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Abstract First, this paper investigates the effect of good and
bad news on volatility in the BUX return time series using
asymmetric ARCH models. Then, the accuracy of forecast-
ingmodels based on statistical (stochastic), machine learning
methods, and soft/granular RBF network is investigated. To
forecast the high-frequency financial data, we apply statisti-
cal ARMA and asymmetric GARCH-class models. A novel
RBFnetwork architecture is proposed based on incorporation
of an error-correction mechanism, which improves forecast-
ing ability of feed-forward neural networks. These proposed
modelling approaches and SVM models are applied to pre-
dict the high-frequency time series of the BUX stock index.
We found that it is possible to enhance forecast accuracy
and achieve significant risk reduction in managerial deci-
sionmaking by applying intelligent forecastingmodels based
on latest information technologies. On the other hand, we
showed that statistical GARCH-class models can identify
the presence of leverage effects, and react to the good and
bad news.

Keywords RBFneural networks ·Support vectormachines ·
ARMA/GARCH models · Volatility modelling · Error-
correction mechanism

Introduction

To investigate effects of good andbadnewsonvolatility in the
BUX return time series as well as predict the high-frequency
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time series of the BUX stock index, we used quantitative
approaches based on time seriesmodelswhich can be derived
from the linear filter model. Box and Jenkins [4] integrated
all the knowledge about autoregressive and moving aver-
age (ARIMA) models. From that time, ARIMAmodels have
been very popular in time series modelling for long time. tof
non-linearity in the financial data. Financial markets behave
like complex, random, or chaotic non-linear systems. In this
context, asymmetric GARCH models introduced by Boller-
slev [3] arose as an appropriate framework for studying these
problems.

Artificial neural networks (ANNs) which are the math-
ematical models inspired by biological neural system are
regarded as universal approximators. They are able to per-
form tasks like pattern recognition, classification, or pre-
dictions [1,8,11]. They also have the biggest potential in
predicting time series, which are applied very often in finan-
cial risk management. The big potential in applying ANN
in finance was also confirmed by Hill et al. [13], where the
authors showed that ANNs work best in connection with
high-frequencyfinancial data.According toOrr [22],Marcek
[18], the most used model of regression neural network type
is the RBF neural network. A very important concept, which
was put forward in scientific field, is Fuzzy cognitive maps
(FCM). According to Magalhães et al. [17], FCMs are orig-
inated from the theories of neural networks, fuzzy logic,
and evolutionary computing. Miao [20] FCM extended to
dynamic cognitive network (DCN), taking in the account
dynamic nature of the causewith uncertainties. Using histori-
cal data, these tools are capable to identify a pattern assuming
that the identified pattern will continue into the future.

The first objective of this paper is to investigate the effect
of good and bad news on volatility in the Hungary stock mar-
ket. The second objective is to find any functional relation
in the behaviour of the BUX time series and, in turn, fore-
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cast future vales of the series. Firstly, the paper investigates
volatility in the BUX return time series using specified non-
linear asymmetricmodels EGARCH, PGARCHwhich allow
identify the presence of leverage effects. Then, the paper
proposes three forecasting modelling approaches [statistical,
neural networks and support vector machines (SVM)] that
generate forecasts on theBUXstock time series. The aim is to
examine whether potentially non-linear neural networks out-
perform latest statistical methods or generate results which
are at least comparable with those of statistical models.

This paper is organized in following manner. “Theoretical
Background section” deals with the theoretical background
of ARMA/GARCH-family models, multilayer feed-forward
networks and some basic concepts of SVM theory are
refreshed for this paper. “Data and volatility modelling” sec-
tion examines asymmetric response of volatility to return in
the Hungary stock market using asymmetric ARCH-types
models. In “Building a prediction model for BUX stock time
series and results” section, the resulting statistical models
with heteroscedastic noise, the neural networks, and SVMs
are applied on 1-day prediction of the BUX stocks index.
Here, a novel RBF neural network model is introduced based
on error-correction concept. The empirical analysis and find-
ings are presented in “Empirical comparison and discussion”
section. “Conclusion” section concludes this paper.

Theoretical background

ARIMA and asymmetric GARCH-type models

Time series models have been initially introduced either
for descriptive purposes like prediction or dynamic control.
ARIMA models belong to the group of Box-Jenkins meth-
ods [4], which are well-established for time series prediction.
They combine autoregressive (AR) process, and moving
average (MA) process, ‘I’ is an operator for differencing a
time series. An ARMA(p, q) model of orders p and q is
defined as

yt = φ1yt−1 + φ2yt−2 + · · · + φp yt−p + εt + θ1εt−1

+ θ2εt−2 + . . . + θqεt−q , (1)

where {φi } and {θi } are the parameters of autoregressive and
moving average parts, respectively, and εt is white noise with
mean zero andvarianceσ 2.Weassume that εt is normally dis-
tributed, that is, εt ∼ N (0, σ 2). Then, the ARIMA (p, d, q)

model represents the d-th difference of original time series
as a process containing p autoregressive and q moving aver-
age parameters. The method of building an appropriate time
series forecast model is an iterative procedure that consists of
the implementation of several steps. The main four steps are

as follows: identification, estimation, diagnostic checking,
and forecasting. For details, see [4].

To model the effect of good and bad news on volatility in
the Hungary stock market, we will also investigate response
of equity volatility to stock return shock. The first model
that provides a systematic framework for volatilitymodelling
is the ARCH model proposed by Engle [7]. Bollerslev [3]
proposed a useful extension of Engle’s ARCHmodel known
as generalized ARCH (GARCH) model for time sequence
{εt } in the following form:

εt = νt
√
ht , ht = α0 +

m∑

i=1

αiε
2
t−i +

s∑

j=1

β j ht− j , (2)

where {νt } is a sequence of Independent Identical Distribu-
tion (IID) randomvariableswith zeromean and unit variance.
αi , β j are the ARCH and GARCH parameters, and ht rep-
resents the conditional variance of time series. One of the
primary restrictions of the GARCH models is that it forces
a symmetric response of volatility to positive and negative
news. The asymmetric response of good and bad news to
future volatility, or leverage effect is such that bad news
should increase future volatility while good news should
decrease future volatility. In the basic GARCH model (2),
if only squared residual εt−i enter the equation, the signs of
the residuals or shocks have no effects on conditional volatil-
ity. Nelson [21] proposed the following exponential GARCH
model abbreviated as EGARCH to allow for leverage effect
in the form:

log ht = α0 +
p∑

i=1

αi
|εt−i | + γiεt−i

σt−1
+

q∑

j=1

β j ht− j . (3)

Note if εt−i is positive or there is “good news”, the total
effect of εt−i is (1 + γi ) εt−i . However, contrary to the “good
news”, i.e., if εt−i is negative or there is “bad news”, the total
effect of εt−i is (1 − γi ) |εt−i |. Bad news can have a large
impact on the volatility. As stated in the work by Zivot and
Wang [24], the value of γi would be expected to be negative.

The basic GARCH model can also be extended to allow
for the leverage effect. This is performed by treating of the
GARCH-type model as a special case of the power GARCH
(PGARCH) model proposed by Ding et al. [6]:

σ d
t = α0 +

p∑

i=1

αi (|εt−i | + γiεt−i )
d +

q∑

j=1

β jσ
d
t− j (4)

where d is a positive exponent, and γi denotes the coefficient
of leverage effects.
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Fig. 1 Construction of RBF neural network from granular computing perspective. a RBF neural network with classic or cloud Gaussian activation
functions; b demonstration of clusters (granules) extracted from data and described by cloud concept; and c description of normal cloud concept

Neural networks

Neural networks can be understood as systems which pro-
duce output based on inputs the user has defined. It is
important to say that user has no knowledge about internal
working of the system of ANN. Examples are brought for-
ward the network and then the network tries to get as close
as possible to the given output by adapting its parameters
(weights). Neural networkmodel has a large number of inter-
nal variables which are supposed to set up well to optimize
the outputs.

Mathematical model of the neuron is constructed on the
basis of functional neuron as a central element of human
nervous system, whose task is to transform information from
one neuron to the others. The goal of mathematical neuron
is the process identification. In other words, we try to find
input–output functions, so that the output would have desired
parameters and the predicted error would be minimal.

Let F : xt ∈ Rk → yt ∈ R1 is a projection assigning
k-dimensional vector of inputs, xTt = (x1t , x2t , . . . , xkt ) in
one-dimensional output yt in specific time t .

Let G : G(xt , wt ) : xt ∈ Rk
train → yt ∈ R1

train is a
restriction of F . The task is then to find the values of the
weights wt , so that functional values of G would be so close
to known sample as it is possible. Let E(w) is a function
defined as

E(wt ) =
∑

xt ,yt∈Rk
train

(G(xt , wt ) − yt )
2. (5)

This function represents the squares of the deviations of
functionG from the expecting values of function F . If amini-
mum is found,G is adapted for approximation of F . Training
or adaption of the network weights wt is performed on train-
ing data set. The validation data set is used for validation of
learned network.

According to Anderson [1], the most common used neural
network for prediction tasks is the feed-forward network that

has at least one hidden layer of neurons. In this network, each
layer comprises neurons that receive weighted inputs from
the preceding layer and send weighted outputs to the neurons
in the succeeding layer. There is no feedback connections.
The most known representatives of feed-forward networks
are perceptrons and their modified version called RBF neural
network (RBFNN) [10].

The RBFNN architecture illustrated in Fig. 1a is quite
similar to the perceptron type network; however, there are
some differences which include: calculation of the potential
and different activation functions in the hidden layer neurons.

The RBFNN defines the potential of the j th neuron in the
layer as a difference of the Euclidean distance given by the
vector:

u j = ||x − w j ||2, for j = 1, 2, . . . , s, (6)

where x is a k-dimensional neural input vector, andw j repre-
sents the weights in the hidden layer. The RBFNN also uses
different types of the activation functions known as Gaus-
sian or radial basis function. The activation function for j th
hidden neuron is defined as

ψ2(u
j ) = e

−u j

2σ2j = e
||x−w j ||2

2σ2j , for j = 1, 2, . . . , s, (7)

where σ 2
j is the variance of input data sets. If the data in the

input vectors are not orthogonal, then the activation function
looks like this

ψ2(u
j ) = e

−(x−w j )T �−1(x−w j )
2 , (8)

where
∑−1 is the inverse of the variance–covariance matrix

of input data.
The activation function of the output neuron is also dif-

ferent; the output neuron is always activated by the linear
function y = u, where u is the potential of the output neu-
ron calculated as the scalar product of the weight vector v
and the output vector o.
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Fig. 2 Architecture and
learning scheme of classic RBF
neural network for time series
prediction with lagged error
term et−1 feedback. Dashed
arrow indicated that weights
adaption depends on the error et .
CAF means the cloud activation
function, oNj , j = 1, 2, . . ., s
the normalized outputs from
neurons in the hidden layer

To find the weights wj or centres of activation functions
for the neurons in the hidden layer, we used the following
adaptive (learning) version of K -means clustering algorithm
for s clusters, which uses the Kohonen’s adaptive rule [15]

Step 1. Randomly initialize the centres of RBF neurons
c(t)
j , j = 1, 2, . . ., s where s represents the number of chosen

RFB neurons (clusters).
Step 2. Apply the new training vector x (t) = (x1, x2, . . . , xk).
Step 3. Find the nearest centre to x (t) and replace its position as
follows: c(t+1)

j = c(t)
j +λ (t) (x (t) −c(t)

j ), where λ (t) is the learning
coefficient selected as a linearly decreasing function of t by λ (t) =
λ0 (t)

(
1 − t

N

)
where λ0 (t) is the initial value, t is the presented

learning cycle, and N is the number of learning cycle.
Step 4. After chosen epochs number, terminate learning. Otherwise
go to Step 2.

The RBFNN computes the output data set as

ŷ = G (xt, c, v) =
s∑

j=1

ν j,tψ2
(
xt, cj

)

=
s∑

j=1

ν j o j,t , t = 1, 2, . . ., N , (9)

where N is the size of data samples, and s denotes the num-
ber of hidden layer neurons. Hidden layer neurons receive
the Euclidian distances

(‖x − cj‖
)
and computes the scalar

values o j,t of the Gaussian functionψ2
(
xt, c j

)
that form the

hidden layer output vector ot. Finally, the single linear out-
put layer neuron computes the weighed sum of the Gaussian
functions that form the output value of ŷt .

If the output values o j,t from the hidden layer will be
normalized, where the normalisation means that the sum of
the outputs from the hidden layer is equal to 1, then the RBF
neural networkwill compute the output data set ŷt as follows:

ŷt = G (xt, c, v) =
s∑

j=1

ν j,t
o j,t∑s
j=1 o j,t

=
s∑

j=1

ν j,t
ψ2

(
xt, cj

)

∑s
j=1 ψ2

(
xt, cj

) , t = 1, 2, . . ., N . (10)

The network with one hidden layer and normalized out-
put values oNj,t , according to Kecman [14], is called the fuzzy
logic model or soft RBF neural network, see Fig. 2. The
learning scheme uses the first-order gradient procedure. In
our case, the subjects of learning are the weights v j,t only.
These weights can be adapted by error Back-propagation
algorithm. In this case, the weight update is particularly sim-
ple. If the estimated output for the single output neuron is ŷt ,
and the correct output should be yt , then the error term et is
given by et = yt − ŷt and the learning rule has the form:

v j,t ← v j,t + ηo j,t et , t = 1, 2, . . ., N (11)

where the term, η ∈ (0, 1 >, is a constant called the learning
rate parameter, and oNj,t is the normalized output signal from
the hidden layer. Typically, the updating process is divided
into epochs. Each epoch involves updating all the weights
for all the examples.

Neuron in the hidden layer of RBF neural network can
also be described from granular computing perspective, see
Fig. 1b. Granules as basic components of granular computing
are used to represent these neurons. Granules are extracted
from data in the form of clusters. Clustering is performed
via competitive learning using Kohonen’s adaptive rule as
the above K -mean clustering method. Thus, granules are
extracted from data in the form of clusters, i.e., entities
embracing collections of numerical data that exhibit some
functional or descriptive commonalities. The centres of clus-
ters are regarded as the means of granules. Above-mentioned
competitive learning algorithm is regarded as one of the gran-
ular methods presenting bottom–up granulation, i.e., input
data are combined into large granules. The standard devia-
tion of a granule can be calculated as follows:
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σ j =
√√√√ 1

M

M∑

t=1

‖c j − x2m‖, (12)

where xm is the mth input vector with input patterns which
belongs to the cluster with centre c j . Mj is the number of
input vectors which belong to the cluster with the centre
c j . To improve the abstraction ability of soft RBF neural
networks with architecture depicted in Fig. 1b, we replace
the standard Gaussian activation (membership) function of
RBF neurons with functions based on the normal cloud con-
cept [16]. Cloud models are described by three numerical
characteristics: expectation (Ex) as the most typical sam-
ple which represents the qualitative concept, entropy (En) as
the uncertainty measurement of the qualitative concept and
hyper entropy (He) which represents the uncertain degree of
entropy, see Fig. 1c. Then, in case of soft RBF neural net-
work, the Gaussian activation ψ2 (./.) in Eq. (9) or (10) has
the form [19]:

ψ2(xt , c j ) = exp
[
− (xt − E(x))2 /2(En′)2

]

= exp
[
− (

xt − c j
)2

/2
(
En′)2] (13)

where is a normally distributed random number with mean
and standard deviation is the expectation operator. We
call this neural network as granular RBF neural network
(GRBFNN).

Novel RBF neural network model based on
error-correction mechanism

We show a new approach for economic (financial) time series
forecasting bymeans ofRBFneural networks based onGaus-
sian activation function modelled by cloud concept. Most of
the existing learning approaches do not take in account the
feedback of error terms identified in the output neuron as

et−1 =
(

yt−1 −
s+1∑

i=1

vi,t−1oi,t−1

)

= (
yt−1 − ŷt−1.

)
(14)

In economic modelling, the feedback of error term was
proposed by Banerjee et al. [2]. According to stationary
and equilibrium relationship concept, the feedback of error
terms (14) plays an explicit role in economic modelling.
The thought of this proposal is based on the economic
theory of the co-integrated variables which are related to
an error-correction model. The simple mean equation (1)
can be interpreted as long-run relationship that hold among
the k = p + q input variables to y when the system is
in equilibrium. The phrase ‘long-run equilibrium’ is used
to denote the equilibrium relationship to which a system
converges over time. Thus, long-run relationship will often

hold “on average” over time [2]. If we denote the equilib-
rium by yt = ∑s+1

i=1 vi,t oi,t , then the previous discrepancy{
yt−1 − ∑s+1

i=1 vi,t oi,t
}
represents the previous disequilib-

rium. This previous disequilibrium or error should be useful
explanatory variable for the next direction of movement of

output variable ŷt . For example, when
{
yt − ∑s+1

i=1 vi,t oi,t
}

is positive, yt is too high relatively to ŷt , and on aver-
age, we might expect an increment in ŷt in future periods
relatively to its trend growth. The formula

{
yt − ŷt

} =(
yt − ∑s+1

i=1 vi,t oi,t
)

, t = 1, 2, . . ., N , is also called an

error-correction mechanism and is also denoted as ’short-run
relationship’, because in comparison with long-run relation-
ships, those holding over a relatively short period.

The true parameters (weights) vi characterizing the rela-
tionships expressed by Eq. (14) are not known, but they can
be estimated in the course of modelling and learning the vari-
able of interest. The network architecture with new learning
scheme taking in account the feedback of error term for BUX
time series predictions is shown in Fig. 2.

Support vector regression model

Despite the fact that RBF neural networks possess a num-
ber of attractive properties such as universal approximation
ability and parallel structure, they still suffer from problems
like the existence of many local minima and the fact that it is
unclear how one should choose the number of hidden units.
The SVM method is comparatively new learning system
that is used in both forecasting and classification problems.
This machine uses the hypothesis space of the linear func-
tions in a high-dimensional feature space, and it is trained
with a learning algorithm based on optimization theory. The
SVM has been recently, introduced by Vapnik [23]. Support
vector regression (SVR) is an extension of the support vec-
tor machine algorithm for numeric prediction. Its decision
boundary can create complex non-linear decision boundaries
while reducing the computational complexity.

Non-linear SVR is frequently interpreted by using the
training data set {yk, xk}Nk=1 with input data xk ∈ �N and
output data xk ∈ � as follows:

f (x,w, b) =
N∑

i=1

wiϕi (x) + b, (15)

where ϕi (x) are called features (the input data are projected
to a higher dimensional feature space). To perform SVM
regression one optimizes the cost (empirical risk) function

Remp = 1

N

N∑

i=1

|yi − f (x,w)|ε (16)
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Fig. 3 Time series of the daily closing prices of BUX stocks (1.2004–12.2012) on the left. Time series of the BUX return values (1.2004–12.2012)
on the right

containing Vapnik’s ε-insensitive loss function with ε-
insensitivity zone which is defined as follows [23]:

{
0, if |y − f (x, w)| ≤ ε,

|y − f (x, w)| − ε, otherwise.
(17)

This leads to the optimization problem:

min Remp
(
w, ξ, ξ∗) = 1

2
wTw + C

N∑

i=1

(ξi + ξ∗
i ) (18)

subject to

⎧
⎨

⎩

yi − wT x − b ≤ ε + ξi , i = 1, 2, . . . , N
wT x + b − yi ≤ ε + ξ∗

i , i = 1, 2, . . . , N
ξi , ξ

∗
i ≥ 0, i = 1, 2, . . . , N

(19)

where ξi , ξ
∗
i are positive slack variables and C is regular-

ization parameter which influences a trade-off between an
approximation error and weights vector norm.

Finally, the SVM non-linear function estimation takes the
form:

f (x,w, b) = K
(
xi , x j

)
w + b, (20)

where so-called kernel trick was applied K
(
xi , x j

) =
ϕT (xi )ϕ

(
x j

)
(so-called Kernel function) within the formu-

lation of this quadratic programming problem. Note that in
the case of RBF kernels, the parameters C, σ, ε have to be
considered as additional tuning parameters.

Data and volatility modelling

Our goal is to examine and compare the behaviour of asym-
metric response of equity volatility on return shocks in the
Hungary stock market before, during and after financial cri-
sis for the period January 7, 2004 to December 21, 2012,
which provided of 2256 daily observations. We have 9 year

Table 1 Descriptive statistics of BUX returns (2004–2012)

Period: 1.2004 – 12.2012

Mean 0.000214

SD 0.007343

Skewness −0.101284

Kurtosis 9.528772

Jacques-Bare test 4174.147

long time series of the closing prices of BUX stocks data.
To access the BUX time series data, see [5]. The return rt
at time t is defined in the logarithm of BUX indices yt val-
ues that is, rt = log (yt ) − log (yt−1). Time series of daily
BUX values which is depicted in Fig. 3 on the left exhibits
non-stationary behaviour. However, after its first differenc-
ing becomes stationary. As can be seen from Fig. 3 on the
right, returns fluctuate around mean value that is closed to
zero and also shows volatility clustering where large returns
tend to be followed by small returns. Since the volatility is
highest in 2008 when the values of BUX stocks reached the
minimum in investigated period, we divided the basic period
into two periods. First period (as the training data set) was
defined from January 2004 to the end of June 2007, i.e. the
time before the global financial crisis, and the second one so-
called crisis and post-crisis period (validation data set or ex
post period) started at the beginning of July 2007 and finished
by the end of 2012.

The summary statistics (mean, standard deviation, skew-
ness, and kurtosis) for the daily BUX returns in both
investigated periods are given in Table 1. FromTable 1 can be
seen that the skewness coefficient is negative, suggesting that
the BUX return series have a long tail while kurtosis is high
what means that the distribution is leptokurtic. Jacques–Bare
test is significant at 0.05.

We estimated appropriate GARCH, EGARCH, and
PGARCHmodels forBUXreturns series using themaximum
likelihood method assuming the Gaussian standard normal
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Table 2 Estimated volatility models BUX returns

Coefficient Value SD p value

Period: 1.2004–6.2007

PGARCH(1, 1)

d 1.9E−08 1.21E−07 0.8717

α0 0.03902 0.032215 0.2257

α1 −0.0114 0.084162 0.8918

γ 0.89404 0.039859 0.0000

β 2.81050 1.201266 0.0193

EGARCH(1,1)

α −0.4520 0.262047 0.0845

α1 0.10597 0.039903 0.0079

γ1 −0.0093 0.017803 0.6006

β1 0.96474 0.023303 0.0000

Period: 7.2007–12.2012

PGARCH(1, 1)

d 2.9E−06 5.69E−06 0.6063

α0 0.09100 0.017187 0.0000

α1 0.30564 0.082398 0.0002

γ 0.89006 0.017038 0.0000

β 1.81247 0.385426 0.0000

EGARCH(1,1)

α −0.3421 0.06805 0.0000

α1 0.18012 0.02502 0.0000

γ1 −0.06690 0.01409 0.3031

β1 0.97965 0.00594 0.0000

distribution. The estimation results for BUX returns are given
in Table 2. The asymmetric effect captured by the parameter
estimate γ was positive and significant in the PGARCH(1,1)
model suggesting the presence of leverage effect in both peri-
ods. For instance, in crisis period, it is clear that the goodnews
has an impact of 0.30564 magnitude and the bad news has
an impact of 0.30564 + 0.89006 = 1.19570. The estimation
results of EGARCH(1,1) model captured by the parameter
estimate γ was insignificant for both periods.

In many cases, the basic GARCH-family models (2), (3),
(4) which are modelled with normal Gaussian error dis-
tribution provides a reasonably good model for analysing
financial time series and estimating conditional volatility.
However, there are some aspects of the model which can
be improved, so that it can better capture the characteris-
tics and dynamics. Furthermore, we re-estimated asymmet-
ric GARCH models after having eliminated the restrictive
assumption that their error terms follow a normal distribu-
tion. Table 3 presents Akaike Information Criteria (AIC) and
Log-Likelihood functions (LL) based on assumptions that
residuals follow successively a Student’s distribution or Gen-
eralized Errors Distribution (GED). FromTable 3, it is shown
that the assumption of Student’s errors is the best.

Table 3 Information criteria and log-likelihood function for re-
estimated volatility models

Criteria model PGARCH, Eq. (3) EGARCH, Eq. (4) Distribution

Period: 1.2004–6.2007

AIC −7.632126 −7.624700 Normal

LL 3444.273 3439.928

AIC −7.639619 −7.636049 Student’s

LL 3448.648 3446.040

AIC −7.638942 −7.633344 GED

LL 3448.344 3444.822

Period: 7.2007–12.2012

AIC −7.118371 −7.112786 Normal

LL 6601.171 6594.997

AIC −7.131425 −7.128624 Student’s

LL 6614.265 6610.670

AIC −7.129529 −7.126068 GED

LL 6612.509 6608.302

Building a prediction model for BUX stock time
series and results

We illustrate the ARIMA/GARCH methodology on the
developing a forecast model for BUX stocks using the data
sets as for each GARCH-type model above.

Statistical approach

The relevant lag structure of potential inputs was analysed
using traditional statistical tools, i.e., the autocorrelation
function (ACF), partial autocorrelation function (PACF),
and the Akaike information criterion. We look to determine
maximum lag for which PACF coefficient was statistically
significant and the lag gives the minimum AIC. According
to these criterions the ARIMA(1, 1, 0) model was specified
as follows:

�yt = ξ + φ1�yt−1 + et , (21)

where � is the difference operator defined as �yt = yt −
yt−1, et are the residuals. The estimated parameters of spec-
ified ARIMA(1, 1, 0) model are reported in Table 4.

Aswementioned early, high-frequency financial data, like
our BUX stock time series, reflect a stylized fact of changing
variance over time. An appropriatemodel that would account
for conditional heteroscedasticity should be able to remove
possible non-linear pattern in the data. Various procedures
are available to test an existence of ARCH-type model. A
commonly used test is the LM (LagrangeMultiplier) test [7].
The LM test assumes the null hypothesis H0 : α1 = α2 =
· · · = αp = 0 that there is no ARCH. The LM statistics
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Table 4 Estimated mean Eq. (21) for BUX stock time series

Coeff. Value SD p value D-W

ξ 3.938362 5.899953 0.5045 1.994470

φ1 0.047107 0.019045 0.0134

Table 5 Information criteria and log-likelihood functions for re-
estimated asymmetric variance models (see text for details)

Criteria model GARCH PGARCH EGARCH Distribution

Period: 1.2004 – 6.2007

AIC −12.87944 −12.48636 −12.88632 Student’s

LL 5777.869 5611.864 5779.957

AIC −12.88034 −12.48725 −12.88750 GED

LL 5778.271 5612.262 5780.490

Table 6 Re-estimated mean Eq. (21) for BUX stock values, assuming
that the random component follow EGARCH(1,1) GED process

Coeff. Value SD pvalue D-W

ξ 11.6961 3.71671 3.1469 1.93590

φ1 −0.0157 0.03488 −0.4493

has an asymptotic χ2 distribution with p degrees of freedom
under the null hypothesis. The ARCH-LM test up to 10 lags
was statistically significant of the mean equation (21).

For estimation the parameters of an ARCH or GARCH
model the maximum likelihood procedure was used and
resulted into the following variance equation:

ht = α0 +
m∑

i=1

αi e
2
t−i +

s∑

j=1

β j ht− j

= 675.0 + 0.125e2t + 0.854 (22)

Furthermore, the variance model given by Eq. (22) was
re-estimated considering that the residual follow Student’s
distribution, and after GED. The model with the lowest value
of AIC fits the data best. Table 5 presents AIC, log-likelihood
(LL) functions in all cases. As can be seen in Table 5 the
smallest AIC has just the EGARCH(1,1) with GED dis-
tribution. After these findings we re-estimated the mean
Eq. (21) assuming that the random component et follows
EGARCH(1,1) GED. Re-estimated parameters are given in
Table 6.

Neuronal and SVM approach

TheGRBFNNaccording to the architecture depicted in Fig. 2
was trained using the variables and data sets as the sta-
tistical ARIMA(1,1,0)/EGARCH(1,1) model above. In the

GRBFNN, the non-linear forecasting function f (x)was esti-
mated according to the expression (10) with radial basic
function ψ2 (./.) given by Eq. (13). We used own applica-
tion of the feed-forward neural network of RBF typewith one
hidden layer. For standard neural network,we tested three-to-
ten hidden neurons to achieve the best results of the network.
For every model, only the result with the best configuration
was stated. We used linear function as an activation function
for the output layer too. The weights of investigated net-
works were initiated randomly-generated from the uniform
distribution <0, 1). The learning rate of back-propagation
algorithm was set to 0.005 to avoid the easy imprisonment in
the local minimum. Final results were taken from the best of
5000 epochs and not from the last epoch to avoid overfitting
of the neural network.

The prediction of BUX stock values for the ex post
period was also done by SVR model using software devel-
oped by Gunn [9] which is the implementation of Vapnik’s
SuperVectorMachine for the problem of pattern recognition,
regression, and ranking function [23]. To achieve high testing
accuracy, a suitable kernel function, its parameters, and the
regularization parameter C should be properly selected. Hua
and Sun [12] have proved that the Gaussian kernel provide
superior performance in the generalization ability and con-
vergence speed. To set the standard deviation σ of Gaussian
kernel function, and themagnitude of insensitivity zone ε, we
examined various combination of ε, σ and searched which
combination provides the lowest prediction error. The regu-
larization parameter C which control the trade-off between
complexity andmisclassified training examplewas set to 105.
The best parameter settings ε, σ on estimated SVR function
(20) are 0.2, 0.52 respectively.

Empirical comparison and discussion

Table 7 presents two statistical measures of model’s fore-
cast accuracy based on the Mean Absolute Percentage Error
(MAPE) and the root mean square error (RMSE) calcu-
lated over the validation data set and shows the results
of the methods used for comparison. The best perform-
ing method is GRBFNN with error-correction mechanism
followed SVR and soft GRBFNN. A comparison between
latest statistical and intelligentmethods shows that intelligent
prediction methods outperformed the latest statistical fore-
casting method. Practical advantage of the error-correction
mechanism is that the extent of adjustment in a given period
to deviations from long-run equilibrium is given by the esti-
mated input–output equation directly from neural network
without any further calculation. Further, from Table 7 it is
shown that all forecastingmodels used are very accurate. The
development of the error rates on validation data set showed
a high inherent deterministic relationship of the underlying
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Table 7 The statistical summarymeasures ofmodel’s forecast accuracy

Model RMSE MAPE

ARIMA (1,1,0)/EGARCH(1,1) GED 463.93 1.650

Soft GRBFNN 407.17 1.453

GRBFNN with error-correction mechanism 295.56 1.197

SVR 392.3 1.421

variables. Though promising results were achieved with all
approaches, for the chaotic financial markets a purely linear
(statistical) approach for modelling relationships does not
reflect the reality. For example if investors do not react to a
small change in the BUX stock values at the first instance,
but after crossing certain interval of threshold react all the
more, then a non-linear relationship between �yt and�yt−1

exists in model (20).
RBFNNs have such attributes as computational efficiency,

simplicity, and easy adjusting to changes in the process being
forecast. Thus, neural networks are usually used in the com-
plicated problems of prediction, because they minimize the
analysis and modelling stages and the resolution time.

Conclusion

We investigated the volatility of the BUX stock return using
two non-linear asymmetric models: PGARCH (1,1) and
EGARCH(1,1). We found that the BUX stock return series
exhibits leverage effects. In addition to leverage effect, it
exhibits other stylized facts such as volatility clustering and
leptokurtosis associated with return on developed market. In
case of the BUX returns we found that PGARCH(1,1) model
with Student’s errors can be appropriate representative of the
asymmetric conditional volatility process in both pre-crisis
and crisis or post-crisis periods.

In case of construction forecasting models for BUX stock
time series, we proposed four approaches. The first one
was based on latest statistical ARMA/GARCH methodolo-
gies, the second one on soft GRBFNN, the third on novel
GRBFNN based on incorporation of an error-correction
mechanism. The fourth approach was forecasting model
based on SVR method, which is comparatively new learn-
ing method that uses hypothesis space of linear function in a
high-dimensional feature space and it is trained with a learn-
ing algorithm based on the optimization theory.

After performed experiments it was established that fore-
casting model based on SVR is better than ARMA/GARCH
one to predict high-frequency financial data for the BUX
stock time series. The direct comparison of forecast accu-
racies between the statistical ARMA/GARCH forecasting
model and its neural representation shows that both investi-

gated methodologies yield very little MAPE values. More-
over, our experiments show that neural forecasting systems
are economical and computational very efficient, well suited
for high-frequency data forecasting. In future alsomoreways
of combining prediction techniques will also be tested to see
if hybrid network architectures are better than single one.
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