Modifikace přístroje pro stanovení minimální teploty vznícení prachu v rozvířeném stavu.
Anotace

Klíčová slova: výbuch, prach, indukční doba vznícení, minimální teplota vznícení.

Annotation

This bachelor thesis deal with modification of current apparatus for the determination of minimum ignition temperature of a whirled up dust. There are basic knowledge about dusts and their technical safety characteristics in the theoretical part. There is description of current device and project of modification which was implemented in the practical part. The way of whirling dust was changed. There was implemented new system for determine inductive time of a dust cloud ignition. There is measurement, verify of functionality and comparison between previous and new method of measurement in thesis. This device work properly and is prepare to measurement and to determine technical safety characteristics of dusts.

Key words: explosion, dust, inductive time of ignition, minimum ignition temperature.
Místopřísežně prohlašuji že jsem celou bakalářskou práci vypracoval samostatně.
3. dubna 2008 Roman Kaperstein
Obsah

1 Základní pojmy ... 2

2 Úvod .. 3

3 Teoretická část.. 4
 3.1 Hořlavé prachy .. 4
 3.1.1 Nebezpečí výbuchu prachu uvnitř výrobního zařízení 6
 3.1.2 Nebezpečí výbuchu vně výrobního zařízení ... 6
 3.2 Vlastnosti hořlavých prachů ... 8
 3.3 Technicko bezpečnostní parametry výbušných prachů 9
 3.3.1 Maximální výbuchový tlak .. 9
 3.3.2 Maximální rychlost narůstání výbuchového tlaku 9
 3.3.3 Dolní mez výbušnosti .. 10
 3.3.4 Minimální iniciační energie .. 11
 3.3.5 Teplota vzplanutí, zvznícení a žhnutí usazeného prachu 11
 3.3.6 Minimální teplota zvznícení rozvířeného prachu 11
 3.3.7 Mezní koncentrace kyslíku .. 12
 3.4 Důležité vlivy na výbuchové parametry prachů .. 12
 3.4.1 Vliv velikosti částic .. 12
 3.4.2 Vliv velikosti objemu ... 12
 3.4.3 Vliv počátečního tlaku ... 13
 3.4.4 Vliv iniciační energie ... 13

4 Popis stávajícího měřicího zařízení ... 13
 4.1 Konstrukce zkušebního zařízení .. 14
 4.2 Průběh zkoušky ... 15
 4.3 Hodnocení zařízení pro stanovení minimální teploty zvznícení podle ČSN EN
 50 281-2-1 metody B ... 16

5 Modifikace stávajícího zařízení .. 17
 5.1 Požadavky na úpravu konstrukce zkušebního zařízení 18
 5.2 Návrh úpravy stávajícího zařízení .. 18
 5.3 Popis konstrukčního řešení .. 18
 5.4 Popis měřicích soustav .. 21
 5.4.1 Nastavení parametrů měření .. 24
 5.5 Průběh zkoušky po modifikaci ... 26
 5.6 Zpracování výsledků ... 30

6 Ověření funkčnosti modifikovaného zařízení a měření 30
 6.1 Vzorek hořlavého prachu .. 30
 6.2 Postup měření .. 31
 6.3 Výsledky měření ... 31
 6.4 Zpracování výsledků měření ... 32
 6.5 Porovnání naměřených hodnot s předchozí metodou 35
 6.6 Zhodnocení modifikovaného zařízení .. 35

7 Závěr ... 36

8 Použitá literatura: .. 38

9 Seznam příloh ... 39
1 Základní pojmy

- Hořlavá látka: látka ve formě plynu, páry, kapaliny, pevné látky nebo jiných směsí, která pokud dojde k iniciaci může vyvolat exotermickou reakci s oxidačním prostředkem.
- Výbuch: rychle probíhající chemická oxidační reakce, doprovázená silným vývinem tepla a tlakovými projevy. Oxidačním činidlem je obvykle vzdusný kyslík, ale obecně to může být chlór, chlorečnany, dusičnany apod.
- Výbušná směs: koncentrace hořlavých plynů, par a prachu ve směsí s oxidačním činidlem v rozmezí mezi spodní mezí výbušnosti a horní mezí výbušnosti, která je schopná výbušné přeměny.
- Meze výbušnosti: meze rozsahu výbušnosti.
- Dolní mez výbušnosti: LEL (lower, explosion limit): dolní mez rozsahu výbušnosti.
- Iniciace: počáteční energetický podnět dodaný výbušné směsi.
- Prach: částice tuhé látky, menší než 0,5mm, schopné vytvořit disperzní soustavu (pro vláknité materiály znamená rozmezí 0,5mm maximální průměr částice).
- Disperzní soustava: rozvířený prach v plynném médiu, obvykle se vzduchem.
- Hořlavý prach: všechny oxidovatelné organické i anorganické materiály v práškovém stavu, ať to jsou finální produkty, nebo odpadní látky.
- Technicko bezpečnostní parametry: soubor fyzikálně-chemických veličin, charakterizujících vznivlivost a výbušnost prachu.
- Zrnitost: zastoupení rozměrových tříd částic v hmotnostních procentech.
- Nejnižší teplota vznícení rozvířeného prachu \(\tau \): nejnižší teplota horkého prostředí, při které se vznítí rozvířený prach za předepsaných zkušebních podmínek. Tato teplota je obecně vyšší, než teplota vznícení usazeného prachu. Uvádí se ve °C.
- Indukční doba vznícení \(\tau \): doba, která uplyne od začátku tepelného zatěžování vzorku, po jeho vznícení.
- Rychlost šíření plamene v: rychlost přenosu plamene po vrstvě daného tvaru a délky za předepsaných zkušebních podmínek. Uvádí se v cm·s\(^{-1}\).
- Inertní prach: nevýbušný práškový materiál, který se přidává k hořlavému prachu pro snížení nebo potlačení jeho hořlavých a výbušných vlastností.
- Rozvířitelnost prachu: schopnost prachu vytvořit disperzní směs za daných zkušebních podmínek. Uvádí se v hmotnostních %. [1][6]
2 Úvod

Tato práce je zaměřena na modifikaci přístroje pro stanovení minimální teploty vznícení prachu v rozvířeném stavu. Cílem této práce je upravit stávající zařízení tak, aby bylo možno stanovit indukční dobu vznícení. Tímto se rozšíří možnosti celého měřicího zařízení. Hodnoty minimální teploty vznícení a indukční doby vznícení rozvířeného prachu charakterizují schopnost disperzní směsi prachu se vzdychem rozvinout prudkou oxidační reakcí pokud dojde k zvýšení teploty směsi. Tyto hodnoty poskytují informace o tom, jak snadno lze příslušnou směs prachu se vzdychem iniciovat.

Úprava se dále týká způsobu rozvířování prachu do pece. Je zde určitý předpoklad, že pokud bude přiváděn prach spodním otvorem pece, bude se vyskytovat v prostoru pece delší dobu a bude tedy tepelně zatěžován déle než je tomu u původní metody. To protože při tomto uspořádání se prach bude pohybovat vzhůru, při rozvíření do pece tlakovým vzduchem a následně bude vlivem gravitace docházet k sedimentaci prachu. V důsledku tohoto by při měření s modifikovaným přístrojem, měly být hodnoty minimální teploty vznícení prachu v rozvířeném stavu nižší, než je tomu v současné době.

3 Teoretická část

Nebezpečí požáru a výbuchu prachu je často opomíjené a v podvědomí široké veřejnosti není zapsáno tak jako je to u jiných hořlavých směsí. Přestože mohou mít za následek ztráty na lidských životech, újmy na zdraví, škody na majetku a v neposlední řadě také na životním prostředí.

Požáry a výbuchy prachu jsou známé více než 200 let. Tyto události jsou spojené se zemědělstvím a to hlavně s mletím obilí ve větších mlýnech, dopravnících a v silech určených k uskladnění obilí. Dále pak s výrobou škrobu, cukru, čokolády nebo koření, ale také v rafinériích, při zpracovávání hliníku a gumy. \[7\]

To, že asi jedna třetina výbuchů prachů je spojena s lidským selháním, lehkou vážností, nedbalostí nebo lhostejností, znamená že je zapotřebí stálé vysvětlování této problematiky odbornou veřejností a neustálý rozvoj poznatků v této oblasti.

3.1 Hořlavé prachy

Podle \[6\] tvoří prach částice pevné látky menší než 0,5 mm, přičemž u vláknin může být délka vlákna větší než 0,5 mm a některé atypické materiály se mohou chovat jako prach i při větších rozměrech částic např. peří.

Laboratorně bylo ověřeno, že částice hrubší než 0,425 mm nepřispívají ke zvýšení tlaku, který vzniká při výbuchu v uzavřené nádobě. Naopak částice o velikosti 0,075 mm jsou obecně považovány za plné se účastící procesu hoření. Pro vzorky odebrané v průmyslových podnicích je číslem charakterizujícím velikostí zrna vzorku váhové procento zm propadlých různými sily. Za nejnebezpečnější jsou obecně považovány prachy s velikostí zrna menším než 75 µm. \[11\]

Hořlavý prach je schopen oxidační reakce doprovázené vývinem tepelné a světelné energie. Tato reakce je doprovázená zásadní změnou původní hmoty. Hořlavý prach může např. vznikat z hmoty, která obsahuje více než 10 hmotnostních procent látky schopné oxidace. \[6\]

Prach se vyskytuje ve dvou stavech a to jako usazený prach, který se nazývá aerogel a rozvířený prach, ten nazýváme aerosol. Přítom prach může snadno přejít z jednoho stavu do druhého. Usazený prach lze rozvířit (např. vibracemi, otřesy, proudem vzduchu) a naopak rozvířený prach sedimentací přechází do usazeného stavu. \[6\]

Podle míst výskytu může být prach uvnitř výrobního zařízení a vně výrobního zařízení, tj. uvnitř výrobní haly (provozovny). \[6\]
Hořlavý prach v rozvířeném stavu je schopen prudké oxidační reakce, která má charakter výbuchu a za určitých podmínek může přejít až k detonaci. Nebezpečí požáru hořlavých prachů hrozí tam, kde se prach usazuje v souvislé vrstvě schopné šířit požár. Za vrstvu schopnou šířit požár se považuje již vrstva prachu 1 mm. [6]

Je nutno si uvědomit, že každý požár hořlavého prachu může velmi snadno přejít ve výbuch a naopak. Výbuch prachu může přejít v hoření zbytku nezreagovaného prachu (při výbuchu prachu v optimálním případě shoří nejvýše polovina rozvířené hmoty prachu). Po výbuchu nemusí následovat požár, pokud je výbuchem spotřebován vzdušný kyslík, resp. pokud je příslušně snížen obsah kyslíku v prostoru. [6]

Prostředí s nebezpečím výbuchu hořlavých prachů se vytváří v prostoru, kde se může vytvořit nebezpečné množství výbušné směsi prachu se vzduchem, to znamená, že při zapálení směsi může dojít přímým nebo nepřímým účinkem ke zranění osob a k poškození věcí. Aby se mohla vytvořit výbušná směs hořlavého prachu se vzduchem, musí být k dispozici dostatečné množství prachových částic, tj. skutečná koncentrace prachu \(c_{SKUT} \) musí být větší než nebezpečná koncentrace \(c_{NEB} \) dle (1):

\[
C_{SKUT} \geq C_{NEB} \quad (1) \quad [5]
\]

Nebezpečná koncentrace \(c_{NEB} \) se určuje na základě dolní meze výbušnosti daného prachu \(LEL \) viz (2):

\[
C_{NEB} = k_B \cdot LEL, \quad (2) \quad [6]
\]

kde

\(k_B \) ... je bezpečnostní koeficient, pro vnitřní prostory výrobního zařízení \(k_B = 0,5 \).

\(LEL \) ... dolní mezi výbušnosti v obj. %.

U prachů si je nutno uvědomit, že oblast rozvířeného prachu není obvykle homogenní a koncentrace může velmi kolísat podle víření usazeného prachu a jeho rozptylení do atmosféry. Na rozdíl od plynů a par mohou prachy rozvířením místní vrstvy či hromádky prachu vytvářet místní koncentrace. [6]
3.1.1 Nebezpečí výbuchu prachu uvnitř výrobního zařízení

Za nebezpečné množství výbušné směsi v uzavřeném prostoru nezávisle na velikosti prostoru je nutno považovat již 10 dm³ výbušné směsi. [6]

V prostorách menších než 100 m³ se za nebezpečné množství považuje výbušná směs tvořící desetitisícinu objemu daného uzavřeného prostoru (např. v 60 m³ je již nebezpečné 6 dm³ výbušné směsi). Jestliže se v bezprostřední blízkosti nacházejí lidé, může být nebezpečné i menší množství. [6]

Skutečná koncentrace v zařízení c_{SKUT} se vypočítá podle vztahu (3):

$$C_{SKUT} = \frac{m}{V}, \quad (3)$$

kde

- m ... hmotnost daného prachu v g,
- V ... objem zařízení, v němž je prach rozvíjen v m³

Při proudění prachu v potrubí se koncentrace vypočítá podle (4):

$$C_{SKUT} = \frac{M_p}{V_p} = \frac{m_p}{S \cdot w}, \quad (4)$$

kde

- m_p ... množství přepravovaného prachu v g.s⁻¹,
- V_p ... množství proudícího vzduchu v m³.s⁻¹
- S ... průřez potrubí v m²,
- w ... rychlost proudění vzduchu v m.s⁻¹.

3.1.2 Nebezpečí výbuchu vně výrobního zařízení

Dle [6] se vně výrobního zařízení, tj. v hale (místnosti) výrobního objektu, skutečná průměrná koncentrace vypočítá podle vztahu (5):
\[C_{SKUT} = \frac{m}{V_{míst}} = \frac{l \cdot b \cdot s \cdot \rho}{l \cdot b \cdot h} = \frac{s \cdot \rho}{h}, \quad (5) \]

kde

- \(m \) ... množství (hmotnost) usazeného prachu na půdorysné ploše místnosti v g,
- \(V_{míst} \) ... objem místnosti v m³,
- \(l, b, h \) ... délka, šířka a výška místnosti v m,
- \(s \) ... tloušťka usazené prachové vrstvy v m,
- \(c_{SKUT} \) ... skutečná průměrná koncentrace prachu v g.m³,
- \(\rho \) ... sypná hustota prachu v g.m⁻³.

Tloušťka nebezpečné vrstvy \(s_{NEB} \) se vypočítá dle (6):

\[s_{NEB} = \frac{C_{NEB} \cdot h}{\rho} = k_B \cdot c_{MIN} \cdot h, \quad (6) \]

Kde

- \(C_{NEB} \) ... je nebezpečná koncentrace v obj. %,
- \(h \) ... výška místnosti v m,
- \(\rho \) ... sypná hustota prachu v g.m⁻³,
- \(k_B \) ... bezpečnostní koeficient, pro vnitřní prostory výrobního zařízení se používá \(k_B = 0,5 \),
- \(c_{MIN} \) ... minimální koncentrace = LEL dolní mezi výbušnosti v obj. %.

U většiny hořlavých prachů stačí k vytvoření výbušné směsi v celém prostoru obvyklé výšky již rovnoměrná vrstva usazeného prachu na podlaze o tloušťce méně než 1 mm. V podlouhlých nádobách, ve štolách nebo potrubích může přijít výbuch v detonaci. Detonace má při nárazu detonační vlny na překážku mimořádně silný ničivý účinek. [6]

Podle [10] fyzikálně-chemické vlastnosti prašních směsí určuje stupeň disperzity, elektrický náboj, schopnost adsorpcie a chemické složení. O rychlosti hoření prašních směsí je méně údajů. Prašné směsi jsou velmi nebezpečné, výbušné jsou v tomto stavu i látky jinak neškodné jako síra, vosk, pryskyřice, uhlí, cukr, celulóza, pyrit, korek, umělé hmoty (polystyren, polyamid, polyvinylchlorid), škrob, dřevo, naftalan, tabák, kakao, mouka,
práškovité kovy (hliník, hořčík, železo), aj. Jde o látky organické přírodního původu, chemických organických a anorganických produktů. Za výbušné se považují prachy s dolní mezi vznícení 66 [g.cm\(^{-3}\)]. Lze říci, že ve formě prachu hoří téměř všechny látky s výjimkou čistě anorganických, jako je dolomit, vápencem a další oxidý a soli kovů. [10]

Nejčastěji uváděné operace při kterých mohou vznikat prašné směsi jsou pražení, sušení, krystalizace, prosévání, třídění, mletí, drcení, doprava výtahy, transportéry, pásky, spádem, potrubím, odsávání, shromažďování, čištění prachu, balení a pytlování. [10]

3.2 Vlastnosti hořlavých prachů

Vlastnosti prachu se od vlastností kompaktní látky liší především proto, že prachové částice mají mnohem větší měrný povrch, a tím i reaktivnost. Tvar jednotlivých částic je různorodý, může být plochý, znitý, hranatý, vláknitý apod. Velikost částic je v dané směsi rovněž velmi rozmanitá. Pro charakteristiku prachu nelze stanovit počet prachových částic v daném prostoru. Vzhledem k rozměrům částic prakticky neexistuje homogenní prach a je také mimořádně obtížné homogenní prach uměle vyrobit. Při pohybu rozvětveného prachu se tvoří časové změny koncentrace, protože pevné částice různě rychle sedimentují v závislosti na velikosti. Nejdůležitějším vlivem je zde třída. V důsledku třecího odporu volně padající částice prachu dosáhne relativně rychle konstantní konečné rychlosti. Tato rychlost sedimentace, je podle (7) funkcí velikosti částice, hustoty a viskozity disperzního prostředí a lze ji vypočítat podle Stokesova vztahu (pro částice kulového tvaru) [7]:

\[
v = \frac{2}{9} \cdot g \cdot r^2 \cdot \frac{(\rho_c - \rho_p)}{\eta}, \quad (7)
\]

kde

- \(g\) ... je gravitační zrychlení v m.s\(^{-2}\),
- \(\rho_c\) ... hustota částice v kg.m\(^{-3}\),
- \(\rho_p\) ... hustota disperzního prostředí v kg.m\(^{-3}\),
- \(r\) ... poloměr částice v m,
- \(\eta\) ... dynamická viskozita disperzního prostředí v N.s.m\(^{-1}\).
3.3 Technicko bezpečnostní parametry výbušných prachů

Technicko bezpečnostní parametry vyjadřují vznětlivost a výbušnost hořlavých látek, tyto hodnoty jsou potřebné pro stanovení nebezpečí požáru a výbuchu.

3.3.1 Maximální výbuchový tlak

Udává maximální tlak který se vyvine v uzavřené nádobě během výbuchu výbušné atmosféry o optimální koncentraci za určených podmínek testu. [11]

3.3.2 Maximální rychlost narůstání výbuchového tlaku

Maximální hodnota nárůstu tlaku za časovou jednotku během výbuchu všech výbušných atmosfér v mezích výbušnosti hořlavé látky v uzavřené nádobě za specifických podmínek testu. Je-li měření prováděno v nádobě 1 m³, pak je tato veličina nazývána kubická konstanta K_{St}. [11]

Tato veličina je mírou výkonu (destrukčních účinků) výbuchu a je používána při návrhu konstrukčních protivýbuchových opatření. [11]

Kubická konstanta K_{St} se tedy vypočítá dle vztahu (8):

$$
\left(\frac{dp}{dt} \right)_{max} \cdot V^\frac{1}{3} = K_{St} = konst., \quad (8)
$$

kde

$$
\left(\frac{dp}{dt} \right)_{max} \quad ... \text{je maximální rychlost narůstání výbuchového tlaku v MPa.s}^{-1},
$$

$$
V \quad ... \text{objem nádoby v m}^3,
$$

$$
K_{St} \quad ... \text{kubická konstanta pro prachy v MPa.m.s}^{-1}.
$$

Platnost kubického zákona je u směsí plynů a par hořlavých kapalin se vzduchem od objemu nádoby 5 litrů a u prachovzduchových směsí od 40 litrů. [6]

Maximální výbuchový tlak se s rostoucím objemem nemění. V kubických nádobách je dosahováno tlaků až 1,3 MPa u hořlavých prachů. Rychlost šíření plamene může být až 500 m.s$^{-1}$. [6]
Kubická konstanta je důležitým parametrem vyjadřujícím brizanci směsi nezávisle na objemu, ve kterém byla stanovena. Kubická konstanta u prachovzduchových směsí se označuje K_{St} a podle ní se hořlavé prachy rozdělují do tříd viz tabulka 1. [6]

<table>
<thead>
<tr>
<th>Třída</th>
<th>K_{St} [MPa.m.s$^{-1}$]</th>
<th>Příklady hořlavých prachů</th>
<th>p_{max} [MPa]</th>
<th>K_{St} [MPa.m.s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>St 1</td>
<td>0-20</td>
<td>PVC</td>
<td>8,5</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE</td>
<td>8,8</td>
<td>13,1</td>
</tr>
<tr>
<td>St 2</td>
<td>20-30</td>
<td>celulóza</td>
<td>9,8</td>
<td>22,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dřevo</td>
<td>10,5</td>
<td>23,8</td>
</tr>
<tr>
<td>St 3</td>
<td>Nad 30</td>
<td>pigment</td>
<td>10,7</td>
<td>34,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hliník</td>
<td>12,5</td>
<td>200,0</td>
</tr>
</tbody>
</table>

Za technicko bezpečnostní parametr s K_{Si} může považovat tehdy, jsou-li splněny tyto požadavky[6]:

- Optimální koncentrace směsi se vzduchem.
- Shodný stupeň turbulence prachu se vzduchem.
- Stejný druh a stejná energie iniciálního zdroje.
- Stejný tvar kubické nádoby.

U podlouhlých nádob a u potrubí kubický zákon neplatí. S rostoucí délkou nádoby a potrubí se zvyšuje maximální výbuchové parametry a projevuje se směrový účinek výbuchového tlaku. Rychlost šíření čela plamene se může zvýšit až na detonacní rychlost 200 m.s$^{-1}$ s radiálními tlaky 3 MPa. [6]

3.3.3 Dolní mez výbušnosti

Minimální koncentrace paliva, která umožňuje šíření plamene v oblaku prachu. U plynů se používá dolní i horní mez výbušnosti, které jsou charakteristickými parametry pro daný plyn. [6]

Horní mez výbušnosti UEL se při bezpečnostních úvahách u prachů nepoužívá, protože provoz při koncentraci nad horní mezí výbušnosti není možno považovat za

3.3.4 Minimální iniciální energie

Minimální iniciální energie Emin je nejmenší energie kapacitní jiskry, která je schopna zapálit nejsnadněji iniciovatelnou směs hořlavé látky (plyn, pára, prach) ve směsi s oxidačním prostředkem. Pro prachy se stanovuje pro celou řadu koncentrací prachu ve vzduchu. S rostoucí iniciální energií se rozšiřuje rozsah výbušnosti, přičemž se zejména horní mez posouvá k vyšším hodnotám. Znalost hodnot této veličiny je důležitá pro posuzování potenciálního nebezpečí iniciování hořlavých látek elektrostatickými a indukovanými výboji. [2]

3.3.5 Teplota vzplanutí, vznícení a žhnutí usazeného prachu

Teplota vzplanutí usazeného prachu je definována jako nejnižší teplota prostředí, při které dojde působením vnějšího zápalného zdroje k zapálení směsi plynných produktů rozkladu. Tato hodnota umožňuje určit nejnižší teplotu horkého povrchu, při kterém dojde přibližením např. plamenu k povrchu prachu k jeho vzplanutí. [2]

Teplota vznícení usazeného prachu je definována jako nejnižší teplota prostředí, při které dojde k samovolnému zapálení směsi plynných produktů rozkladu bez přítomnosti vnějšího zápalného zdroje. Tato hodnota umožňuje posoudit možnost vznícení usazené vrstvy prachu od horkých povrchů. Tato hodnota je využívána pro stanovení teplotní třídy pro nevýbušná elektrická zařízení. [2]

Teplota žhnutí usazeného prachu je definována jako nejnižší teplota prostředí, při které dojde k trvalému žhnutí prachu. Tato hodnota umožňuje určit nejnižší teplotu horkého povrchu, při kterém dojde k trvalému žhnutí prachu a tím i ke vzniku iniciálního zdroje případně prachovzdušné směsi. Tato hodnota rovněž umožňuje porovnání s teplotní třídou zařízení v nevýbušném provedení do prostředí s nebezpečím výbuchu hořlavých prachů. [2]

3.3.6 Minimální teplota vznícení rozvířeného prachu

Teplota vznícení rozvířeného prachu je definována jako nejnižší teplota prostředí, při které dojde k samovolnému zapálení směsí plynných produktů rozkladu bez přítomnosti
vnějšího zápalného zdroje. Tato hodnota umožňuje posoudit možnost vznícení prachovzdušné směsi od horkých těles. [2]

3.3.7 Mezní koncentrace kyslíku

Limitní obsah kyslíku je nejvyšší koncentrace kyslíku ve směsi hořlavina–kyslík–inert, při které ještě nedochází k hoření nebo explozi. Znalost tohoto parametru má velký význam pro ochranu zařízení, technologie před nebezpečím výbuchu pomocí inertního plynu (N2, CO2, atd.). U většiny organických látek se limitní obsah kyslíku pohybuje kolem 10 až 12 %, tzn. při inertizaci např. sil s hořlavým prachem je nutno udržovat hodnotu kyslíku pod touto hranicí. [2]

3.4 Důležité vlivy na výbuchové parametry prachů

Průběh výbuchu, jeho parametry a tím i účinky zásadním způsobem ovlivňují různé vlivy.

3.4.1 Vliv velikosti částic

Jemnější prachy reagují prudčeji než prachy hrubé, přičemž se velikost zrna výrazněji projevuje na změně prudkosti výbuchu než na výbuchovém tlaku. Z toho vyplývá pro zkušebnickou praxi požadavek, že při stanovení veličin prachů, musí být vzorek připraven tak, aby hlavní podíl částic měl rozměr menší než 50 µm. [7]

Hořlavé prachy o velikosti zrna větší než je mezní rozměr 400 µm obecně nelze přivést k výbuchu ani silným iniciačním zdrojem (10 000J). Je však nutno si uvědomit, že stačí jenom malá příměs jemného prachu k hrubému prachu 10%, resp. 5%, aby bylo možno směs hrubého prachu přivést k výbuchu, přičemž výbuchový tlak dosahuje téměř hodnot maximálního výbuchového tlaku jemných podílů. Nebezpečí výbuchu proto hrozí vždy, když je překročena spodní mez výbušnosti jemných podílů prachu obsažených ve směsi s nevýbušným hrubým prachem. [7]

Toto zjištění dovoluje učinit závěr, že překročení mezního průměru zrna nelze považovat za bezpečnostní opatření proti výbuchu prachu, protože nepatrný podíl příměšeného jemného prachu (vzniklého např. otěrem) stačí k tomu aby se vytvořila výbušná směs. [7]

3.4.2 Vliv velikosti objemu

Experimentálním zkoumání velkého počtu hořlavých prachů ukazují, že pro objemy větší než 0,04 m³ platí také pro prachové výbušné soubory „kubický zákon“. Je tedy možno
na základě výsledků měření v malé nádobě pomocí výše uvedeného vztahu odhadnout prudkost výbuchu ve velké nádobě. [7]

3.4.3 Vliv počátečního tlaku

U hořlavých prachů se s rostoucím tlakem zvyšuje optimální koncentrace. Většinu množství vzdušného kyslíku ve zkomprimované atmosféře je nutno pro dosažení optimální koncentrace přidat větší podíl prachu. [6]

Podobně jako u hořlavých plynů ovlivňuje počáteční tlak maximální výbuchové parametry. [7]

3.4.4 Vliv iniciační energie

Maximální výbuchový tlak je jen málo ovlivněn druhem zápalného zdroje. Jinak je tomu u prudkosti výbuchu a tedy hodnoty k_{St}, kde je zřejmé, že přechodem do silného pyrotechnického zdroje (10 KJ) k jiskřišti (10 J) klesají velmi významně hodnoty k_{St}. Pomalu reagující prachy jsou přitom silněji ovlivněny než reaktivní prachy. Jako např. u pigmentového prachu, použití malé iniciační energie např. 10 J (jak je obvyklé u plyno-vzduchových směsí by mohlo mít za následek, že bychom takovýto prach považovali za nevýbušný. Silné iniciační energie jsou tedy při zkoušení prachů nutné, abychom jednoznačně poznali jejich výbušné vlastnosti. [7]

4 Popis stávajícího měřícího zařízení

Zařízení pro měření minimální teploty vznícení prachu v rozvíjeném stavu, na obrázku 1, bylo zkonstruováno podle normy ČSN EN 50 281 Elektrická zařízení pro prostory s hořlavým prachem – Část 2-1: Metody zkoušek – Metody pro stanovení minimálních teplot vznícení prachu.

Jedná se o evropskou normu, která popisuje metody stanovování minimální teploty vznícení prachu pro účely výběru elektrického zařízení, používaného v prostorech, kde se vyskytuje hořlavý prach.

Tato norma obsahuje dvě metody zkoušek. Metodu A je vhodná pro stanovování minimální teploty horkého povrchu horkého povrchu, při které dochází k rozkladu nebo vznícení vrstvy prachu o stanovené tloušťce, uložené na tomto horkém povrchu. Dále je zde metoda B, tedy metoda pro jejíž účely bylo popisované měřící zařízení zkonstruováno. Metoda B stanovuje minimální teplotu horkého povrchu, při které dochází ke vznícení daného vzorku rozvíjeného prachu nebo jiných podobných částic. Tato zkouška se má provádět jako doplňková zkouška
po stanovení minimální teploty vznícení prachu ve vrstvě metodou A. Pro stanovování minimální teploty vznícení není vhodné používat vzorky známých výbušnin např. střelný prach, dynamit nebo jiné směsi látek, které se za určitých okolností mohou chovat podobně. [3]

4.1 Konstrukce zkušebního zařízení

Detaily o konstrukci zkušebního zařízení jsou uvedeny v ČSN EN 50 281. Zařízení, které je znázorněno na obrázku 1, se skládá z pece, která je vyhřívána křemičitou trubicí. Křemičitá trubice je svislá a je ve svém dolním konci otevřená do atmosféry. V horním konci pece je rovněž otvor, kterým je do pece rozprašován prach pomocí skleněného adaptéru. Tento skleněný adaptér je napojen na zásobník prachu a na solenoidový ventil, jehož otevřením se uvolní stlačený vzduch z nádrže. Vzorek prachu umístěný v zásobníku, je po otevření ventilu tímto vzduchem unášen do prostoru pece, díky čemuž dojde k rozprašení a vzniku disperzní směsi prachu se vzduchem v prostoru pece. Rozvíjovací zařízení je znázorněno na obrázku 2. Aby bylo možno snadno sledovat spodní konec trubice je pec nainstalována na stojanu. K měření a k regulaci teploty v peci slouží dva termočlánky, jeden je umístěn uvnitř křemičité trubice, měří tedy teplotu vnitřní stěny křemičité trubice. Druhý termočlánek je umístěn z vnější strany trubice a je napojen na regulátor teploty pece. Maximální povolená teplota pece je 1000°C.
Popis obrázku 1:
1 – Elektricky vyhřívaná pec
2 – Skleněný adaptér
3 – Rozviřovací zařízení
4 – Spínač
5 – Nosná konstrukce
6 – Stojan pece
7 – Termočlánky
8 – Zásobník na prach

Obrázek 2: Rozviřovací aparatura.

Popis obrázku 2:
1 – Solenoidový ventil
2 – Manometr
3 – Zásobník na vzduch
4 – Kulový ventil
5 – Vstup pro tlakový vzduch
6 – Nosná konstrukce

4.2 Průběh zkoušky

Naváží se vzorek 0,1g prachu a vloží se do zásobníku na prach. Pec se vyhřeje na teplotu 500°C a tlak rozviřovacího vzduchu se nastaví na 10kPa (0,1bar) nad atmosférickým tlakem. Prach se rozpráší do pece a pokud nedojde ke vznícení, opakuje se zkouška vždy s novým prachem a teplota se zvyšuje po krocích po 50K až do dosažení vznícení nebo pokud teplota pece nedosáhne 1000°C. [3]

Pokud dojde ke vznícení prachu mění se hmotnost prachu a tlak vzduchu tak dlouho dokud nedojde k intenzivnějšímu vznícení. S použitím těchto hodnot se pokračuje ve zkoušce
a teplota pece se snižuje po krocích o 20K dokud nedojde ke vznícení při 10 pokusech za sebou. [3]

Pokud dochází ke vznícení i při 300°C, teplota se dále snižuje po krocích o 10K. Po dosažení teploty při které nedochází ke vznícení (procesem snižování teploty) se zkouška proveďe znovu s nejnižší nižší teplotou s nižšími a vyššími hodnotami hmotnosti prachu a rozvířovacího tlaku. Pokud je to nutné, dále se snižuje teplota až do doby kdy při 10 pokusech za sebou nedojde ke vznícení. [3]

U tohoto měření se jiskry bez plamene nepovažují za vznícení. Za minimální teplotu vznícení se bere nejnižší teplota pece, při které došlo ke vznícení při výše uvedeném postupu, snížená o 20 K pro teploty pece vyšší než 300 °C a snížená o 10 K pro teploty pece 300 °C nebo nižší. [3]

4.3 Hodnocení zařízení pro stanovení minimální teploty vznícení podle ČSN EN 50 281-2-1 metody B

Jistou nevýhodou je také to, že při stávajícím konstrukčním uspořádání nelze změřit indukční dobu vznícení, tedy dobu která uplyne od začátku tepelného zatěžování vzorku, po jeho vznícení. Tuto dobu nelze změřit, jelikož k tomuto účelu zde není umístěno vhodné zařízení a v normě o tomto měření není vůbec uvažováno.

U postupu zkoušky se jako sporné jeví stanovení optimálních rozvířovacích podmínek, kdy se vizuálně hodnotí, při jakých hodnotách tlaku vzduchu a hmotnosti vzorku prachu dochází k intenzivnějšímu vznícení. Toto hodnocení není nijak upřesněno a jeho stanovení a tím pádem i stanovení rozvířovacích podmínek, při kterých bude zkouška prováděna je subjektivní. Zcela totiž závisí na úsudku toho, kdo měření provádí.

Při zjišťování minimální teploty vznícení prachu, pokud nedojde snižováním teploty k překročení 300 °C . Snižuje se teplota pece po krocích o 20 °C, dokud nedojde ke vznícení při 10 pokusech za sebou. Pro účel normy je tento postup dostačující, jelikož se jako minimální teplota vznícení uvádí minimální teplota, při které došlo ke vznícení vzorku
snížená o 20 °C. Avšak tento postup nedovoluje přesnější stanovení hodnoty, při které dojde ke vznícení daného vzorku prachu.

5 Modifikace stávajícího zařízení

Předmětem modifikace je připojení měřicího systému k stávajícímu zařízení tak, aby bylo možno stanovit indukční dobu vznícení zkoušeného prachu a současně úprava způsobu přivádění prachu do pece.

Při navrhované úpravě je prach přiváděn do pece spodním otvorem a horní otvor je zaslepen. Prach je v tomto případě rozprášen do pece, tlakem vzduchu je unášen vzhůru a až po určité době dochází k sedimentaci prachových částic. U tohoto způsobu se tedy prachové částičky vyskytují v peci déle než je tomu u předchozího uspořádání a jsou také déle vystaveny působení tepla. Rozdílný způsob pohybu vzorku prachu je znázorněn na obrázku 3, kde je na levém obrázku znázorněn směr proudění vzduchu v prostoru pece při stávající metodě, zatímco vpravo je znázorněn pohyb prachu po navrhované úpravě. Je zde také předpoklad, že u takto upraveného přístroje by se naměřené hodnoty minimální teploty vznícení rozvířeného prachu měly lišit od hodnot naměřených stávajícím zařízením. A to tak že by měly být nižší.
5.1 Požadavky na úpravu konstrukce zkušebního zařízení

Na základě studie zkušebního zařízení a pro zamýšlené použití vyplývají určité požadavky na nové konstrukční uspořádání zařízení. A to aby bylo možno se v případě potřeby, po provedené úpravě vrátit k dřívějšímu uspořádání a bylo možno provádět zkoušku podle předchozí metody a případně výsledky zkoušek porovnat. Dalším požadavkem bylo, aby použité materiály vydržely tepelné zatížení, kterému mohou být vystaveny vlivem vytápění pece na vysoké teploty.

Měření indukční periody by mělo být s přesností na tisícinu sekundy. Indukční perioda má být měřena od rozprášení vzorku prachu do pece, tedy od otevření solenoidového ventilu až po vznícení prachu.

5.2 Návrh úpravy stávajícího zařízení

Při návrhu se počítalo s tím že pec a rozvířovací zařízení zůstanou v nezměněném stavu, aby se i po modifikaci dalo snadno přejít zpět k původnímu uspořádání a aby se dalo znovu měřit podle normy ČSN 50281.

5.3 Popis konstrukčního řešení

Základní části přístroje jsou: elektricky vytápěná pec, rozvířovací zařízení a měřící zařízení.

Byla použita stávající elektricky vytápěná pec viz kapitola 4. Horní otvor pece je zaslepen víkem, které je vysoustruženo z nerezové oceli a je navrženo tak, aby se dalo snadno vyměnit s původním konstrukčním prvkem, který sloužil k upevnění skleněného adaptéru. Víko je připevněno k peci třemi zápustnými šrouby jak je vidět na obrázku 4.
Nosná ocelová konstrukce byla rozebrána a přeřažena tak, aby se rozvířovací zařízení dalo umístit do spodní polohy, pro rozvířování prachu spodním otvorem. Ale také aby bylo možno toto zařízení vrátit do původní horní polohy.

Navržené zařízení pro rozvíření vzorku prachu se skládá z měděné trubky, silikonové spojky a stávajícího zařízení, tedy zásobníku prachu, solenoidového ventilu, manometru, tlakového válce, kulového ventilu a hubice pro nasunutí hadice s přívodem tlakového vzduchu.

![Obrázek 4: Sestava upraveného zařízení.](image)

Popis obrázku 4:

1 – Elektricky vyhřívaná pec
2 – Víko pece
3 – Trubka pro přívod prachu
4 – Silikonová spojka viz obrázek 5
5 – Zásobník na prach
6 – Rozvířovací zařízení viz obrázek 2
7 – Stojan pece
8 – Nosná konstrukce
9 – Spínač
10 – Fotodioda viz obrázek 6
11 – Zrcátko

Pro přivádění a rozvířování prachu do pece byla zvolena měděná trubka, která je zasunuta 90 mm hluboko v peci. Trubka má vnější průměr 15 mm a tloušťku stěny 1 mm a je
ohnuta o 90°. Pro připojení trubky na zásobník prachu byla zvolena silikonová spojka, která kromě toho že zajišťuje upevnění trubky, zároveň zajišťuje tepelnou izolaci zásobníku. Kdy při rozehřátí pece a použití měděného nátrubku by docházelo vlivem vysoké tepelné vodivosti mědi k zahřátí zásobníku a v krajním případě by mohlo dojít i k popálení při otevírání zásobníku. Spojení je znázorněno na obrázku 5.

![Obrázek 5: Detail zapojení rozvířovacího zařízení](image)

Popis obrázku 5:
1 – Silikonová spojka
2 – Zásobník na prach
3 – Utahovací spona
4 – Trubka pro přívod prachu
5 – Nosná konstrukce

Popis obrázku 6:
1 – Fotodioda
2 – Plastové pouzdro
3 – Skleněný kryt
4 – Držák
5 – Šroub M3
6 – Nosná konstrukce
7 – Izolace

Pro pozorování dějů v peci je zde umístěno zrcátko o rozměrech 50x50 mm. Zrcátko je upevněno na levé noze stojanu pece a má důležitou funkci v případě, že by došlo k vznícení slabé intenzity, které by fotodioda nezachytila.

5.4 Popis měřicí soustavy

Princip této metody měření indukční doby vznícení je založen detekcí světelného záření, které vzniká při vznícení vzorku prachu v peci. Dále se měří minimální teplota vznícení prachu, která spolu s indukční dobou vznícení charakterizuje schopnost disperzní směsi rozvinout prudkou oxidační reakci výbuchu při zvýšení teploty směsi. Tyto hodnoty poskytují informace o tom jak snadno lze danou prachovzdušnou směs iniciovat.

Měřicí část je tvořena dvěma hlavními měřicími okruhy. První okruh slouží k měření teploty a druhý k měření indukční doby vznícení. Měření teploty je realizováno termočlánkem umístěným uvnitř pece, který sníma teplotu křemičité trubice. Termočlánek je připojen na digitální teploměr. Druhý termočlánek měří teplotu vně trubice, v oblasti vinutí odporového drátu a je napojen na regulátor teploty Clare 4.0.

Měření indukční doby vznícení, tedy doby od rozvíření měřeného vzoru prachu až po vznícení, je realizováno okruhem, který tvoří počítač, měřicí karta, svorkovnice,
elektromagnetické relé a fotodioda. K počítači s příslušným softwarom je přes PCI sběrnici připojena měřicí karta viz obrázek 7. Měřicí karta je dále připojena na externí analog/digitální převodník se šroubovací svorkovnicí, do této svorkovnice je zapojen obvod s elektromagnetickým relé a fotodiodou.

![Obrázek 7: Schéma připojení měřicí karty a svorkovnice k počítači.](http://www.instrunet.com)

![Obrázek 8: Svorkovnice (vlevo) a měřicí karta (vpravo).](http://www.instrunet.com)

Start měření je dán sepnutím tlačítka pro ovládání solenoidového ventilu, které znamená vypuštění tlakového vzduchu a tím i rozvíření prachu do pece. Při stisknutí tlačítka pro ovládání solenoidového ventilu dojde k sepnutí sekundárního obvodu. Toto sepnutí je provedeno pomocí elektromagnetického relé, které je připojeno na obvod ovládající
solenoidový ventil viz obrázek 9. Pro tento účel bylo připojeno elektromagnetické relé typu PT 5.

Na měřený obvod je z výstupu na svorkovnici přiváděno napětí 5V. Sepnutí měřeného obvodu se projeví na vstupu svorkovnice zvýšením napětí. Aby nebyl přiváděn na vstupní kontakty svorkovnice příliš velký proud a nedošlo tak k poškození měřicí karty, je před relé vložen odpor o hodnotě 1kΩ. Proud protékající obvodom je tedy podle (10) ohmova zákona:

\[I = \frac{U}{R}, \]

kde

\(R \) ... je odpor v \(\Omega \),
\(U \) ... napětí ve V,
\(I \) ... proud v A.

Výpočet pro napětí 5V a odpor 1 kΩ:

\[I = \frac{U}{R} = \frac{5}{1 \cdot 10^3} = 5 \text{ mA} \]

Podle výpočtu tedy protéká obvodem proud 5mA. Schéma zapojení je na obr 10.

Obrázek 9: Schéma zapojení relé a fotodiody na svorkovnici.

Popis obrázku 9:

R – Odpory 1kΩ
FD – Fotodioda
ER – Elektromagnetické relé
S – Spínač
Vznícení prachu, respektive světelný projev této oxidační reakce je detekován fotodiodou, ta je připojena na svorkovnici na výstupní napětí 5V a v obvodě je rovněž zapojen odpor o hodnotě 1kΩ. Vznícení se projeví zvýšením napětí na měřeném kanálu CH1, na tento kanál je připojen obvod, ve kterém je zapojena fotodioda. Toto zvýšení nastane po pohlacení záření fotodiodou. K detekci byla použita fotodioda PIN SFH 2030 s velmi krátkým spouštěcím časem, podle výrobce jde o 5 ns, je schopna detekovat vlnové délky od 400 nm až do 1100 nm a může pracovat od -55 °C až do 100 °C.

5.4.1 Nastavení parametrů měření

Pro měření je ke kartě dodáván příslušný software, bez kterého se u měření nelze obejít. Po spuštění programu „direct to excel“ (Start / Programy / instruNet / Application Software / Direct To Excel / Direct To Excel.exe.), který umožňuje nastavení nezbytná pro měření, se objeví základní menu viz obrázek 10.

![Obrázek 10: Základní menu programu.](image)

V nastavení měření (setup) je potřeba nastavit rychlost vzorkování, tzn. kolikrát za sekundu bude daná hodnota zaznamenávána (např. pokud je potřeba zaznamenávat měření po 1 ms je nutné nastavit tuto hodnotu na 1000).

Pro měření indukční doby vznícení je velice důležité nastavení spouštěcího mechanismu měření neboli „trigger“ viz obr.11. Nastavení tohoto mechanismu zajistí, že pokud dojde k vzrůstu napětí na nastaveném kanálu a zároveň vybraném pro digitalizaci dojde k spuštění měření v reálném čase. V tomto případě je určita, že pokud bude správně nastavený aktuační mechanismus na kanálu, na kterém je připojeno elektromagnetické relé, bude program při spuštění měření čekat dokud na zvoleném kanálu nestoupne hodnota napětí na nastavenou hodnotu (Treshold EU). Této hodnoty bude dosaženo při sepnutí elektromagnetického relé, tedy při stisknutí tlačítka, které znamená otevření ventilu a rozvíření prachu do prostoru pece. Při správném nastavení právě tehdy dojde k spuštění měření. Hodnota „trigger“ je zde potřeba nastavit na stav „Norm“, kde program vyčkává neurčitě dlouhou dobu, dokud nedojde ke splnění zadané podmínky a až poté započne měření. Hodnota „treshold EU“ se nastaví na hodnotu, která bude bezpečně překročena při sepnutí
elektromagnetického relé. Hodnota „slope“, tedy jakou má mít sledovaná veličina tendenci, buď vzestupnou (rising), nebo sestupnou (falling), v tomto případě vzestupnou. Dále se musí nastavit pro který kanál má být tato podmínka kladená (trig. chan #). Při zapojení viz obr. 9 se nastaví kanál 10.

V položce chanells viz obr.10 a v záložce network na obrázku 12 lze vybírat kanály pro digitalizaci, tedy které kanály budou měřeny viz obrázek 13. Pro každý kanál lze nastavit různé parametry, jako typ senzoru, rozsah a filtry které je možno použít. Dále je zde menu displey, kde se nastavuje rozsah měření, který bude zobrazován. Mimo tyto dvě menu jsou zde další, avšak pro toto měření není jejich nastavování podstatné.

V okně chanells je také záložka record viz obrázek 12, v níž je možné sledovat grafický výstup měření v reálném čase tak, jako je tomu na obrázku 17. Blížší informace o nastavení měřicí karty je možné najít v [9]
Při stisknutí tlačítka start viz obrázek 10 se spustíme měření a pokud je správně provedeno nastavení bude program vyčkávat, dokud nebude splněna nastavená podmínka, v tomto případě stisknutí spínače a otevření solenoidového ventilu a zároveň se spustí relé. Díky tomu dojde k překročení nastavené hodnoty napětí. Po splnění podmínky dojde ke startu měření a naměřené hodnoty napětí se zapíší do buněk tabulkového procesoru Excel viz obrázek 14. Zde na prvním kanálu (CH1) je měřeno napětí v obvodu ve kterém je pripojena fotodioda, zatímco 10 kanál (CH10) měří napětí v obvodu s elektromagnetickým relé, hodnoty na kanálu 10 (CH10) nejsou důležité a nemusí se nijak vyhodnocovat, slouží pouze ke spuštění celého měření. Zde je potřeba sledovat průběh napětí na prvním kanálu a při nárůstu napětí, který znamená vznícení prachovzduchové směsi v peci, odečíst čas počátku tohoto vzestupu, což je čas vznícení.

![Microsoft Excel: Výstup z měření v prostředí programu Excel.](image)

5.5 Průběh zkoušky po modifikaci

Před zkouškou se pec vyhřeje na výchozí teplotu, což je 700°C, tato teplota zajišťuje vznícení většiny hořlavých prachů. Měření je prováděno od vyšších teplot k nižším, tento způsob zaručuje snadnější a rychlejší úplného teploty pece. Na počítači se zapne program pro měření nazvaný „direct to excel“ (Start / Programy / instruNet / Application Software / Direct To Excel / Direct To Excel.exe), po načtení základního okna viz obrázek 10, pomocí tlačítka load se načte nastavení pro měření indukční doby vznícení.

Před každým měřením vzorku prachu je vhodné změřit napětí na kanálu, na něž je pripojena dioda bez rozvětvení prachu do pece. Jelikož je pec vytápěna odporovým drátem a tento drát při vyšších teplotách vyžaduje jak tepelné tak i světelné záření, toto záření je zachyceno fotodiodou a pokud se s touto okolností nepočítá může dojít k chybnému určení
indukční doby vznícení. Z tohoto měření bez použití vzorku prachu je vhodné a v prostředí tabulkového procesoru Excel snadné určit maximum. Při následném měření již s rozvířením prachu do prostoru pece, je při stanovení indukční doby vznícení třeba sledovat, v jakém čase došlo k překročení hodnoty tohoto maxima, tento čas se rovná indukční periodě vznícení prachu.

V tabulce 2 jsou hodnoty napětí na kanálu, na němž je připojen obvod s fotodiodou, při měření bez rozvíření vzorku prachu do prostoru pece. Nejvyšší napětí na kanálu, kde je připojena fotodioda je naměřeno při 700 °C, kdy je topná spirála nejvíce rozžhavena a nejvíce osvětluje fotodiodu. Při 520 °C se napětí na kanálu ustálilo, zde už topná spirála nemá na fotodiodu vliv, protože při vytápění na nižší teploty nedojde k jejímu rozžhavení a k vyzařování. Na obrázku 15 je znázorněna závislost klidového napětí (při měření bez rozvíření prachu do prostoru pece) na obvodu fotodiody na teplotě pece.

<table>
<thead>
<tr>
<th>Teplota [°C]</th>
<th>Maximální napětí na obvodu bez vznícení [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>0,10033</td>
</tr>
<tr>
<td>680</td>
<td>0,08143</td>
</tr>
<tr>
<td>660</td>
<td>0,06065</td>
</tr>
<tr>
<td>640</td>
<td>0,04968</td>
</tr>
<tr>
<td>620</td>
<td>0,04121</td>
</tr>
<tr>
<td>600</td>
<td>0,03390</td>
</tr>
<tr>
<td>580</td>
<td>0,03268</td>
</tr>
<tr>
<td>560</td>
<td>0,03022</td>
</tr>
<tr>
<td>540</td>
<td>0,02900</td>
</tr>
<tr>
<td>520</td>
<td>0,03022</td>
</tr>
<tr>
<td>500</td>
<td>0,03022</td>
</tr>
<tr>
<td>480</td>
<td>0,03022</td>
</tr>
<tr>
<td>460</td>
<td>0,03022</td>
</tr>
<tr>
<td>450</td>
<td>0,03022</td>
</tr>
<tr>
<td>440</td>
<td>0,03022</td>
</tr>
<tr>
<td>430</td>
<td>0,03022</td>
</tr>
</tbody>
</table>
Obrázek 15: Závislost maximálního napětí na teplotě.

Tato maximální hodnota napětí zaznamenána při měření bez rozvíření prachu je důležitá při určování indukční periody vznícení. Je to prahová hodnota při jejímž překročení dochází k vznícení prachu. Jak je znázorněno na obrázku 16, čas ve kterém došlo k překročení této hodnoty je indukční doba vznícení prachu.

Obrázek 16: Určení indukční doby vznícení, pro vzorek hnědého uhlí při teplotě 640°C.

Před samotným měřením se zkontroluje kryt fotodiody, pokud je znečištěn např. zplodinami musí být očištěn, zároveň pokud je to nutné očistíme i zrcátko. Naváží se vzorek o hmotnosti 50mg, malé množství prachu zajišťuje, že při expanzi vzorku nedojde k přílišnému poklesu teploty uvnitř pece. Navážený vzorek se nasypuje do zásobníku na prach a zároveň se zásobník zajistí západkou proti otevření. V základním menu programu se spustí měření kliknutím na start viz obrázek 10. Pokud je správně nastaveno spuštění měření spustí se okno programu Excel, vypíšou se pouze údaje o datu, čase a charakteristiky měřených kanálů.
Program vyčkává dokud nedojde k sepnutí spínače a tedy k rozvíření prachu do prostoru pece (při tomto se sepne elektromagnetické relé a dojde k překročení nastaveného mezniho a v tomto okamžiku dochází k začátku měření). Odečte se teplota pece a zapiše se do tabulky. Otevřením kulového ventilu se natlakuje zásobník na vzduchu na hodnotu 50kPa. Při tomto tlaku dochází k dokonalému unesení prachu do prostoru pece tlakovým vzduchem. Po dosažení požadovaného tlaku se ventil opět uzavře

Stiskne se tlačítko spínače a zároveň pozorujeme dění v peci pomocí zrcátka umístěného pod dolním otvorem pece. Po stisknutí tlačítka dojde k změření a vypsání hodnot napětí na kanálech, odečteme čas kdy došlo k nárůstu napětí, toto je hodnota indukční doby vznícení. Tento výstup z měření je možné uložit. Po zavření tabulkového procesoru a po kliknutí na tlačítko chanells. a následně na záložku record viz obrázek 12 si lze prohlédnout grafické znázornění měření. Na obrázku 17 je vidět průběh napětí na kanálu CH1, tedy na obvodě s fotodiodou. V čase 0,155 sekund dochází k vznícení a růstu napětí. Po dohoření vzorku prachu dochází opět k poklesu napětí na původní hodnoty. Zavřením okna se opět objeví základní nabídka. Před začátkem nové zkoušky je potřeba otevřít kulový ventil a napustit zásobník na vzduch tak, jako při zkoušce a tento vzduch stiskem spínače vypustit do pece bez vzorku prachu. Tímto dojde k profouknutí trubky, kde by se mohly usadit jak shořelé tak neshořelé prachové částice a při další zkoušce by mohlo dojít k zásadnímu ovlivnění průběhu této zkoušky. Zároveň tím dojde k vyfoukání zplodin, vzniklých vznícením vzorku, z prostoru pece. Očistíme kryt fotodiody a zrcátko. Sniží se teplota pece o 20°C a mezeťí se připraví nová zkouška.

Obrázek 17: Grafický výstup z měření prachu hnědého uhlí (teplota 640°C, tlak 50 kPa, navážka 0,05g).
Tímto způsobem se pokračuje v měření dokud se nedosáhne teploty, při níž nedojde ke vznícení vzorku prachu. V tomto případě zvýšíme teplotu pece o 50 °C a pokračujeme v měření při snižování teploty pece o 10 °C. Ve snižování teploty pokračujeme tak dlouho, dokud se nedosáhne negativního výsledku, tedy nedojde ke vznícení. Měření při teplotě, při které nedošlo ke vznícení opakujeme pětkrát. Pokud při jednom pokusu dojde ke vznícení vzorku, opět snížíme teplotu o 10 °C a cyklus pěti měření pro ověření negativního výsledku opakujeme.

U některých vzorků a při určitých teplotách může dojít k vzniku málo intenzivního plamene, na který nebude fotodioda schopna zareagovat. V takovém případě se na místo indukční doby vznícení napíše vedle teploty zjištěné získané pozorováním průběhu zkoušky zrcátkem. Pokud se vzorek vznítí, zapíše se hoří a pokud pouze jiskří, zapíše se jiskří.

5.6 Zpracování výsledků

Výsledky měření se zapíší do tabulky. Za teplotu vznícení \(t'_{\text{min}} \) se považuje nejnižší teplota pece, při níž došlo k vznícení vzorku alespoň při jednom z pěti pokusů. Do tabulky se uvádí minimální teplota vznícení a jí odpovídající indukční doba vznícení.

Hodnocení měření lze provést podle tabulky 3.

<table>
<thead>
<tr>
<th>Rozsah v němž byla teplota naměřena</th>
<th>Hodnocení měření</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t'_{\text{min}} \leq \text{do 400 °C})</td>
<td>velmi vznětlivý</td>
</tr>
<tr>
<td>(400 \ °C < t'_{\text{min}} > 600 \ °C)</td>
<td>vznětlivý</td>
</tr>
<tr>
<td>(600 \ °C < t'_{\text{min}})</td>
<td>obtížně vznětlivý</td>
</tr>
<tr>
<td>teplota nezjištěná</td>
<td>do teploty 700 °C je prach nevznětlivý</td>
</tr>
</tbody>
</table>

6 Ověření funkčnosti modifikovaného zařízení a měření

Bylo provedeno měření, které mělo ověřit funkčnost celého zařízení a porovnat hodnoty naměřené modifikovaným zařízením s hodnotami, které byly změřeny na původním zařízení.

6.1 Vzorek hořlavého prachu

Pro měření byly vybrány prach hnedého uhlí, jednalo se o mletý a sušený vzorek. Byl použit laboratorní stav vzorku B, který zajišťuje to, aby rozvíření v peci bylo nejlepší. Je to
standardní stav laboratorního vzorku. Připravuje se mletím nebo tříděním vzorku ve stavu P, což je původní dodaný hrubý vzorek, z něhož se odstraní zřejmě cizorodé kusové částice. Granulometrický stav B musí obsahovat minimálně 90 % částic menších než 0,063 mm se střední velikostí zrna, která je menší nebo rovna 0,040 mm. Vlhkost vzorku musí umožňovat jeho efektivní rozvíření. V opačném případě se vzorek musí předsoušet. [11]

Hnědouhelný prach se skládá z 55-75 hmotnost. % z uhlíku a dehtových látek. Hustota je 900-1500 kg.m⁻³, výhřevnost je 12500-25000 kJ.kg. Ze všech druhů uhlí má největší sklon k tepelnému samovznícení, má sklon i k chemickému samovznícení. Hnědouhelný prach je velmi výbušný. Parametry uhelných prachů závisí ve značné míře na obsahu popela, na vlhkosti, na druhu uhlí a na stupni disperze. Usazeniny prachu jsou hořlavé a mají sklon k samovznícení.

6.2 Postup měření

Byl zvolen postup dle kapitoly 5.5. Měření začalo na hodnotě 700 °C a dále se postupovalo snižováním teploty. Měřilo se při navážce 50 mg prachu a rozviřovací tlak byl 50 kPa.

6.3 Výsledky měření

Měření bylo provedeno pro vzorek prachu hnědého uhlí. Výsledky měření jsou zaznamenány v tabulce 4, kde je uvedeno číslo měření, teplota pece a příslušná indukční doba vznícení.

Tabulka 4: Výsledky měření minimální teploty vznícení a indukční doby vznícení – hnědé uhlí.

<table>
<thead>
<tr>
<th>Číslo měření</th>
<th>Teplota pece T [°C]</th>
<th>Indukční doba vznícení τi [s]</th>
<th>Číslo měření</th>
<th>Teplota pece T [°C]</th>
<th>Indukční doba vznícení τi [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>0,136</td>
<td>11</td>
<td>500</td>
<td>0,413</td>
</tr>
<tr>
<td>2</td>
<td>680</td>
<td>0,138</td>
<td>12</td>
<td>480</td>
<td>0,437</td>
</tr>
<tr>
<td>3</td>
<td>660</td>
<td>0,151</td>
<td>13</td>
<td>460</td>
<td>0,479</td>
</tr>
<tr>
<td>4</td>
<td>640</td>
<td>0,155</td>
<td>14</td>
<td>450</td>
<td>0,543</td>
</tr>
<tr>
<td>5</td>
<td>620</td>
<td>0,185</td>
<td>15</td>
<td>440</td>
<td>0,573</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>0,214</td>
<td>16</td>
<td>430</td>
<td>0,614</td>
</tr>
<tr>
<td>7</td>
<td>580</td>
<td>0,236</td>
<td>17</td>
<td>420</td>
<td>0,659</td>
</tr>
<tr>
<td>8</td>
<td>560</td>
<td>0,264</td>
<td>18</td>
<td>410</td>
<td>0,713</td>
</tr>
<tr>
<td>9</td>
<td>540</td>
<td>0,348</td>
<td>19</td>
<td>400</td>
<td>Bez vznícení</td>
</tr>
<tr>
<td>10</td>
<td>520</td>
<td>0,393</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jak je vidět na grafickém výstupu z měření na obrázku 18, při 520 °C se naměřené hodnoty odchylují od přímkové závislosti. Je to způsobeno tím, že při vysokých teplotách se fyzikálně-chemický proces spalování měřeného vzorku prachu neřídí zcela zákony chemické kinetiky.

![Grafický výstup z měření na obrázku 18](image)

Obrázek 18: Závislost indukční doby vznícení na teplotě pece – hnědé uhlí.

6.4 Zpracování výsledků měření

Neměřené hodnoty zejména za nižších teplot vyhovují vztahu (11), který vyjadřuje závislost indukční doby vznícení na dané teplotě: [5]

\[
\tau = C \cdot e^{\frac{E}{RT}} \quad (11) \quad [5]
\]

Převedením této rovnice do logaritmického tvaru získáme přímkovou závislost mezi \(\log \tau \) a \(T^{-1} \) [5]:

\[
\log \tau = A + B \cdot T^{-1} \quad (12) \quad [5]
\]

kde

\(\tau \) ... je indukční doba vznícení v ms,

\(A \) ... konstanta pro měřený vzorek,
B ... konstanta pro danou látku \(B = \frac{E}{2,3 \cdot R} \),

E ... aktivační energie procesu v J.mol\(^{-1}\).K\(^{-1}\),

R ... plynová konstanta v J.mol\(^{-1}\).K\(^{-1}\),

T ... absolutní hodnota teploty vznícení v K.

Na obrázku 19 je znázorněno grafické zpracování měření pro vzorek hnědého uhlí. Je zde znázorněna závislost zlogaritmované indukční doby vznícení v ms na převrácené hodnotě absolutní teploty v K\(^{-1}\). Body jsou proloženy přímkami, které jsou vypočítávány pomocí lineární regresní analýzy, pomocí programu Excel.

![Obrázek 19: Vyhodnocení indukční doby vznícení u vzorku hnědého uhlí s použitím lineární regrese.](image_url)

Naměřené hodnoty, které jsou zpracovány na obrázku 19 se blíží přímkovému tvaru. Tomuto nasvědčuje i vysoký index korelace. Zvláště při nižších teplotách od 450°C jsou body v téměř přímkovém tvaru.

\[E_{\text{akt}} = B \cdot 2,303 \cdot R \]

kde
B ... konstanta pro danou látku,
R ... plynová konstanta v J.mol\(^{-1}\).K\(^{-1}\).

Příklad výpočtu pro vzorek hnědého uhlí, pro který byla v oblasti teplot 700 - 520 °C vypočtena konstanta pro danou látku B = 2075,03. Tato hodnota je získaná z rovnice regresní přímky, pomocí programu Excel.

\[E_{\text{akt}} = B \cdot 2,303 \cdot R = 2075,03 \cdot 2,303 \cdot 8,315 = 39735,67 \text{ J.mol}^{-1} \]

V tabulce 5 jsou uvedeny výsledné hodnoty měření modifikovanou metodou, relativně vysoké hodnoty indexu korelace dokládají vysokou přesnost naměřených dat. Index korelace a konstanta pro měřený vzorek A byla vypočtena pomocí programu Excel.

Tabulka 5: Výsledné hodnoty měření - hnědé uhlí.

<table>
<thead>
<tr>
<th>Minimální teplota vznícení [°C]</th>
<th>410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indukční doba vznícení [s]</td>
<td>0,775</td>
</tr>
<tr>
<td>Hodnocení prachu</td>
<td>Vznětlivý prach</td>
</tr>
<tr>
<td>Nejistota měření teploty vznícení [°C]</td>
<td>20</td>
</tr>
<tr>
<td>Nejistota měření indukční doby vznícení [%]</td>
<td>20</td>
</tr>
<tr>
<td>Oblast teplot (včetně) [°C]</td>
<td>700 - 520</td>
</tr>
<tr>
<td>Konstanta pro měřený vzorek A</td>
<td>0,69</td>
</tr>
<tr>
<td>Aktivační energie [J.mol(^{-1})]</td>
<td>39735,67</td>
</tr>
<tr>
<td>Index korelace</td>
<td>0,9873</td>
</tr>
</tbody>
</table>
6.5 Porovnání naměřených hodnot s předchozí metodou

<table>
<thead>
<tr>
<th>Teplota [°C]</th>
<th>Výsledek měření</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>vznícení</td>
</tr>
<tr>
<td>480</td>
<td>vznícení</td>
</tr>
<tr>
<td>460</td>
<td>vznícení</td>
</tr>
<tr>
<td>440</td>
<td>vznícení</td>
</tr>
<tr>
<td>420</td>
<td>bez vznícení</td>
</tr>
</tbody>
</table>

Z porovnání výsledků měření v tabulce 7 vyplývá, že hodnota při níž dojde ke vznícení je u modifikovaného přístroje o 30 °C nižší. Toto je způsobeno delší dobou výskytu prachového vzorku v peci. Díky tomuto je vzorek prachu delší dobu tepelně namáhán, což umožňuje jeho vznícení při nižších teplotách, než je tomu u metody ČSN EN 50281. Avšak podle normy ČSN EN 50281 je výsledná teplota definována jako nejnížší teplota při níž došlo ke vznícení snížená o 20 K. V tomto případě tedy teplota 420 °C a výsledný rozdíl mezi hodnotami minimální teploty vznícení je jen 10 °C, jelikož u modifikované metody je výsledná minimální teplota vznícení teplota, při níž došlo ke vznícení.

<table>
<thead>
<tr>
<th>Tabulka 7: Porovnání výsledků metod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. teplota kdy došlo k vznícení</td>
</tr>
<tr>
<td>Metoda podle ČSN EN 50281</td>
</tr>
<tr>
<td>Modifikovaná metoda</td>
</tr>
<tr>
<td>Maximální teplota při níž nedošlo ke vznícení</td>
</tr>
<tr>
<td>420 °C</td>
</tr>
<tr>
<td>Minimální teplota vznícení</td>
</tr>
<tr>
<td>420 °C</td>
</tr>
</tbody>
</table>

6.6 Zhodnocení modifikovaného zařízení

Dá konstatovat, že je tato metoda měření s použitím modifikovaného přístroje, je přísnější než původní. Je to způsobeno novým uspořádáním a novém postupu měření, kdy
dochází k delšímu výskytu prachu v prostoru pece. Avšak měření bylo provedeno pouze pro jeden vzorek prachu. Je proto nutné provést další měření pro vzorky o různém chemickém složení, aby se tato skutečnost prokázala na větším a reprezentativním počtu měření.

Na zařízení je možné měřit indukční dobu vznícení, určitou výhodou při tomto způsobu měření je, že lze pozorovat celý průběh vznícení, respektive záření které je vyvolané oxidační reakcí. Lze pozorovat jak dlouho probíhalo hoření vzorku, dále může být omezeně sledována intenzita světelného záření. Navíc se naměřené hodnoty daří ukládat na disk počítače a dále vyhodnocovat. Určitou nevýhodou může být pracnější zjišťování indukční doby vznícení podle hodnoty napětí na měřeném obvodu a časová náročnost celé zkoušky.

Ke zkreslení výsledků zkoušky může docházet díky nedokonalosti rozviňovacího zařízení, toto zařízení nebylo předmětem úpravy a nebylo řešeno. To z toho důvodu, aby zde byla možnost přechodu k původnímu uspořádání a k původnímu průběhu zkoušky. Zde je hlavním problémem zásobník na prach, jeho netesnost může zkoušku ovlivnit. Další nedostatek je ve způsobu měření tlaku vzduchu, při současném uspořádání může při neopatrném vpuštění tlakového vzduchu docházet k překročení maximální hodnoty manometru. To může mít za následek jeho zničení nebo ovlivnění jeho přesnosti. Řešením by bylo před manometr umístit přetlakový ventil. Při otevření kulového ventílu a vpuštění tlakového vzduchu manometr ukazuje aktuální tlak, po stlačení tlačítka dojde k vypuštění tlakového vzduchu, při tomto vypuštění ručička manometru prudce klesá a naráží na doraz. V tomto případě může dojít k poškození nebo ovlivnění přesnosti manometru. Zde by bylo řešením umístění digitálního manometru, u něhož tento problém nehrozí.

7 Závěr

Úkolem teto práce bylo upravit stávající zařízení pro určování minimální teploty vznícení prachu.

Návrh úpravy byl proveden na základě prostudování metodiky stanovení minimální teploty vznícení usazeného prachu. Návrh byl zaměřen na způsob rozvířování vzorku prachu a způsob detekce a zaznamenání vznícení vzorku prachu v prostoru pece. Přístroj byl podle návrhu upraven tak, aby bylo možno stanovit indukční periodu vznícení

Byl navržen a namontován nový způsob rozvířování prachu. Dále byl namontován měřicí systém, který umožňuje zaznamenávání indukční doby vznícení a pozorování průběhu hoření prachu. Tento systém byl nastaven tak, aby zjišťování indukční doby vznícení bylo co nejjednodušší.
Funkčnost systému byla odzkoušena měřením. Takto upravený přístroj je možno použít pro měření indukční teploty vznícení prachu. Pro další využívání tohoto systému je potřeba vyřešit zajištění optimálních rozvířovacích podmínek. Když při použití původního rozvířovacího systému může docházet k ovlivňování zkoušky.

Přínozem této práce je funkční konstrukce systému pro měření minimální teploty vznícení prachu a indukční doby vznícení. Výsledek měření potvrzuje předpoklad, že při upraveném způsobu rozvířování vzorku prachu do pece dochází k vznícení vzorku prachu při nižších teplotách, než tomu bylo při uspořádání podle normy ČSN EN 50281. Lze tedy měření s upraveným zařízením považovat za kritičtější. Avšak měření nebylo provedeno pro dostatečný počet vzorků, je proto nutné provést další měření pro vzorky o různém chemickém složení, aby se tato skutečnost prokázala u většího počtu měření.
8 Použitá literatura:

9 Seznam příloh

PŘÍLOHA 1: FOTODOKUMENTACE – ZKUŠEBNÍ ZAŘÍZENÍ
Příloha 1: Fotodokumentace – Zkušební zařízení.

Fotografie 1: Zkušební zařízení před modifikací.

Fotografie 2: Zkušební zařízení po provedené modifikaci.

Fotografie 3: Zařízení připravené k měření.

Kaperstein, Roman. Modifikace přístroje pro stanovení minimální teploty vznícení prachu v rozvířeném stavu.
Příloha 1: Fotodokumentace – Zkušební zařízení.

Fotografie 4: Detail uchycení fotodiody.

Fotografie 5: Detail silikonové spojky.

Kaperstein, Roman. Modifikace přístroje pro stanovení minimální teploty vznícení prachu v rozvířeném stavu.