Sloupový otočný jeřáb pro nosnost 100 kg

Standing Derrick for Lifting Capacity 100 kg

Student: Petra Teslíková
Vedoucí bakalářské práce: Ing. Milan Výtisk

Ostrava 2009
Prohlášení studenta

Prohlašuji, že jsem celou bakalářskou práci včetně příloh vypracovala samostatně pod vedením vedoucího bakalářské práce a uvedla jsem všechny použité podklady a literaturu.

V Ostravě
podpis studenta
Prohlašuji že,

- byla jsem seznámena s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo.

- beru na vědomí, že Vysoká škola baňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečné ke své vnitřní potřebě bakalářskou práci užít (§ 35 odst. 3).

- souhlasím s tím, že jeden výtisk bakalářské práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že údaje o bakalářské práci budou zveřejněny v informačním systému VŠB-TUO.

- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona.

- bylo sjednáno, že užít své dílo – bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

- beru na vědomí, že odevzdáním své bakalářské práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě ………………………………………… ………………………………………

podpis studenta
ANOTACE

Teslíková, P. Sloupový otočný jeřáb pro nosnost 100 kg. Ostrava: katedra částí a mechanismu strojů, Fakulta strojní VŠB – Technická univerzita Ostrava, 2009, 40 s. Bakalářská práce, vedoucí Výtisk, M.

Cílem bakalářské práce je navrhnout a konstrukčně zpracovat sloupový otočný jeřáb pro nosnost 100 kg, zdvih 2000 mm, délka vyložení také 2000 mm a rozsah otáčení jeřábu minimálně 180°. Jeřábová kočka bude zakoupena. V úvodu bakalářské práce je nastíňen přehled základního rozdělení jeřábů. Podrobněji je popsán sloupový otočný jeřáb se svými jednotlivými hlavními částmi. Na závěr je proveden návrh a pevnostní výpočet jednotlivých částí jeřábu (sloup, výložník, základová deska), kotevních šroubů, ložisek otočného závěsu jeřábu a všech svarových spojů.

Klíčové slovo: sloupový otočný jeřáb, základová deska, zdvih, délka vyložení, sloup, zdvihací zařízení

ANNOTATION

The aim of this bachelor thesis is to propose and structurally process of rotary pillar crane for lifting capacity 100 kg, stroke 2000 mm, the length of the unloading of 2000 mm and a range of rotation of the crane at least 180°. Crane "cat" will be bought. At the beginning of bachelor work is outlined an overview of the basic crane distribution. Individual major components of the rotary pillar crane are described in great detail. Finally, design and steadiness calculation of the various parts of the crane are made like (Pillar, boom, base plate), affix bolts, bearings of revolving crane hinge and all the welded joints.

Key word: rotary pillar crane, base plate, stroke, length of unloading, a pillar, lifting equipmen
Seznam používaných značek

1 Úvod
2 Základní rozdělení zdvihacích zařízení
 2.1 Jeřáby
3 Sloupový otočný jeřáb
 3.1 Sloup
 3.1.1 Neotočný sloup
 3.1.2 Otočný sloup
 3.1.3 Základová deska
3.2 Základ
3.3 Výložník
 3.3.1 Otáčení výložníku
 3.3.2 Zarážka
3.4 Zdvihací zařízení
4 Návrh a kontrola sloupového otočného jeřábu
 4.1 Důležitost volby materiálu
 4.2 Volba typu jeřábové kočky
 4.3 Zavedení součinitelů působení
 4.3.1 Součinitel pro zatížení vyvozené vlastní tíhou
 4.3.2 Součinitel zatížení od břemene
 4.3.3 Dynamický zdvihový součinitel
 4.4 Návrh a kontrola výložníku
 4.4.1 Ohyb výložníku
 4.4.2 Průhyb výložníku
 4.5 Návrh a kontrola sloupu
 4.5.1 Kontrola sloupu na vzpěr
 4.6 Návrh a kontrola kotevních šroubů a základové desky
 4.7 Návrh a kontrola nosného čepu
 4.8 Kontrola svarových spojů
 4.8.1 Připojení sloupu k základové desce
 4.8.2 Připojení výložníku
 4.8.3 Připojení horní desky

Sloupový otočný jeřáb pro nosnost 100 kg
4.8.4 Připojení spodní desky ..31
4.9 Kontrola ložisek...31
 4.9.1 Horní ložisko ..32
 4.9.2 Spodní ložisko ..33
5 Závěr ..35
6 Seznam použitých zdrojů ...36
7 Seznam použitých obrázků ..38
8 Seznam použitých tabulek ..39
9 Seznam příloh ..40
Seznam použitých značek

a rameno od síly F_{G1} [m]
a₁ výška svaru [m]
b rameno od síly F'_{mb} a F_{G1} [m]
B šířka ložiska [m]
b₁ délka svaru [m]
bₙ šířka základové desky [m]
C dynamická únosnost ložiska [N]
c rameno od síly V [m]
Co statická únosnost ložiska [N]
D' reakce na spodní ložisko [N]
D reakce na horní ložisko [N]
D₁ vnější průměr sloupu [m]
d₁ vnitřní průměr sloupu [m]
d₃' nejmenší průměr šroubu [m]
Dₘ vnitřní průměr ložiska [m]
dₘ vnitřní průměr ložiska [m]
dₘₘₘₘₘ minimální průměr čepu [m]
dₘₘₘ¢\[\text{m}
\]
Sloupový otočný jeřáb pro nosnost 100 kg

- **g**: těžkový zrychlení

- **G_1**: hmotnost ramene

- **G_2**: hmotnost kladkostroje

- **h'**: celkové rozpětí svaru

- **H**: reakce od síly V

- **H'**: reakce od síly V

- **h_1**: vzdálenost mezi ložisky

- **I_s**: kvadratický moment průřezu

- **k_s**: statická bezpečnost

- **k_v**: součinitel bezpečnosti

- **l**: délka nosníku

- **l_o**: redukovaná délka

- **l_z**: délka sloupu

- **l_2**: délka maximálního zdvihu

- **m_b**: hmotnost břemene

- **m_{bak}**: skutečná hmotnost břemene

- **M_h**: ohybový moment působící na základovou desku

- **m_k**: hmotnost kladkostroje

- **$M_{O_{max}}$**: maximální ohybový moment

- **M_O**: ohybový moment

- **M_{O1}**: moment k bodu 1

- **M_{O2}**: moment k bodu 2

- **M_{O5}**: moment k bodu 5

- **M_{OV}**: moment od síly V

- **m_r**: hmotnost 1m pro profil IPE 120

- **n**: počet šroubu základové desky

- **p_a**: axiální tlak na ložisko

- **p_r**: radiální tlak na ložisko

- **Pu**: mezní únavové zatížení ložiska

- **Re**: mez kluzu materiálu

- **S**: plocha průřezu

- **S_j**: průřez jádra šroubu

- **So**: bezpečnost ložiska

- **[m·s⁻²]**

- **[kg]**

- **[kg]**

- **[m]**

- **[N]**

- **[N]**

- **[m]**

- **[-]**

- **[-]**

- **[m]**

- **[kg]**

- **[kg]**

- **[N·m]**

- **[N·m]**

- **[N·m]**

- **[N·m]**

- **[N·m]**

- **[N·m]**

- **[kg·m⁻¹]**

- **[ks]**

- **[MPa]**

- **[MPa]**

- **[N]**

- **[MPa]**

- **[m²]**

- **[m²]**

- **[-]**
minimální bezpečnost ložiska [-]
šířka ložiska [m]
troušťka svaru [m]
síla svislá na ložisko [N]
rychlost zdvihu [m s^{-1}]
průřezový modul v ohybu [m^3]
průřezový modul v ohybu v místě svaru [m^3]
průřezový modul v ohybu [m^3]
průhyb výložníku [m]
dovolený průhyb [m]
převodní součinitel pro čelní koutový svar [-]
převodní součinitel pro boční koutový svar [-]
součinitel tloušťky přídavného svaru [-]
součinitel přídavného krutu [-]
součinitel zatížení od břemene [-]
dynamický zdvihový součinitel [-]
dynamický pojezdový součinitel [-]
štíhlost [-]
napětí sloupu [MPa]
dovolené napětí [MPa]
napětí v ohybu [MPa]
maximální ohybové napětí v bodě A [MPa]
dovolené napětí v ohybu [MPa]
tahové napětí ve šroubu [MPa]
smykové napětí kolmé na směr svaru [MPa]
smykové napětí od síly H [MPa]
smykové napětí od síly V [MPa]
smykové napětí od ohybového momentu [MPa]
výsledné srovnávací napětí [MPa]
srovnávací napětí [MPa]
srovnávací napětí [MPa]
smykové napětí rovnoběžné se směrem svaru [MPa]
1 Úvod

Na úplném počátku lidské společnosti se břemena přemisťovala pouze lidskou sílou. Postupem času vznikaly pomocné prostředky a zařízení, zejména při dopravě těžších břemen. Člověk si jimi práci usnadňoval, vůbec umožňoval, anebo si jimi zkraťoval čas potřebný k práci. Těmto zařízením dodávali hnaní sílu nejprve ještě lidé, nebo tažná zvířata, ačkoliv se již před více než dvěma tisíce lety začalo používat pohonu energie vody nebo větru (např. mlýn).

Zařízení pro přemisťování těžkých břemen ve vodorovné rovině nebo v místěm sklonu se od nejstarších dob až do první průmyslové revoluce v podstatě příliš nezměnila. Pro přemisťování břemen ve svislé směru vyžadovaly postupně se měnící výrobní poměry stále vyšší nosnosti.

Mechanické energie ke zvedání břemen se začalo používat nejdříve v hornictví. Výšky zdvihu dosahovali až do desítek metrů, avšak břemen chybělo. Teprve parní pohon (o prvním parním jeřábu je zmínka z r. 1820) umožňuje splnit hlavní požadavek zdvihacích zařízení, tj. vyšší nosnost za účelem vyššího výkonu. Stejně snadno jako zvyšovat nosnost lze i zrychlovat pohyb břemen.

Elektrický pohon (první jeřáb z r. 1887) přináší další výhody, a to hlavně z hlediska provozní a ekonomické stránky. Používáním elektrického pohonu se vývoj zdvihacích zařízení značně urychlil. Došlo ke zkonstruování výkonných zařízení pro nejrůznější úkoly zdvihací techniky. Nosnost největších jeřábů dnes přesahuje 400 t a není problém postavit zařízení o mnohem větší nosnosti, pokud by jich bylo třeba.

Vývoj zdvihacích zařízení není dodnes ukončen, podle potřeb nově se vyskytujících úkolů transportní techniky vznikají nové druhy a typy zdvihacích zařízení. [19]

Mým úkolem bylo navrhnout a konstruovat sloupový otočný jeřáb pro nosnost 100 kg. Kromě nosnosti jsem měla dány další základní parametry jeřábu, jakož je zdvih, délka vyložení a rozsah otáčení jeřábu. Jeřábovou kočku jsem měla nakupovat.

K dosažení dokonalosti bylo třeba určení typu nakupované jeřábové kočky, návrh a výpočet svařované konstrukce, výpočet kotevních šroubů a výpočet ložisek otočného závěsu jeřábu.
2 Základní rozdělení zdvihacích zařízení

Každé zdvihací zařízení se skládá z ocelové konstrukce, která tvoří nosný systém. Na ocelové konstrukci nebo uvnitř (pokud je konstrukce uzavřena) jsou umístěny mechanismy (ústrojí, které mění rotační pohyb hřídele motoru na pohyb pracovní). Mechanismus je souborem převodových prvků, které jsou buď mechanické, hydraulické, pneumatické nebo kombinované. K mechanickým prvkům patří ústrojí složené z poháněcího motoru, převodovky, spojek, ozubených kol, dalších lanových a řetězových převodů, bubnů, kladek, brzd, atd. [17]

Použití zdvihacích zařízení je vhodné především v podmínkách dle [17]:
- kde se přemisťuje převážně těžký materiál nestejných rozměrů a hmotnosti
- kde je materiálový tok přerušovaný v nestejných intervalech
- kde se materiál přemisťuje na omezené, stále stejné ploše nebo prostoru
- kde je nedostatek místa u jednotlivých pracovišť
- kde jsou nevyhovující pracovní cesty
- kde se požaduje vertikální i horizontální doprava během

Obr. 2.1 Zdvihací zařízení pro zdvih automobilu [18]

Podle způsobu práce, dopravní vzdálenost a zásadního konstrukčního provedení se zdvihací zařízení obvykle rozdělují do tří kategorií dle [19]:
- jednoduchá zdvihadla
- jeřáby
- výtahy
2.1 Jeřáby

Jeřáb je dopravní stroj z kategorie zdvihadel, který zdvihá a poté přemisťuje těžké předměty respektive břemena, obvykle (ale ne vždy) pomocí kladnice a háku. Používá se ve všech oblastech průmyslu (zejměna v průmyslu těžkém), dále pak ve stavebnictví i jinde. Příbuznými stroji jeřábu jsou vrátky a nákladní zdvih. [25]

Obr. 2.2 Jeřáb používaný v průmyslu [25]

Jeřáby patří k velmi vyžadovaným zařízením. Lze se s nimi setkat v každém provoze a v každé větší dílně. Očekává se od nich [17]:
- velký dopravní (pracovní) výkon při malé vlastní hmotnosti
- bezpečný a spolehlivý provoz
- jednoduchá, pokud možno automatická obsluha
- přizpůsobivost technologickým procesům

Hlavní parametry jeřábu dle [19]:
- nosnost Q [kg, t] - nejtežší břemeno které lze jeřáblem manipulovat
- rozpětí L [m] - vodorovná vzdálenost středních rovin pojíždějících kol
- výška zdvihu H [m] - svislá vzdálenost mezi nejnižší a nejvyšší pracovní polohou háku
- vyložení jeřábu Lv [m] - vodorovná vzdálenost svislé osy závěsu břemena od osy otáčení u jeřábů s otočným výložníkem nebo od hrany klopení u jeřábů s neotočným výložníkem.
Jeřáby obvykle rozdělujeme dle [17]:

1) podle konstrukce
 • mostové
 • portálové a poloportálové
 • konzolové a sloupové
 • věžové (stavební)
 • mobilní
 • železniční

2) podle druhu pohonu
 • ruční
 • motorický
 → elektrický
 → spalovacím motorem
 → kombinovaný

3) podle způsobu pohybu
 • nepojízdné
 • pojízdné
 • otočné
 • plovoucí
 • kombinované

4) podle druhu práce a místa použití
 • dílenské a skladištní jeřáby
 • montážní
 • hutní
 • nádvorní a skládkové
 • stavební
 • železniční
 • přístavní apod.
3 Sloupový otočný jeřáb

U sloupových jeřábů se otáčí výložník kolem osy svislého sloupu. Výložník lze zpravidla sklápiť nebo je opatřen jeřábovou kočkou. Jeho otáčením může jeřáb obsáhnout částečně nebo téměř úplně plochu kruhu, jehož poloměr je dán největším vyložením jeřábu.

Mezi dovoleným břemenem a vyložením platí (jako u všech jeřábů s měnitelným vyložením) nepřímá úměrnost: součin Q·a (břemen násobené vyložením) je pro určitý jeřáb konstantou, která jej charakterizuje a nazývá se parametr jeřábu. Je-li rozmezí nosností 0,25 až 20 t, rozmezí vyložení až 12,5 m, má parametr jeřábu rozměry od 1 tm do 250 tm.

Podle konstrukce můžeme hovořit o sloupových jeřábech s nehybným (tj. neotočným) sloupem a s otočným sloupem. V obou případech je nehybným nebo otočným prvkem poměrně krátký, jednoduchý prut (sloup). [20]

Základní části sloupového otočného jeřábu:
• sloup
• výložník
• zdvihací zařízení

Mimo základní části patří mezi součásti sloupového otočného jeřábu:
• základová deska
• základ

Obr. 3.1 Sloupový otočný jeřáb [10]

3.1 Sloup

Sloup je namáhán tlakem a ohybem. Pro výpočet považujeme sloup za nosník vetknutý v základové desce. Nebezpečný průřez je v místě největšího ohybového momentu. Při výpočtu celkového namáhání sloupu tlakem a ohybem je třeba přihlížet i k dynamickým účinkům. [20]

3.1.1 Neotočný sloup

Sloup je uložen pouze svým dolním koncem a zakotven v základové desce (obr. 3.2). Podle konstrukce jeřábu se může výložník otáčet až o celých 360 stupňů, což dává těmto jeřábům výhodu proti jeřábům s otočným sloupem, kde je otáčení mnohdy omezeno. Pohon i ostatní příslušenství jeřábu je umístěno na výložníku, který je na sloupu uložen ve dvou ložiskách. Horní ložisko je radiální a axiální, dolní ložisko je radiální. V klasickém provedení je sloup jeřábu velmi jednoduchý a poměrně nízký. [20]

3.1.2 Otočný sloup

3.1.3 Základová deska

Základová deska u menších jeřábů je litinová, dále může být svařovaná z tvarové oceli a plechů. V místě osazení sloupu působí moment, který základová deska zachycuje. Tam kde se střetává sloup a deska nesmí být překročen dovolený měrný tlak.
Základová deska je připojena k základu pomocí kotevních šroubů. Průměr kotevních šroubů by neměl být menší než M 24 (vliv koroze). [20]

3.2 Základ

Sloupové jeřáby se zpravidla upevňují do základu betonových podlah (obr. 3.4). Velikost a tvar základu musí splňovat podmínku dovoleného měrného tlaku na základovou půdu a podmínku předepsané stability jeřábu. Přípustný měrný tlak závisí na druhu a vlastnostech základové půdy. Aby v základové spáře mezi základem a půdou nevznikal tah, musí výslednice všech svislých sil procházet jádrem průřezu základu. [20]

3.3 Výložník

Výložníky lze zpravidla otáčet v rozmezí od 90 stupňů do 360 stupňů a rozdělují se podle dvou kritérií dle [20]:

I. podle profilu
 • plnostěnný (skříňový)
 • příhradový
 • popřípadě kombinovaný

II. podle polohy
 • šikmý
 • vodorovný

Plnostěnné výložníky šikmé jsou obvykle jen u jeřábů, které mají protizávaží. Tyto výložníky mají vesměs skříňový průřez vyztužený. Prutový výložník šikmý je buď s protizávažím, nebo bez protizávaží (u menších nosností). Výložník s jeřábovou kočkou

3.3.1 Otáčení výložníku

Výložník můžeme otáčet ručně nebo strojně. Ručního otáčení lze využít pouze u hmotnostně lehčích břemen. Přemístění výložníku se uskutečňuje tlakem (tahem) na břemen. [20]

Elektricky ovládaný otočný výložník se od ručně otočného výložníku liší pouze mechanismem, díky kterému se otáčí. Mechanismus je pevně přichycen k jeřábu a pracuje na principu zabírání pastorku (ten je poháněný ozubenými převody od motoru) do ozubeného věnce.

3.3.2 Zarážka

Zarážka se obvykle umísťuje na dvě místa výložníku, na začátek a na konec. Důležitějším z těchto dvou míst je konec výložníku. Zarážka se na konec výložníku umisťuje proto, aby nedošlo k vyjetí a následnému pádu kladkostroje z výložníku. Zarážky můžou být rozebíratelné (obr. 3.10) nebo jsou na výložníku napevno (obr. 3.9).
3.4 Zdvihací zařízení

Podle pohonu rozeznáváme kladkostroje:
- ruční
- elektrické
 → řetězové
 → lanové

Obr. 3.9 Zarážka pevná [15]

Obr. 3.10 Zarážka rozepíratelná [5]

Obr. 3.11 Elektrický lanový kladkostroj [24]

Obr. 3.12 Elektrický řetězový kladkostroj [9]
4 Návrh a kontrola sloupového otočného jeřábu

Provedu kontrolní výpočet otočného sloupového jeřábu, který je určen k manipulaci s břemeny do hmotnosti 100 kg v dosahu výložníku jeřábu. Zdvih břemene je zajištěn elektrickým kladkostrojem pojízdným po dolní pásnici výložníku tlakem (tahem) na břemeno. [14]

Tab. 4.1 Zadané hodnoty

<table>
<thead>
<tr>
<th>mₙ nosnost</th>
<th>l₁ délka výložníku</th>
<th>l₂ délka maximálního zdvihu</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 [kg]</td>
<td>2 [m]</td>
<td>2 [m]</td>
</tr>
</tbody>
</table>

4.1 Důležitost volby materiálu

Volba materiálu je jedna z nejdůležitějších úkonů před samotným výpočtem. Jednotlivé materiály mají své specifické mechanické vlastnosti, které je třeba při návrhu dobře znát.

Za mechanické vlastnosti materiálu se považují např.:
 • pevnost v tahu
 • tažnost
 • vrubová houževnatost
 • tvrdost
 • tvárnost za tepla
 • svařitelnost
 • obrobitelnost
 • chemické složení

Mezi nejčastěji používané materiály při stavbě jeřábů můžeme zařadit [19]:
 • uhlíkové oceli
 • legované oceli (chrómniklová ocel a manganová ocel)
4.2 Volba typu jeřábové kočky

Svěží design a přesvědčivý technický koncept charakterizují zdvihadla nového řetězového kladkostroje ABUCompact. [8] Tyto řetězové kladkostroje se vyrábí v konstrukčních velikostech GMC, GM2 a GM8 (obr. 4.1).

Zvolila jsem kladkostroj konstrukční velikosti GM2 s pojezdovým ústrojím typového označení GM 2 100.6 – 1/ HF 3.

- rychlost zdvihu \(v_h = 1,5/6 \) [m/min]
- hmotnost kladkostroje \(m_k = 21,8 \) [kg]

Obr. 4.1 Řetězový kladkostroj ABUCompact [8]

Tab. 4.2 Rozměry kladkostroje ABUCompact GM2 [8]

<table>
<thead>
<tr>
<th>BPR [mm]</th>
<th>C [mm]</th>
<th>(C_1) [mm]</th>
<th>B_3 [mm]</th>
<th>B_4 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>344</td>
<td>390</td>
<td>175</td>
<td>171</td>
</tr>
</tbody>
</table>
4.3 Zavedení součinitelů působení

V první řadě je pro výpočet důležité stanovit základní součinitele působení dle normy ČSN 27 0103. Mezi tyto součinitele patří především součinitel pro zatížení vyvozené vlastní tíhou, součinitel zatížení od břemene a dynamický zdvihový součinitel.

4.3.1 Součinitel pro zatížení vyvozené vlastní tíhou

Hmotnost ramene

\[G_1 = m_r \cdot \delta_1 \Rightarrow G_1 = 10,4 \cdot 2 \cdot 1,1 \]
\[G_1 = 22,88 \text{ kg} \]

\[\delta_1 = 1,1 \text{ [-]} - \text{ dynamický pojezdový součinitel, volím dle ČSN 27 0130 [19]} \]

\[m_r = 10,4 \text{ [kg} \cdot \text{m}^{-1}] - \text{ hmotnost 1m pro profil IPE 120 dle [13]} \]

\[l = 2 \text{ [m]} - \text{ délka nosníku} \]

Síla od hmotnosti ramene

\[F_{G_1} = G_1 \cdot g \Rightarrow F_{G_1} = 22,88 \cdot 9,81 \]

\[F_{G_1} = 224,45 \text{ N} \]

Hmotnost kladkostroje

\[G_2 = m_k \cdot \delta_1 \Rightarrow G_2 = 21,8 \cdot 1,1 \]

\[G_2 = 23,98 \text{ kg} \]

\[m_k = 21,8 \text{ [kg]} - \text{ hmotnost kladkostroje dle katalogu ABUS Jeřábové systémy [8]} \]
Síla od hmotnosti kladkostroje

\[F_{G2} = G_2 \cdot g \Rightarrow F_{G2} = 23,98 \cdot 9,81 \]
\[F_{G2} = 235,24 \text{ N} \]

\[(4.4)\]

Celková hmotnost

\[G = G_1 + G_2 \Rightarrow G = 22,88 + 23,98 \]
\[G = 46,86 \text{ kg} \]

\[(4.5)\]

Síla od vlastní tíhy

\[F_G = G \cdot g \Rightarrow F_G = 46,86 \cdot 9,81 \]
\[F_G = 459,7 \text{ N} \]

\[(4.6)\]

4.3.2 Součinitel zatížení od břemene

Skutečná hmotnost břemene

\[m_{bsk} = m_b \cdot \gamma_b \Rightarrow m_{bsk} = 100 \cdot 1,2 \]
\[m_{bsk} = 120 \text{ kg} \]

\[(4.7)\]

\[m_b = 100 \text{ [kg]} - \text{hmotnost břemene} \]
\[\gamma_b = 1,2 [-] - \text{součinitel zatížení od břemene dle ČSN 27 0103 [19]} \]

Síla od břemene

\[F_{mb} = m_{bsk} \cdot g \Rightarrow F_{mb} = 120 \cdot 9,81 \]
\[F_{mb} = 1177,2 \text{ N} \]

\[(4.8)\]

4.3.3 Dynamický zdvihový součinitel

\[\delta_h = 1,15 + 0,0025 \cdot v_h \Rightarrow \delta_h = 1,15 + 0,0025 \cdot 0,0042 \]
\[\delta_h = 1,1500105 \]

\[(4.9)\]

\[\delta_h - \text{dynamický zdvihový součinitel dle ČSN 27 0103, zdvihová třída H12 [19]} \]
\[v_h = 0,0042 \text{ [m} \cdot \text{s}^{-1}] - \text{rychlost zdvihu dle katalogu ABUS Jeřábové systémy [8]} \]
Dynamická síla

\[F'_{\text{mb}} = F_{\text{mb}} \cdot \delta_h \Rightarrow F'_{\text{mb}} = 1177.2 \cdot 1.1500105 \]
\[F'_{\text{mb}} = 1353.8 \text{ N} \]

4.4 Návrh a kontrola výložníku

Obr. 4.4 Síly působící na výložník

Svislá síla na ložisko

\[V = F_G + F'_{\text{mb}} \Rightarrow V = 459.7 + 1353.8 \]
\[V = 1813.5 \text{ N} \]

Moment sil ke svislé ose

\[H' \cdot h_1 = H \cdot h_1 = F_{G_1} \cdot a + (F'_{\text{mb}} + F_{G_2}) \cdot b \Rightarrow V \cdot c \]
\[c = \frac{F_{G_1} \cdot a + (F'_{\text{mb}} + F_{G_2}) \cdot b}{V} \]
\[c = \frac{224.45 \cdot 0.925 + (1353.8 + 235.24) \cdot 2}{1813.5} \]
\[c = 1.867 \text{ m} \]

Reakce \(H = H' \)

\[H = \frac{F_{G_1} \cdot a + (F'_{\text{mb}} + F_{G_2})}{h_1} \cdot b \Rightarrow H = \frac{224.45 \cdot 0.925 + (1353.8 + 235.24) \cdot 2}{0.405} \]
\[H = 8359.7 \text{ N} \]
4.4.1 Ohyb výložníku

Maximální ohybový moment

\[M_{O_{\text{max}}} = F_{G_1} \cdot a + (F_{mb}^' + F_{G_2}) \cdot b = V \cdot c \Rightarrow M_{O_{\text{max}}} = 1813,5 \cdot 1,867 \]
\[M_{O_{\text{max}}} = 3385,8 \text{ N} \cdot \text{m} \]

Maximální ohybové napětí v bodě A

\[\sigma_{oA} = \frac{M_{O_{\text{max}}}}{W_{Ox}} \Rightarrow \sigma_{oA} = \frac{3385,8}{0,000053} \]

\[\sigma_{oA} = 63,88 \text{ MPa} \leq \sigma_{\text{Odov}} \]

\[W_{Ox} = 53 \cdot 10^{-6} \text{ [m}^3\text{]} \] - průřezový modul v ohybu pro profil IPE 120 dle [13]

\[\sigma_{\text{Odov}} = 70 \div 105 \text{ [MPa]} \] - dovolené napětí v ohybu pro materiál 11 373 dle [13]

Výložník na ohyb vyhovuje.

4.4.2 Průhyb výložníku

\[y = \frac{F \cdot l^3}{3E \cdot I_x} = \frac{V \cdot c^3}{3E \cdot I_x} \Rightarrow y = \frac{1813,5 \cdot 1,867^3}{3 \cdot 2,1 \cdot 10^{11} \cdot 318 \cdot 10^{-8}} \]

\[y = 0,00589 \text{ m} \]

\[E = 2,1 \cdot 10^{11} \text{ [Pa]} \] - modul pružnosti v tahu pro ocel dle [13]

\[I_x = 318 \cdot 10^{-8} \text{ [m}^4\text{]} \] - kvadratický moment pro profil IPE 120 dle [13]
Dovolený průhyb

\[y_D = \frac{1}{300} \cdot l = \frac{1}{300} \cdot c \quad \Rightarrow \quad y_D = \frac{1}{300} \cdot 1,867 \quad (4.17) \]

\[y_D = 0,006223 \ m \geq y = 0,00589 \ m \]

Nosník na průhyb vyhovuje.

4.5 Návrh a kontrola sloupu

Ohybový moment od síly V

\[M_{ov} = M_{o1} \]

\[M_{o1} = V \cdot 0,15 \]

\[M_{o1} = 1813,5 \cdot 0,15 \]

\[M_{o1} = 272,025 \ \text{N} \cdot \text{m} \quad (4.18) \]

Ohybový moment v bodě 2

\[M_{o2} = M_{o1} + H \cdot \frac{h_1}{2} \quad \Rightarrow \quad M_{o2} = 272,025 + 8359,7 \cdot \frac{0,405}{2} \quad (4.19) \]

\[M_{o2} = 1964,86 \ \text{N} \cdot \text{m} \]

Ohybový moment v bodě 5

\[M_{o5} = M_{ov} + H \cdot 2,740 - H \cdot 2,335 \quad (4.20) \]

\[M_{o5} = 272,025 + 8359,7 \cdot 2,740 - 8359,7 \cdot 2,335 \]

\[M_{o5} = 3657,7 \ \text{N} \cdot \text{m} \]
Vnitřní průměr sloupu

\[M_{\text{O,max}} = M_{\text{O}} \]

\[\sigma = \frac{M_{\text{O,max}}}{\pi \cdot (D_1^4 - d_1^4)} \Rightarrow d_{\text{max}} = \sqrt[4]{\frac{0,1 \cdot \sigma_{\text{dov}} \cdot D_1^4 - M_{\text{O,max}} \cdot D_1}{0,1 \cdot \sigma_{\text{dov}}}} \]

\[d_{\text{minS}} = 0,1483 \text{ m} \]

\[D_1 = 152 \text{ [mm]} - \text{vnější průměr sloupu zvolené trubky dle nabídky Ferony [6]} \]

\[\sigma_{\text{dov}} = 100 \div 120 \text{ [MPa]} - \text{dovolené napětí pro materiál 11 353 dle [13]} \]

Zvolená trubka Ø 152 x 8 ČSN 42 5715.01 vyhovuje.

\[I_{\chi} = 9,41 \cdot 10^6 \text{ [m}^4\text{]} - \text{kvadratický moment zvolené trubky dle [13]} \]

\[S = 3,619 \cdot 10^3 \text{ [m}^2\text{]} - \text{plocha průřezu zvolené trubky dle [13]} \]

Napětí sloupu

\[\sigma = \frac{M_{\text{O,max}}}{\pi \cdot (D_1^4 - d_1^4)} \leq \sigma_{\text{dov}} \Rightarrow \sigma = \frac{3657,7}{\pi \cdot (0,152^4 - 0,136^4)} \]

\[\sigma = 29,54 \text{ MPa} \leq \sigma_{\text{dov}} \]

4.5.1 Kontrola sloupu na vzpěr

Štíhlost

\[\lambda = \frac{1_o}{i} = \frac{2 \cdot l_s}{i} \Rightarrow \lambda = \frac{2 \cdot 2,740}{9,41 \cdot 10^6} \]

\[\lambda = 107,5 \]
Dovolená síla

\[F_{\text{dov}} = \frac{\pi^2 \cdot E \cdot I_x}{k_v \cdot 4 \cdot l_s^2} \Rightarrow F_{\text{dov}} = \frac{\pi^2 \cdot 2,1 \cdot 10^{11} \cdot 9,41 \cdot 10^{-6}}{3 \cdot 4 \cdot 2,740^2} \] \hspace{1cm} (4.24)

\[F_{\text{dov}} = 216484,24 \text{ N} \geq V = 1813,5 \text{ N} \]

\[k_v = 3 \left[- \right] - \text{součinitel bezpečnosti, volím raději vyšší hodnotu} \]

Sloup na vzpěr vyhovuje.

Obr. 4.7 Namáhání sloupu na vzpěr

4.6 Návrh a kontrola kotevních šroubů a základové desky

Svislá reakce ve šroubu od maximálního momentu

\[F' = \frac{M_{\text{max}} \cdot 4}{D_s \cdot n} \Rightarrow F' = \frac{3657,7 \cdot 4}{0,2 \cdot 6} \] \hspace{1cm} (4.25)

\[F' = 12192,33 \text{ N} \]

\[D_s = 200 \left[\text{mm} \right] - \text{průměr roztečné kružnice šroubu základové desky} \]

\[n = 6 \left[\text{ks} \right] - \text{počet šroubů základové desky} \]

Svislá reakce ve šroubu od síly V

\[F'' = \frac{V}{n} \Rightarrow F'' = \frac{1813,5}{6} \] \hspace{1cm} (4.26)

\[F'' = 302,25 \text{ N} \]

Výsledná síla

\[F = F' + F'' \Rightarrow F = 12192,33 + 302,25 \] \hspace{1cm} (4.27)

\[F = 12494,58 \text{ N} \]
Ohybový moment působící na základovou desku

\[M_h = F \cdot \frac{D_s}{2} \Rightarrow M_h = 12494,58 \cdot 0,2 \]

\[M_h = 1249,46 \, \text{N} \cdot \text{m} \tag{4.28} \]

Průřezový modul v ohybu

\[W_o = \frac{1}{6} \cdot b_d \cdot \left(\frac{D_s}{2} \right)^2 \Rightarrow W_o = \frac{1}{6} \cdot 0,02 \cdot \left(\frac{0,2}{2} \right)^2 \]

\[W_o = 3,33 \cdot 10^{-3} \, \text{m}^3 \tag{4.29} \]

\[b_d = 20 \, \text{[mm]} - \text{tloušťka základové desky} \]

Napětí v ohybu

\[\sigma_o = \frac{M_h}{W_o} \Rightarrow \sigma_o = \frac{1249,46}{3,33 \cdot 10^{-5}} \]

\[\sigma_o = 37,5 \, \text{MPa} \leq \sigma_{dov} \tag{4.30} \]

\[\sigma_{dov} = 70 \div 105 \, \text{[MPa]} - \text{dovolené napětí v ohybu pro materiál 11 373 dle [13]} \]

Tahová síla od šroubu

\[F_t = F' - F'' \Rightarrow F_t = 12192,33 - 302,25 \]

\[F_t = 11890,08 \, \text{N} \tag{4.31} \]

Návrh šroubu

\[\frac{F_t}{\pi \cdot d_3^2} \cdot \beta_i \leq \frac{\text{Re}}{\text{ks}} \]

\[d_3' = \sqrt{\frac{\beta \cdot 4 \cdot \text{ks} \cdot F_t}{\pi \cdot \text{Re}}} \Rightarrow d_3' = \sqrt{\frac{1,3 \cdot 4 \cdot 2 \cdot 11890,08}{\pi \cdot 180}} \]

\[d_3' = 14,788 \, \text{mm} \]
β_t = 1,3 \text{ [-]} - součinitel přídavného krutu pro jednochodý závit dle [11]
Re = 180 \text{ [MPa]} - mez kluzu pro materiál třídy pevnosti 3.6 dle [11]
ks = (1,5 ÷ 2,5) \text{ [-]} - bezpečnost pro šrouby, volím ks = 2

Z kapitoly 3.2 je zřejmé že průměr kotevních šroubů by měl být minimálně M 24, proto volím šroub M24 x 1,5 ČSN EN ISO 4017 – 3.6

Tahové napětí ve šroubu

\[
\sigma_t = \frac{F_t}{S_j} \Rightarrow \sigma_t = \frac{11890,08}{385,68}
\]

\[
\sigma_t = 30,83 \text{ MPa} \leq \sigma_{dov}
\]

\[
\sigma_{dov} = 75 ÷ 105 \text{ [MPa]} - dovolené napětí v tahu pro materiál 11 343 dle [13]
\]
S_j = 385,68 \text{ [mm}^2\text{]} - průřez jádra šroubu M24 x 1,5 dle [13]

4.7 Návrh a kontrola nosného čepu

Reakce v ložisku

\[
D = D' = \frac{V \cdot c}{d}
\]

D = \frac{1813,5 \cdot 1,867}{0,315} \Rightarrow D = 10748,6 \text{ N}

Obr. 4.8 Síly působící na ložiska

\[
M_{O_{\max}} = H \cdot s \Rightarrow M_{O_{\max}} = 8359,7 \cdot 0,045
\]

\[
M_{O_{\max}} = 376,2 \text{ N} \cdot \text{m}
\]
Průměr čepu v místě ložiska

- pro $\sigma_{dov} = 200 \text{ MPa}$

\[
d_{\text{min}} = \sqrt[3]{\frac{32 \cdot M_{\text{max}}}{\pi \cdot \sigma_{dov}}} \Rightarrow d_{\text{min}} = \sqrt[3]{\frac{32 \cdot 376,2 \cdot 10^3}{\pi \cdot 200}}
\]

\[
d_{\text{min}} = 26,76 \text{ mm}
\]

Z vypočteného minimálního průměru čepu volím normalizovaný průměr čepu $d = 40 \text{ mm}$.

4.8 Kontrola svarových spojů

Po navrhu svarového spoje se musí provést jeho kontrola. Při kontrole svarového spoje zjistíme napětí ve svaru a zjištěné napětí porovnáme s napětím dovoleným. Pokud je zjištěné napětí menší než dovolené, svar vyhoví. Doporučený postup při výpočtech svarů je podrobně popsán v normě ČSN 05 0120.

4.8.1 Připojení sloupu k základové desce

Materiál sloupu 11 353
Materiál základové desky 11 373

\[
D_o = 2 \cdot 0,7 \cdot a + d_i
\]

\[
D_o = 2 \cdot 0,7 \cdot 0,015 + 0,152
\]

\[
D_o = 0,173 \text{ m}
\]

\[
a = 15 \text{ [mm]} - \text{výška koutového svaru}
\]

Materiál sloupu 11 353
Materiál základové desky 11 373

\[
M_o = 3657,7 \text{ N} \cdot \text{m}
\]

\[
d_i = 0,152 \text{ m}
\]

Průřezový modul v ohybu v místě svaru

\[
W_{\text{OSV}} = \frac{\pi \cdot (D_o^4 - d_i^4)}{32 \cdot D}
\]

\[
W_{\text{OSV}} = \frac{\pi \cdot (0,173^4 - 0,152^4)}{32 \cdot 0,173}
\]

\[
W_{\text{OSV}} = 2,054 \cdot 10^{-4} \text{ m}^3
\]
Smykové napětí kolmé na směr svaru

\[
\tau_\perp = \frac{M_0}{W_{OSV}} \Rightarrow \tau_\perp = \frac{3657,7}{2,054 \cdot 10^{-4}}
\]

\[
\tau_\perp = 17,81 \text{ MPa}
\]

Srovnávací napětí

\[
\tau_{s1} = \frac{\tau_\perp}{\alpha_{\tau\perp}} \Rightarrow \tau_{s1} = \frac{17,81}{0,75}
\]

\[
\tau_{s1} = 23,75 \text{ MPa}
\]

\[
\tau_{s2} = \beta \cdot \frac{Re}{ks} \Rightarrow \tau_{s2} = 1 \cdot \frac{186}{1.5}
\]

\[
\tau_{s2} = 124 \text{ MPa}
\]

\[
\tau_{s1} \leq \tau_{s2} \Rightarrow 23,75 \text{ MPa} \leq 124 \text{ MPa}
\]

\[
\alpha_{\tau\perp} = 0,75 \text{ [-]} - \text{ převodní součinitel pro čelní koutový svar podle ČSN 05 0120 dle [11]}
\]

\[
\beta = 1 \text{ [-]} - \text{ součinitel tloušťky koutového svaru pro svary > 10 mm dle [11]}
\]

\[
ks \geq 1,5 \text{ [-]} - \text{ statická bezpečnost svarového spojení dle [11]}
\]

\[
Re = 186 \text{ [MPa]} - \text{ mez kluzu pro materiál 11 373 dle [13]}
\]

Svar připojení sloupu k základové desce vyhovuje, srovnávací napětí je menší než napětí dovolené.

4.8.2 Připojení výložníku

Materiál výložníku 11 373
Materiál sloupu 11 353
Sloupový otočný jeřáb pro nosnost 100 kg

Výška svaru

\[a_1 = 0.7 \cdot t \]
\[a_1 = 0.7 \cdot 8 \]
\[a_1 = 5.6\ mm \]
\[t = 8\ [\text{mm}] - tloušťka svaru \]

Celkové rozpětí svaru

\[h' = h_1 + 2 \cdot a_1 \]
\[h' = 120 + 2 \cdot 5.6 \]
\[h' = 131.2\ mm \]

Obr. 4.11 Zjednodušený svarový obrazec

Průřezový modul svaru v ohybu v místě svaru

\[W_{OSV} = \frac{1}{3} \cdot a_1 \cdot \frac{h_3^3}{h'} + \frac{1}{3} \cdot b_1 \cdot \frac{a_1^3}{h'} + b_1 \cdot a_1 \cdot h' \] \hspace{1cm} (4.44)

\[W_{OSV} = \frac{1}{3} \cdot 5.6 \cdot \frac{80^3}{131.2} + \frac{1}{3} \cdot 64 \cdot \frac{5.6^3}{131.2} + 64 \cdot 5.6 \cdot 131.2 \]

\[W_{OSV} = 54335.2\ mm^3 \]

\[b_1 = 64\ [\text{mm}] - délka svaru pro profil IPE 120 dle [13] \]

Smykové napětí od posouvající síly

\[\tau_{II} = \frac{V}{S_{SV}} = \frac{V}{2 \cdot a_1 \cdot h_2} \Rightarrow \tau_{II} = \frac{1813.5}{2 \cdot 5.6 \cdot 80} \] \hspace{1cm} (4.45)

\[\tau_{II} = 2.024\ MPa \]

Smykové napětí od ohybového momentu

\[\tau_1 = \frac{M_o}{W_{OSV}} \Rightarrow \tau_1 = \frac{3657.7 \cdot 10^3}{54335.2} \] \hspace{1cm} (4.46)

\[\tau_1 = 67.3\ MPa \]
Výsledné srovnávací napětí

\[
\tau_s = \sqrt{\left(\frac{\tau_{t}}{\alpha_{t,t}}\right)^2 + \left(\frac{\tau_{\Pi}}{\alpha_{t,\Pi}}\right)^2} \leq \beta \cdot \frac{\text{Re}}{\text{ks}}
\]

\[
\tau_s = \sqrt{\left(\frac{67.3}{0.75}\right)^2 + \left(\frac{2.024}{0.65}\right)^2} \leq 1.3 - 0.03 \cdot 8 \cdot 186 \cdot \frac{1}{1.5}
\]

\[
\tau_s = 89.8 \text{ MPa} \leq 131.44 \text{ MPa}
\]

\(\alpha_{t,t} = 0.75 \quad [-]\) - převodní součinitel pro čelní koutový svar podle ČSN 05 0120 dle [11]

\(\alpha_{t,\Pi} = 0.65 \quad [-]\) - převodní součinitel pro boční koutový svar podle ČSN 05 0120 dle [11]

\(\text{ks} \geq 1.5 \quad [-]\) - statická bezpečnost svarového spojení dle [11]

\(\text{Re} = 186 \quad \text{[MPa]}\) - mez kluzu pro materiál 11 373 dle [13]

\(\beta = 1.3 - 0.03 \cdot t \quad [-]\) - součinitel tloušťky koutového svaru pro svari < 10 mm dle [11]

Svar připojení výložníku vyhovuje, výsledné srovnávací napětí je menší než napětí dovolené.

4.8.3 Připojení horní desky

Materiál sloupu 11 353
Materiál desky 11 373

Ohybový moment

\[
M_O = V \cdot 0.15 \Rightarrow M_O = 1813.5 \cdot 0.15 \quad (4.48)
\]

\[
M_O = 272.025 \text{ N} \cdot \text{m}
\]

Obr. 4.12 Svar horní deska – sloup

Průřezový modul svaru

\[
W_{OSV} = \frac{\pi}{32} \cdot \frac{D_o^4}{D_o} - d_i^4 \quad \Rightarrow \quad W_{OSV} = \frac{\pi}{32} \cdot \frac{\left(2 \cdot 0.7 \cdot 8 + 152\right)^4 - 152^4}{2 \cdot 0.7 \cdot 8 + 152}
\]

\[
W_{OSV} = 1.05627 \cdot 10^{-4} \text{ m}^3
\]
Smykové napětí od síly H

\[
\tau_1 = \frac{H}{\frac{\pi}{4} \left[(2 \cdot 0.7 \cdot t + d_1)^2 - d_1^2 \right]} \Rightarrow \tau_1 = \frac{8359.7}{\frac{\pi}{4} \left[(2 \cdot 0.7 \cdot 8 + 152)^2 - 152^2 \right]}
\]

\[
\tau_1 = 3,015 \text{ MPa}
\]

Smykové napětí od ohybového momentu

\[
\tau_\perp = \frac{M_0}{W_{osv}} \Rightarrow \tau_\perp = \frac{272,025}{1,05627 \cdot 10^{-4}}
\]

\[
\tau_\perp = 2,575 \text{ MPa}
\]

Smykové napětí od síly V

\[
\tau_2 = \frac{V}{\frac{\pi}{4} \left[(2 \cdot 0.7 \cdot t + d_1)^2 - d_1^2 \right]} \Rightarrow \tau_2 = \frac{1813.5}{\frac{\pi}{4} \left[(2 \cdot 0.7 \cdot 8 + 152)^2 - 152^2 \right]}
\]

\[
\tau_2 = 0,654 \text{ MPa}
\]

Výsledné srovnávací napětí dle ČSN 05 0120

\[
\tau_S = \sqrt{\left(\frac{\tau_1 + \tau_2}{a_{\perp_1}} \right)^2 + \left(\frac{\tau_1}{a_{\perp_1}} \right)^2} \leq \beta \frac{\text{Re}}{\text{ks}}
\]

\[
\tau_S = \sqrt{\left(\frac{2,575 + 0,654}{0,75} \right)^2 + \left(\frac{3,015}{0,75} \right)^2} \leq 1,3 \cdot 0,03 \cdot 8 \cdot \frac{186}{1,5}
\]

\[
\tau_S = 5,89 \text{ MPa} \leq 131,44 \text{ MPa}
\]

\[
\alpha_{\perp_1} = 0,75 \quad [-] \quad \text{- převodní součinitel pro čelní koutový svar podle ČSN 05 0120 dle [11]}
\]

\[
\beta = 1,3 - 0,03 \cdot t \quad [-] \quad \text{- součinitel tloušťky koutového svaru pro svary < 10 mm dle [11]}
\]

\[
k_{\text{ks}} \geq 1,5 \quad [-] \quad \text{- statická bezpečnost svarového spojení dle [11]}
\]

\[
\text{Re} = 186 \quad \text{[MPa]} \quad \text{- mez kluzu pro materiál 11 373 dle [13]}
\]
Svar připojení horní desky ke sloupu vyhovuje, výsledné srovnávací napětí je menší než napětí dovolené.

4.8.4 Připojení spodní desky

Materiál sloupu: 11 353
Materiál desky: 11 373

Smykové napětí od síly H'

\[
\tau_\perp = \frac{H'}{2 \cdot 0,7 \cdot t \cdot 1} \quad (4.54)
\]

\[
\tau_\perp = \frac{8359,7}{2 \cdot 0,7 \cdot 8 \cdot 260} = 2,87 \text{ MPa}
\]

Srovnávací napětí

\[
\tau_s = \frac{\tau_\perp}{\alpha_{\perp \perp}} \leq \beta \cdot \frac{\text{Re}}{\text{ks}} \Rightarrow \tau_s = \frac{2,87}{0,75} \leq 1,3 - 0,03 \cdot 8 \cdot \frac{186}{1,5} \quad (4.55)
\]

\[
\tau_s = 3,827 \text{ MPa} \leq 131,44 \text{ MPa}
\]

- $\alpha_{\perp \perp} = 0,75 \quad [-]$ - převodní součinitel pro čelní koutový svar podle ČSN 05 0120 dle [11]
- $\beta = 1,3 - 0,03 \cdot t \quad [-]$ - součinitel tloušťky koutového svaru pro svary $< 10 \text{ mm}$ dle [11]
- $\text{ks} \geq 1,5 \quad [-]$ - statická bezpečnost svarového spojení dle [11]
- $\text{Re} = 186 \quad [\text{MPa}]$ - mez kluzu pro materiál 11 373 dle [13]

Svar připojení spodní desky ke sloupu vyhovuje, srovnávací napětí je menší než napětí dovolené.

4.9 Kontrola ložisek

Posledním, avšak neméně důležitým bodem kontroly, jsou navržená ložiska. Provedením této kontroly se zjistí, zda navržená ložiska vyhoví nebo naopak nevyhoví daným podmínkám.
4.9.1 Horní ložisko

Jelikož na horní ložisko působí radiální i axiální síla, zvolila jsem kuželíkové ložisko jehož konstrukce je zvláště vhodná pro přenášení kombinovaného (radiálního a axiálního) zatížení [22]. Velikost ložiska vybírám podle již zvoleného normalizovaného čepu \(d = 40 \text{ mm} \).

Rozměry kuželíkového ložiska

Označení kuželíkového ložiska: 32008X/Q

Tab. 4.3 Hlavní rozměry kuželíkového ložiska [22]

<table>
<thead>
<tr>
<th>vnitřní průměr (d_L) [mm]</th>
<th>vnější průměr (D_L) [mm]</th>
<th>šířka (T) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>68</td>
<td>19</td>
</tr>
</tbody>
</table>

Tab. 4.4 Vedlejší veličiny kuželíkového ložiska [22]

<table>
<thead>
<tr>
<th>statická únosnost (C_0) [kN]</th>
<th>dynamická únosnost (C) [kN]</th>
<th>mezní únavové zatížení (P_{u}) [kN]</th>
<th>min. bezpečnost (S_{0_{\text{min}}}) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>52,8</td>
<td>7,65</td>
<td>2</td>
</tr>
</tbody>
</table>

Pro výpočet statické bezpečnosti kuželíkového ložiska je třeba znát ekvivalentní statické zatížení ložiska. Na ložisko působí radiální i axiální síla, a proto se ekvivalentní statické zatížení vypočte ze vztahu dle [22].

Ekvivalentní statické zatížení ložiska

\[
Po = 0,5 \cdot D + 0,9 \cdot V \quad \Rightarrow \quad Po = 0,5 \cdot 10748,5 + 0,9 \cdot 1813,5
\]

\[
Po = 7006,4 \text{ N}
\]
Výpočet statické bezpečnosti ložiska

\[So = \frac{Co}{Po} \Rightarrow So = \frac{71000}{7006,4} \]

(4.57)

\[So = 10,13 \geq So_{min} \]

Bezpečnost kuželíkového ložiska vyhovuje.

4.9.2 Spodní ložisko

Na spodní ložisko působí pouze radiální síla, proto jsem zvolila válečkové ložisko typu NU. Vnější kroužek u provedení NU má dvě vodící příruby, zatímco vnitřní kroužek je zcela bez přírub. Axiaální posuv vzhledem k tělesu je přípustný v obou směrech. [21] Velikost ložiska vybírám podle již zvoleného normalizovaného čepu \(d = 40 \text{ mm} \).

Rozměry válečkového ložiska

Označení válečkového ložiska: NU 1008 ML

Tab. 4.5 Hlavní rozměry válečkového ložiska [21]

<table>
<thead>
<tr>
<th>vnitřní průměr (d_L) [mm]</th>
<th>vnější průměr (D_L) [mm]</th>
<th>šířka (B) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>68</td>
<td>15</td>
</tr>
</tbody>
</table>

Tab. 4.6 Vedlejší veličiny válečkového ložiska [21]

<table>
<thead>
<tr>
<th>statická únosnost (Co) [kN]</th>
<th>dynamická únosnost (C) [kN]</th>
<th>mezní únavové zatížení (Pu) [kN]</th>
<th>min. bezpečnost (So_{min}) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>25,1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pro výpočet statické bezpečnosti válečkového ložiska je třeba znát ekvivalentní statické zatížení ložiska. Na ložisko působí pouze radiální síla, a proto je ekvivalentní statické zatížení rovno přímo radiální síle ložiska.
Výpočet statické bezpečnosti ložiska

\[So = \frac{Co}{Po} \Rightarrow So = \frac{26000}{10748,6} \]

\[So = 2,42 \geq So_{\text{min}} \]

Bezpečnost válečkového ložiska vyhovuje.
5 Závěr

Seznámit se s danou problematikou týkající se jeřábů a zkonstruovat sloupový otočný jeřáb tak, aby se bezprostředně po výrobě dal použít, bylo cílem mé bakalářské práce. Tento cíl jsem splnila.

Jako zdvihací zařízení jeřábu jsem zvolila řetězový kladkostroj ABUCompact GM2 od firmy ABUS. Provedla jsem návrh a výpočet svařované konstrukce, výpočet kotevních šroubů a výpočet ložisek otočného závěsu jeřábu.

Výpočtová část zahrnovala pevnostní kontroly jednotlivých částí jeřábu (sloup, výložník, základová deska, kotevní šrouby, ložiska) a všech svarových spojů. Kontrolním výpočtem jednotlivých částí sloupového otočného jeřábu bylo zjištěno, že působením vnějších sil nedojde k překročení výpočtových napětí v žádné části konstrukce jeřábu (všechny výpočty vyšly menší než maximální dovolené napětí) a tudíž navržený sloupový otočný jeřáb všem zvoleným podmínkám vyhověl. Při výpočtu jsem vycházela z normy ČSN 27 0103, podle které jsem volila potřebné součinitele.

Závěrem bych ráda poděkovala Ing. Milanovi Výtiskovi za odborné vedení, ochotu, cenné rady, připomínky a předání zkušeností v průběhu řešení dané problematiky bakalářské práce.
6 Seznam použitých zdrojů

[1] ČSN 05 0120 Výpočet svarových spojů strojních konstrukcí platná od 1.5.1972

7 Seznam použitých obrázků

Obr. 2.1 Zdvihací zařízení pro zdvih automobilu [18] .. 7
Obr. 2.2 Jeřáb používaný v průmyslu [25] ... 8
Obr. 2.3 Portálový jeřáb [12] ... 9
Obr. 3.1 Sloupový otočný jeřáb [10] ... 10
Obr. 3.2 Neotočný sloup [16] .. 11
Obr. 3.3 Kruhová [10] a čtvercová základová deska [8] 11
Obr. 3.4 Betonový základ [10] .. 12
Obr. 3.5 Plnostěnný výložník [15] ... 12
Obr. 3.6 Příhradový výložník [8] ... 12
Obr. 3.7 Ručně otočné výložníky [15, 10] ... 13
Obr. 3.8 Elektricky ovládavý otočný výložník [7] ... 13
Obr. 3.9 Zarážka pevná [15] ... 14
Obr. 3.10 Zarážka rozebíratelná [5] ... 14
Obr. 3.11 Elektrický lanový kladkostroj [24] ... 14
Obr. 3.12 Elektrický řetězový kladkostroj [9] ... 14
Obr. 4.1 Řetězový kladkostroj ABUCompact [8] 16
Obr. 4.2 Kladkostroj ABUCompact GM2 [8] .. 16
Obr. 4.3 Vysvětlivky k typovému označení [8] .. 17
Obr. 4.4 Síly působící na výložník .. 19
Obr. 4.5 Průhyb výložníku .. 20
Obr. 4.6 Síly a moment působící na sloup .. 21
Obr. 4.7 Namáhání sloupu na vzpěr ... 23
Obr. 4.8 Síly působící na ložiska .. 25
Obr. 4.9 Svar sloup – základová deska ... 26
Obr. 4.10 Svar výložník .. 27
Obr. 4.11 Zjednodušený svarový obrazec .. 28
Obr. 4.12 Svar horní deska – sloup ... 29
Obr. 4.13 Svar spodní deska – sloup ... 31
8 Seznam použitých tabulek

Tab. 4.1 Zadané hodnoty .. 15
Tab. 4.2 Rozměry kladkostroje ABUCompact GM2 [8] .. 16
Tab. 4.3 Hlavní rozměry kuželíkového ložiska [22] .. 32
Tab. 4.4 Vedlejší veličiny kuželíkového ložiska [22] ... 32
Tab. 4.5 Hlavní rozměry válečkového ložiska [21] .. 33
Tab. 4.6 Vedlejší veličiny válečkového ložiska [21] .. 33
9 Seznam příloh

Příloha č. 1 Výpočet deformace a napětí výložníku pomocí MKP programu ANSYS Workbench

Příloha č. 2 Výpočet deformace a napětí výložníku pomocí MKP programu Inventor Professional 2008 (zjednodušená verze programu ANSYS)

Příloha č. 3 SB3KSS02-00 (sestavný výkres sloupového jeřábu)

Příloha č. 4 SB3KSS02-00.01 (výrobní výkres výložníku)

Příloha č. 5 SB3KSS02-00.04 (výrobní výkres příruby)
Výpočet výložníku pomocí MKP programu ANSYS Workbench – výpočet deformace
Výpočet výložníku pomoci MKP programu ANSYS Workbench – výpočet napětí

Sloupový otočný jeřáb pro nosnost 100 kg
Výpočet výložníku pomoci MKP programu Inventor Professional 2008 – výpočet deformace
Výpočet výložníku pomoci MKP programu Inventor Professional 2008 – výpočet napětí