VZNIK A ŠIŘENÍ TECHNOLOGICKÉ ZMĚNY

Abstract

Technology change is considered a key factor of a long-term growth and export performance of a national economy, based on quality competitiveness. The mechanisms of technology diffusion characterize and influence technology base, its capacity to initiate and develop innovative activities of economic agents. At the same time, the intensity of technology change becomes inter-firm and inter-industry specific, that means, individual industries in a national economy can be specified according to their capacity of creating and diffusing technology. The industry classification (i.e. science-based, specialized suppliers, scale intensive, traditional, resource-based industries) is applied to the structural developments of transition economies and their international comparison in the period 1980-99, including the specification of the importance of high-level technology and leading-edge industries. The structural characteristics of manufacturing exports of transition economies and their developments reflect the capacity of national economic agents to make use of technology opportunities opened by transition process, and the prospects of technology based growth dynamics and competitiveness of individual countries.

1. Úvod

Dlouhodobě udržitelná a rostoucí vývozní výkonnost národní ekonomiky je podmíněna specializací na technologicky a kvalifikačně náročné komoditní skupiny s konkurenční výhodou založenou na kvalitě. Tato kvalitativně zaměřená vývozní struktura současně (při vysoké úrovni vývozní orientace země) příznivě ovlivňuje i kvalitativní charakteristiky struktury domácí produkce a domácích výrobních faktorů, tedy domácí technologické základny — její schopnosti vytvářet a šířit technologickou změnu. Analýza charakteru technologické základny tranzitivních ekonomik (pro období let 1980-99) vychází z promítnutí konceptu technologické změny na úrovni ekonomických subjektů do mezifiremních a meziodvětvových odlišností její intenzity. Rozlišen je na jedné straně význam odvětví, která vytvářejí nové technologie, a odvětví, která technologie spíše přejímají, a dále význam odvětví na technologicky vyspělé a technologicky špičkové úrovni.

* Ing. Anna Kadeřábková, Dr., katedra hospodářské politiky
Vysoká škola ekonomická
nám. W. Churchilla 4, 130 67 Praha 3
2. Vznik a šíření technologické změny: význam a základní pojmy

Technologická změna

Proces technologické změny charakterizuje několik aspektů. V prvé řadě je to obtížná oddělitelnost procesů inovací a šíření, což znamená, že přejímání technologií méně vyspělými zeměmi není automatické a vyžaduje dostatečně rozvinuté vlastní technologické schopnosti a přejímací země. Technicky efektivní využití nových technologií v produkčním procesu rovněž vyžaduje přizpůsobení místním podmínkám a potřebám dalšího vývoje. Druhý aspekt zdůrazňuje obousměrný charakter inovačního procesu, tedy nejen od tvůrců inovací směrem k jejich uživatelům ale i od uživatelů k tvůrcům. Tento proces je jednak významný jako zpětná vazba pro tvůrce, jednak dostatečně technologicky schopný uživatel může v další fázi sám rozvinout původní inovaci. Třetí aspekt zdůrazňuje význam rostoucí specializace a profesionalizace aktivit spojených s vytvářením a realizací technologické změny v procesu ekonomického vývoje, který vede k diferenciaci znalostí a kvalifikací nutných k využívání dané technologie a znalostí a kvalifikací nutných k jejímu vytváření a změně. Toto odlišení implikuje nedostatečnost kvalifikací založených na pouhé hromadění zkušeností z provozu (learning by doing) pro inovační změnu.

V souhrnu jsou identifikovány následující složky technologické změny (jejího vzniku a aplikace): (1) Technologická akumulace (učení), tedy soustavné hromadění potřebných znalostí a zkušeností, jako základ (2) technologických schopností, které zahrnují znalosti, kvalifikace a zkušenosti a institucionální struktury a vazby (uvnitř firmy, mezi firmami, mezi odvětvími). (3) Technologická změna potom zahrnuje jednak zavedení technologií ztělesněných v nových produktech nebo vybudování nových produkčních zařízení prostřednictvím investičních projektů a postupné přizpůsobování a zlepšování stávající produkční kapacity (fixního kapitálu, kvalifikaci pracovní síly a know-how, specifikací produktů a vstupů, organizace a postupů výroby).

Technologický režim a typ inovačních aktivit

Pojem technologického režimu vychází ze simulačních modelů vlivu technologického prostředí (charakterizovaného podmínkami příležitosti a přivlastnitelnosti) na intenzitu inovací, stupeň odvětvové koncentrace (velikost firmy) a míru vstupu do odvětví. Vztah mezi těmito proměnnými je považován za endogenní (vzájemně determinovaný či dokonce kauzální) a dynamický. Technologický režim je vymezen jako specifická kombinace čtyř faktorů: technologické příležitostí, přivlastnitelnosti inovací, kumulativnosti technologických posunů a charakteristik znalostní základny. (1) Technologická příležitost vyjadřuje snadnost inovací pro potenciální inovátory a odráží inovační potenciál každé technologie. Můžeme ji vyjádřit jako pravděpodobnost vytvoření inovací při daném množství prostředků investovaných do inovačních aktivit. (2) Přivlastnitelnost charakterizuje možnosti ochrany inovací před napodobením
a tím i před poklesem získů inovátorů. Silná přivlastnitelnost umožňuje účinnou ochranu, slabá přivlastnitelnost je typická pro ekonomické prostředí s rozšířeným výskytém externalit (přelévání). (3) Kumulativnost technologických posunů charakterizuje vztah mezi dnešními a budoucími inovačními aktivitami. Inovace podněcuje tok následných inovací jako postupných zlepšení původní inovace nebo vytváří nové znalosti využívané pro další inovace v souvisejících oblastech. (4) Charakteristiky znalostní základny nutné pro realizaci inovačních aktivit v dané technologické oblasti zahrnují různé stupně specifickosti (obecnosti), tacitnosti (kodifikovatelnosti), komplexnosti (jednoduchosti) a vzájemné provázanosti znalostí. Zdůrazňována je zejména všeobecnost (šíře), respektive specifickost znalostí (jejich specializovanost a zaměření na specifické aplikace).

Šíření technologické změny

Šíření technologií probíhá dvěma základními formami, jako šíření ztělesněné a neztělesněné. Neztělesněné šíření technologií zahrnuje přenášení znalostí, technických aplikací nebo technologií bez nákupu zařízení a strojů ztělesňujících nové technologie. Má buď formu prodeje práva na patent nebo licenci, nebo (mnohem častěji) je výsledkem nedostatečné přivlastnitelnosti inovačních znalostí. Charakter a determinanty neztělesněného šíření ovlivňují přelévání výzkumu a vývoje a absorpční kapacita. Výzkumná přelévání zpřístupňují nové znalosti nebo technologie ostatním firmám nebo odvětvím (domácím i zahraničním) a určují potenciální toky neztělesněného šíření. Absorpční kapacita (významná i pro ztělesněné šíření) určuje skutečný rozsah využití inovací vyvinutých jinými firmami v produkčním procesu ostatních říz. v ekonomice v závislosti na jejich výdajích na výzkum a vývoj a dalších nehmotných investicích.

Ztělesněné šíření zahrnuje nákup technologicky náročných mezigrupových kapitálových statků produkovaných skupinami inovačních odvětví s rozsáhlými vlastními aktivitami výzkumu a vývoje. Takto ztělesněné vyspelé technologie jsou prodávány ostatním zpracovatelským a nezpracovatelským odvětvím, spotřebitelům, a veřejnému sektoru. Šíření technologií ztělesněných v kapitálových statcích mezi odvětvími je podobné jako neztělesněné šíření technologií spojeno s přeléváním, jejich zdroj je však odlišný: jsou to nižší ceny, které nakupující odvětví platí za vstupy (nebo meziprodukty) náročné na výzkum a vývoj. V důsledku konkurenčních tlaků na straně nabídky nových komodit jejich ceny neodrážejí zcela přesné změny jejich uživatelské hodnoty nebo mezni produktivity nebo kvality pro uživatelská odvětví, která tak mohou získat část výsledků výzkumného a vývojové úsilí vynaloženého tvůrci inovací v jiných odvětvích. Uživatelská odvětví tedy mohou zvýšit svou produktivitu díky nabídku inovačních meziproduktů nebo kapitálových vstupů vytvořených díky výdajům na výzkum a vývoj vynaloženým v jiných odvětvích.
3. Vznik a šíření technologické změny: metodologie analýzy

Charakter a zdroje technologických znalostí obsažených v procesu technologické změny a tedy i její zdroje a zaměření jsou odvětvově specifické. Podobně jako jsou odlišovány technologicky vůdčí země na hranici nejlepší praxe, které inovace vytvářejí, a země dohánějící, které tyto inovace přebírají, liší se i odvětví (a firmy) podle postavení a úlohy v procesu technologické změny a její transformace v nové produkty a procesy (tzv. tvůrci a uživatelé inovací) a tedy i ve významu vytvořených a převzatých technologií v produkčním procesu a ve významu alternativních forem získávání technologií. Ekonomický systém je potom pojímán jako souhrn národních sití mezifirmních, intraodvětvových a meziodvětvových (vertikálních a horizontálních) vazeb na technologické a produkční úrovni, které ovlivňují schopnost země přeměnit inovační příležitosti ve skutečnou technologickou změnu. Tyto inovační vazby (toky inovačního učení) se rozvíjejí v rámci odvětví a mezi odvětvími a vytvářejí externality, které zvýšují příležitosti pro technologická přelévání mezi firmami a odvětvovými skupinami, vytvářejí kruh pozitivní zpětné vazby a vlastní dynamiku poháněného růstu.

Ideu odvětvové specifickosti zdrojů a šíření technologických znalostí rozvíjí rozdělení odvětví do pěti skupin: (1) náročná na přírodní zdroje, (2) s převahou dodavatele (tradiční odvětví), (3) náročná na rozsah produkce, (4) specializovaní dodavatelé, (5) založená na vědě. Každá odvětvová skupina se vyznačuje odlišným typem zdrojů znalostí, vlastních vědeckých a technologických aktivit, diverzifikačního chování, tržní sily a vytváření kvalifikací. Příklady v jednotlivých odvětvových skupinách prezentuje Tabulka 1, charakteristiky firem v jednotlivých odvětvových skupinách shrnuje Tabulka 2.

Tabulka 1: Charakteristika odvětvových skupin podle zdrojů a šíření technologických znalostí

Ve skupině odvětví náročných na přírodní zdroje je volba umístění produkce silně ovlivněna dostupností surovin. Ve druhé skupině, s převahou dodavatele, převažují tradičnější spotřební a nespotřební produkty. Obě skupiny nakupují procesní inovace a inovační mezivstupy od dodavatelů, technologie je snadno dostupná, firemní konkurenční výhoda významně citlivá na cenové faktory, třebaže v některých tradičních odvětví na ni působí faktory necenové (design produktu a kvalita), významným zdrojem konkurenční výhody jsou faktorová vybavení (tzv. heckscherovsko-ohlinovské produkty). Technologické volby odrážejí relativní náklady faktorů a technologická akumulace se soustředuje na zlepšování a přizpůsobování výrobních postupů a souvisejících vstupů, příležitostně i na produktový design. Mezinárodní transfery technologií jsou poměrně snadné, protože technologie je ztělesněna především v kapitálových statcích a dalších vstupech. Volba technologií v takovýchto odvětvích obvykle do
určité míry připomíná možnosti substituce představované konvenční produkční funkci.

V dalších třech odvětvových skupinách jsou zdrojem konkurenční výhody vlastní technologické aktivity, nejvýznamněji v odvětvích založených na vědě a v odvětvích specializovaných dodavatelů. Odvětví nárocné na rozsah produkce se vyznačují oligopolistickou strukturou, vysokou kapitálovou náročností, významnými úsporami z rozsahu a učení, vysokou technologickou a manažerskou komplexností a rozsáhlými firemními aktivitami v oblasti produkčního inženýrství. Zdrojem technologické akumulace je projekce, vytváření a využívání komplexních produkčních systémů a produktů, provozní zkušenosti a podněty dodavatelů zařízení a součástek. Při daných potenciálních ekonomických výhodách většího rozsahu a složitosti produktů a výrobních systémů jsou rizika neúspěchu spojená s radikální změnou potenciálně velmi vysoká. Procesni a produktové technologie se proto vyvíjejí postupně. Mezinárodní transfer technologií vyžaduje vedle obchodu se strojním zařízením a dalšími vstupy licencování produkčního a projekčního know-how a rozvoj odpovídajících kvalifikací.

Odvětví specializovaných dodavatelů (převážně producenti investičních statků) jsou charakterizována vysokou diverzifikací nabídky, vysokými úsporami z diverzifikace, středními až malými firmami a značnou kapacitou pro produktové inovace, které vstupují ve formě kapitálových vstupů (strojů, součástek, nástrojů a softwaru) do většiny odvětví ve skupinách náročných na rozsah produkce a s přehlavou dodavatele. Technologická akumulace probíhá prostřednictvím projekce, konstrukce a používání těchto produkčních vstupů. Specializované dodavatelské firmy akumulují kvalifikace nezbytné ke zvládnutí pokroku ve strojní projekci. Při komplexnosti a vzájemné provázanosti produkčních procesů je velký důraz kladen na spolehlivost a výkonnost produktů spíše než na cenu. Mezinárodní transfer technologií probíhá prostřednictvím nákupních aktivit firem vyspělých uživatelů a obrácným inženýrstvím.

Odvětví založená na vědě se vyznačují inovačními aktivitami přímo napojenými na vysoké výdaje na výzkum a vývoj, spoléhá na ně velký počet ostatních odvětví jako na zdroj kapitálových vstupů nebo mezivstupů, jejich produktové inovace vytvářejí rozsáhlá přelévání působící na celý ekonomický systém. Technologie je akumulována především výzkumně vývojovými laboratořemi a významně závisí na znalostech, kvalifikacích a postupech vznikajících v akademickém výzkumu. Technologická akumulace se soustředí především na horizontální hledání nových a technologicky souvisejících produktových trhů. Mezinárodní transfer technologií vyžaduje silnou schopnost obráceného inženýrství (tedy rozmontování konkurenčních produktů k odhalení principu jejich fungování), které samo vyžaduje kvalifikované výzkumníky.
a techniky se zahraničními kontakty. Tento typ technologické změny je nejblíže Schumpeterovu pojetí inovací. 9

Tabulka 2: Technologicky založená klasifikace odvětví a charakteristiky jejich firem

Význam jednotlivých odvětvových skupin pro hodnocení technologické úrovně produkce (a konkurenceschopnosti) země zdůrazňuje Fagerberg 10 při objasnění nižší schopnosti vytváření zaměstnanosti, ztráty konkurenceschopnosti a zaostávání v růstu produktivity evropských zemí (EU) vůči Spojeným státům a nově industrializovaným asijským ekonomikám (s výjimkou odvětví náročných na zemědělské a surovinové vstupy) na straně jedné, při současném zvýšení významu růstu založeného na inovacích na straně druhé. Oslabení pozice evropských zemí se projevuje zejména v technologicky vysoce náročných odvětvích, zvláště informačních a komunikačních technologiích. Upozorněno je v této souvislosti i na zvrat předchozího trendu sbližování produktivity a důchodu mezi evropskými regiony, 11 Změnu technologické pozice mezi uvedenými zeměmi (skupinami zemí) ilustruje Tabulka 3.

Tabulka 3: Tržní podíly v roce 1995 a změna proti roku 1988 (v p.p.) v zemích triády a asijských ekonomikách

V souhrnu je tedy pro ekonomiku pozitivní významný podíl odvětvových skupin s vysokou úrovní technologických aktivit a příležitostí (která roste směrem od odvětví náročných na zdroje k odvětvím založeným na vědě), mezi nimiž v posledních letech převažují informační a komunikační technologie.

4. Vývoj v České republice a mezinárodní srovnání

Vývoj struktury vývozů České republiky, Polska, Maďarska a Slovenska v období let 1980-1999 podle charakteristik odvětví z hlediska typu zdrojů a síření technologické změny znázorňuje Obrázek 1. V období před začátkem transformace (1980-89) je ze sledovaných zemí struktura nejpříznivější v Československu (nejnižší podíl zdrojů náročných odvětví, nejvyšší podíl odvětví založených na vědě a specializovaných dodavatelů), současně se však vyznačuje i vysokým zastoupením odvětví tradičních (s převahou dodavatele) a náročných na rozsah (která se obtížněji přizpůsobují změnám poptávky). V souhrnu ve vývozech všech ekonomik převažují (s podílem přesahujícím 80% vývozů) odvětví spíše přejímající technologie. „Startovní pozice“ před začátkem transformace je tedy mezi zeměmi v podstatě vyrovnaná (u Polska nicméně výraznější zkrášlená ve prospěch zdrojově náročných odvětví, která zahrnují téměř polovinu vývozů) se silně poddimenzovaným podílem odvětví charakterizovaných jako zdroje

16 ER 2 / 2001
technologické změny. Intenzita strukturálních změn vývozů je v 80. letech mezi zeměmi rovněž podobná (a nízká), v Československu nicméně nejnižší.

Intenzita strukturálních změn výrazně narůstá po zahájení transformace, stejně jako rozdíly v její síle mezi zeměmi (štěle vsák na relativně srovnatelné úrovně). V počátečním období (1989-1992/93) je intenzita změn nejvyšší v Polsku (21), následovaném Maďarskem (17) a Československem (13). Odvětvové zaměření strukturálních změn je v tomto období ve sledovaných ekonomikách velmi podobné, nejvýznamněji se především snižuje podíl zdrojově náročných odvětví (nejvíce v Maďarsku a samozřejmě v Polsku vzhledem k jejich výraznému zastoupení v předchozím období) a naopak roste podíl tradičních odvětví (zejména v Polsku), podíly ostatních, technologicky náročnějších odvětvových skupin se mění pouze mírně (což je vývoj charakteristicky pro fázi pasivní restrukturalizace).

V následujícím období postupně zesílují kvalitativní odlišnosti zaměření strukturálních změn v tranzitivních ekonomikách. V souhrnném vyjádření se zvyšují rozdíly v intenzitě strukturálních změn, s výrazným předstihem Maďarska (59) oproti ostatním zemím (Polsko 28, Slovensko 21, Česká republika 20). Společnou charakteristikou odvětvového zaměření strukturálních změn je pokračující pokles významu odvětví náročných na zdroje (nejvýrazněji v Maďarsku, které se tak dostává na úroveň srovnatelnou s Českou republikou, tj. mírně vyšší než v případě Slovenska, v Polsku je zastoupení této skupiny stále více než dvojnásobné). S výjimkou Maďarska v tranzitivních ekonomikách stále přetrvává relativně vysoký podíl tradičních odvětví (kolem 30% oproti 17% v Maďarsku). Odvětví náročná na rozsah silně převažuje ve struktuře vývozů Slovenska (více než 40%).

Obrázek 1: Struktura vývozu podle zdroje a šíření technologických znalostí, 1980-1999 (z údajů v USD, b.c., v %)

Na konci sledovaného období se počáteční vysoký podíl odvětví spíše přejímajících technologie v tranzitivních ekonomikách příliš nezměnil (71% v České republice, 84% v Polsku, 81% na Slovensku), ovšem namísto zdrojově náročných a tradičních odvětví se v rámci této skupiny zvýšil podíl odvětví náročných na rozsah produkcí (Česká republika, Slovensko). Výjimku představuje Maďarsko, kde podíl odvětví přejímajících technologie poklesl výrazně (na 54%) ve prospěch odvětví specializovaných dodavatelů a zeměna odvětví založených na vědě (na 39%, tj. o 32 p.b. od roku 1989). V České republice se sice rovněž zvyšuje podíl této odvětvové skupiny, avšak pouze o 10 p.b. (na 16%). Česká republika tedy ve vývozech ztratila svou počáteční příznivou pozici v zastoupení technologicky náročnějších komoditních skupin v důsledku nízké dynamiky nárůstu jejich podílu v průběhu transformace.
Špičkové a vyspělé technologie

Alternativní hodnocení technologické vyspělosti produkce, respektive vývozu \(^{12}\) rozděluje produktové skupiny podle technologické úrovni (na třímištné úrovni členění SITC) na základě stanoveného podílu výdajů na výzkum a vývoj na obratu do dvou skupin: na náročné (schumpeterovské, technologicky vyspělé) a nenáročné (heckscherovsko-ohlinovské, ostatní) na výzkum a vývoj. V rámci skupiny produktů náročných na výzkum a vývoj jsou dále odlišeny dvě podskupiny: technologicky špičkové produkty (leading-edge) a produkty na vysoké technologické úrovni (high-level technology).\(^{13}\) Podskupiny se vedle podílu výzkumu a vývoje rovněž liší stupněm státního vlivu, který je vyšší u odvětví špičkové technologie.\(^{14}\) Podíly zemí triády na světovém obchodě s produkty náročnými na výzkum a vývoj a příklady komoditních skupin technologicky špičkových produktů a produktů na vysoké technologické úrovni uvádí Tabulka 4.

Tabulka 4 Podíly odvětví náročných na výzkum a vývoj na světovém obchodě (vybrané země, v %, 1997)

V tranzitivních ekonomikách (v mezinárodním srovnání s Německem a Irskem) v období let 1995-99 (Obrázek 2) sledujeme společný pozitivní trend nárůstu podílu komoditních skupin náročných na výzkum a vývoj (nejvyšší je jejich podíl v Maďarsku, 43%, nejvíce vzrostl na Slovensku, o 18 p.b.). Česká republika si i přes slabší nárůst udržela díky relativně dobré výchozi pozici druhé místo (zvýšení o 9 p.b. na 35%). Při rozlišení komoditních skupin náročných na výzkum a vývoj na technologicky vyspělé a technologicky špičkové sledujeme na jedné straně orientaci slovinských a slovenských vývozů k poměrně výrazněmu podílu technologicky vyspělých odvětví (který je v roce 1999 nejvyšší mezi sledovanými tranzitivními ekonomikami, téměř 29%) při relativně velmi nízkém podílu odvětví technologicky špičkových, 4-5%) a na druhé straně orientaci maďarských vývozů „německým směrem“, tj. k silnému zastoupení obou skupin (při jejich srovnatelném nárůstu). V České republice se podíl obou skupin rovněž zvyšuje podobnou měrou, oproti Maďarsku je nicméně toto zvýšení méně než poloviční.

Obrázek 2: Struktura vývozu podle podílu špičkové a vyspělé technologie, 1995-99 (z údajů v USD, b.c., v %)

5. Závěr

V souhrnu tedy ve sledovaných tranzitivních ekonomikách dosud převažují odvětví spíše přejímající než vytvářející technologickou změnu. Kvalitativní charakteristiky strukturálních změn z hlediska zvýšení vlastního technologického potenciálu v období transformace jsou nicméně poměrně výrazné, zejména v případě Maďarska. Nejslabší je intenzita strukturálních
změn v případě kritéria vytváření a do značné míry i šíření technologické změny
v Polsku v důsledku dosud výrazného podílu odvětví s nižší vlastní inovační
aktivitou. Velmi dynamické jsou naopak tyto strukturální přesuny na
Slovence, ovšem při orientaci (podobně jako v případě Slovinska) spíše na
odvětví přejímající technologickou změnu, byť technologicky náročnější než v
Polsku. V případě českých vývozů je nepříznivá zejmena neschopnost účinněji
využít relativně přínosné výchozí pozice, což lze při technologickém zaostávání
domácí výzkumné a vývojové základny (společném všem tranzitivním
ekonomikám) připsat zejmena nízkému podílu zahraničních podnikových
subjektů v národní ekonomice, které (jak ukazuje vývoj v Maďarsku) významně
pozitivně ovlivňují zvyšování její technologické úrovně. Tuto charakteristiku
odrážejí i výsledky inovačních aktivit vyjádřené počtem patentů (udělených
patentovým úřadem Spojených států v období let 1995-99): v Maďarsku 207 (při
převaze technologicky vysoce vyspělých patentových tříd), v České republice
pouze 59.15

1 Pavitt, K., Bell, M., The Development of Technological Capabilities, in: l. ul Harque, (ed.),
Trade, Technology, and International Competitiveness, EDI Development Studies, World
2 Nelson, R., Research on Productivity Growth and Differences, Journal of Economic
Literature, 19, 1981, s. 186-9.
3 Malerba, F., Orsenigo, L., Technological and Patterns of Innovation: A Theoretical and
Technologies and Market Structure, Michigan University Press, Ann Harbor, 1990, s. 283-
306. Malerba, F., Orsenigo, L., Technological Regimes and Firm Behaviour, Industrial and
4 Znalostní (výzkumná) přelévání jsou ideje výzkumného týmu, které využívá jiný
výzkumný tým ve stejném odvětví. Griliches, Z., R&D and Productivity: Econometric
Results and Measurement Issues, in: P. Stoneman (ed.), Handbook of the Economics of
5 Pravděpodobnost úspěšné inovace je funkčí předchozích inovačních úspěchů. Přelévání
tedy podněcují výsí nehmotné investice: poptávka po nových technologích (proces šíření)
podněcuje nabídku (inovační proces). Inovace a šíření jsou tedy komplementy, nikoli
substituty.
6 Nejvýznamnějším zdrojem nových technologií jsou technologicky vysoce vyspělá odvětví
zpracovatelského průmyslu a v jejich rámci informační a komunikační technologie (tvoří až
40 procent získávaných technologií), Nejvýznamnějším příjmem technologií jsou služby a
technologicky méně vyspělá odvětví zpracovatelského průmyslu (dopravní prostředky,
elektrické strojírenství).
7 Pavitt, K., Patterns of Technical Change: Towards a Taxonomy and a Theory, Research
Policy, Vol. 13, no. 6, 1984, s. 343-73.
8 Tato klasifikace byla poprvé použita Pavittem (1984), rozvinuta Guerriern v aplikaci na
hodnocení technologické pozice USA, Japonska Německa (1992) a tranzitivních ekonomik
a asijských nově industrializovaných ekonomik a řadu dalších autorů. (Guerrieri, P.,
Technological and Trade Competition: The Changing Position of the United States, Japan,
and Germany, in: Linking Trade and Technology, An International Comparison of the
Tabulka 1: Charakteristika odvětvových skupin podle zdrojů a šíření technologických znalostí

<table>
<thead>
<tr>
<th>Skupina odvětví</th>
<th>Příklady odvětví</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náročná na zdroje</td>
<td>ropné rašínérie, neželezné kovy, výroba papíru</td>
</tr>
<tr>
<td>S převahou dodavatele</td>
<td>textil, odevy, nábytek, kožené produkty, sbuv, keramika, jednoduché kovové produkty</td>
</tr>
<tr>
<td>Náročná na rozsah</td>
<td>automobily, spotřební elektronika, spotřební produkty</td>
</tr>
<tr>
<td>produkce</td>
<td>dlouhodobé spotřeby, gumárenství, ocelářství</td>
</tr>
<tr>
<td>Specializovaní</td>
<td>stroje a nástroje pro specializovaná odvětví</td>
</tr>
<tr>
<td>dodavatelé</td>
<td></td>
</tr>
<tr>
<td>Založená na vědě</td>
<td>léčiva, elektronické součástky, telekomunikace, výroba letadel</td>
</tr>
</tbody>
</table>

Pramen: Guerrieri (1998), s. 4.
| Tabulka 2: Technologicky založená klasifikace odvětví a charakteristiky jejich firem |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **S převahou dodavatele** | **Náročná na rozsah** | **Založená na vědě** | **Specializovaný dodavatelé** |
| **Velikost firem** | Malá až střední | Velká | Malá až střední |
| **Typ uživatele** | Cenově citlivý | Smíšený | Citlivý na výkonnost |
| **Hlavní cíl technologických aktivit** | Snížení nákladů | Smíšený | Zlepšení produktu |
| **Hlavní zdroj technologické akumulace** | Dodavatelé: produkční učení, poradenské služby | Produkční inženýrství: produkční učení, dodavatelé, projekce | Firemní výzkum a rozvoj: základní výzkum, produkce, inženýrství, projekce |
| **Směr technologické akumulace** | Procesní technologie a související zařízení | Procesní technologie a související zařízení | Technologicky související produkty |
| **Hlavní cesty napodobení a technologického transferu** | Nákup zařízení a souvisejících služeb | Nákup zařízení, know-how, řízení, sevisející kvalifikace, obrácené inženýrství | Rezervní inženýrství, výzkum a rozvoj, najímání zkušených techniků a vědců |
| **Hlavní metody ochrany před napodobením** | Netechnické (marketing, obchodní znalosti) | Procesní utajení, projekční a operační know-how | Know-how výzkumu a rozvoje, patenty, projekční a operační know-how |
| **Hlavní úkoly strategického managementu** | Využívání technologie vytvořené jinde k posílení dalších konkurenčních výhod | Postupná integrace nové technologie do komplexních systémů, zlepšení a šíření nejlepší praxe, využívání výhod procesních technologií | Vývoj souvisejících produktů, využívání základní vědy, komplementárních aktiv, změna divizních odpovědností |

Pramen: Pavitt, Bell (1995), s. 80.
STATĚ

Tabulka 3: Tržní podíly v roce 1995 a změna proti roku 1988 (v p.p.) v zemích triády a asijských ekonomikách

<table>
<thead>
<tr>
<th></th>
<th>Náročná na zdroje</th>
<th>Převaha dodavatele</th>
<th>Náročná na rozsah produkce</th>
<th>Specializovaní dodavatele</th>
<th>Založená na vědě</th>
<th>Celkový podíl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evropa (15)</td>
<td>31,6 1,3 40,1</td>
<td>-7,5 47,3 -3,9</td>
<td>47,6 -8,4</td>
<td>33,8 -7,5</td>
<td>39,6 -4,4</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>11,0 -2,4 6,7</td>
<td>1,5 10,3 0,9</td>
<td>13,7 1,5</td>
<td>17,9 -1,9</td>
<td>11,8 0,2</td>
<td></td>
</tr>
<tr>
<td>Japonsko</td>
<td>1,4 0,3 3,2</td>
<td>-0,9 12,8 -4,3</td>
<td>15,7 0,1</td>
<td>14,3 -2,4</td>
<td>9,0 -1,1</td>
<td></td>
</tr>
<tr>
<td>Asijské NIE</td>
<td>3,4 1,4 16,2</td>
<td>1,7 8,7 3,1</td>
<td>8,8 4,8</td>
<td>17,8 8,7</td>
<td>10,8 4,1</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 4: Podíly odvětví náročných na výzkum a vývoj na světovém obchodě (vybrané země, v %, 1997)

<table>
<thead>
<tr>
<th>Technologické skupiny a země</th>
<th>1997</th>
<th>Příklady komoditních skupin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologicky špičkové produkty</td>
<td></td>
<td>ostatní organické chemikálie, radioaktivní a příbuzné materiály, léciva, ostatní plastické hmoty, insetticidy ad., neelektrické stroje a motory, ostatní zařízení k výrobě el. proudu, zařízení k automatickému zpracování dat, telekomunikační zařízení</td>
</tr>
<tr>
<td>Evropská unie</td>
<td>46,0</td>
<td></td>
</tr>
<tr>
<td>Japonsko</td>
<td>14,6</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>25,9</td>
<td></td>
</tr>
<tr>
<td>Produkty na vyskuck technologické úrovni</td>
<td></td>
<td>strojní zařízení ke zpracování kovů, kancelářské stroje, motorová vozidla, fotografické přístroje, kovoobrábcí stroje, rozhlasové a televizní přijímače, pigmenty a barviva, specializované stroje, syntetická vlákna, čerpadla a dopravníky, zařízení k chlazení a obřevu, syntetické organické barvy a laky, železniční vozidla</td>
</tr>
<tr>
<td>Evropská unie</td>
<td>53,1</td>
<td></td>
</tr>
<tr>
<td>Japonsko</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>13,8</td>
<td></td>
</tr>
</tbody>
</table>

Obrázek 1: Struktura vývozů podle zdroje a šíření technologických znalostí, 1980-1999 (z údajů v USD, b.c., v %)

Obrázek 2: Struktura vývozů podle podílu špičkové a vyspělé technologie, 1995-99 (z údajů v USD, b.c., v %)