1. Assignment of the thesis.
   The objective of the thesis was the design and implementation of the Branch and Bound algorithm for
   the Flowshop scheduling problem, with emphasis on the standard and extended Taillard sets. The
   thesis was moderately difficult, with knowledge of scheduling systems and programming required.

   The main aims of the thesis were fulfilled, with the Branch and Bound algorithm developed and
   solved for a number of flowshop instances. However, it must be noted that the experimentation is
   incomplete, as a number of instances remains unsolved. This however, was dependent on available
   hardware for computation of experimentation and not the developed algorithm.

2. Student’s activity during the project completing.
   The student was on combined study, therefore the meetings were scheduled on bi-weekly basis. It can
   be stated that apart for the simulations, the rest of the tasks were successfully completed.

3. Student’s activity during the process of completion.
   The student was diligent in his work, and was consulting regularly. However, it must be stated that
   the student did not consult the completed final thesis before submission.

4. Overall evaluation of the thesis
   The Branch and Bound algorithm was successfully implemented and will be a useful tool in obtaining
   feasible solution space for large scheduling problems.

5. Evaluation of the new findings contribution.
   This work is the application of the established Branch and Bound algorithm to new flowshop
   instances, therefore it is an application based thesis.

6. Utilization and selection of information sources.
   The literature is concise and reflects the state of the art.

7. Summary evaluation.
   The main aim of the thesis was met, however the full validation and all experimentations was not
   completed.

8. Question for the defense of the thesis.
   Can you give a time analysis of the execution on the larger problem instances.

Overall classification:  very good

Ostrava, 12.05.2015

doc. MSc. Donald David Davendra, Ph.D.