Vysoká škola báňská – Technická univerzita Ostrava
Fakulta metalurgie a materiálového inženýrství
Katedra ekonomiky a managementu v metalurgii

BAKALÁŘSKÁ PRÁCE

2013/2014 Petr Klásek
Zadání bakalářské práce

Student: Petr Klásek
Studijní program: B3922 Ekonomika a řízení průmyslových systémů
Studijní obor: 6208R123 Ekonomika a management v průmyslu
Téma: Proces expedice hotových výrobků silniční a kombinovanou dopravou v průmyslovém podniku

Dispatch Process of Final Products through Road and Combined Transport in Industrial Enterprise

Zásady pro vypracování:
- Vymezte procesní řízení a jeho zásady.
- Charakterizujte nástroje pro mapování a analýzu procesů.
- Navrhněte mapu procesu expedice hotových výrobků silniční a kombinovanou dopravou vhodnou pro průmyslové podniky.

Seznam doporučené odborné literatury:

Formální náležitosti a rozsah bakalářské práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí bakalářské práce: Ing. Josef Kutáč, Ph.D.

Datum zadání: 29.11.2013
Datum odevzdání: 30.04.2014

[Signature]

Vedoucí katedry

[Signature]

Děkan fakulty
Zásady pro vypracování bakalářské práce

I.

Bakalářskou prací (dále jen BP) se ověřují vědomosti a dovednosti, které student získal během studia, a jeho schopnosti využívat je při řešení teoretických i praktických problémů.

II.

Uspořádání bakalářské práce:
1. Titulní list
2. Originál zadání BP
3. Zásady pro vypracování BP
4. Prohlášení + místopřízněné prohlášení
5. Abstrakt + klíčová slova česky a anglicky
6. Obsah BP
7. Textová část BP
8. Seznam použité literatury
9. Přílohy

ad 1) Titulní list je koncipován podle požadavků příslušné oborové katedry. Měl by korespondovat s podobou vnějších desek (viz část III) doplněnou o název práce, umístěný nad spojením BAKALÁŘSKÁ PRÁCE.

ad 2) Originál zadání BP obdrží student na oborové katedře.

ad 3) Tyto „Zásady pro vypracování bakalářské práce“ následují za originálem zadání BP. („Zásady pro vypracování bakalářské práce“ jsou ke stažení na webových stránkách fakulty).

ad 4) Prohlášení + místopřízněné prohlášení je napsané na zvětšeném listu (ke stažení na webových stránkách fakulty) a je vlastnoručně podepsané studentem s uvedením data odevzdání BP. V případě, že BP vychází ze spolupráce s jinými právníky a fyzickými osobami a obsahuje citlivé údaje, je na zvětšeném listu vloženo prohlášení spolupracující právník nebo fyzické osoby o souhlasu se zveřejněním BP.

ad 5) Abstrakt a klíčová slova jsou uvedena na zvětšeném listu česky a anglicky v rozsahu max. jedné strany pro obě jazykové verze.

ad 6) Obsah BP se uvádí na zvětšeném listu. Zahrnuje názvy všech číslovaných kapitol, podkapitol a statí textové část BP, odkaz na seznam příloh a seznam použité literatury, s uvedením příslušné stránky. Předpokládá se desetinné číslování.

ad 7) Textová část BP obvykle zahrnuje:
- Úvod, obsahující charakteristiku řešeného problému a cíle jeho řešení v souladu se zadáním BP,
- Vlastní rozpracování BP (včetně obrázků, tabulek, výpočtů) s dílčími závěry, vhodné členěné do kapitol a podkapitol podle povahy problému,
- Závěr, obsahující celkové hodnocení výsledků BP z hlediska stanoveného zadání.
BP nemusí obsahovat experimentální (aplikační) část.
BP bude zpracována v rozsahu min. 25 stran (včetně obsahu a seznamu použité literatury). Text musí být napsán vhodným textovým editorem počítače po jedné straně bílého neleského papíru formátu A4 při respektování následující doporučené úpravy - písmo Times New Roman (nebo podobné) 12b; řádkování 1,5; okraje - horní, dolní – 2,5 cm, levý
– 3 cm, pravý 2 cm. Fotografie, schématy, obrázky, tabulky musí být očíslovány a musí na ně být v texte poukázané. Budou zařazeny průběžně v textu, pouze je-li to nezbytně nutné, jako přílohy (viz ad 9).
Odborná terminologie práce musí odpovídat platným normám. Všechny výpočty musí být přehledně uspořádány tak, aby každý odborník byl schopen přezkoušet jejich správnost.
U vzorců, údajů a hodnot převzatých z odborné literatury nebo z praxe musí být uveden jejich pramen - u literatury citován číselným odkazem (v hranatých závorkách) na seznam použité literatury.
Nedostatky ve způsobu vyjadřování, nedostatky gramatické, neoprávence chyby v textu mohou snížit klasifikaci práce.

ad 8) BP bude obsahovat alespoň 10 literárních odkazů, z toho nejméně 3 v některém ze světových jazyků.
Seznam použité literatury se psá na zvláštním listu. Citace literatury je nutno uvádět důsledně v souladu s ČSN ISO 690. Na práce uvedené v seznamu použité literatury musí být uveden odkaz v textu BP.

ad 9) Přílohy budou obsahovat jen ty části (speciální výpočty, zdrojové texty programů aj.), které nelze vhodně včlenit do vlastní textové části, např. z důvodu ztráty srozumitelnosti.

III.

Bakalářskou práci student odevzdá ve dvou knihařský svázaných vyhotoveních, pokud katedra garantující studijní obor neurčí jiný počet. Vnější desky budou označeny takto:

nahoře: Vysoká škola báňská - Technická univerzita Ostrava
Fakulta metalurgie a materiálového inženýrství
Katedra

uprostřed: BAKALÁŘSKÁ PRÁCE

dole: Rok
Jméno a příjmení

Kromě těchto dvou knihařských svázaných výtisků odevzdá student kompletní práci také v elektronické formě do IS EDISON. Práce vložená v elektronické formě do IS EDISON se musí zcela shodovat s prací odevzdanou v tištěné formě.

IV.

Ostrava 22. 11. 2013

Prof. Ing. Ludovít Dobrovský, CSc., Dr.h.c.
děkan fakulty metalurgie a materiálového inženýrství
VŠB-TU Ostrava

ZÁSADY.doc
PROHLÁŠENÍ

Prohlašuji, že

- jsem byl(a) seznámen(a) s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. - autorský zákon, zejména §35 - užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního (§60 - školní dílo);

- beru na vědomí, že Vysoká škola báňská - Technická univerzita Ostrava (dále jen VŠB - TUO) má právo nevýdělečně ke své vnitřní potřebě bakalářskou práci užití (§35 odst. 3);

- souhlasím s tím, že bakalářská práce bude archivována v elektronické formě v databázi Ústřední knihovny VŠB - TUO a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že údaje o bakalářské práci budou zveřejněny v informačním systému VŠB-TUO;

- bylo sjednáno, že s VŠB - TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona;

- bylo sjednáno, že užití své dílo - bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB - TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB - TUO na vytvoření díla vynaloženy (až do jejich skutečné výše);

- beru na vědomí, že odevzdáním své bakalářské práce souhlasím s jejím zveřejněním podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (Zákon o vysokých školách) bez ohledu na výsledky její obhajoby.

Místopřísěžně prohlašuji, že jsem celou bakalářskou práci vypracoval(a) samostatně.

V Ostravě 30.4.2016

podpis (jméno a příjmení studenta)
Poděkování

Na tomto místě bych chtěl poděkovat Ing. Josefovi Kutáčovi, Ph.D za cenné rady při vypracovávání mé bakalářské práce, a především pak za jeho trpělivost, se kterou se mi věnoval.
Abstrakt

Předmětem této bakalářská práce je popis procesu expedice hotových výrobků silniční a kombinovanou dopravou v průmyslovém podniku. V teoretické části práce je definováno procesní řízení a nástroje pro mapování a analýzu procesů. Praktická část je věnována rozboru procesu expedice hotových výrobků. Práce je doplněna vývojovými diagramy.

Abstract

The Bachelor thesis deals with description of product expedition process by road transport or combined transport in industrial company. The theoretical part of theses deals with definition of business processes and tools of description and process analysis. The practical these is focused on process of product expedition. The thesis is enhanced by flow diagrams.

Klíčová slova

Proces; procesní řízení; analýza procesů; reengineering; expedice hotových výrobků.

Key words

Process; business process; process analysis; reengineering; product shipment.
OBSAH

Úvod .. 2

1. Vymezení procesního řízení a jeho zásady .. 3
 1.1 Proces ... 3
 1.2 Charakteristika procesního řízení .. 3
 1.3 Rozdělení procesů ... 5
 1.4 Tradičně řízený podnik ... 5
 1.5 Procesně řízená organizace ... 6
 1.6 Reengineering podnikových procesů (Business Process Reengineering) 7

2. Nástroje pro mapování a analýzu procesů .. 10
 2.1 Mapování procesů .. 10
 2.2 Nástroje pro mapování business modelů .. 11
 2.2.1 Textový popis .. 11
 2.2.2 Vývojový diagram .. 11
 2.2.3 DFD (Diagram datových toků) .. 12
 2.2.4 ARIS (Architektura integrovaných informačních systémů) .. 13
 2.2.5 EPC (Event-driven Proces Chin) .. 14
 2.2.6 UML (Diagram aktivit) ... 15
 2.2.7 IDEF (Integrated Definition) .. 16
 2.2.8 Další nástroje .. 17
 2.3 Standardy pro modelování podnikových procesů ... 18

3. Návrh mapy procesu expedice hotových výrobků ... 19
 3.1 Popis expedice hotových výrobků silniční dopravou ... 19
 3.2 Vystavování expedičních dokladů .. 19
 3.3 Procesy předcházející expedici výrobků ... 19
 3.4 Textový popis příkladu procesu expedice hotových výrobků ... 21
 3.5 Realizace objednávky a expedice hotových výrobků ... 23
 3.6 Příklad mapy procesu expedice hotových výrobků ... 24

Závěr .. 27

Použitá literatura ... 29

Internetové zdroje ... 30

Seznam obrázků ... 31

Seznam použitých zkratek .. 32
Úvod

Téma této bakalářské práce je „Proces expedice hotových výrobků silniční a kombinovanou dopravou v průmyslovém podniku“. Toto téma jsem si zvolil proto, že expedice výrobků je mi z pracovního hlediska blízká. Cílem této práce je definovat pojmy procesního řízení a jeho zásady, specifikovat nástroje modelování podnikového procesu a popsat závěrečnou část výrobního procesu – expedici hotových výrobků.

Procesní řízení je jiný pohled na tradiční fungování podniku. Pohlíží na něj mnoha úhlů tak, aby dokázal najít tu nejefektivnější variantu řízení podniku. Při přechodu na procesní řízení dochází ke značnému zefektivnění podnikání a tím i ziskovosti.

Hlavním cílem bakalářské práce je popsat proces expedice hotových výrobků silniční a kombinovanou dopravou v průmyslovém podniku. Je zvolena metoda popisu jednotlivých kroků procesu expedice hotových výrobků, která začíná vjezdem kamionu do podniku až po jeho výjezd z podniku. Tento proces je také zpracován do vývojového diagramu.

K tomuto popisu jsou použity některé z definovaných metod. Formou vývojového diagramu je tento proces rozčleněn na jednotlivé kroky, ze kterých se expedice hotových výrobků skládá.
1. Vymezení procesního řízení a jeho zásady

1.1 Proces

Obrázek 1 - Schéma procesu

Do takto daného procesu mohou vstupovat děje, které nemají přímý vliv na určitou činnost, ale jsou pro její uskutečnění neopomenutelné. Nazývají se podpůrné nebo též pomocné procesy. Zajišťují fungování procesů ať už hmotné nebo nehmotné a zabezpečují chod organizace.

„Proces chápejme jako strukturovaný sled navazujících činností popisujících tok práce – postup tvorby přidané hodnoty – postupující od jednoho pracovníka ke druhému (v případě složitých procesů z jednoho útvaru do druhého), poskytující měřitelnou službu/výrobek internímu, externímu zákazníkovi za předpokladu přeměny vstupů na výstupy a využívání zdrojů.“ [3]

1.2 Charakteristika procesního řízení

Z historického hlediska se procesní řízení v podnicích začalo uplatňovat začátkem devadesátých let minulého století – v době krize manažerského myšlení. Postupy, které
do té doby platily (rozdělení celé výroby na co nejjednodušší úkony), začaly zastarávat. Bylo nutné přistoupit k radikálním změnám.

Procesním řízením se rozumí řízení podniku takovým způsobem, v němž podnikové procesy hrají klíčovou roli. [5]

Podnikové procesy jsou postupy jednotlivých činností, jdoucí po sobě tak, jak na sebe logicky navazují. Principem procesního řízení je pochopení základních řetězců činností a jejich vzájemných souvislostí, a to ve vztahu na strategické hodnoty podniku. Takto identifikované řetězce činností určují základ fungování celého podniku.

Důvodem, proč se k podnikovým procesům přistupuje, je potřeba vnest větší dynamiku do fungování podniku, aby podnik mohl své pracovní postupy pružně přizpůsobovat novým možnostem, které přináší vývoj technologií. Dle Grasserové je procesní řízení rozčleněno na 10 základních bodů procesu tak, jak jsou pro proces a jeho průběh podstatné:

- **Cíl procesu a měřitelné ukazatele.** Cíl celého procesu je definován tak, aby odpovídal poslání podniku. Jsou stanovena kritéria, dle kterých se bude sledovat naplnění cíle.

- **Vlastník procesu** je osoba, která je odpovědná za správnost výsledku daného procesu, za jeho fungování, za řešení problémů, jež v průběhu realizace mohou vzniknout. Tato osoba je rovněž zodpovědná za monitorování a zlepšování celého procesu.

- **Zákazník je nejdůležitější prvek procesu.** Celý proces je pro něj konstruován a na jeho spokojenost je závislý úspěch procesu. Zákazník může přicházet do procesu buďto zvenčí (mimo podnik) – externí zákazník. Zákazník, který má své požadavky v rámci podniku a výstupy z procesu používá pro své vlastní procesy, je zákazník interní.

- **Vstupy** jsou informace, s nimiž se do procesu vchází a spouští proces. Jsou to data z jiných procesů.

- **Zdroje** jsou využívány pro přeměnu vstupu na výstup. Za zdroje mohou být považovány technologie, materiál, čas, informace, lidské zdroje.

- **Výstupy** jsou výsledky procesu, které přebírá zákazník.
• **Rizika** procesu jsou stavy v průběhu procesu, které mohou mít za následek negativní dopad na konečný výstup.

• **Regulátory řízení** jsou trvalé platná pravidla, která je třeba v průběhu procesu respektovat a dodržovat. Jde o zákony, vyhlášky, směrnice, nařízení, normy apod.

• **Činnost** je sled aktivit v rámci daného procesu, které jsou vykonávány v rámci jedné podnikové jednotky. Výstupem je měřitelný výrobek, služba.

• **Vymezení začátku probíhající činnosti, rozhraní a konce procesu.** Cílem je nejprve jasně definovat začátek a konec procesu, na které pak mohou dále navazovat další procesy.

1.3 Rozdělení procesů

Pro snazší orientaci v procesech lze procesy - ze všeobecného úhlu pohledu - rozdělit na následující procesy:

• **Procesy řídící** – zajišťují rozvoj, řízení a fungování podniku. Vytvářejí podmínky pro fungování ostatních procesů a zajišťují jejich integritu.

1.4 Tradičně řízený podnik

V tradičně řízeném podniku, dle Lukasíka, je celý pracovní kolektiv rozdělen do týmů, kdy každý tým je tvořen odborníky stejné profese, například tým projektantů. V tradičně řízeném podniku se zastává názor, že tým lidí pracujících v jedné profesi se lépe řídí.

Pokud má podnik zadán projekt, každý tým na daném projektu pracuje nějakou dobu a pak jej předá dalšímu týmu. Na níže uvedeném obrázku je znázorněn proces práce jednotlivých oddělení (oddělení A, oddělení B a C) na daném projektu.
Výhodou tohoto řízení je, že každý tým se specializuje na určitý problém a stále se zdokonaluje. Zdokonaluje se ovšem pouze na jediný krok z celého řetězce. V konečném důsledku to ale nemusí mít efekt zlepšení celého procesu. Například změna požadavků na vstupní informace do části systému může dokonce negativně ovlivnit ostatní části systému.

1.5 Procesně řízená organizace

Základním úkolem při budování procesně řízené organizace je potřeba zmapovat procesy, jež v podniku probíhají. Tyto procesy klasifikovat a vytvořit nový pohled na daný podnik, který je vhodný k jejímu následnému reengineeringu – efektivní přestavbě.

Proces podnikového řízení je chápán jako postup vedoucí k vyřízení potřeb zákazníka. Názorně a velmi zjednodušeně to může být popsáno následujícím způsobem.

Dle V. Řepy jsou podnikové procesy „souhrn činností transformujících souhrn vstupů do souhrnu výstupů (zboží nebo služeb) pro jiné lidi nebo procesy, používající k tomu lidi a nástroje“. [5]

Princip zlepšování podnikových procesů je založen na pochopení stávajících procesů v podniku a vyvození důsledků pro jeho zlepšení. V této fází se procesní řízení zlepšuje jakýmsi přirozeným tempem. Jde o takzvané přírůstkové zlepšení.

Kroky podnikového procesu:
- popis současného stavu,
- stanovení sledovaných metrik – základních ukazatelů měření, kde základním parametrem je to, co potřebuje zákazník,
- soustavné sledování chodu procesu,
- měření provozu procesu, kde se hodnotí prováděné změny,
- návrh nové implementace, tímto bodem se dostáváme opět na začátek.

Získané informace o podniku umožňují snadno zjistit, ve kterých procesech se účastní jednotliví zaměstnanci a jaké jsou vstupy a výstupy těchto procesů. Co je výsledkem jejich činnosti. V dynamickém prostředí plném změn je takový přehled neocenitelný. Maximalizuje flexibilitu při přizpůsobování procesů měnící se strategii podniku a minimalizuje chybné kroky.

1.6 Reengineering podnikových procesů (Business Process Reengineering)

Postupem času přestaly základní postupy procesního řízení platit. Důvodem byly nové faktory, které začaly do procesů vstupovat a v základních postupech nebyly a ani nemohly být zohledňovány. Jednalo se například o nové technologie (internet), otevření nových trhů
v 90 letech. Díky těmto tlakům přestávaly být dílčí změny v podnikových procesech dostatečné. Pro zlepšení bylo proto potřeba přistoupit k radikální změně – reengineeringu (přestavbě podnikových procesů).

Reengineering předpokládá celkovou změnu v procesu řízení. Tato změna se dotýká všech složek procesu, tedy i zaměstnanců a může mít vliv i na jejich vzájemné vztahy. Je časově náročná.

Cílem těchto změn je překonat rozdíl mezi stávajícím nevyhovujícím stavem a novou představou fungování podniku.

Základním postupem reengineeringu je:

- stanovení rozsahu projektu a cíle projektu,
- analýza potřeb a možností – zkušeností a potřeby zákazníků, zaměstnanců, konkurentů a další vlivy, jež jsou spjaty s podnikem,
- vytvoření nové soustavy procesů – navržení nových procesů,
- naplánování procesu - vytvoření plánu akcí vedoucí k zavedení nové soustavy procesů,
- implementace – uvedení změn v život.

Existuje řada metodik reengineeringu např. metodika Hammera a Champyho, Davenportova metodika, a další. Jednotlivé metody se od sebe liší svým rozsahem, zaměřením a také poměrem praktické a teoretické orientace. Po informačních technologiích je nejdůležitějším prvkem metodik lidský faktor – týmová práce.

Toto jsou některé principy přestavby podnikových procesů dle metodiky Coulson-Thomase:

- vnější zaměření na cílové zákazníky a zvýšení jemu poskytované hodnoty,
- vnitřní zaměření na zapojení maxima lidského potenciálu do těchto činností,
- podporovat poznávací a vzdělávací aktivity zaměstnanců vytvářením kreativního pracovního prostředí,
- odstranit z procesu činnosti, které nepřináší hodnotu,
- zaměřit se výstupy, místo na vstupy.

Dobrý reengineeringový projekt vede k výsledku, který je zaměřen na zákazníky, staví na nejlepších zkušenostech a respektuje ostatní, je vytvořen pro budoucnost a přináší
významná a podstatná zlepšení činnosti celého podniku. Metodika vybraná pro projekt vždy ovlivní velikost zlepšení a rychlost realizace.

Budování týmu pro reengineering

Pro přestavbu je nezbytné dobře vybrat tým. Personální obsazení tohoto týmu má být různorodé.

Měli by v něm být zastoupeni pracovníci, kteří odpovídají těmto požadavkům:

- daný proces vůbec neznají,
- proces znají dokonale,
- reprezentují zákazníky,
- reprezentují obchodní partnery, jichž se změna týká,
- jsou odborníky na technologii,
- jsou konzultanty z vnějšího prostředí.

Takováto různorodost zaručuje komplexní pohled na prováděnou změnu z různých úhlů pohledu. Mimo jiné se také přihlíží na osobní kvality členů týmu, zaujatost pro změnu, průraznost, jasnost v názorech a úsudcích. Velikost týmu by měla čítat kolem 10 pracovníků.

Dle Řepy je třeba se při sestavování reengineeringu soustředit na následující kroky.

Náležitosti procesní změny :

- získat aktivní podporu změny u vrcholového vedení,
- důkladně projekt připravit a naplánovat,
- efektivně a správně komunikovat,
- vybudovat silný reengineeringový tým,
- zajistit vysokou míru zapojení lidí do projektu.

Dále je třeba se vyvarovat kroků, jež mohou významně negativně ovlivnit proces přestavby.

Mezi ty důležité patří :

- Tříštění řešitelských kapacit – člen týmu by měl být soustředěn pouze na tento úkol a nerozptylovat se svou rutinní prací.
• Zastavování a zpomalování projektu – je třeba udržet tempo projektované změny a motivaci členů týmu, zvlášť v obtížnější fázi projektu.
• Zapominání na cíl změny.

2. Nástroje pro mapování a analýzu procesů

Základními prvky každého modelu podnikového procesu jsou:
• proces
• činnost
• podnět
• vazba- návaznost

2.1 Mapování procesů

K mapování procesů se přistupuje hlavně z důvodu přehlednosti stavu v podniku. Mapa stávajících procesů se pak dále může použít pro reengineering procesů, jehož záměrem je dosažení zefektivnění stávajících procesů.

Mapa procesů je schématem hlavních podnikových procesů. Slouží k usnadnění řízení a rozhodování. Zachycuje průběh daného procesu, definuje jeho vlastníky, pro jaké zákazníky je proces sestaven a jaké jsou cíle procesu. Specifikuje jednotlivé činnosti procesu : vstupy, výstupy funkční místa atd.

Z procesní mapy pak musí být zřejmé především následující:
• jaké procesy v podniku jsou,
• jak jsou tyto procesy členěny,
• zodpovědnost za každý jednotlivý proces,
• vstupní a výstupní parametry.

Každý krok procesu má přinášet jistou přidanou hodnotu ke kroku předchozímu. Pokud tomu tak není, mělo by se jednat o krok, který je předmětem reengineeringu.
V mapě procesů je zachycena:

- organizační struktura podniku,
- odborné oblasti realizované v souladu s firemní filosofií,
- vlastnická struktura a odpovědnost za procesy,
- vazby mezi jednotlivými procesy,
- základní tok realizace produktů,
- kritická místa.

2.2 Nástroje pro mapování business modelů

Nástrojů, které nám umožňují danou realitu popsat, je mnoho. V následujících kapitolách jsou popisovány nejpoužívanější z nich.

2.2.1 Textový popis

Textový popis je nejjednodušší a neprimitivnější forma mapování procesu. Vzhledem ke svému charakteru jde o poměrně nepřesný nástroj, přesto každý proces, který je modelován by měl být popsán textovou formou, ze které se následně vychází. Proto, aby byl textový popis srozumitelný, je vhodné používat jednoduché a srozumitelné vyjadřovací prostředky. Jednoduchý jazyk, krátké jasně formulované věty, bez složitých souvětí.

2.2.2 Vývojový diagram

Základní symboly vývojového diagramu:

- **Obdélník s popisem** definuje jednotlivý krok zpracování procesu.
- **Kosočtverec** znázorňuje větvění postupu v procesu v závislosti na splnění podmínky.

 ![Kosočtverec](image.png)

- **Obdélník se zaoblenými rohy** znázorňuje začátek nebo konec procesu.

 ![Obdélník se zaoblenými rohy](image.png)

- **Kruh** znázorňuje spojku jednotlivých úseků.

 ![Kruh](image.png)

Jednoduchý vývojový diagram:

Obrázek 3 - Vývojový diagram

2.2.3 **DFD (Diagram datových toků)**

Je to nástroj pro modelování zejména informačních systémů jako síť procesů. Patří mezi procesy, které plní dané funkce a mezi sebou si předávají data. Podává přehledný pohled na systém. Pro ještě větší přehlednost se rozkládá do více úrovní. Nižší úrovni podrobněji popisují úrovni vyšší. Obsahuje čtyři základní komponenty: terminátor, proces,
datový tok a paměť. Tyto komponenty jsou znázorněny pomocí grafických symbolů, které obsahují název, jež danou komponentu charakterizuje.

Obrázek 4 - Prvky DFD [19]

Prvky DFD:

- **Terminátor** – ta událost, jež zasahuje do procesu zvenčí. Obvykle se značí čtvercem.
- **Proces** – slovní, případně i číselné označení děje v procesu. Transformuje vstupy na výstupy.
- **Datový tok** – trasa procesu. Je vyznačena šípkami.
- **Paměť** – uložiště dat, která jsou zde ponechána pro další zpracování. Při jejich čtení nedochází v paměti ke změnám.

Při modelování reálného procesu není obvykle možné realizovat vše v jediném DFD diagramu. Proto se vytváří další úrovně diagramu. Hovoří se o pravidlu 7±2, kdy 9 je maximální počet diagramů pro udržení přehlednosti diagramu a 5 úrovní diagramu je minimum, kdy je diagram dostatečně podrobný.

Rozpracovanější obdobou diagramů datových toků je „Diagram datových toků s řízením“. Společně s procesy jsou zde zakresleny i řídící procesy.

2.2.4 ARIS (Architektura integrovaných informačních systémů)

Dalším nástrojem pro vizualizaci procesů je metoda ARIS. Tento nástroj umožňuje pohlížet na procesy podniku z mnoha úhlů pohledu a jednotlivé pohledy navíc propojovat. Slouží k tomu skupina nástrojů ARIS, což jsou například ARIS Toolsets, ARIS Easy Design, ARIS simulace, ARIS ABC. Z nástrojů ARIS Toolsets (nástroje) a Aris Easy je možné vygenerovat např. popis pracovního místa nebo IT dokumentaci do textového formátu MS Word. Tento systém je propojen s dalším informačním systémem SAP, což je
považováno za výhodu tohoto programu, ale jen do té míry, kdy je systém SAP informační systém v podniku používán.

V procesu ARIS je definováno několik diagramů, přičemž každý z nich umožňuje odlišný pohled na proces.

Diagramy procesu ARIS:

- **Organigram** – diagram zachycuje statickou strukturu organizace, její organizační jednotky, pracovní místa, pracovní funkce.

- **Funkční strom** – zachycuje procesy, podprocesy, činnosti a kroky a jejich návaznosti na hierarchizaci.

- **Diagram přiřazení funkcí** je určen pro zachycení požadovaných informací o vykonávaném procesu nebo činnosti.

ARIS byl v roce 2001 v prestižním hodnocení Procesní řízení 41 Gartner Group hodnocen jako vedoucí nástroj z pohledu schopností a úplnosti implementace vizí. [13]

2.2.5 EPC (Event-driven Proces Chin)

V překladu „diagram procesu řízeného událostmi“ – je to grafický a modelovací jazyk, kterým pomocí událostí a aktivit umožňuje snadno popsat model. Je to nejpodrobnější popis procesu, jež popisuje až do úrovně prováděných činností. Pomáhá určit, jak by se měl proces chovat, jak bude uskutečněn a jaký je jeho časový harmonogram.

Předností tohoto programu je jeho srozumitelnost a efektivnost. Využívá se v průmyslových odvětvích.

EPC model používá následující elementy :

- **Aktivita.** Základní stavební kámen. Určuje, co má být v procesu vykonáno.

- **Logická spojka.** Rozděluje proces na více větví nebo tyto větve spojuje. Používané spojky jsou AND (a současně), OR (logické nebo), XOR (vzájemně se vylučující) nebo.
- **Kontrolní tok.** Určuje směr toku procesu, dle směru šipky. Kontrolní toky spojují aktivity, události a logické spojky.

- **Organizační jednotka.** Konkrétní osoba, oddělení, které je zodpovědné za určitou jednotku.

Obrázek 5 - EPC diagram [19]

2.2.6 UML (Diagram aktivit)

Jedná se o univerzální grafický jazyk pro vizualizaci a specifikaci, navrhování a dokumentaci programovacích systémů. Může být dobrou náhradou za vývojový diagram. Je navrženo již několik verzí. Skládá se z poměrně velkého počtu diagramů. Pro modelování business procesů se používá diagram aktivit. UML neobsahuje způsob, jak se má používat, ani neobsahuje metodiku, jak analyzovat, specifikovat či navrhovat programové systémy.

Základní elementy diagramu jsou:

- **Startovací a ukončovací uzel** (initial node, final node). V tomto místě probíhá začátek, případně konec události. Neprobíhá zde žádný jiný děj. Černým kolečkem se značí začátek události, černým kolečkem s ohraničením se značí konec události.

- **Aktivita** (activity). V diagramu je značena obdélníkem se zakulacenou hranou, jde o subproces, který může být dále rozkládán.

- **Událost** (event). Značí situaci, na kterou je třeba v modelu reagovat. Graficky je znázorněna obdélníkem.

- **Rozhodovací blok** (gard). Je to podmínka, která je značena kosočtvercem. Tento krok můžeme též nazvat rozhodovací spojkou XOR.
• **Synchronizace** (synchronisation). Rozděluje tok na dvě paralelní větve, případně spoj větví. Značeno dvěma čarami. Odpovídá rozhodovacímu kroku AND.

• **Kontrolní tok** (control flow). Umožňuje znázornit posloupnost jednotlivých elementů v diagramu. Toky jsou značeny šípkami.

• **Plavecká dráha** (swimline). Diagram je rozdělen na několik částí a pomocí „drah“ je možné rozpoznat kdo je za jakou aktivitu zodpovědný.

Obrázek 6 - UML diagram [19]

2.2.7 **IDEF (Integrated Definition)**

IDEF0 - Modelování funkcí. Slouží pro modelování rozhodnutí akcí a činností v organizaci nebo informačním systému. Používá se ke specifikaci funkčních modelů podniku, které slouží k určení základních činností podniku. V modelech se znázorňují hlavní činnosti a jejich vstupy, výstupy, řídící vstupy a mechanismus spojený s každou hlavní činností.
IDEF1 – Modelování informací v podniku. Popisuje informační potřeby podniku. Identifikuje pojmy, jež jsou v podniku používány, a identifikuje vztahy mezi nimi. Podstatou je pochopit s čím organizace pracuje, aby bylo možno rozpoznat základní informační zdroje.

IDEF1x – Modelování dat. Soustředí se na vytvoření logického obrazu podnikových dat. Je vhodná zejména pro relačně orientované systémy.

IDEF3 – popisuje chování systému, přičemž jsou vytvořeny dvě strategie. Strategie zaměřená na procesy a strategie zaměřená na objekty.

IDEF4 – objektově orientovaný návrh aplikací.

IDEF5 – popis ontologií – vytvoření doménového slovníku, včetně přesných definic a axiomů, tak aby bylo možno vytvořit jednotnou interpretaci dat. Používá se v inženýrství.

2.2.8 Další nástroje

Dalšími modelovacími nástroji jsou například:

- **BPMN** (Business Proces Modeling Nation). Tento diagram vychází z vývojových diagramů a je upraven pro modelování vizuálních modelů operací byznys procesů. Model byznys procesů je potom síť grafických objektů a kontrolních toků, které určují pořadí vykonávání aktivit.

grafické znázornění a také matematické modely, které umožňují kontrolu modelovaných procesů Petriho sítí. Petriho sítě jsou založeny na přechodech mezi jednotlivými místy v závislosti na rozmístění jednotlivých znaků.

2.3 Standardy pro modelování podnikových procesů

Díky šíři záběru, silnému ovlivnění technologiemi a mnoha jiným faktorům se oblast modelování podnikových procesů stává poněkud nepřehledná. Proto byla snaha modelování sjednotit a učinit ho přehlednějším. Byly vytvořeny mezinárodní standardy. Jedny z hlavních standardů:

- ISO 15704 – požadavky na podnikové a referenční architektury a metodiky. Definuje obecné požadavky na podnikové referenční architektury a související metodiky.

3. Návrh mapy procesu expedice hotových výrobků

Mapa procesu expedice hotových výrobků je navržena pro silniční, případně kombinovanou dopravu v průmyslovém podniku.

3.1 Popis expedice hotových výrobků silniční dopravou

Mapa procesu expedice výrobků je navržena pro silniční, případně kombinovanou dopravu v průmyslovém podniku.

Expedice hotových výrobků silniční dopravou probíhá na modelovém případě od pondělí do pátku během pracovního týdne na všech pracovních směnách – ranní, odpolední a noční směně.

Nakládka na kamióny neprobíhá během dnů pracovního klidu. Tento stav je zapříčiněn několika faktory, jako jsou například časové limity práce řidiče, předepsané doby řízení, denní a týdenní doby odpočinku a zákazy jízdy v těchto dnech.

3.2 Vystavování expedičních dokladů

Pracovní doba silniční expedice se zabezpečuje po celý pracovní týden, mimo noční směny. Každý kamión přijíždějící do podniku má povinnost se po příjezdu nahlásit na pracovišti silniční expedice, kde s ním budou projednány náležitosti potřebné pro vjezd a nakládku v areálu podniku.

3.3 Procesy předcházející expedici výrobků

Samotnému kroku expedice hotových výrobků předchází soubor procesů, které mohou mít následující řazení:

- přijetí objednávky,
- zavedení objednávky do systému,
- rezervace hotových výrobků, interní zajištění hotových výrobků pro vykrytí objednávky v oddělení výroby,
- potvrzení objednávky zákazníkovi,
- předání objednávky do skladu,
- vystavení dodacího listu a faktury,
- vystavení dodatečných dokumentu jako je CMR, atesty, celní doklady,
- stanovení termínu vyskladnění,
- objednávka dopravy,
- potvrzení přijetí platby,
- expedice hotových výrobků.

Fáze expedice hotových výrobků je finálním procesem celého řetězce procesů. V této chvíli musí být požadavek zákazníka zcela dokončen a ten si z procesu odeberá hotový výrobek. Do tohoto procesu vstupuje doprava, kterou v tomto případě zařizuje samotný průmyslový podnik. Ujednání o způsobu zajištění a uhrazení dopravy je zajištěno dle mezinárodní úmluvy INCOTERMS.

Obrázek 8 - Incoterms 2010 [18]

Dalšími normami, kterými se téměř každý procesně řízen podnik řídí, jsou ISO normy. ISO je jednotný standard pro dosažení určitého stupně kvality. Jsou podniky, pro které je tato certifikace nutností, aby se mohly pohybovat v daném obchodním prostředí například při obchodování se státní sférou nebo se zahraničním partnerem.

Nutnou podmínkou pro certifikaci ISO jsou jasné definované procesy podniku.
3.4 Textový popis příkladu procesu expedice hotových výrobků

Textový popis příkladu procesu expedice, ze kterého se bude vycházet při tvorbě vývojového diagramu, má následující charakter.

A/ Situace od příjezdu kamiónu po jeho výjezd po nakládce z podniku.

- Řidič kamiónu přijíždí a dopravní prostředek je odstaven na vyhrazeném parkovišti.
- Řidič kontaktuje pracoviště silniční expedice.
 - Po příchodu je podroben kontrole osobních ochranných pracovních pomůcek (OOPP) pracovníky silniční expedice. OOPP jsou ochranná pracovní přilba, ochranné brýle, chrániče sluchu, pracovní rukavice, reflexní vesta, pracovní oděv a pracovní obuv.
 - Pokud nebude mít řidič všechny OOPP, nabídnu pracovníci silniční expedice řidiči k zakoupení ochrannou pracovní přilbu, ochranné brýle, chrániče sluchu, reflexní vestu nebo pracovní rukavice. Pracovní oděv a pracovní obuv musí mít řidič své.
 - V případě, že řidič dokoupení OOPP odmítne, není mu umožněn vjezd do podniku a nakládka.
- Pokud řidič měl všechny požadované OOPP, nebo si je dokoupil, předloží technické průkazy od tahače a návěsu a číslo přepravy.
- Po úspěšném absolvovaní kontroly technických a osobních dokladů je řidiči vystaveno povolení vjezdu.
- Řidič obdrží bližší specifikaci výrobků a mapu s vyznačením cesty k výrobní a nakládací hale.
- Při vjezdu do podniku je kamión zvážen a váha je odeslána elektronicky do systému a přiřazena k přepravě.
Po příjezdu k výrobní a nakládací hale, řidič vyhledá pracovníka zodpovědného za nakládaku. Pracovník provede vizuální kontrolu OOPP a vyzve řidiče k vjезdu do haly.

Na hale řidič připraví kamión k nakládce (shrne plachtu, která kryje návěs a odstraní všechny možné překážky z plochy návěsu). Návěs před nakládkou musí být čistý, suchý a prázdný. Řidič připraví protiskluzové podložky. Poté je řidič vykázán na bezpečné místo, z kterého má výhled na nakládaku, aby mohl slovně reagovat na případné problémy.

Pracovníci nakládky rozmístí po ploše návěsu protiskluzové podložky spolu s dřevěnými podložkami, na které budou poté uloženy výrobky určené k přepravě.

Po nakládce řidič zabezpečí náklad a provede opětovné zatažení plachty návěsu.

Zodpovědný pracovník nakládky provede kontrolu, zda řidič zabezpečil náklad.

Po provedení kontroly vystaví a předá zodpovědný pracovník řidiči ložný list. Poté jej vyzve k výjezdu z haly a odjezdu na váhu.

Před výjezdem z podniku je kamión zvážen.

Dojde ke kontrole tolerance váhy a elektronickému odeslání a přiřazení váhy k přepravě. V případě zjištění váhového rozdílu je řidič vrácen zpět na nakládaku, kde zodpovědný pracovník provede srovnání ložného listu a štítků svazků a vyřeší tento problém.

Vystaví nový ložný list a opět vyzve řidiče k odjezdu na váhu ke zvážení.

Pokud je vše v pořádku, řidič obdrží vážní list, vyjede z podniku, jede na parkoviště a jde si vyřídit doklady na silniční expedici.

Příjezd kamiónů do podniku je nutno organizovat tak, aby přistavování kamiónů k nakládce výrobků v podniku probíhalo plynule a netvořily se fronty na nakládce anebo naopak nenastala situace, že nejsou přistaveny žádné kamióny. Z těchto důvodů je nutno objednávat kamióny na určitý čas a v určitých počtech. Tyto časy a počty je nutno nastavit podle kapacit, které má podnik k dispozici, a počítať s možným výpadkem v přistavení kamiónů. V daný čas je umožněn řidiči vjezd do podniku.
B/ Situace po nakládce a výjezdu z podniku. Vystavení dokladů k hotovým výrobkům.

- Na pracovišti silniční expedice po předložení ložného a vážního listu řidičem, rozhodne pracovník, kterými potřebnými doklady je nutno řidiče vybavit.
 - Doklady se dělí podle konečné destinace přepravy. U přeprav, které jsou ukončeny v České republice, postačí dodací listy, vážní list a atesty.
 - Přepravy s konečnou destinací mimo Českou republiku je nutno rozdělit na dva druhy.
 - Prvním je přeprava s konečnou destinací v Evropské unii. U těchto přeprav je řidič vybaven mezinárodním nákladním listem CMR, dodacím listem, vážním listem a atestem.
 - Druhý druh nastává, pokud je konečná destinace mimo území Evropské unie, a je nutno vybavit řidiče kromě mezinárodního nákladního listu CMR, dodacího listu, vážního listu a atestu, také celními doklady. Celními doklady se rozumí celní faktura, celní prohlášení a případně dokumenty prokázání původu hotových výrobků (EUR.1, ATR). České celní prohlášení se nazývá Vývozní doprovodný doklad a je nutno jej vystavovat elektronicky.

- Po vybavení řidiče doklady k výrobkům, řidič jede na místo vykládky. U kombinovaných přeprav dochází po složení výrobků, jejich naložení do kontejnerů a další expedici například lodí nebo vlakem ke konečnému příjemci.
- Zaměstnanec zašle mailem nebo faxem informaci o odjezdu kamiónu zákazníkovi.

Tento textový popis sledu jednotlivých operací je následně zjednodušen a zaznamenán do vývojového diagramu (obrázky 9 a 10).

3.5 Realizace objednávky a expedice hotových výrobků

Za realizaci objednávky od jejího převzetí po realizování expedice hotových výrobků, předáním prvnímu dopravci, zodpovídá podnik. Předáním prvnímu dopravci se rozumí předání hotových výrobků na území podniku.

Objednávka je splněna dodáním hotových výrobků dle potvrzeného množství.
Ke splnění požadavků zákazníka je vedena komunikace od počátku vzniku objednávky po úplnou expedici. Zákazník je ihned informován v případě ohrožení termínu plnění a jiných změn a je mu nabídnuto náhradní řešení.

3.6 Příklad mapy procesu expedice hotových výrobků

Klíčové fáze popsaného příkladu procesu expedice jsou následující:

- kontrola a evidence dokladů – EPZ, vstupní povolení,
- OOPP – osobní ochranné pracovní pomůcky,
- vjezd kamiónu do podniku,
- vážení před i po nakládce,
- nakládka výrobků,
- prodejní oddělení – převzetí faktury/dodacího listu,
- výstupní váhová kontrola,
- odjezd z objektu.
Následující příklad vývojového diagramu popisuje situaci procesu expedice hotových výrobků. Proces začíná vjezdem kamionu do podniku a končí výjezdem z podniku.

Obrázek 9 – Příklad procesu expedice hotových výrobků
Další fázi procesu expedice je proces vystavení dokladů k hotovým výrobkům. Níže uvedená mapa procesu zachycuje příklad toku dokladů, nezbytných k samotné expedici výrobků z průmyslového podniku. Hotové výrobky mohou zůstávat na území ČR a nebo mohou být exportovány do jiných zemí.

![Diagram procesu vystavení dokladů k hotovým výrobků](image)

Obrázek 10 – Příklad vývojového diagramu procesu vystavení dokladů k hotovým výrobků
Závěr

Silniční a kombinovaná doprava v průmyslovém podniku se řadí k nejpoužívanějším způsobům přepravy hotových výrobků k zákazníkovi. Je tomu tak z mnoha důvodů. Podstatným důvodem je fakt, že patří k nejlevnějším a nejpružnějším způsobům přepravy. Zákazník obdrží objednané výrobky přímo na místo určení, což pro něj představuje vyšší standard a komfort.

V každém, nejen průmyslovém podniku, by měl být brán zřetel i na poslední fázi podnikového procesu, tedy na expedici výrobků. Zde jsou hotové výrobky kompletnovány dle dokumentů (objednávky, faktury) a je nutné, aby expedice proběhla co nejrychleji a nejpřesněji. Pak může být zákazník spokojen a bude se do podnikového procesu opět vracet. Pokud nastanou chyby v expedici, bude to mít vliv na všechny ostatní procesy, které se celého řetězce účastnily. Spokojenost zákazníka nebude zaručena a díky velké konkurenci obchodního prostředí, bude mít příště důvod k volbě jiného dodavatele.

Než je hotový výrobek zákazníkovi předán, předchází tomu procesy expedice, které v této práci mapují. Jejich dodržování a eliminování chyb zrychlí celý proces a expedice proběhne efektivně.

Prvním cílem této bakalářské práce bylo vymezení procesního řízení a jeho zásad. Tento cíl je plněn v první kapitole. V rámci tohoto cíle byly definovány základní pojmy, jako je proces, procesní řízení, procesní mapy. Dále byl popsán tradičně řízený podnik, jeho výhody a hlavně pak nevýhody. Na základě uvedených nevýhod se v podnicích přistupuje k procesnímu řízení, které je podstatně efektivnější.

Aby bylo procesní řízení v podniku aplikováno, je nutné veškeré procesy probíhající v podniku analyzovat. To znamená rozložit na jednotlivé kroky, popsat je a zohlednit faktory, které mají další vliv na fungování podniku. Jakmile je tato analýza provedena, je možné přistoupit k celkové změně podnikového řízení, k reengineeringu. Výsledkem je zefektivnění práce celého podniku.

Druhým cílem této práce bylo popsat nástroje pro mapování a analýzu procesů. Těchto nástrojů existuje celá řada. Mnohé z nich byly vyvinuty přímo na základě konkrétních požadavků podniků. Například model IDEF byl vytvořen pro americké letectvo. Modelovací nástroj ARIS je často používaný pro svou podrobnost, variabilnost a také
možnost návaznosti na vnitřní informační systém podniku. Některé modelovací nástroje jsou natolik specifické, že jejich používání velmi omezené, například v informatici.

Základem nástrojů pro mapování a analýzu procesů jsou diagramy, přičemž každý z nástrojů má své ustálené grafické značení.

Cílem posledního bodu bylo popsat proces expedice hotových výrobků silniční a kombinovanou dopravou v průmyslovém podniku. V rámci tohoto úkolu byl vypracován podrobný popis příkladu expedice hotových výrobků a pro tento proces byly uvedeny příklady vývojových diagramů postupu procesu expedice. Vývojové diagramy jsou zjednodušením textového popisu a mohou být podkladem pro další analytické metody. Ve výrobním podniku, na jehož podmínky je tato práce zpracována, je nutné dodržovat velké množství bezpečnostních a dalších národních a mezinárodních norem, které mohou zdánlivě celý proces expedice prodlužovat, ale díky těmto normám je garantováno dodržování bezpečnosti práce a tím také zkvalitnění celého procesu.
Použitá literatura

Internetové zdroje

Seznam obrázků

Obrázek 1 - Schéma procesu...3
Obrázek 2 - Systém funkčního řízení [15] ...6
Obrázek 3 - Vývojový diagram...12
Obrázek 4 - Prvky DFD [19] ...13
Obrázek 5 - EPC diagram [19] ...15
Obrázek 6 - UML diagram [19] ...16
Obrázek 7 - Element ICOM z IDEF0 [17] ...17
Obrázek 8 - Incoterms 2010 [18] ...20
Obrázek 9 – Příklad procesu expedice hotových výrobků25
Obrázek 10 – Příklad vývojového diagramu procesu vystavení dokladů k hotovým výrobkům ...26
Seznam použitých zkratek

ARIS Architecture of Integrated Information Systems (architektura integrovaných informačních systémů)
ATR dokument potvrzující status výrobků ve vztahu k Turecku
BPMN Business Process Modeling Nation
CMR Convention Marcandise Rotière (úmluva o přepravní smlouvě v mezinárodní silniční dopravě)
DFD Data Flow Diagram (diagram datových toků)
EPC Event–driven Proces Chain (diagram procesu řízeného událostmi)
EPZ evidenční poznávací značka
EU evropská unie
EUR.1 dokument potvrzující původ výrobků
FSM Finite State Machine
ISO International Organization for Standatisation (mezinárodní organizace pro standardizaci)
IT informační technologie
ICOM impulses, controls, outputs, mechanisms (vstupy, řízní, výstupy, funkce/činnosti)
INCOTERMS International Commercial Terms (mezinárodní obchodní pravidla)
IDEF Integrated Definition (metody pro komplexní podporu modelování podnikové architektury)
OOPP osobní ochranné pracovní pomůcky
UML Unified Modeling Language (modelovací jazyk)