. PVRP používá den jako jednotku času. Frekvence obslužení zákazníka spočívá v tom, jak často musí být daný zákazník během x dní navštíven, samozřejmě dle jeho požadavků [52].

Na obrázku 3 níže je tato modifikace zobrazena. Obrázek znázorňuje trasy vozidla pro tři dny, které jsou barevně rozlišeny a deset zákazníků, kteří jsou označení čísly 1-10. Vozový park má omezenou kapacitu.

Beltrami a Bodin v roce 1974 poprvé představili PVRP v tomto dokumentu [53]. PVRP je zobecněním klasického VRP. V průběhu každého dne v rámci naplánovaného období vozový park cestuje po trasách, které začínají a končí v jednom skladu. Cílem je minimalizovat součet nákladů na všech opakujících se trasách. Každý zákazník má známou denní potřebu, která musí být plně uspokojena v jedné návštěvě a jedním vozidlem.

Christofides a Beasley [54] předložili první formulaci řešení na základě celočíselného programování pro PVRP pomocí dvou proměnných. Jedna pro přiřazení zákazníků a druhá
pro směrování daného vozidla na daný den. Francis a kolektiv vyvinuli řešení pro PVRP pomocí programování s přesnými heuristickými metodami [55].

![Diagram PVRP s deseti zákazníky a plánem na tři dny](image)

Obr. 3 PVRP s deseti zákazníky a plánem na tři dny

2.8 Příklad modifikací

V této podkapitole jsou použity všechny výše uvedené modifikace na reálném příkladu. V praxi se téměř v každém větším podniku lze setkat s možnými aplikacemi VRP. Existuje několik typických příkladů, které se s VRP potýkají:

- Rozvoz zboží z centrálních skladů maloodběratelům
- Svoz odpadu
- Čistění ulic
- Plánování trasy poštovních aut
- Svoz mléka
- Rozvoz hotovosti do bankomatů a sběr hotovosti z poboček
- Zimní údržba silnic
- Balíkové služby
- Plánování trasy pro roboty, kteří prozkoumávají terén

Každý z výše uvedených příkladů má nějaké omezení. Například balíkové služby (Česká pošta, PPL aj.) nebo svoz odpadu jsou omezeny minimálně kapacitou. Svoz odpadu ale probíhá pravidelně, tudíž lze hovořit o modifikaci, která je omezená jak kapacitou, tak
pravidelností. Typickým příkladem pro modifikaci VRP Pick-up and Delivering je přeprava krve ve zdravotnictví. Do zdravotní jednotky jsou dodávány výsledky a prázdné nádobky a zároveň jsou odváženy zkumavky s krví. Stochastic VRP se často objevuje v distribuci zdravotnických potřeb a zásob při přírodních katastrofách, jelikož jsou neočekávané.

Trendem dnešní doby je dovoz jídla, což je příklad, na kterém jsou ukázány všechny modifikace VRP. Do dovozu jídla lze zahrnout jak příležitostné objednání, tak například krabičkovou dietu.

Na příkladu rozvozu jídla jsou popsány všechny základní modifikace VRP. Pokud by firma zohlednila všechna toto omezení v hledání optimální trasy, nebylo by možné nalézt optimální řešení. Prozatím nebyly definovány natolik kvalitní metody řešení, které by zvládly takto těžký problém vyřešit.

Také v metalurgii se s VRP lze setkat. Stačí si uvědomit, že hutní podnik je obrovský komplex a každý provoz pracuje na jiné části produktu. I když je to doprava vnitropodniková, vzájemně jsou si provozy zákazníky a musí dodávat zboží (meziproduct) jinému provozu. Například provoz A vyrábí tři druhy meziproductů a dodává je v určitém množství provozu
B, C, D. I v hutním podniku jsou s VRP spojena různá omezení. Provozy si žádají dodat meziprodukt v nějakou dobu (omezení- časová okna), pravidelně (omezení- pravidelnost) nebo například provozu B je meziprodukt dovezen a ten ho poskytuje provozu C, tudíž probíhá nakládka i vykládka a lze hovořit o modifikaci Pick- up and Delivering.
3 OPTIMALIZAČNÍ METODY ŘEŠENÍ

VRP je důkladně studován díky jeho široké použitelnosti a důležitosti při stanovování efektivní strategie pro snižování nákladů. Nyní VRP nabízí nepřeberné množství heuristických a meta- heuristických přístupů. Současným trendem VRP výzkumu je studium složitějších variant VRP, jelikož jednodušší varianty jsou považovány za vyřešené [55].

Tab. 3 Přehled metod řešení

| Přesné (exaktní) metody | · Branch and bound
| | · Branch and cut
| | · Lineární programování
| Heuristiky | Konstruktivní Metody
| | · Clark and Wright algorithm
| | · Matching Based
| | · Multi-route Improvement
| 2-fázové Algoritmy | · Cluster-First, Route-Second Algorithms
| | · Fisher a Jaikumar algorithm
| | · Sweep algorithm
| | · Route-First, Cluster-Second Algorithms
| Meta-heuristiky | · Ant Algorithms
| | · Deterministic Annealing
| | · Genetic Algorithms
| | · Simulated Annealing
| | · Tabu Search

Nejčastěji používané metody řešení pro VRP jsou heuristiky a meta- heuristiky, protože žádný přesný algoritmus není schopen najít optimum v přiměřené výpočetní době pro větší počet obsluhovaných míst. Přesné metody jsou omezeny na 50-100 zákazníků v závislosti na modifikaci VRP, respektive na požadavcích zákazníků. Ani do budoucna se neočekává, že by se tento limit výrazně zvýšil [57] Chyba! Nenalezen zdroj odkazů. V důsledku toho se současný výzkum zaměřuje na přibližné algoritmy, které jsou schopny najít kvalitní řešení pro reálné případy v omezeném čase. Kvalita metod se výrazně zvyšuje od roku 1959, kdy Danzing a Ramser tento problém zavedli. Není tomu tak jen kvůli zvýšení výpočetního výkonu, ale také došlo k podstatnému zlepšení exaktních metod a heuristik pro VRP.
V tabulce 3 výše je zobrazeno základní rozdělení metod řešení VRP do tří kategorií a pro každou z nich jsou uvedeny nejznámější algoritmy. Pro výstřednost jsou ponechány anglické názvy. Některé literatury [13] [58] uvádí jako další kategorii Hybridní metody, které vznikají kombinací exaktních metod s heuristikami nebo meta-heuristikami a jiné zase meta-heuristiky uvádí jako jeden z druhů heuristik.

Tato bakalářská práce je zaměřena na řešení pomocí biologií inspirovaných optimalizačních metod, tudíž v této kapitole budou takové metody klasifikovány a nejpoužívanější z nich podrobněji popsány v podkapitole 3.3.

3.1 Heuristiky

VRP je složitý problém a pro větší počet zákazníků je pomocí exaktních metod téměř neřešitelný v reálném čase. Je proto efektivnější takovou úlohu řešit pomocí heuristických metod. Heuristiky je možné rozdělit do dvou skupin, jak ukazuje tabulka 3 výše. Heuristiccké metody nachází řešení, které nemá daleko od optimálního a jeho výpočetní čas není dlouhý [60]. Heuristiky lze také rozdělit na metody, které řešení vytváří a na ty, které ho zlepšují.

Konstruktivní metody jsou metody, které počítají řešení postupně. Podle určených pravidel se hledá řešení a zjišťuje se, zda ještě nebyly překročeny náklady, které poskytovalo zatím nejúspěšnější řešení. Clark a Wright v roce 1964 popsali nejznámější algoritmus tohoto typu, který je nazýván Savings. Tento algoritmus řeší jednoduché varianty VRP, ale popisuje základ řešení, na kterém staví mnoho dalších algoritmů. Konstruktivní heuristika Multi-Route Improvement se snaží vylepšit již existující řešení rušením navštívených míst a následným přeorganizováním míst [61].
Dalším způsobem řešení jsou 2-fázové algoritmy. Řešení pomocí těchto algoritmů je rozděleno na dvě fáze. V první fázi se rozdělují zákazníci do oblastí, ve kterých by měli být obslouženi spolu. A druhá fáze řeší rozdělení samotných tras [60]. Výhoda je v tom, že generují řešení pro menší počet zákazníků. Druhá fáze je ale závislá na kvalitě rozdělení v první fázi. Podle pořadí fází tyto algoritmy rozdělujeme na:

- **Cluster-First, Route-Second Algorithms**: Tyto algoritmy první fázi tvoří skupiny zákazníků a v druhé tvoří cesty. Algoritmy této kategorie jsou rozděleny v tabulce 3.

- **Route-First, Cluster-Second Algorithms**: Naopak tyto algoritmy v první fázi vytváří cesty a v druhé je upravují tak, aby požadavky v jednotlivých cestách nepřesahovaly kapacitu vozidel.

3.2 Meta-heuristiky

Metoda Tabu Search byla představena v roce 1986 a následně se rychle stala jednou nejrozšířenějších metod pro VRP, která je založená na Lokálním prohledávání (Local Search). Metoda lokálního prohledávání je prohledávací procedura, která začíná v nějakém základním možném řešení a postupně vylepšuje toto řešení pomocí lokálních změn. Takto se řešení posunuje vždy na další, o něco lepší řešení. Prohledávání končí s nalezením lokálního minima.

Metoda simulovaného žíhání (Simulated Annealing) je založena na principu náhodného hledání lepších cest. V této metodě je přidána náhodná funkce, která v některých případech připustí přejít i na horší cestu, aby se algoritmus nezastavil v lokálním minimu. S postupem
času se náhodná funkce tzv. ochlazuje, což znamená, že přechody na horší cestu se snižují [60]. Deterministic Annealing (DA) pracuje podobným způsobem jako Simulované žíhání.

3.3 Biologii inspirované metody

Hlavním důvodem pro intenzivní rozvoj biologii inspirovaných algoritmů je fakt, že jsou schopny vytvářet optimální nebo téměř optimální řešení pro složité modifikace VRP v přiměřeném čase. Vývoj takových metod je důležitý, jelikož poskytují nové a vylepšené řešení pro rozvozní problémy, což může vést k podstatnému snížení nákladů pro firmy [60].

Tab. 4 Přehled biologií inspirovaných metod dle oblasti inspirace [63]

<table>
<thead>
<tr>
<th>BIOLOGIÍ INSPIROVANÉ ALGORITMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
</tr>
<tr>
<td>Genetic Algorithms</td>
</tr>
<tr>
<td>Genetic Programming</td>
</tr>
<tr>
<td>Evolution Strategies</td>
</tr>
<tr>
<td>Differential Evolution</td>
</tr>
<tr>
<td>Paddy Field Algorithm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
V tabulce 4 jsou uvedeny bio-inspirované algoritmy podle oblasti, kterou jsou inspirované. Tyto algoritmy jsou velice rozšířeny v oblasti dopravy a distribuce, ale mají také velký potenciál v jiných odvětvích na příklad v metalurgii. Tučně vyhrazené algoritmy jsou ty, které jsou již používány pro VRP. Vůbec nejpoužívanější biologie inspirované algoritmy pro VRP jsou Ant Colony Optimization z oblasti Swarm Intelligence a Genetický algoritmus inspirovaný evolucí. Obá jsou podrobněji popsány níže.

3.3.1 Genetický algoritmus

Genetické algoritmy (Genetic Algorithms) byly první evoluční algoritmy, které byly aplikovány na optimalizační problémy. John Holland s kolegy v roce 1970 poprvé definovali genetické algoritmy, které jsou inspirované Darwinovou evoluční teorií, která říká, že přežívají jen přizpůsobiví jedinci populace Chyba! Nenalezen zdroj odkazů.. Od svého vzniku GA představují široký zdroj inspirace pro další evoluční algoritmy.

Algoritmus si během své funkce udržuje několik jedinců (pro VRP jedinci představují řešení, které mezi sebou kombinuje a tím vytváří nové jedince). Každý jedinec má svoji tzv. fitness funkci a ta vypovídá o jeho kvalitě a je přiřazena ke genetické informaci (chromozomu) jedince (pro VRP je to cena jednotlivého řešení). Fitness funkci lze nazvat jako schopnost přizpůsobení. V biologii je chápána jako schopnost přežití jedince. Změna obsahu genetické informace populace v průběhu několika generací k vyšším fitness hodnotám je biologická evoluce [60].

- Reprodukce: řešení je přidáno zpět do populace
- Křížení: části řešení jsou prohozeny (např. výměna vrcholů mezi trasami)
- Mutace: náhodná změna genetické informace některých jedinců v populaci
Následně je vypočítána fitness funkce nových jedinců, kteří jsou přidáváni do nové populace a tím vytváří novou generaci. Větší pravděpodobnost produkce svých genů na generaci potomků a zároveň větší šanci na přežití mají jedinci s vyšší hodnotou fitness. Mutace bývá implementována jako změna hodnoty náhodně vybraného bitu chromozomu. Tudíž hodnota 1 se změní na hodnotu 0 a naopak. Mutace zajišťuje vznik genetické informace v populaci, která v předcházející generaci nebyla nebo obnovuje ztracené informace. Tyto procesy napodobují genetické procesy pozorované v přírodě. Algoritmus z pravidla končí vygenerováním předem daného počtu generací a určí nejsilnějšího jedince své populace.

V článku Genetic Algorithms for Municipal Solid Waste Collection and Routing Optimization Chyba! Nenalezen zdroj odkazů, je genetický algoritmus aplikován pro optimalizaci dopravních cest při sběru a svozu odpadů. Genetický algoritmus je použit pro monitorování, simulace, testování a optimalizaci trasy alternativních pro systém soHd. První pokusy ukázaly, že použitím GA k řešení lze výrazně minimalizovat délku tras a v důsledku toho také celkové náklady a čas.

GA jsou nyní běžně používány k řešení problémů nejrůznějších oborů, často tak odlišných jako je metalurgie a hudba, z nichž většina nemá žádné spojení s biologií. Genetické algoritmy se stále více používají hlavně pro technické a vědecké obory. Genetických algoritmů se využívá ať už ve válcovně v ocelářském průmyslu, nebo pro design v polovodičovém průmyslu [13].

Pro řešení VRP pomocí genetického algoritmu je typické, že každý jednotlivec zastupuje jeden chromozom, což vytváří řetězec čísel. Řetězec představuje posloupnost dodávek. Každé číslo představuje zákazníka nebo vozidlo. Na obrázku níže lze vidět znázornění možného řešení VRP pro 10 zákazníků a vozidel. Každá cesta začíná a končí v depu, kterému je přiděleno číslo 0.

Obr. 4 znázornění řešení GA

Genetické algoritmy se používají pro řešení těchto modifikací VRP:
3.3.2 Optimalizace mravenčí kolonií

Algoritmy mravenčí kolonie (Ant Colony Optimization) patří do skupiny optimalizačních metod, které jsou inspirovány inteligencí hejna (Swarm Intelligence) nebo také roje. Rojová inteligence je technika založená na studiu kolektivního chování systémů, které se samy organizují. Systémy rojové inteligence se skládají z populace agentů, kteří na sebe navzájem působí. Agenti mezi sebou mohou komunikovat působením na lokální prostředí nebo přímo. Tyto systémy mohou být pozorovány právě u mravenců[64].

Reální mravenci jsou schopni najít nejkratší cestu od zdroje potravy do jejich hnízda. Během své cesty mravenci vkládají feromony na zem a také sledují dříve uložené feromony od jiných
Izolovaný mravenec se většinou náhodně, ale když identifikuje dříve položený feromon, rozhoduje se, kterou cestou jít. S vysokou pravděpodobností bude následovat stopu a posílí ji vlastním feromonem.

Obr. 5 Chování mravenců při hledání potravy[66].

A. První mravenec hledá zdroj potravy (F) za použití nějaké cesty (a), pak se vráti do hnízda (N) a pokládá feromonovou stopu.

B. Mravenci sledují jednu ze čtyř možných cest, ale více feromonů je uloženo na kratší cestu.

C. Mravenci následují nejkratší cestu a feromon y z nejdelších tras se odpařují.

Pro implementaci algoritmů jsou vytvářeni umělí mravenci, jejichž chování je inspirováno skutečnými mravenci. Některé jejich vlastnosti jsou posíleny, aby došlo ke zlepšení výsledků algoritmů. Umělí mravenci, také nazývaní agenti, se od těch živých podstatně liší v mnoha ohledech, zejména co se týče prohledávání. Mravenci v přírodě prohledávají dvourozměrný prostor, zatímco umělí mravenci pracují na grafech a prohledávají multidimenzionální prostor. U živých mravenců je množství feromonů ovlivněno kvalitou zdroje potravy, ale u umělých je úměrně kvalitě dosaženého cíle. U umělých mravenců také bývá prováděno vylepšení pomocí lokálního vyhledávání [65].

Ant ColonyOptimization se používá pro řešení několika modifikací:
Capacitated VRP

VRP with time Windows

VRP Pick-up and Delivering

Dynamic VRP

Shrnutí:

Výpočetních metod a algoritmů pro VRP existuje velké množství. Vždy je třeba vybírat metodu, která vyhovuje dané situaci problému nebo některé metody vzájemně kombinovat.

Pro rozsáhlé modifikace VRP ve většině případů nelze použít exaktní metody z důvodu časové náročnosti. Jelikož i příklady stejných modifikací jsou velmi variabilní, nelze vždy určit, která metoda bude nejlepší. Což lze rozpoznat i s vědeckých článků na toto téma, metody řešení pro VRP stále se vyvíjí a zkouší se používat nové lepší metody pro řešení.

V odborné literatuře se pro stejné modifikace objevují mnoho různá řešení. Z pravidla platí, že exaktní metody nestačí na složitější modifikace, tedy je nutné použít heuristické nebo meta-heuristické. Na rozdíl od klasických heuristik, jsou meta-heuristiky stochaštické (využívají náhodného chování) a přibližují se optimu pomocí lokálních změn.

Například výsledky z dostupných zdrojů pro CVRP vykazují relativně vysokou variabilitu řešení pomocí exaktních metod mezi instancemi o podobném počtu zákazníků. Úlohy využívající nákladovou matici získanou ze silniční sítě jsou časově náročnější než ty náhodně generované.

Pro řešení VRPTW je většina metod heuristických. Problém je časově omezený, tedy existuje mnoho přístupů a strategií k prohledávání prostoru a exaktní metody by řešení hledaly příliš dlouho. Přesných metod by se mělo snažit pro velmi malé množství proměnných. Se zvyšujícím počtem omezení jsou exaktní metody téměř nepoužitelné.
ZÁVĚR

Tato bakalářské práce se zabývá představením optimalizačních problémů Vehicle Routing Problem. Cílem práce bylo vytvořit vyčerpávající rešerši Vehicle Routing Problem, jeho modifikací a metod řešení z dostupné literatury se zaměřením na biologií inspirované metody.

V úvodu byl uveden cíl práce, kterého bylo dosaženo. Na začátku práce je charakterizován Vehicle Routing Problem, jeho historie a jsou vysvětleny dva úzce související problémy s VRP (Problém obchodního cestujícího a Problém naplňování zásobníku). Dále jsou klasifikovány všechny základní modifikace VRP a u každé z nich je vysvětleno v čem spočívá její omezení. Na realný příklad jsou všechny tyto modifikace aplikovány. Poslední část se zabývá optimalizačními metodami řešení. Pomocí vytvořené tabulky byly tyto metody rozděleny na tři části a ke každé z nich uvedeny nejpoužívanější algoritmy. Heuristikám a meta-heuristikám je věnována samostatná podkapitola, kde jsou popsány jednotlivé algoritmy. Jelikož je práce zaměřena na biologií inspirované optimalizační metody, byly vybrány dvě nejpoužívanější metody řešení pro VRP (Genetický algoritmus a Optimalizace pomocí mravenčí kolonie) a ty jsou podrobně popsány.

Pro vytvoření vyčerpávající rešerše byla použita převážně zahraniční literatura, jelikož česká literatura týkající se VRP je velice omezená. Prozatím neexistuje žádná práce, která by celkově shrnovala Vehicle Routing Problem v rámci základních modifikací i metod řešení, čemuž odpovídá i rozsáhlý seznam literatury. K dispozici jsou zpravidla články, které se zabývají pouze určitou modifikací a následně pro ni hledají řešení. Tudíž přínos této práce je značný a splňuje její zadání.

Myslím si, že řešení VRP má velký potenciál do budoucnosti, jak pro případné práce, tak pro firmy, které se s Vehicle Routing Problem setkávají. Optimalizační výzkum stále nachází nové a lepší metody pro řešení nebo ty stávající upravuje, aby generovaly lepší výsledky. S tím jak se optimalizační metody budou vyvíjet, bude možné řešit stále obtížnější varianty VRP, které již v praxi reálně existují. Nyní se pro složitější varianty VRP nejčastěji využívá meta-heuristických metod, které jsou schopny řešit různé modifikace VRP v přijatelném časovém horizontu.
SEZNAM POUŽITÉ LITERATURY

