Řízení robota pomocí počítačových periferií

bakalářská práce

Autor: Vladimír Kohut
Vedoucí bakalářské práce: Ing. Michal Řepka, Ph.D.

Ostrava 2009
Prohlášení

- Celou bakalářskou práci jsem vypravoval samostatně a uvedl jsem všechny podklady a literaturu.

- Byl jsem seznámen s tím, že na moji bakalářskou práci se plně vztahuje zákon č.121/2000 Sb – autorský zákon, zejména §35 – využití díla v rámci občanských a náboženských obřadů, v rámci školních představení a využití díla školního a §60 – školní dílo.

- Beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dálé jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, bakalářskou práci užít (§35 odst. 3).

- Souhlasím s tím, že jeden výtisk bakalářské práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že údaje o bakalářské práci, obsažené v záznamu o bakalářské práci, umístěné v příloze mé bakalářské práce, budou zveřejněny v informačním systému VŠB-TUO.

- Bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.

- Bylo sjednáno, že užit své dílo- bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem s VŠB-TUO, která je oprávněna v takovém případě ode mě požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne 20.4.2009 ........................................................................................................VLADIMÍR KOHUT
Abstrakt


Klíčová slova: programovací jazyk C, robo-pes, nespojitě řízení, logické řízení, pohony AI-701, WinAPI, sériová linka RS232

Sumary

The thesis deal with description and operating fourlegged robot, that is of compound from brick - box company Megarobotics. In those work are described some way movements like squat, sway, lift pettitoes, walking, side step to the side, turning. To to everyone movement are mentioned tables values that the set given to crossing positions. To bigger plasticity are movements accompanieds pictures. Robot be geared programme in PC. Communication PCs . with robot is mediate serial line type RS232. To be possible to corvée control, fecit am programme written in language C that the derive benefit from interface WinAPI, at communication with robot over serial line.

Keywords: programming language C, robo- dog, disconnected control, logic control, drives AI-701, serial link RS232
Seznam použitých zkratek a symbolů

$k$ – index periody

$PC$ – osobní počítač

$R$ - regulátor

$RS$ – regulovaná soustava

$t$ – čas

$T$ – perioda

$u(t)$ – akční veličina v čase $t$

$w(t)$ – cíl řízení v čase $t$

$WinAPI$ – Windows application interface (aplikační rozhraní Windows)

$y(t)$ – řízená veličina v čase $t$
1 Úvod


I přesto, že je robo-pec spíše jen hračkou, principy jeho pohybu a ovládání se dají uplatnit i na jiné typy robotů, které nacházejí široké spektrum uplatnění. Například při záchranářských pracích, kdy v sutiách doma překonají nejrůznější překážky a dostanou se i tam kam člověk ne.
2 Typ řízení

Pro řízení robo-psa se používá druh řízení, kterým je ovládání (také tzv. nespojité řízení, logické řízení).

U ovládání není bezprostřední účinek porovnáván s očekávaným výsledkem, proto nemůže eliminovat vliv nežádoucích poruch působících na soustavu a ani respektovat případné změny vlastností řízené soustavy [8].

V případě ovládání použitého k řízení našeho robo-psa se jedná o programové vnější ovládání. Programové, protože ovládací signály se vytvářejí v závislosti na čase pomocí časových spínačů a vnější, protože ovládací signály nezávisí na skutečných stavech ovládaného zařízení [8].

![Diagram](image)

Obr. 1 Blokové schéma obvodu programového vnějšího ovládání

Cílem řízení (w) je vykonání pohybu. Regulátorem (R) jsou hodnoty pozic potřebné k tomuto pohybu (viz kapitola 4). Akční veličinou (u) je zde rozhraní sériové linky typu RS232, která slouží k přenášení řídících hodnot. Regulovanou soustavou (RS) je samotný robo-pes představující seskupení všech čtrnácti pohonných jednotek. Jelikož se jedná o ovládání není zde zpětná vazba, která by upravovala cíl řízení na základě řízené veličiny (y).
3 Popis robo-ova

Robo-pes firmy Megarobotics je složen ze čtrnácti samostatných pohonných jednotek typu AI-701, které umožňují jeho pohyb a jsou paralelně napojeny na jednu sériovou linku typu RS232, jenž umožňuje paralelní napojení až 31 pohonných jednotek. Pohonné jednotky (pohony) fungují samostatně a jsou rozlišeny svým ID číslem (Obr. 2). ID číslo lze nastavit pomocí software, který dodává přímo výrobce.

Obr. 2 Rozmístění ID čísel jednotlivých pohonných jednotek

V této práci se využívá sestrojeného modelu robo-psa, který byl již upraven pro řízení sériovou linkou RS232 a ID čísla jednotlivých pohonů byla předem nastavena. Dané rozmístění a označení jednotlivých pohonných jednotek je pro další práci velmi důležité (viz. Obr. 2).

Obr. 3 Plošný spoj umístěný na 9V baterii na zádech robo-psa

3.1 Pohonné jednotky AI-701

Tyto pohonné jednotky nabízejí možnost pohybu pro nejrůznější zařízení. Lze je použít při skládání mnoha druhů robotů, kteří pro pohyb využívají ať už kola (rotačního pohybu) nebo nohy (posuvného pohybu). Pohonné jednotky AI-701 v sobě integrují pohon, převodovku, řídící jednotku a měřící člen pro snadné připojení a ovládání. Ovládání probíhá po sériové lince typu RS232, na kterou jsou pohonné jednotky paralelně připojeny. Každá pohonná jednotka obsahuje dva konektory (Obr. 4). Jeden konektor pro připojení na sériovou linku a druhý pro připojení další pohonné jednotky. Tím je možné propojovat jednotlivé pohonné jednotky mezi sebou a tak minimalizovat množství potřebných vodičů. Pro správnou komunikaci je nutné každé pohonné jednotce zadat její ID (identické) číslo, kterým se bude odlišovat od ostatních [3], [4].

Obr. 4 Konektory sériové linky pohonné jednotky AI-701 [4]

Pohonné jednotky umožňují dva módy pohybu. Mód rotační s rozsahem 360 stupňů a mód kontrolní s rozsahem 0 až 332 stupňů. Rotační mód nabízí až 16 rychlostí pohybu, zatím co kontrolní mód nabízí jen 5 rychlostí pohybu, ale za to umožňuje přechod (nastavení) na přesně danou pozici a její kontrolu (udržování této pozice). Kontrolní mód nabízí dva stupně přesnosti. Nízký stupeň přesnosti s rozsahem 0 až 332 stupňů (Obr. 5) a vysoký s rozsahem 0 až 166 stupňů. Hodnota nastavující danou pozici není ve stupnících, ale je určena hodnotou v rozmezí 0 až 254. U nízkého stupně přesnosti představuje jedna
jednotka 1,307 stupně, u vysokého 0,654 stupně. Pohonné jednotky také umožňují nastavení rozsahu, na který budou reagovat změnou pozice (viz. kapitola 3.2.1) [4].

Všechna nastavení pohoných jednotek včetně přenosové rychlosti sérové linky (v baudech) je možné provést pomocí software (AIMotorTool 1.26 - viz přílohy na CD \Program\AIMotorTool 1.26.zip), který je distribuován výrobcem (Megarobotics) [2].

Pro pohyby robo-PSA jsem zvolil kontrolní mód s nízkým stupněm (Obr. 5), neboť pokrývá větší uhlový rozptyl a tím nabízí efektivnější možnosti pohybu. Dále využívám ve své práci pohybů vytvořených právě pro kontrolní mód z nízkým stupněm přesnosti (viz. kapitola 4).

3.2 Možnosti pohybu pohoných jednotek robo-PSA

Pohonné jednotky AI-701 fungují samostatně, jak už bylo dříve zmíněno a nastavují svou polohu zcela automaticky podle čísla, které obdrží. V případě kontrolního módu mohou obdržet číslo v rozmezí 0 až 254. Toto číslo představuje polohu, jenž má pohonná jednotka zaujmout. Při poslání čísla v rozmezí 0 až 254 na dané ID pohonné jednotky, dojde k jejich natočení do polohy dané těmito číslem. Hodnota 0 představuje jednu mezní polohu a hodnota 254 druhou mezní polohu, do které se může pohonná jednotka přesunout. S postupně se zvyšujícím číslem přechází pohonná jednotka z jedné mezní polohy do druhé.

Pro lepší pochopení pohyblivosti robo-PSA jsem vykreslil jeho drátový model. Jedná se o model bodu, ve kterých dochází k natočení (pohybu) pohoných jednotek. Tyto body
tvoří základ kostry robo-psa v kartézském souřadném systému \([x, y, z]^T\). Body jsou spojeny čarami tak, aby tvořili drátový model kostry robo-psa (Obr. 6). U každého bodu jsem uvedl jeho souřadnice \([x, y, z]^T\). Jako počátek souřadného systému jsem určil průsečík úhlopříček obdélníku znázorňujícího základnu těla robo-psa (plocha na niž je umístěna baterie a plošný spoj).

**Obr. 6 Drátový model robo-psa se souřadnicemi bodů**

Pro přehlednost a snadnou orientaci je důležité znát pohyblivost a možnosti jednotlivých pohonných jednotek. Proto jsem ve druhém drátovém modelu vykreslil pomocí šipek směry pohybů pohonných jednotek (Obr. 7). Na každé straně šipky je uvedeno ID číslo pohonné jednotky a její maximální či minimální hodnota (0 či 254) v daném okrajovém bodě.
Drátové modely (Obr. 6 a Obr. 7) jsem vytvořil v programu SketchUp od Google. Program je zdarma (Freeware), velice jednoduchý, přehledný a snadno dostupný. SketchUp rozlišuje osy x,y,z barvou a plnou nebo přerušovanou čárou. Plná čára je použita pro kladné hodnoty a přerušovaná pro záporné. Osa x je vykreslena červenou barvou, osa y zelenou a osa z modrou barvou. Oba dva drátové modely jsou vykresleny ve skutečném měřítku v milimetrech.

3.2.1 Vlastní mezní hodnoty pohonných jednotek

Není vhodné, aby všechny pohonné jednotky zaujímaly polohy od 0 do 254, neboť v určitých hodnotách jim v tom brání další pohonné jednotky nebo jiné části robo-psa. V případě nastavení takovéto hodnoty by došlo k polámaní plastových převodových koleček uvnitř pohonných jednotek a tím k jejich poškození. Proto také výrobce dodává software, který kromě nastavení ID čísla pohonných jednotek, dokáže nastavit mezní hodnoty (hranice) poloh pohonných jednotek. Pokud chceme zadat mezní hodnoty, tak je musíme zadat jednotlivě pro každou pohonnou jednotku. Zadání hranic nám umožní
ochránit pohonné jednotky před případným nedbalým či náhodným nastavením hodnoty, ve které by došlo k jejich poškození. Pokud nastavíme hranice např. od hodnoty 60 do 120, pohonná jednotka nebude na hodnoty nižší než 60 a větší než 120 reagovat.

<table>
<thead>
<tr>
<th>ID</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>128</td>
<td>228</td>
</tr>
<tr>
<td>1</td>
<td>121</td>
<td>207</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>208</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>203</td>
</tr>
<tr>
<td>4</td>
<td>126</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>126</td>
<td>226</td>
</tr>
<tr>
<td>6</td>
<td>132</td>
<td>238</td>
</tr>
<tr>
<td>7</td>
<td>171</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>201</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>238</td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td>206</td>
</tr>
<tr>
<td>11</td>
<td>136</td>
<td>242</td>
</tr>
<tr>
<td>12</td>
<td>83</td>
<td>174</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>182</td>
</tr>
</tbody>
</table>

Výrobce ke své stavebnici dodává také programy s automaticky předefinovávanými pohyby pro různé varianty stavebnc. Z programu pro automatické pohyby robo-psa jsem využil tabulky hodnot, které představují jednotlivé pohyby. Zkoušel jsem jednotlivé mezní hodnoty odhadnout, ale po jejich aplikaci již nebylo možné použít některé předefinované pohyby z programu od výrobce, protože některé pohyby obsahovaly hodnoty, které nebyly v povoleném intervalu mezních hodnot. Proto jsem se rozhodl stanovit mezní hodnoty na základě tabulek, jenž představují jednotlivé pohyby. Určil jsem pro každou pohonnou jednotku zvlášť nejnižší a nejvyšší hodnotu, která byla použita v předefinovaných pohybech od výrobce. Na základě těchto hodnot jsem určil mezní polohy pohonných jednotek tak, aby fungovaly při zadaní hodnot pro jednotlivé pohyby, které jsou uvedeny v programu pro robo-psa a zároveň, aby nedošlo k poškození pohonných jednotek při náhodném nastavení jiné hodnoty. Tyto mezní hodnoty jsem nastavil a uložil do jednotlivých pohonných jednotek pomocí již zmínovaného software. Mezní polohy pohonných jednotek jsou zapsány v tabulce (viz. tabulka 1).
4 Jednotlivé pohyby robo-psa

Jednotlivé pohyby jsou vytvořeny pomocí měničích se pozic každé pohonné jednotky. Tyto pozice jsou sletem hodnot každého pohonu. Proto jsou jednotlivé pohyby tabulkami čísel, kde jsou ve sloupcích měničí se hodnoty pozic pro každou pohonnou jednotku. Počet řádků zaleží na složitosti pohybu a jeho plynulosti.

Vytvoření takového pohybu může být někdy složité a časově náročné. Při jednoduchých pohybech jako např. zavrtění hlavou, se nejedná o nic složitého, protože stačí nalézt hodnoty dvou pohonných jednotek, které se starají o pohyb hlavy a poslat je tak, aby se hlava přesouvala s jedné polohy do druhé. Do zbylých pohonných jednotek nemusíme posílat žádné hodnoty nebo můžeme poslat 0, na které nebudou pohonné jednotky reagovat díky nastaveným mezním hodnotám. Při vytváření složitějších pohybů jako např. chůze, je nutné zahrnout hodnoty skoro všech pohonných jednotek. Musíme vytvořit takové kombinace a následnosti hodnot, které budou počítat s rovnováhou při daném pohybu.

Kromě přesných hodnot pozic daného pohybu musíme zvolit rychlost, s jakou se budou pohonné jednotky přesouvat na novou pozici, a také periodu mezi odesílanými hodnotami pozic (čas než bude odeslán další řádek tabulky). Na výběr máme pět rychlostí pohybu. Čím menší stupeň pohybu zvolíme, tím rychleji se budou pohonné jednotky přesouvat na nové pozice. Perioda, která odesílá hodnoty pozic jednotlivých pohonných jednotek se často udává v milisekundách.

Tabulky, ze kterých jsou vytvořeny pohyby v této práci, jsem převzal z programu od výrobce. Z tabulek popisujících jednotlivé pohyby můžeme zjistit, které pohonné jednotky se na pohybu v daném čase podílejí, neboť pohonné jednotky, kterým je posílaná hodnota 0 zůstávají na původních pozicích (nepohybují se).

Každý pohyb závisí také na podložce, protože na příliš hladké podložce bude pohyb málo efektivní a naopak na podložce kladoucí příliš velký odpor (např. gumové) bude pohyb pohonných jednotek omezován odporem podložky, neboť většina pohybů má klouzavý charakter. Konkrétním příkladem je pokládání pokrčených nohou zpátky na podložku, nohy se dotýkají podložky dříve než je dokončen pohyb a mají tendencí se ještě přisouvat, ale to jim zmíněný odpor podložky nedovolí.
Po nahlédnutí do tabulek daného pohybu a do drátového modelu znázorňujícího směr pohybu pohoných jednotek (Obr. 7), lze ověřit popsaný pohyb a také velikosti dílčích pohybů (ze znalostí, že jedna jednotka představuje 1,307 stupně).

4.1 Základní pozice stání

Pozice stání je výchozí poloha znázorněna na Obr. 8, ze které začínají všechny pohyby. Na obrázku můžeme vidět polohu ze všech čtyř stran (zprva, zleva, zepředu, zezadu).

Obr. 8 Základní pozice stání

Jelikož se nejedná o pohyb, ale o jednu konkrétní polohu, má tabulka jen jeden řádek (tabulka 2). Pro nastavení této pozice byl použit 3. stupeň rychlosti pohoných jednotek (viz. kapitola 3.1).

<table>
<thead>
<tr>
<th>t = k.T</th>
<th>Pozice pohoných jednotek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID 0</td>
</tr>
<tr>
<td>0</td>
<td>163</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 8

Původní tabulka (viz. 2 příloha 2) měla pět stejných řádků, proto je zbytečné uvádět zde všechny. Domnívám se, že důvodem opakování řádku je správné a přesné nastavení polohy. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 120 milisekund.

4.2 Zamávání

Tento pohyb se skládá ze dvou pohybů. Z pohybu dřepnutí a mávání. Pohyb mávání nelze provést dokud se neprovede pohyb dřepnutí. Pokud by robo-pes nedřepel, neudržel by při pohybu mávání stabilitu a přepadl by dopředu na pravou nohu, kterou by mával. Program od výrobce, z kterého jsem získal tabulky popisující pohyby, obsahoval ještě tabulku popisující pohyb postavení, která sloužila k tomu, aby se robo-pes vrátil s pozice dřepnutí do základní pozice stání (viz. 3 příloha 3). Tato tabulka byla zbytečná,
neboť lze využít tabulky dřepnutí, ze které posíláním posledního až prvního řádku (od posledního k prvnímu) docílíme stejného efektu. Proto zde popisují jen pohyb dřepnutí a mávání.

Video celého pohybu zamávání je uloženo v přílohách na CD (\Video\Zamávání.AVI).

4.2.1 Dřepnutí

Dřepnutí začíná ze základní pozice stání (viz kapitola 4.1). Úkolem tohoto pohybu je pokrčit zadní nohy a tím si dřepnout.


Při provádění dřepnutí byl použit 4. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 120 milisekund.

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>163</td>
<td>0</td>
<td>157</td>
<td>100</td>
<td>0</td>
<td>161</td>
<td>162</td>
<td>0</td>
<td>98</td>
<td>157</td>
<td>0</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>175</td>
<td>0</td>
<td>163</td>
<td>94</td>
<td>0</td>
<td>173</td>
<td>177</td>
<td>0</td>
<td>90</td>
<td>165</td>
<td>0</td>
<td>181</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>0</td>
<td>168</td>
<td>89</td>
<td>0</td>
<td>183</td>
<td>189</td>
<td>0</td>
<td>85</td>
<td>170</td>
<td>0</td>
<td>193</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>0</td>
<td>170</td>
<td>87</td>
<td>0</td>
<td>188</td>
<td>199</td>
<td>0</td>
<td>80</td>
<td>175</td>
<td>0</td>
<td>203</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>181</td>
<td>0</td>
<td>166</td>
<td>91</td>
<td>0</td>
<td>179</td>
<td>208</td>
<td>0</td>
<td>76</td>
<td>179</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>170</td>
<td>0</td>
<td>161</td>
<td>96</td>
<td>0</td>
<td>168</td>
<td>217</td>
<td>0</td>
<td>72</td>
<td>183</td>
<td>0</td>
<td>221</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 9
Když se podíváme na tabulku popisující dřepnutí (tabulka 3) zjistíme, že při tomto pohybu nejsou použité pohonné jednotky ID 1, 4, 7, 10, 12 a 13, čili pohonné jednotky umožňující pohyb nohou do boků a pohyb hlavy. Využité jsou pohonné jednoty ID 0, 2, 3, 5, 6, 8, 9 a 11, které umožňují pohyb nohou směrem dopředu a dozadu v ramenech a kolenech. Pohyby pohoných jednotek ID 0, 2, 3 a 5 jsou malé a vcelku nepodstatné. Dělají pohyb přirozenější a plynulejší. ID 6 ohýbá zadní pravou nohu v kolenském směru dozadu, aby si dřepnul. ID 8 posouvá zadní pravou nohu v ramenním dopředu. ID 9 posouvá zadní levou nohu v ramenním dopředu. ID 11 ohýbá zadní levou nohu v kolenském dozadu, aby si dřepnul.

4.2.2 Mávání

Tento pohyb navazuje na pohyb dřepnutí. Úkolem tohoto pohybu je zvednout pravou přední nohu a zamávat s ní. Tabulka popisující pohyb zvednutí nožičky původně čítala 25 řádků (viz. přílohy). Opakovalo se v ní čtyřikrát šest řádků. Poslední řádek pokládal nožičku zpátky na zem, to však bylo zbytečné, neboť položení na zem zajistí i hodnoty v tabulce popisující dřepnutí. Proto zde uvádíme jen šest podstatných řádků zajišťujících mávání (tabulka 4).

Na začátku pohybu, v čase 0T, je zvednuta pravá přední noha posunutím směrem dopředu v ramení (Obr. 10). Jelikož robo-pes dřepí je zajištěna rovnováha. Po té se noha začne ohýbat v kolenském směru dopředu (nahoru) do maximální polohy, které dosáhne v čase 5T (Obr. 10). Po té se celý proces opakuje. První řádek tabulky (čas 0T) vrátí natočení nohy v kolenu zpátky a ta se pak začne zase ohýbat dopředu (nahoru).

![Obr. 10 Důležité pozice při mávání](image)

Na Obr. 10 můžeme vidět pozici v čase 0T, kdy dojde k zvednutí pravé přední nohy a pozici v čase 5T, kdy dojde k mávnutí nohou v koleni.
Při mávání je použit 4. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 120 milisekund.

<table>
<thead>
<tr>
<th>Pozice pohoných jednotek při mávání</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = k.T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>159</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>167</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>176</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>183</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>191</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>92</td>
<td>0</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 10

Když se podíváme na tabulku popisující mávání (tabulka 4) zjistíme, že při tomto pohybu nejsou použitě pohoně jednotky ID 1, 3 až 13. Využité jsou jen pohoně jednoty ID 0 a 2, které pohybuji pravou přední nohou dopředu a dozadu v rameni a koleni. ID 0 ohýbá přední pravou nohu v koleni směrem dopředu (nahoru) a zpět. ID 2 posune přední pravou nohu v rameni dopředu, čímž ji zvedne.

### 4.3 Zvednutí nožičky

Zvednutí nožičky začíná ze základní pozice stání (viz kapitola 4.1) a také touto pozicí končí. Tabulka popisující tento pohyb měla čtyřicet osm řádků (viz. přílohy). Od dvacátého prvního řádku (čas 20T) se však hodnoty opakují, aby se opakovalo otáčení hlavou a také aby se robo-pes vrátil do základní pozice stání. Proto zde uvádíme jen zkrácenou tabulku s prvními dvaceti jedna řádky (tabulka 5).

Zvednutí nožičky má tři fáze. V první fázi se robo-pes předkloní (Obr. 11 v čase 5T). Posune všechny čtyři nohy v ramenech dozadu, čímž se posune celé tělo jemně dopředu a větší část váhy se přenese na přední nohy. V druhé fázi zvedne zadní levou nohu (Obr. 11 v čase 5T), což je možné díky přenesení váhy na přední nohy v první fázi, jinak by robo-pes přepadl dozadu na zvednutou nohu. Zvednutí nohy je provedeno jejím vytočím v rameni doleva. V třetí fázi jen pohybuje hlavou doprava a doleva (Obr. 11 v čase 14T až 20T).

Při zvednutí nožičky je použit 4. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 70 milisekund.

<table>
<thead>
<tr>
<th>t = k.T</th>
<th>Pozice pohonných jednotek</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>ID 0</td>
</tr>
<tr>
<td>0</td>
<td>163</td>
</tr>
<tr>
<td>1</td>
<td>163</td>
</tr>
<tr>
<td>2</td>
<td>162</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
</tr>
<tr>
<td>5</td>
<td>152</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačené tučně a modře představují pozice zobrazené na Obr. 11
Když se podíváme na tabulku popisující zvednutí nožičky (tabulka 5) zjistíme, že při tomto pohybu není použitá jen pohonná jednotka ID 12, zbytek je alespoň v určitých fázích pohybu využíván.


V třetí fázi je využívána jen pohonná jednotka ID 13, která pohybuje hlavou doleva a doprava. Pohyb je proveden ze středu doprava a po té doleva.

Video celého pohybu zvednutí nožičky je uloženo v přílohách na CD (\Video\Zamávání.AVI).

4.4 Chůze

Chůze umožňuje pohyb robo-pes dopředu a dozadu vůči svému okolí. Z programu od výrobce, ze kterého jsem získal tabulky popisující jednotlivé pohyby, jsem vybral plživou chůzi, protože má nejefektivnější pohyb dopředu. Tabulky popisující chůzi dozadu v programu nebyly, ale lze použít tabulky chůze dopředu.

Pohyb dopředu a dozadu je symetrický, mění se jen pořadí odeslaných hodnot do jednotlivých pohonných jednotek. Pořadí je reverzibilní (opačné), první řádek tabulky se stane posledním a poslední se stane prvním. Pokud je pohyb popsán více tabulkami (jako v tomto případě), tak je nutné otočit také pořadí tabulek.

Uvádím pouze chůzi dopředu, protože chůze dozadu je s ní prakticky totožná. Chůze dopředu se rozděluje na tři části a každá část je popsána tabulkou.

Video celého pohybu chůze dopředu je uloženo v přílohách na CD (\Video\Chůze dopředu.AVI).

4.4.1 Chůze vpřed 1. část

První část chůze dopředu začíná ze základní pozice stání (viz kapitola 4.1) a obsahuje jen čtvrtinu pohyblivé složky z druhé části., jedná se spíše o přípravnou fázi pro

2009  15
druhou část chůze dopředu. Úkolem této části pohybu je pokrčit všechny nohy, skloní hlavu a udělat výkrok.

Při výkroku přesune robo-pes přední pravou a zadní levou nohou dopředu. To se provese tak, že se přední pravá a zadní levá noha posune v rameni dopředu. Přední levá a zadní pravá noha se posune v rameni dozadu. Při tom se nohy do půlky pohybu ohýbají v koleni a pak se zase vrací. Přední pravá a zadní levá noha se ohnou hodně, zatímco přední levá a zadní pravá noha se ohnou mnohem méně. Všechny nohy se v kolenech ohýbají vždy směrem ven během celé chůze dopředu (u předních noh dopředu a u zadních nohou dozadu). Nohy, které se nadzvednou výše provedou obloukový krok (zvednou se a dotknou se podložky více vpředu).

**Obr. 12 Důležité pozice při 1.části chůze vpřed**

Na Obr. 12 můžeme vidět důležité pozice z chůze vpřed z pravé i z levé strany. Tyto pozice jsou vyznačeny v dané tabulce (tabulka 6). V čase 0T můžeme vidět, jak robo-pes pokrčil všechny nohy a skloní hlavu. V čase 2T můžeme vidět, jak pokrčil a přesunul přední pravou a zadní levou nohu dopředu mezitím, co přední levou a zadní pravou nohu pokrčil jen neznatelně a přesunul je dozadu. V čase 5T můžeme vidět pozici po dokončení kroku.

Při provádění této části pohybu byl použit 3. stupeň rychlosti pohoných jednotek. **Perioda** (T), s kterou jsou odesílané jednotlivé řádky tabulky činí 20 milisekund.


Když se podíváme na tabulku první části chůze dopředu (tabulka 6) zjistíme, že při této části pohybu nebyly použité pohonné jednotky ID 1, 4, 7, 10 a 13. Využití jsou pohonné jednoty ID 0, 2, 3, 5, 6, 8, 9, 11 a 12. ID 0 ohýbá přední pravou nohu v koleni, aby ji nadzvedl. ID 2 posouvá přední pravou nohu v rameni dopředu. ID 3 posouvá přední levou nohu v rameni dozadu. ID 5 ohýbá přední levou nohu v koleni, aby ji pokrčil. ID 6 ohýbá zadní pravou nohu v koleni, aby ji pokrčil. ID 8 posouvá zadní pravou nohu v rameni dozadu. ID 9 posouvá zadní levou nohu v rameni dopředu. ID 11 ohýbá zadní levou nohu v koleni, aby ji nadzvedl. ID 12 skloní hlavu robo-psa dolů.

### 4.4.2 Chůze vpřed 2. část

Tato část pohybu navazuje na první část chůze dopředu a je nejefektivnější částí celého chůze dopředu. Posouvá robo-psy o největší vzdálenost, o celé dva kroky. Počáteční a konečná pozice této části je stejná, díky tomu a také své oddělenosti od ostatních částí se může opakovat a tím prodlužovat urazenou vzdálenost.

Pro snadné pochopení chůze dopředu si můžeme představit pohyb předních a zadních nohou vzdálenost. Přední nohy v páru vykonávají obdobný pohyb při chůzi dopředu jako u člověka. Nadzvedně se pravá noha a pohybuje se dopředu, pak se dotkne podložky. Při realizaci pohybu nadzvednuté nohy se pravá noha posouvá vůči tělu dopředu a levá dozadu. Tímto pohybem urazíme vzdálenost jednoho kroku. Levá noha se dotýká podložky ve stejném místě jako na začátku, pravá noha se posune dopředu o jeden krok a tělo robo-psy je uprostřed. Takže vzdálenosti jeden krok vlastně myslíme pohyb vždy nejzazšího (konečného) bodu. Když chceme udělat další krok nadzvedneme tentokrát levou nohu a posuneme ji dopředu, stejně jako předtím pravou, a tím se dostaneme do vzdálenosti dvou.

Jelikož se jedná o plíživou chůzi má při ní robo- pes skloněnou hlavu a pokrčené nohy, které ještě více při každém kroku pokrčí.

Na Obr. 13 můžeme vidět důležité pozice z chůze vpřed z pravé i z levé strany. Tyto pozice jsou vyznačeny v dané tabulce (tabulka 7). V čase 5T můžeme vidět, jak pokrčil a přesunul přední levou a zadní pravou nohu dozadu, což je přední pravou a zadní levou nohu pokrčil jen neznatelně a přesunul do dozadu. V čase 11T můžeme vidět pozici po dokončení kroku. V čase 23T můžeme vidět, jak pokrčil a přesunul přední pravou a zadní levou nohu dozadu, což je přední levou a zadní pravou nohu pokrčil jen neznatelně a přesunul do dozadu, čímž se dostal do stejné pozice jako na začátku (Obr. 12 v čase 5T).

Při provádění této části pohybu byl použit 3. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 20 milisekund.
tabulka 7 Pozice pohonných jednotek při chůzi vpřed 2. část

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190</td>
<td>154</td>
<td>71</td>
<td>0</td>
<td>188</td>
<td>189</td>
<td>0</td>
<td>101</td>
<td>186</td>
<td>0</td>
<td>193</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>1</td>
<td>192</td>
<td>158</td>
<td>70</td>
<td>0</td>
<td>194</td>
<td>195</td>
<td>0</td>
<td>96</td>
<td>185</td>
<td>0</td>
<td>195</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>2</td>
<td>194</td>
<td>161</td>
<td>70</td>
<td>0</td>
<td>199</td>
<td>200</td>
<td>0</td>
<td>91</td>
<td>183</td>
<td>0</td>
<td>197</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>195</td>
<td>165</td>
<td>71</td>
<td>0</td>
<td>203</td>
<td>204</td>
<td>0</td>
<td>86</td>
<td>180</td>
<td>0</td>
<td>198</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>196</td>
<td>168</td>
<td>73</td>
<td>0</td>
<td>207</td>
<td>208</td>
<td>0</td>
<td>81</td>
<td>178</td>
<td>0</td>
<td>199</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>197</td>
<td>172</td>
<td>75</td>
<td>0</td>
<td>211</td>
<td>212</td>
<td>0</td>
<td>76</td>
<td>175</td>
<td>0</td>
<td>200</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>197</td>
<td>175</td>
<td>78</td>
<td>0</td>
<td>211</td>
<td>212</td>
<td>0</td>
<td>73</td>
<td>172</td>
<td>0</td>
<td>200</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>196</td>
<td>178</td>
<td>83</td>
<td>0</td>
<td>207</td>
<td>208</td>
<td>0</td>
<td>71</td>
<td>168</td>
<td>0</td>
<td>199</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>8</td>
<td>195</td>
<td>180</td>
<td>88</td>
<td>0</td>
<td>203</td>
<td>204</td>
<td>0</td>
<td>69</td>
<td>165</td>
<td>0</td>
<td>198</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>9</td>
<td>194</td>
<td>183</td>
<td>93</td>
<td>0</td>
<td>199</td>
<td>200</td>
<td>0</td>
<td>68</td>
<td>161</td>
<td>0</td>
<td>197</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>10</td>
<td>192</td>
<td>185</td>
<td>98</td>
<td>0</td>
<td>194</td>
<td>195</td>
<td>0</td>
<td>68</td>
<td>158</td>
<td>0</td>
<td>195</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>190</td>
<td>186</td>
<td>103</td>
<td>0</td>
<td>188</td>
<td>189</td>
<td>0</td>
<td>69</td>
<td>154</td>
<td>0</td>
<td>193</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>12</td>
<td>190</td>
<td>186</td>
<td>103</td>
<td>0</td>
<td>188</td>
<td>189</td>
<td>0</td>
<td>69</td>
<td>154</td>
<td>0</td>
<td>193</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>13</td>
<td>196</td>
<td>187</td>
<td>99</td>
<td>0</td>
<td>190</td>
<td>191</td>
<td>0</td>
<td>70</td>
<td>159</td>
<td>0</td>
<td>199</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>14</td>
<td>201</td>
<td>187</td>
<td>96</td>
<td>0</td>
<td>192</td>
<td>193</td>
<td>0</td>
<td>72</td>
<td>164</td>
<td>0</td>
<td>204</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>15</td>
<td>205</td>
<td>186</td>
<td>92</td>
<td>0</td>
<td>193</td>
<td>194</td>
<td>0</td>
<td>75</td>
<td>169</td>
<td>0</td>
<td>208</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>16</td>
<td>209</td>
<td>184</td>
<td>89</td>
<td>0</td>
<td>194</td>
<td>195</td>
<td>0</td>
<td>77</td>
<td>174</td>
<td>0</td>
<td>212</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>17</td>
<td>213</td>
<td>182</td>
<td>85</td>
<td>0</td>
<td>195</td>
<td>196</td>
<td>0</td>
<td>80</td>
<td>179</td>
<td>0</td>
<td>216</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>18</td>
<td>213</td>
<td>179</td>
<td>82</td>
<td>0</td>
<td>195</td>
<td>196</td>
<td>0</td>
<td>83</td>
<td>182</td>
<td>0</td>
<td>216</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>19</td>
<td>209</td>
<td>174</td>
<td>79</td>
<td>0</td>
<td>194</td>
<td>195</td>
<td>0</td>
<td>87</td>
<td>184</td>
<td>0</td>
<td>212</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>20</td>
<td>205</td>
<td>169</td>
<td>77</td>
<td>0</td>
<td>193</td>
<td>194</td>
<td>0</td>
<td>90</td>
<td>186</td>
<td>0</td>
<td>208</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>21</td>
<td>201</td>
<td>164</td>
<td>74</td>
<td>0</td>
<td>192</td>
<td>193</td>
<td>0</td>
<td>94</td>
<td>187</td>
<td>0</td>
<td>204</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>22</td>
<td>196</td>
<td>159</td>
<td>72</td>
<td>0</td>
<td>190</td>
<td>191</td>
<td>0</td>
<td>97</td>
<td>187</td>
<td>0</td>
<td>199</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>23</td>
<td>190</td>
<td>154</td>
<td>71</td>
<td>0</td>
<td>188</td>
<td>189</td>
<td>0</td>
<td>101</td>
<td>186</td>
<td>0</td>
<td>193</td>
<td>165</td>
<td>0</td>
<td>165</td>
</tr>
</tbody>
</table>

Pozn.: Řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 13

Když se podíváme na tabulku druhé části chůze dopředu (tabulka 7) zjistíme, že při této části pohybu nejsou použity pohoně jednotky ID 1, 4, 7, 10 a 13. Využity jsou pohoně jednoty ID 0, 2, 3, 5, 6, 8, 9, 11 a 12. Tabulku si můžeme pomyslně rozdělit na dvě části. První část bude končit v čase 11T (první krok) a druhá bude začínat v čase 12T (druhý krok).

První část představuje první krok, v němž je na začátku přední pravá a zadní levá noha posunuta dopředu a přední levá a zadní pravá noha posunuta dozadu. Dopředu vykročí přední levá a zadní pravá noha. Při prvním kroku jsou využité pohoně jednoty ID 0, 2, 3, 5, 6, 8, 9, 11 a 12. ID 0 ohýbá přední pravou nohu v koleni, aby ji pokrčil. ID 2 posouvá přední pravou nohu v rameni dozadu. ID 3 posouvá přední levou nohu v rameni dopředu. ID 5 ohýbá přední levou nohu v koleni, aby ji nadzvedl. ID 6 ohýbá zadní pravou...
nohu v kolení, aby ji nadzvedl. ID 8 posouvá zadní pravou nohu v rameni dopředu. ID 9 posouvá zadní levou nohu v rameni dozadu. ID 11 ohýbá zadní levou nohu v kolení, aby ji pokrčil. ID 12 skloní hlavu robo-psa dolů.

Druhá část představuje druhý krok, ve kterém je na začátku přední levá a zadní pravá noha posunuta dopředu a přední pravá a zadní levá noha posunuta dozadu. Dopředu vykročí přední pravá a zadní levá noha. Při druhém kroku jsou využité stejné pohonné jednoty jako při prvním. ID 0 ohýbá přední pravou nohu v kolení, aby ji nadzvedl. ID 2 posouvá přední pravou nohu v rameni dopředu. ID 3 posouvá přední levou nohu v rameni dozadu. ID 5 ohýbá přední levou nohu v kolení, aby ji pokrčil. ID 6 ohýbá zadní pravou nohu v kolení, aby ji pokrčil. ID 8 posouvá zadní pravou nohu v rameni dopředu. ID 9 posouvá zadní levou nohu v rameni dozadu. ID 11 ohýbá zadní levou nohu v kolení, aby ji nadzvedl. ID 12 skloní hlavu robo-psa dolů.

**4.4.3 Chůze vpřed 3. část**

Třetí část chůze dopředu navazuje na druhou část nebo může navazovat i na první část, neboť obě tyto části končí stejnou pozicí. V této části je obsažena jen čtvrtina pohyblivé složky z druhé části. Úkolem této části je přikročit nohy robo psa, aby byly souměrně (Základní pozice stání s pokrčenýma nohama a skloněnou hlavou). K tomu by mola být použita i první část chůze dopředu, kdyby byla použita v opačném pořadí (od posledního k prvnímu řádku tabulky), ale výsledkem by byl malý krok zpět, což by bylo z pohledu celé chůze dopředu neefektivní. Proto je zde třetí část, která zajišťuje alespoň menší posun dopředu.

Přikročení se provede tak, že přední levá noha přikročí k levé a zadní pravá noha přikročí k levé. Tento pohyb se vykoná, když se přední levá a zadní pravá noha posune v ramení dopředu a přední pravá a zadní levá noha se posune v ramení dozadu. Při tom se všechny nohy do půlky pohybu ohýbají v kolení a pak se zase vrací. Přední levá a zadní pravá noha se ohne hodně, zatímco přední pravá a zadní levá noha se ohne mnohem méně.
Na Obr. 14 můžeme vidět důležité pozice z chůze vpřed z pravé i z levé strany. Tyto pozice jsou vyznačeny v dané tabulce (tabulka 8). V čase 0T můžeme vidět pozici robo-psa po dokončení druhé části chůze vpřed. Přední pravá a zadní levá noha je vysunuta dopředu, mezitím co přední levá a zadní pravá noha je posunuta dozadu. V této pozici je robo-pes připraven udělat plný krok dopředu. Úkolem tohoto pohybu je však udělat jen takový krok, aby byly nohy rovnoměrně vedle sebe jako v základní pozici stání (viz. kapitola 4.1). V čase 3T můžeme vidět, jak pokrčil a přesunul přední levou a zadní pravou nohu dopředu mezitím, co přední pravou a zadní levou nohu pokrčil jen nesnadno a přesunul je dozadu. V čase 5T můžeme vidět pozici po dokončení menšího kroku vpřed, kdy jsou srovnány přední a zadní nohy. Tento pohyb již nezájistí, aby robo-pes narovnal všechny nohy a hlavu a tím se dostal do základní pozice stání.

Při provádění této části pohybu byl použit 3. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 20 milisekund.
Když se podíváme na tabulku třetí části chůze dopředu (tabulka 8) zjistíme, že při této části pohybu nebyly použité pohonné jednotky ID 1, 4, 7, 10 a 13. Využité jsou pohonné jednoty ID 0, 2, 3, 5, 6, 8, 9, 11 a 12. ID 0 ohýbá přední pravou nohu v kolení, aby ji nadzvedl. ID 2 posouvá přední pravou nohu v rameni dopředu. ID 3 posouvá přední levou nohu v rameni dozadu. ID 5 ohýbá přední levou nohu v kolení, aby ji pokrčil. ID 6 ohýbá zadní pravou nohu v kolení, aby ji pokrčil. ID 8 posouvá zadní levou nohu v kolení, aby ji nadzvedl. ID 9 posouvá zadní levou nohu v rameni dopředu. ID 11 ohýbá zadní levou nohu v kolení, aby ji nadzvedl. ID 12 skloní hlavu robo-psa dolů.

Po provedení celé chůze dopředu se provede nastavení na základní pozici stání, jelikož se na konci celé chůze dopředu robo-pes nevrátí z přikrčení do původní pozice.

### 4.5 Úkrok do boku

Při tomto pohybu se robo-pes posouvá ve stejném natočení doprava nebo doleva vůči prostoru. Pohyb doprava a doleva je symetrický, mění se jen pořádí odeslaných hodnot do jednotlivých pohoných jednotek. Pořád je reverzibilní (opačně), první řádek tabulky se stane posledním a poslední se stane prvním. Pokud je pohyb popsán více tabulkami (jako v tomto případě) je nutné obrátit také pořadí tabulek.

Program od výrobce, z kterého jsme získal tabulky popisující jednotlivé pohyby, obsahuje zvlášť tabulky pro úkrok doprava a doleva, ačkoliv lze použít hodnoty z úkruku doprava pro úkrok doleva. Hodnoty v tabulkách pro úkrok vpravo i vlevo jsou však až na opačné pořadí stejné nebo velmi podobné, proto zde uvádíme jen popis úkruku doprava. Úkrok doprava je rozdělen na 3 části a každou část pohybu popisuje tabulka.
Video celého pohybu úkroku doprava je uloženo v přílohách na CD (\Video\Úkrok doprava.AVI).

4.5.1 Úkrok doprava 1. část

První části úkroku doprava začíná jako každý pohyb se základní pozicí stání (viz kapitola 4.1) a obsahuje jen čtvrtinu pohyblivého úseku z druhé části, jedná se spíše o přípravnou fázi pro druhou část úkroku doprava. V této části se přesunou přední nohy robo-psy od sebe do boků a zadní nohy naopak k sobě. Vzdálenost, o kterou se posunou přední i zadní nohy bude stejná, proto se robo-psy neotočí, ale jen se plynule posunou doprava. Zároveň by se měl vykonat alespoň částečný úkrok do dopravu, aby byl celkový pohyb efektivnější.

Částečný úkrok doprava je proveden tak, že při posouvání předních nohou do boků se nadzvedne a zase vrátí přední pravá noha, díky tomu se tato noha posune více doprava. Mezitím se při posouvání zadních nohou k sobě nadzvedne a zase vrátí levá zadní noha, čímž dojde k tomu, že se posune více doprava. Posouvání předních i zadních nohou probíhá zároveň.

Obr. 15 Důležité pozice při 1. části úkroku vpravo (pohled zepředu)


Při provádění této části pohybu byl použit 3. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 20 milisekund.
Když se podíváme na tabulku první části úkroku doprava (tabulka 9) zjistíme, že při této části pohybu nebyly použity pohonné jednotky ID 3, 5, 6, 8, 12 a 13. Využity jsou pohonné jednoty ID 0, 1, 2, 4, 7, 9, 10 a 11. ID 1 posouvá přední pravou nohu doprava (od těla) a ID 0 a 2 ji nadzvedávají. ID 4 posouvá přední levou nohu doleva (od těla). ID 7 posouvá zadní pravou nohu doleva (k tělu). ID 10 posouvá zadní levou nohu doprava (k tělu) a ID 9 a 11 ji nadzvedávají.

Nadzvedávání nohou probíhá v celém úkroku stejně. Je provedeno za pomocí vždy dvou pohonných jednotek. Jedná se však o dva pohonné jednotky, které jsou pohádky do boků. Nohy se vždy nadzvedávají tak, že spodní čas nohy se v kolene ohýba směrem ven (do prostoru), ale v rameni se ohýba směrem dovnitř robo-psa. Takže kolena se zvedají a přibližují k sobě navzájem (dovnitř robo-psa).

### 4.5.2 Úkrok doprava 2. část

Druhá část úkroku doprava je nejdůležitější částí pohybu a navazuje na první část. Druhá část pohybu se může opakovat i vícekrát za sebou, čímž se délka, kterou robo-pes urazí znásobí. Při druhé části úkroku doprava se provedou dva úkroky.

Celý pohyb je založen na základě úkroků doprava zvlášť pro přední a zadní nohy. Zadní nohy jsou u sebe a po té se začnou pomalu vzdalovat do boků od sebe. Když při tomto pohybu trochu nadzvedneme a zase položíme pravou nohu, dojde na chvíli k přenesení rovnováhy na levou a pravá noha se bude po dokončení pohybu dotýkat podložky o poznání více vpravo. Zatímco leva noha bude na stejném místě. V této první fázi se vykoná první úkrok. Teď, když jsou zadní nohy od sebe (obkročmo) budeme nohy...
přesouvat zase k sobě, ale při tom nadzvedneme a zase položíme levou nohu, čímž se rovnováha na chvíli přenesete na pravou. Takže když budou zadní nohy zase u sebe (jako na začátku), bude se pravá noha dotýkat podložky ve stejném místě, ale levá o poznání více vpravo. V této první fázi se vykoná druhý úkrok. Celý tento cyklus zadních nohou se muže opakovat a udělat tak další úkroky doprava. Stejně jako zadní nohy se pohybují i přední, ale pohybují se asynchronně, proto když se zadní nohy přesouvají do stran (od sebe), tak se přední přesouvají k sobě a naopak. Tím je zajištěno rovnoměrné posouvaní celého robota doprava.

Přenášení rovnováhy na druhou nohu, která není pokrčená je spíše relativní. Jde o rychlost provedeného pohybu, kdy klade pokrčená noha menší odpor podložce a proto se posouvá více než druhá.

Při provádění této části pohybu byl použit 3. stupeň rychlosti pohoných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 20 milisekund.

<table>
<thead>
<tr>
<th>$t = k \cdot T$</th>
<th>Pozice pohoných jednotek</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>ID 0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>163</td>
</tr>
<tr>
<td>13</td>
<td>165</td>
</tr>
<tr>
<td>14</td>
<td>167</td>
</tr>
<tr>
<td>15</td>
<td>169</td>
</tr>
<tr>
<td>16</td>
<td>171</td>
</tr>
<tr>
<td>17</td>
<td>173</td>
</tr>
<tr>
<td>18</td>
<td>173</td>
</tr>
<tr>
<td>19</td>
<td>171</td>
</tr>
<tr>
<td>20</td>
<td>169</td>
</tr>
<tr>
<td>21</td>
<td>167</td>
</tr>
<tr>
<td>22</td>
<td>165</td>
</tr>
<tr>
<td>23</td>
<td>163</td>
</tr>
</tbody>
</table>

Pozn.: Řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 16

Když se podíváme na tabulku druhé části úkroku doprava (tabulka 10) zjistíme, že při této části nebyly použity pohonné jednotky ID 12 a 13, které představují hlavu robota. K pohybu jsou využity jen pohonné jednotky představující nohy robota (ID 0 až 11). Tabulku si můžeme pomyslně rozdělit do dvou části. První část končí v čase 11T a druhá začíná v 12T.

V první části jsou přední nohy od sebe (obkročmo) a vykonají přikročení (viz výše) a zadní nohy jsou u sebe a konají vykročení (viz výše). Při tom jsou využity pohonné
jednoty ID 1, 3, 4, 5, 6, 7, 8 a 10. ID 1 posouvá přední pravou nohu doleva (k tělu). ID 4 posouvá přední levou nohu doprava (k tělu) a ID 3 a 5 ji nadzvedávají. ID 7 posouvá zadní pravou nohu doprava (od těla) a ID 6 a 8 ji nadzvedávají. ID 10 posouvá zadní levou nohu doleva (od těla).

V druhé části jsou přední nohy u sebe a vykonají vykročení (viz výše) a zadní nohy jsou od sebe (obkročmo) a vykonají přikročení (viz výše). Při tomto jsou využity pohonné jednotky ID 0, 1, 2, 4, 7, 9, 10 a 11. ID 1 posouvá přední pravou nohu doprava a ID 0 a 2 ji nadzvedávají. ID 4 posouvá přední levou nohu doleva. ID 7 posouvá zadní pravou nohu doleva. ID 10 posouvá zadní levou nohu doprava a ID 9 a 11 ji nadzvedávají.

4.5.3 Úkrok doprava 3. část

Tato část úkroku doprava navazuje na druhou část a obsahuje jen čtvrtina pohyblivé složky z druhé části. Úkolem této části je dostat robota do základní pozice stání (viz kapitola 4.1). K tomuto by mola být využita i první část pohybu, kdyby byla použita v opačném pořadí (od posledního k prvnímu řádku tabulky), ale výsledkem by byl malý úkrok doleva, což by bylo z pohledu celého úkroku doprava neefektivní. Proto je zde vytvořena třetí část, která zajistí sice jen malý posun doprava, ale celková efektivita je podstatně větší.

Stejně jako první část, tak i třetí část používá jen částečný úkrok doprava, avšak nezačíná se základní pozice stání, ale z již vychýlené a končí základní pozicí stání.

Přední nohy jsou od sebe (do stran) a začnou se posouvat k sobě, ale jen tak, aby spolu nohy byly rovnoběžné (jako v základní pozici stání). Při tom se nadzvedne a zase vrátí přední levá noha, takže se bude dotýkat podložky více vpravo. Zadní nohy jsou u sebe a začnou se posouvat od sebe, ale také jen tak, aby spolu nohy byly rovnoběžné. Při tom se nadzvedne a zase vrátí zadní pravá noha, takže se bude dotýkat podložky více vpravo.

Obr. 17 Důležité pozice při 3.části úkroku vpravo (pohled zepředu)

Při provádění této části pohybu byl použit 3. stupeň rychlosti pohoných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky činí 20 milisekund.

tabulka 11 Pozice pohoných jednotek při úkroku doprava 3. část

<table>
<thead>
<tr>
<th>t = k.T</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>189</td>
<td>0</td>
<td>100</td>
<td>194</td>
<td>161</td>
<td>162</td>
<td>200</td>
<td>98</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>190</td>
<td>0</td>
<td>97</td>
<td>195</td>
<td>166</td>
<td>167</td>
<td>199</td>
<td>95</td>
<td>0</td>
<td>199</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>191</td>
<td>0</td>
<td>95</td>
<td>196</td>
<td>171</td>
<td>172</td>
<td>198</td>
<td>93</td>
<td>0</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>192</td>
<td>0</td>
<td>95</td>
<td>197</td>
<td>171</td>
<td>172</td>
<td>197</td>
<td>93</td>
<td>0</td>
<td>197</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>193</td>
<td>0</td>
<td>97</td>
<td>198</td>
<td>166</td>
<td>167</td>
<td>196</td>
<td>95</td>
<td>0</td>
<td>196</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>193</td>
<td>0</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>195</td>
<td>98</td>
<td>0</td>
<td>195</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 17

Když se podíváme na tabulku třetí části úkruku doprava (tabulka 11) zjistíme, že při této části pohybu nebyly použity pohonné jednotky ID 0, 2, 9, 11 až 13. Využity jsou pohonné jednoty ID 1, 3 až 8 a 10. ID 1 posouvá přední pravou nohu doleva (k tělu). ID 4 posouvá přední levou nohu doprava (k tělu) a ID 3 a 5 ji nadzvedávají. ID 7 posouvá zadní pravou nohu doprava (od těla) a ID 6 a 8 ji nadzvedávají. ID 10 posouvá zadní levou nohu doleva (od těla).

4.6 Otáčení do boku

Při tomto pohybu se robo-pes otáčí kolem své osy. Otáčení doprava i doleva je opět symetrické, ale kromě svého opačného pořadí se liší také změnou hodnoty pohonné jednotky ID 13, která při pohybu otáčí hlavou doprava nebo doleva.
Z tohoto důvodu je v programu od výrobce popsáno otáčení doleva i doprava zvlášť, každé má svou tabulkou. Kromě jedné odlišné hodnoty (100 místo 156) v čase 0T u pohonné jednotky ID 13, obsahují tabulky pro otáčení doprava i doleva stejné nebo velmi podobné hodnoty, proto zde uvádím jen popis otáčení doprava.

Video celého pohybu otáčení doprava je uloženo v přílohách na CD (\Video\Otočení doprava.AVI).

### 4.6.1 Otáčení doprava

Otáčení doprava začíná se základní pozice stání (viz kapitola 4.1) a také touto pozici končí. Využívá obdobného principu jako úkroky doprava. Liší se při posouvání nohou k sobě, kdy skončí nohy vždy rovnoběžně (v základní pozici stání). Při posouvání nohou doprava nebo doleva nejsou k sobě nohy nikdy bližší než v základní pozici stání. Proto je také otáčení doprava popsáno jen jednou tabulkou (tabulka 12). Dalším rozdílem je, že přisouvání a odsouvání předních a zadních noh k sobě je pohyb synchronní (nohy se ve stejnou dobu přisouvají i odsouvají).

Celý pohyb je založen na základě úkroků do boku pro přední nohy a zadní nohy zvlášť. Využívá se klasických úkroků do boku jako v předchozí kapitole 4.5. Robo-pes se začne otáčet, když přední nohy udělají úkrok doprava a zadní nohy doleva.

Robo-pes na začátku začne roztahovat všechny nohy do boků a otočí hlavu doprava. Při tom nadzvedne a zase položí přední pravou nohu (která bude po té více vpravo) a také nadzvedne a zase položí zadní levou nohu (která bude po té více vlevo). Čím skončí první fáze a začne druhá. V druhé fázi robo-pes začne všechny nohy přitahovat zpátky k sobě do počáteční pozice. Při tom nadzvedne a zase položí přední levou nohu (která bude po té více vpravo) a také nadzvedne a zase položí zadní pravou nohu (která bude po té více vlevo). V druhé fázi se otočí celé tělo robo-psy doprava a na konci této fáze se hlava přesune zase doprostřed a robo-pes zaujme základní pozici stání, z které se může tento pohyb opakovat.
Na Obr. 18 můžeme vidět důležité pozice z otáčení doprava z přední i z zadní strany. Tyto pozice jsou vyznačeny v dané tabulce (tabulka 12). V čase 0T můžeme vidět základní pozici stání (viz. kapitola 4.1) s hlavou otočenou doprava. V čase 3T můžeme vidět maximálně pokrčenou přední pravou a zadní levou nohu, kdy je přední pravá posuta mírně doprava a zadní levá mírně doleva. V čase 5T dokončil robo-pes úkrok předních nohou doprava a zadních doleva. V této pozici je jemně vytočený doprava a nohy má roztáhnuté do stran. V čase 9T můžeme vidět maximálně pokrčenou přední levé a zadní pravé nohu, kdy je přední levá posuta mírně doprava a zadní pravá mírně doleva. Dalším pohybem se robo-pes dostane do základní polohy stání.

Při provádění otáčení doprava byl použit 3. stupeň rychlosti pohonných jednotek. Perioda (T), s kterou jsou odesílány jednotlivé řádky tabulky a jenž popisuje otáčení doprava, činí 50 milisekund.
tabulka 12 Pozice pohoných jednotek při otáčení doprava

<table>
<thead>
<tr>
<th>Čas t</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0T</td>
<td>163</td>
<td>191</td>
<td>157</td>
<td>100</td>
<td>196</td>
<td>161</td>
<td>162</td>
<td>193</td>
<td>98</td>
<td>157</td>
<td>193</td>
<td>166</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>1T</td>
<td>178</td>
<td>189</td>
<td>166</td>
<td>98</td>
<td>194</td>
<td>161</td>
<td>162</td>
<td>191</td>
<td>96</td>
<td>166</td>
<td>191</td>
<td>181</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2T</td>
<td>190</td>
<td>187</td>
<td>173</td>
<td>97</td>
<td>192</td>
<td>161</td>
<td>162</td>
<td>189</td>
<td>95</td>
<td>173</td>
<td>189</td>
<td>193</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3T</td>
<td>189</td>
<td>185</td>
<td>175</td>
<td>96</td>
<td>190</td>
<td>160</td>
<td>161</td>
<td>187</td>
<td>94</td>
<td>175</td>
<td>187</td>
<td>192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4T</td>
<td>177</td>
<td>184</td>
<td>170</td>
<td>95</td>
<td>189</td>
<td>160</td>
<td>161</td>
<td>186</td>
<td>93</td>
<td>170</td>
<td>186</td>
<td>180</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5T</td>
<td>161</td>
<td>181</td>
<td>163</td>
<td>94</td>
<td>186</td>
<td>159</td>
<td>160</td>
<td>183</td>
<td>92</td>
<td>163</td>
<td>183</td>
<td>164</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6T</td>
<td>161</td>
<td>184</td>
<td>163</td>
<td>94</td>
<td>189</td>
<td>159</td>
<td>160</td>
<td>186</td>
<td>92</td>
<td>163</td>
<td>186</td>
<td>164</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7T</td>
<td>162</td>
<td>185</td>
<td>162</td>
<td>87</td>
<td>190</td>
<td>175</td>
<td>176</td>
<td>187</td>
<td>85</td>
<td>162</td>
<td>187</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8T</td>
<td>162</td>
<td>187</td>
<td>161</td>
<td>82</td>
<td>192</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>80</td>
<td>161</td>
<td>189</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9T</td>
<td>163</td>
<td>189</td>
<td>160</td>
<td>84</td>
<td>194</td>
<td>188</td>
<td>189</td>
<td>191</td>
<td>82</td>
<td>160</td>
<td>191</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10T</td>
<td>163</td>
<td>191</td>
<td>159</td>
<td>91</td>
<td>196</td>
<td>176</td>
<td>177</td>
<td>193</td>
<td>89</td>
<td>159</td>
<td>193</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11T</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>195</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>0</td>
<td>128</td>
</tr>
</tbody>
</table>

Pozn.: řádky vyznačeny tučně a modře představují pozice zobrazené na Obr. 18

Když se podíváme na tabulku otáčení doprava (tabulka 12) zjistíme, že se při tomto pohybu není používána pohonná jednotka ID 12, které umožňuje hýbat hlavu robo-psa nahoru a dolů. Pohonná jednotka ID 13, jenž umožňuje hýbat hlavu robo-psa doprava a doleva, je použitá jen na začátku a na konci pohybu. Na začátku pohybu vytvoří hlavu doprava a na konci ji zase vrátí doprostřed. Ostatní pohonné jednotky ID 0 až 11, představující nohy robo-psa, jsou po celou dobu využívány k otáčení doprava. Tabulku otáčení doprava si můžeme pomyslně rozdělit do dvou části. První část končí v čase 5T a druhá začíná v 6T.

V první části jsou přední nohy v zakládání pozici stání a začnou se posouvat od sebe do boků. Totěž dělají zadní nohy. Nadzvednutím přední pravé a zadní levé nohy vykonají přední nohy výkrok doprava a zadní nohy doleva. Při tom jsou využity pohonné jednotky ID 0 až 11, a také ID 13, která vytvoří hlavu doprava. Pohyby pohoných jednotek ID 3, 5, 6 a 8 jsou malé a vcelku nepodstatné, dělají pohyb přírozenější a plynulejší. ID 1 posouvá přední pravou nohu doprava (od těla) a ID 0 a 2 ji nadzvedávají. ID 4 posouvá přední levou nohu doleva (od těla). ID 7 posouvá zadní pravou nohu doprava (od těla). ID 10 posouvá zadní levou nohu doleva (od těla) a ID 9 a 11 ji nadzvedávají.

V druhé části jsou přední nohy od sebe (posunuté do boků) a začnou se posouvat k sobě do základní pozice stání. Totěž dělají zadní nohy. Nadzvednutím přední levé a zadní pravé nohy vykonají přední nohy přikročení doprava a zadní nohy doleva. Při tom jsou
využity pohoně jednoty ID 0 až 11. Pohyby pohonných jednotek ID 0, 2, 9 a 11 jsou malé a vcelku nepodstatné, dělají pohyb přirozenější a plynulejší. ID 1 posouvá přední pravou nohu doleva (k tělu) ID 4 posouvá přední levou nohu doprava (k tělu) a ID 3 a 5 ji nadzvedávají. ID 7 posouvá zadní pravou nohu doleva (k tělu) a ID 6 a 8 ji nadzvedávají. ID 10 posouvá zadní levou nohu doprava (k tělu).
5 Program na ovládání robo-psa

Program na ovládání robo-psa by měl splňovat následující. Měl by bezproblémově odesílat hodnoty z tabulek popisující daný pohyb do daných pohoných jednotek přes daný port sériové linky v daném intervalu. Kromě hodnot z tabulek by měl odesílat i hodnotu nastavující rychlost přechodu pohoných jednotek na novou pozici. Měl by umožňovat kdykoli změnit port sériové linky (bez nutnosti ukončení a opětovného spuštění programu). K ovládání by měl využívat periferií osobního počítače. Měl by umožňovat nastavení délky, o kterou se robo-pes daným pohybem přesune.

Pro vytváření programu jsem si vybral jazyk C a vývojové prostředí aplikace Microsoft Visual C++ verze 6.0. Vývojové prostředí této aplikace je přehledné, umožňuje snadnou tvorbu dialogových oken a také psaní v jazyce C++. Pro tvorbu dialogových oken a pro komunikaci po sériové lince jsem použil rozhraní WinAPI.

Dialogové okno si můžeme přestavit jako klasické okno, které známe s operačního systému Windows. Toto okno muže být různé velikost a obsahovat různé prvky jako text, tlačítka, editační pole atd. Právě prostřednictvím prvků dialogového okna budeme robo-psa ovládat.

5.1 WinAPI

Operační systém nám mimo jiné nabízí sjednocený přístup k hardwaru a periferiím. Z hlediska programování pak neprístupujeme na jednotlivá zařízení přímo, ale pomocí funkcí a služeb systému. Tyto funkce a služby se obecně nazývají aplikační interface (API). Programátor tak získává výhodu nezávislosti na hardwarovém řešení dané periferie. Operační systém je zde v roli prostředníka.

WinAPI je zkratka Windows application interface. Jedná se o výše zmíněný aplikační interface v prostředí operačního systému Windows.

5.2 Popis důležitých funkcí programu

K odesílání hodnot tabulky využívám funkci writefile, která slouží k zapisování do souboru. Za pomocí funkcí obsažených ve WinAPI jsem si vytvořil HANDLE, která obsahuje adresu daného portu sériové linky. Na tu adresu pak stačí funkci writefile zapsat hodnoty tabulky, které se tím na daný port sériové linky odešlou.

5.3 Popis dialogových oken, vstupů a výstupů programu

Mnou vytvořený program obsahuje dvě dialogová okna, které můžete vidět na Obr. 20 a Obr. 21. Dále pak používá message box. Jde o takzvané informační okno, které má informovat o určité skutečnosti.

V mém programu jsou dvě takovéto informační okna (message boxy). Jedno je uvítací (Obr. 19) a druhé pro ukončení (Obr. 22). Uvítací informuje k čemu program slouží a nabízí jen možnost OK, kterou okno zavřete a spustíte první dialogové okno (Obr. 20).
V první dialogové okně (Obr. 20) máte možnost zadat port sériové linky, na kterém je robo-pes připojen. K zadání slouží editační pole IDC_EDIT. Po zadání stačí využít tlačítka připojit (IDC_PRIPOJIT), kterým se přepnete do druhého dialogového okna.

Obr. 21 Druhé dialogové okno s prvky k ovládání robo-psa


První i druhé dialogové okno nabízí možnost ukončení pomocí tlačítka Konec (IDC_KONEC). Po zvolení této volby se objeví informační okno (Obr. 22), které ověřuje zda má být program opravdu ukončen. Při kladné odpovědi se program ukončí, při záporné může dále pokračovat v práci v již otevřeném dialogovém okně.

U obrázků dialogových oken (Obr. 20 a Obr. 21) jsou popisky s názvy jednotlivých prvků, na které je ve zdrojovém kódu programu odkazováno. Zdrojový kód i program samotný je uložen v přílohách na CD (program – \Program\ Robopes.exe, zdrojový kód – \Program\Zdrojový kód\).
6 Závěr


Zjistil jsem mezní hodnoty pohoných jednotek AI-701 a nastavil je pomocí software AlmotorTool 1.26 tak, aby bylo možné používat všech pohybů a nedošlo k poškození (polámání plastových koleček převodovky) při poslání špatné hodnoty pozice.


Bakalářskou práci bych chtěl v navazujícím studiu rozšířit o náhradu drátové sériové linky za bezdrátovou a o připojení napájení robota na baterie, aby bylo možné robotu ovládat zcela neomezeně. Dále bych chtěl realizovat osazení robota čidly, aby bylo možné zjistit překážku nebo možnost pádu a patřičně na to reagovat.
7 Použitá literatura


8 Seznam obrázků
Obr. 1 Blokové schéma obvodu programového vnějšího ovládání .............................................. 2
Obr. 2 Rozmístění ID čísel jednotlivých pohonných jednotek .................................................. 3
Obr. 3 Plošný spoj umístěný na 9V baterii na zádech robo-psa .................................................... 3
Obr. 4 Konektory sériové linky pohonné jednotky AI-701 [4] .................................................... 4
Obr. 5 Nízký stupeň přesnosti s rozsahem 0 až 332 stupňů [4] ................................................ 5
Obr. 6 Drátový model robo-psa se souřadnicemi bodů ............................................................ 6
Obr. 7 Drátový model robo-psa znázorňující směry pohybů pohonných jednotek .................... 7
Obr. 8 Základní pozice stání ...................................................................................................... 10
Obr. 9 Pozice při dřepnutí ........................................................................................................ 11
Obr. 10 Důležité pozice při mávání ........................................................................................ 12
Obr. 11 Důležité pozice při zvedání nožičky ............................................................................ 14
Obr. 12 Důležité pozice při 1. části chůze vpřed ................................................................. 16
Obr. 13 Důležité pozice při 2. části chůze vpřed .................................................................... 18
Obr. 14 Důležité pozice při 3. části chůze vpřed ..................................................................... 21
Obr. 15 Důležité pozice při 1. části úkroku vpravo (pohled zepředu) .................................... 23
Obr. 16 Důležité pozice při 2. části úkroku vpravo (pohled zepředu) .................................... 25
Obr. 17 Důležité pozice při 3. části úkroku vpravo (pohled zepředu) .................................... 27
Obr. 18 Důležité pozice při otáčení doprava ......................................................................... 30
Obr. 19 Uvítací Message box ............................................................................................... 34
Obr. 20 První dialogové okno s nastavením portu sériové linky ................................................ 34
Obr. 21 Druhé dialogové okno s prvky k ovládání robo-psa .................................................. 35
Obr. 22 Message box k ukončení programu ....................................................................... 36
9 Seznam tabulek

tabulka 1 Mezní hodnoty jednotlivých pohoných jednotek .............................................................. 8
tabulka 2 Pozice pohoných jednotek při stání ................................................................................ 10
tabulka 3 Pozice pohoných jednotek při dřepnutí ............................................................................ 11
tabulka 4 Pozice pohoných jednotek při mávání ............................................................................. 13
tabulka 5 Pozice pohoných jednotek při zvednutí nožičky ............................................................... 14
tabulka 6 Pozice pohoných jednotek při chůzi vpřed 1. část .......................................................... 17
tabulka 7 Pozice pohoných jednotek při chůzi vpřed 2. část .......................................................... 19
tabulka 8 Pozice pohoných jednotek při chůzi vpřed 3. část ........................................................... 22
tabulka 9 Pozice pohoných jednotek při úkrok doprava 1. část ..................................................... 24
tabulka 10 Pozice pohoných jednotek při úkrok doprava 2. část ................................................... 26
tabulka 11 Pozice pohoných jednotek při úkrok doprava 3. část ................................................... 28
tabulka 12 Pozice pohoných jednotek při otáčení doprava ............................................................... 31
10 Seznam příloh

1. Příloha – obrázky znázorňující pohyby pohoných jednotek .................................1
2. Příloha – kompletní tabulka pozic pohoných jednotek při stání..............................6
3. Příloha – kompletní tabulka pozic pohoných jednotek při postavení z dřepnutí...............6
4. Příloha – kompletní tabulka pozic pohoných jednotek při zvednutí nožičky ............6
Přílohy

1. Příloha – obrázky znázorňující pohyby pohoných jednotek

Na obrázku výše můžeme vidět:

- jak pohoná jednotka ID 8 pohybuje pohonou jednotkou ID 7
- jak pohoná jednotka ID 2 pohybuje pohonou jednotkou ID 1
- jak pohoná jednotka ID 6 pohybuje sama sebou
- jak pohoná jednotka ID 0 pohybuje sama sebou
- jak pohoná jednotka ID 12 pohybuje sama sebou
Na obrázku výše můžeme vidět:

- jak pohonná jednotka ID 3 pohybuje pohonnou jednotkou ID 4
- jak pohonná jednotka ID 9 pohybuje pohonnou jednotkou ID 10
- jak pohonná jednotka ID 5 pohybuje sama sebou
- jak pohonná jednotka ID 11 pohybuje sama sebou
- jak pohonná jednotka ID 12 pohybuje sama sebou
Na obrázku výše můžeme vidět:

- jak pohoná jednotka ID 1 pohybuje sama sebou
- jak pohoná jednotka ID 4 pohybuje sama sebou
Na obrázku výše můžeme vidět:

- jak pohoná jednotka ID 10 pohybuje sama sebou
- jak pohoná jednotka ID 7 pohybuje sama sebou
Na obrázku výše můžeme vidět:

- jak pohonná jednotka ID 13 pohybuje pohonnou jednotkou ID 12
- jak pohonná jednotka ID 5 pohybuje sama sebou
- jak pohonná jednotka ID 0 pohybuje sama sebou
- jak pohonná jednotka ID 11 pohybuje sama sebou
- jak pohonná jednotka ID 6 pohybuje sama sebou
2. Příloha – kompletní tabulka pozic pohonných jednotek při stání

$$t = k.T$$

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>193</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>128</td>
<td>128</td>
</tr>
</tbody>
</table>

3. Příloha – kompletní tabulka pozic pohonných jednotek při postavení z dřepnutí

$$t = k.T$$

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>163</td>
<td>0</td>
<td>157</td>
<td>100</td>
<td>0</td>
<td>161</td>
<td>217</td>
<td>0</td>
<td>72</td>
<td>183</td>
<td>0</td>
<td>221</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>175</td>
<td>0</td>
<td>163</td>
<td>94</td>
<td>0</td>
<td>173</td>
<td>208</td>
<td>0</td>
<td>76</td>
<td>179</td>
<td>0</td>
<td>212</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>0</td>
<td>168</td>
<td>89</td>
<td>0</td>
<td>183</td>
<td>199</td>
<td>0</td>
<td>80</td>
<td>175</td>
<td>0</td>
<td>203</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>0</td>
<td>170</td>
<td>87</td>
<td>0</td>
<td>188</td>
<td>189</td>
<td>0</td>
<td>85</td>
<td>170</td>
<td>0</td>
<td>193</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>181</td>
<td>0</td>
<td>166</td>
<td>91</td>
<td>0</td>
<td>179</td>
<td>177</td>
<td>0</td>
<td>90</td>
<td>165</td>
<td>0</td>
<td>181</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>170</td>
<td>0</td>
<td>161</td>
<td>96</td>
<td>0</td>
<td>168</td>
<td>162</td>
<td>0</td>
<td>98</td>
<td>157</td>
<td>0</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Příloha – kompletní tabulka pozic pohonných jednotek při zvednutí nožičky

$$t = k.T$$

<table>
<thead>
<tr>
<th>k</th>
<th>ID 0</th>
<th>ID 1</th>
<th>ID 2</th>
<th>ID 3</th>
<th>ID 4</th>
<th>ID 5</th>
<th>ID 6</th>
<th>ID 7</th>
<th>ID 8</th>
<th>ID 9</th>
<th>ID 10</th>
<th>ID 11</th>
<th>ID 12</th>
<th>ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>163</td>
<td>194</td>
<td>157</td>
<td>100</td>
<td>198</td>
<td>161</td>
<td>162</td>
<td>196</td>
<td>98</td>
<td>157</td>
<td>195</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>163</td>
<td>195</td>
<td>160</td>
<td>97</td>
<td>197</td>
<td>161</td>
<td>162</td>
<td>197</td>
<td>100</td>
<td>155</td>
<td>194</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>162</td>
<td>195</td>
<td>162</td>
<td>94</td>
<td>197</td>
<td>160</td>
<td>161</td>
<td>197</td>
<td>104</td>
<td>151</td>
<td>194</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>196</td>
<td>164</td>
<td>92</td>
<td>196</td>
<td>158</td>
<td>159</td>
<td>198</td>
<td>107</td>
<td>148</td>
<td>193</td>
<td>163</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
<td>197</td>
<td>165</td>
<td>90</td>
<td>195</td>
<td>154</td>
<td>155</td>
<td>199</td>
<td>111</td>
<td>144</td>
<td>192</td>
<td>159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>152</td>
<td>198</td>
<td>165</td>
<td>89</td>
<td>194</td>
<td>150</td>
<td>151</td>
<td>200</td>
<td>116</td>
<td>139</td>
<td>192</td>
<td>155</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>139</td>
<td>192</td>
<td>155</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>184</td>
<td>159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>123</td>
<td>176</td>
<td>163</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>115</td>
<td>168</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>160</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>152</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>152</td>
<td>198</td>
<td>165</td>
<td>92</td>
<td>194</td>
<td>150</td>
<td>151</td>
<td>200</td>
<td>116</td>
<td>139</td>
<td>192</td>
<td>155</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>152</td>
<td>197</td>
<td>165</td>
<td>92</td>
<td>195</td>
<td>150</td>
<td>151</td>
<td>199</td>
<td>116</td>
<td>139</td>
<td>192</td>
<td>155</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>156</td>
<td>197</td>
<td>165</td>
<td>92</td>
<td>195</td>
<td>154</td>
<td>155</td>
<td>199</td>
<td>111</td>
<td>144</td>
<td>192</td>
<td>159</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>196</td>
<td>164</td>
<td>93</td>
<td>196</td>
<td>158</td>
<td>159</td>
<td>198</td>
<td>107</td>
<td>148</td>
<td>193</td>
<td>163</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>162</td>
<td>195</td>
<td>162</td>
<td>95</td>
<td>197</td>
<td>160</td>
<td>161</td>
<td>197</td>
<td>104</td>
<td>151</td>
<td>194</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>163</td>
<td>195</td>
<td>160</td>
<td>97</td>
<td>197</td>
<td>161</td>
<td>162</td>
<td>197</td>
<td>100</td>
<td>155</td>
<td>194</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2009