Systém pro kódované vysílání IP televize

System for coding broadcast IP television
Prohlášení:

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal

V Ostravě dne 1.5.2009

Daniel Hic
Poděkování:

Rád bych poděkoval vedoucímu této bakalářské práce Ing. Davidu Seidlovi za čas strávený konzultacemi této problematiky, cenné rady a připomínky během psaní této práce.
Abstrakt:

Tento text popisuje aktuální problematiku digitální televize a je určen pro čtenáře, kteří se o tuto problematiku dosud nezajímali nebo pro ty, kteří si chtějí své znalosti zdokonalit. Hlavním úkolem je obeznámit čtenáře s digitálním televizním vysíláním v počítačové síti, jelikož je tato možnost velmi využívaná a svou popularitu jen zvyšuje. Jelikož je zde krok po kroku popsána úprava jednoho z oblíbených programů, čtenář, který si chce vytvořit nebo upravit již existující program pro své specifické účely, zde může najít inspiraci.

Vysílače už nějakou dobu přecházejí z analogového vysílání na digitální a tento proces bude ještě nějakou dobu trvat. Proto informace týkající se existujících multiplexů, jejich parametrů a vysílačů, které jsou v této práci také uvedeny, se stále mění. Každopádně informace o technologií a principu vysílání zůstávají stejné.

Klíčová slova:

Digitální televizní vysílání, unicast, multicast, stream

Abstract:

This text describes actual issue of the digital television and is intended for readers those was not interested about this issue till now or those want to improve theirs knowledge. Main purpose of this text is initiate readers with digital television broadcast in the computer network because this way is very using and its popularity rising. There is step by step describe modifying one of popular program so if reader wants to create or modify of existing program for his specific purpose, he can find here the inspiration.

Broadcasters proceed analog broadcasting to digital broadcasting for certain time and this process will take certain time too that is why the information of exist multiplex, their characteristics and broadcasters that are mentioned in this text are still changing. In any case the information about technology and principles of broadcasting are not changing.

Keywords:

Digital video broadcast, unicast, multicast, stream
Obsah

1 Úvod .. 6
2 DVB .. 7
 2.1 Přehled DVB standardů: .. 7
 2.2 DVB-C .. 8
 2.3 DVB-T .. 9
 2.3.1 Vlastnosti paketu ... 11
 2.4 DVB-S .. 12
 2.5 DVB-H .. 15
 2.6 CSA .. 16
 2.6.1 Proudová šifra .. 17
 2.6.2 Bloková šifra ... 18
3 IPTV ... 19
 3.1 Architektura IPTV ... 19
 3.2 Channel zapping ... 20
 3.3 Výhody ... 22
 3.4 Interaktivita .. 22
 3.5 VoD .. 22
 3.6 MPEG-2 ... 23
4 Metody vysílání digitální TV v PC sítích .. 25
 4.1 Streaming ... 25
 4.1.1 Kvalita videa ... 25
 4.1.2 Kvalita audia ... 25
 4.2 Webcast .. 25
 4.3 Unicast ... 26
 4.4 Broadcast ... 27
 4.5 Multicast .. 27
 4.5.1 Základní vlastnosti .. 28
 4.5.2 Skupinové vysílání v lokální síti .. 29
 4.5.3 Přenos skupinového vysílání mezi sítěmi ... 29
 4.5.4 Směrování multicastu .. 30
5 Úprava programu Getstream ... 31
 5.1 Program Getstream .. 31
 5.2 Cíl úpravy ... 32
 5.3 Popis úpravy ... 32
 5.4 Instalace programu ... 35
6 Závěr .. 37
1 Úvod

V bakalářské práci se zabývám dnes velmi aktuální problematikou a to digitálním televizním vysíláním. V dnešní době většina televizních vysílačů přechází nebo už dokonce přešla z analogového vysílání na digitální vysílání. Toto sebou přináší mnoho nových pojmů, nových možností a někdy i problémů. Mým cílem je zasvětit čtenáře do problematiky digitálního televizního vysílání především v počítačové síti a objasnit základní pojmy týkající se této problematiky. V první části se budu věnovat standardům, které se využívají pro digitální televizní vysílání, rozdíly mezi nimi a jejich principy. Druhá část je věnována vysílání digitální televize v počítačové síti, což se dnes čím dál víc využívá a přináší mnoho výhod, které zde popisuji. Vysílání digitální televize v počítačové síti je poněkud obsáhlejší téma, a proto v další kapitole na toto navazuji. Popisuji zde metody, které jsou dnes pro vysílání digitální televize v počítačové síti využívány, jejich výhody, nevýhody, několik základních pojmů, které se této problematiky týkají apod. V poslední části popisuji program, který slouží k vysílání digitální televize v počítačové síti, jehož zdrojové kódy jsou volně stažitelné. Krok po kroku uvádím postup, jak jsem upravoval jeho zdrojové kódy, abych si přizpůsobil jeho vlastnosti a funkce pro vlastní potřebu.
2 DVB

DVB (Digital Video Broadcasting) je soubor mezinárodních standardů pro digitální televizní vysílání, které jsou udržovány konsorciem DVB Project, který zahrnuje více než 270 vysílacích stanic, výrobců, síťových operátorů, softwarových vývojářů a dalších zařízení a společností ve více než 35-ти zemích vázaných k navrhování standardů pro globální šíření digitální televize a datových služeb. Služby využívající DVB standardy jsou dostupné na každém kontinentě s více než 220 mil. DVB přijímačů (údaj z listopadu 2008).

2.1 Přehled DVB standardů:

- **Rodina DVB (Evropa)**
 - DVB-S (satellite) - Digitální televizní vysílání přes satelit.
 - DVB-T (terrestrial) - Digitální televizní vysílání přes pozemní vysílače.
 - DVB-C (cable) - Digitální televizní vysílání v sítích kabelových televizí
 - DVB-H (handheld) - Digitální televizní vysílání pro mobilní přijem

- **Rodina ATSC (Severní Amerika)**
 - ATSC (terrestrial/cable)
 - ATSC-M/H (mobile/handheld)

- **Rodina ISDB (Japonsko/Brazilie)**
 - ISDB-S (satellite)
 - ISDB-T (terrestrial)
 - 1seg (handheld)
 - ISDB-C (cable)
 - SBTVD (Brazil)

- **Rodina DMB (Korea)**
 - T-DMB (terrestrial)
 - S-DMB (satellite)
Dále se zaměřím pouze na rodinu DVB, jelikož je to standard používaný ve všech evropských státech včetně ČR. Mezi tyto standardy patří i další, které jsou ovšem ještě ve vývoji a jejich služby nelze využívat. Mezi tyto standardy patří např. DVB-S2, DVB-T2, DVB-C2, DVB-SH, … Většinou se nejedná o nové standardy, nýbrž o nadstavby stávajících standardů, které přinesou různá vylepšení nynějších standardů.[1]

2.2 DVB-C

DVB-C je standard digitálního televizního vysílání v sítích kabelových televizí. Systém je kódován pomocí MPEG-2 (viz kapitola 3.6), v budoucnu se plánuje i MPEG-4.

Z technického hlediska je DVB-C jedním ze skupiny standardů DVB (založený na MPEG-2), ovšem používá se jiný způsob modulace než u satelitního a pozemního vysílání, a tak nejsou ani přijímače mezi sebou zaměňitelné. V DVB-C se používá modulace QAM (Quadrature amplitude modulation), nejčastěji QAM64, což umožní v jednom pásmu o šířce 8 MHz přenášet přes 30 Mbit/s, využitelných pro 6 - 12 programů v závislosti na datovém toku. Určitou nevýhodou DVB-C jsou nároky na kvalitu sítě, kdy například odrazy v sítě mohou způsobovat "kostičkování" obrazu a výpadky. Výhodou je naopak poměrně dobrá odolnost proti rušení - uživatel i při nižším odstupu šumu od signálu vidí stále dobrý obraz (zatímco u klasického analogového vysílání by již viděl obraz hodně "zarušený"); pokud je šum již příliš silný, obraz prostě vypadne zcela.[3]

Obrázek 1: Blokové schéma DVB-C vysílače

Velkou výhodou DVB-C (především pro provozovatele, ale i pro diváka) je šifrování. V konvenční kabelové televizi se řeší zapojování jednotlivých programových nabídek a případně prémiových kanálů pomocí filtrů (podle toho, kterou nabídku či programy si zákazník zaplatí, se vypojí filtry pro určité frekvence) a jen ve výjimečných případech se (v ČR) používá šifrování, byť primitivní. V případě digitální kabelové televize je možné pomocí nastavení šifrovací karty zákazníka zpřístupňovat jednotlivé programy, což dovoluje si zvolit "mix" dle vlastního přání.

2.3 DVB-T

DVB-T (Digital Video Broadcasting – Terrestrial) je standard digitálního televizního vysílání přes pozemní vysílače.

Narozením analogového vysílání jsou programy v reálném čase převáděny do datového toku a společně komprimovány (v současnosti se nejvíce používá formát MPEG-2, výjimečně dokonalejší MPEG-4), což umožňuje daleko lepší využití frekvenčního spektra. Prakticky to znamená, že na jednom kanále může být více televizních stanic vysílána tzv. multiplex, který může obsahovat několik televizních stanic, rozhlasových stanic a doplňkových služeb, ke kterým patří zejména EPG (Electronic Program Guide - Elektronický programový průvodce), superteletext, popř. další interaktivní služby (online nákupy, hlasování, e-mail, jednoduché hry).

V současné době (listopad 2008) jsou v České republice uděleny licence na provozování 3 dočasných multiplexů v DVB-T:

Multiplex A - Je provozován Českými radiokomunikacemi.
Multiplex B - Je provozován společností Czech Digital Group.
Multiplex C - Je zkušebně provozován společností Telefónica O2 Czech Republic.[2]

Modulace

Souhrnný datový tok (multiplex) je před svým vysíláním ještě doplněn o údaje, sloužící k jeho zabezpečení proti chybám. Pak už směřuje k jednotlivým pozemním vysílačům, které se starají o jeho šíření éterem do svého okolí. Zde přitom odchází k jedné významné odlišnosti od klasického analogového vysílání: analogové vysílače, které by vysílaly na stejných frekvencích, by se vzájemně rušily, a proto musí vysílat na různých frekvencích. Naopak v případě digitálního vysílání nemusí používání stejných frekvencí vadit, ba právě naopak – jednotlivé vysílače mohou vysílat na stejných frekvencích (tvoří tzv. jednofrekvenční síť, SFN - Single Frequency Network), a svým vysíláním se
vzájemně doplňovat a přispívat tak k lepší kvalitě obrazu a zvuku u koncového přijímací. Proto se pro digitální vysílání také buduje spíše hustší síť menších vysílačů, které vzájemně vytváří pokrytí určitě souvislé oblasti (i se vzájemněm překrýváním). Obvykle se umísťují do vzdálenosti max. 90 km od sebe.

To, proč se u digitálního vysílání jednotlivé vysílače vzájemně neruší ale doplňují, souvisí se způsobem šifření signálu, resp. s jeho modulací. Standard DVB-T předpokládá použití techniky OFDM (ortogonální frekvenční modulace). Její podstatou je rozdělení celého frekvenčního kanálu, které je k dispozici pro vysílání (typicky 8 MHz) na větší počet podstatně užších pásem – nejčastěji na 6817 dílčích pásem. Každé z nich je pak využíváno k vysílání samostatně, a to jakoby "pomalu" (s poměrně pomalým signálem).

Smysl (relativně) pomalých změn přenášeného signálu v každém z dílčích pásem souvisí s odolností vůči různým poruchám, rušení a hlavně odrazům (které způsobují známé "duchy"). Přichází-li takový odraz (nebo signál od jiného vysílače na stejně frekvenci), a jeho časový posun vůči "hlavnímu" signálu není příliš velký, může být takovýto "vedlejší" signál ještě "správně přičten" k hlavnímu signálu a může dokonce zlepšit jeho kvalitu, místo toho, aby ji zhoršil. Díky tomu dokáže digitální vysílání zajistit kvalitní přijem tam, kde podmínky nejsou zdaleka ideální a analogový přijem by byl špatný.[4]

Obrázek 2: Sdružování jednotlivých programů transportního toku

\[Zdroj: \text{radio.feld.cvut.cz/courses/X37KTR/oldv/6_DVBT.pdf (9.11.2008)}\]
2.3.1 Vlastnosti paketu

Velikost každého TS (Transport stream) paketu je 188 bytů. Z těchto 188 bytů jsou právě 4 byty (32 bitů) hlavička, která je velmi významná. Její struktura vypadá následovně:

<table>
<thead>
<tr>
<th>Název</th>
<th>Bity</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync_byte</td>
<td>8 (0x47)</td>
</tr>
<tr>
<td>transport_error_indicator</td>
<td>1</td>
</tr>
<tr>
<td>payload_unit_start_indicator</td>
<td>1</td>
</tr>
<tr>
<td>transport_priority</td>
<td>1</td>
</tr>
<tr>
<td>PID</td>
<td>13</td>
</tr>
<tr>
<td>transport_scrambling_control</td>
<td>2</td>
</tr>
<tr>
<td>adaption_field_control</td>
<td>2</td>
</tr>
<tr>
<td>continuity_counter</td>
<td>4</td>
</tr>
</tbody>
</table>

Prvních 8 bitů hlavičky (sync byte) TS paketu začíná hodnotou 0x47. Dále je důležitá hodnota PID, která určuje, o jaký typ TS paketu se jedná. Kromě základních audio, video a data paketů se může jednat o pakety PMT, PAT a další.
PMT (Program Map Table) obsahuje informace o programech. Pro každý program existuje jedna PMT tabulka. Popisuje, jaké hodnoty PID jsou významné pro programy. Pokud tedy TS paket obsahuje MPEG-2 video stream, PMT bude tento PID evidovat jako video stream.

PAT (Program Association Table) obsahuje seznam všech programů v transportním streamu. Každý program v tomto seznamu je identifikován pomocí 16-ti bitové hodnoty (program_number) a má přiřazenou hodnotu PID pro jeho PMT.

2.4 DVB-S

DVB-S (Digital Video Broadcasting Satellite) standard pro vysílání a příjem digitalizovaného audia, videa a dat prostřednictvím satelitu, s využitím kodeku MPEG-2.

Na začátku přenosového řetězce jsou zdrojové signály obsahující audio, video a data, které tvoří jeden programový kanál. Tyto komponenty se prostřednictvím vzorkování a kódování převádí do komprimovaného formátu MPEG-2. Digitalizované signály se sdružují v programovém multiplexu a jako jeden datový tok společně s dalšími programy vstupují do transportního multiplexu.

![DIagram DVB-S](Obrázek%204%3A%20Kódování%20a%20multiplex%20zdrojové%20informace.png)

Obrázek 4: Kódování a multiplex zdrojové informace

Na výstupu transportního multiplexu je paketizovaný datový tok s určitou bitovou rychlostí. Ta je dána úrovní komprese v rámci formátu MPEG-2 a použitým kódováním. Můžeme říct, že tato fáze zpracování signálů v základním pásmu je rozhodující pro celkovou kvalitu vysílaných programů.

Signál s danou bitovou rychlostí z transportního multiplexu vstupuje do satelitního kanálu k dalšímu zpracování. Satelitním kanálem rozumíme soustavu o dvou základních bloících. V prvním bloku probíhá adaptace signálu z transportního multiplexu na přenos satelitem, zatímco druhý blok představuje rádiovou část - pozemskou stanici.

Obsahem adaptace v satelitním kanálu je úprava signálu do takové podoby, která zajistí přijem ze satelitu se zaručenou kvalitou. Celý systém DVB-S je navržen tak, aby zohledňoval zvláštnosti satelitního přenosu, to znamená vzdálenost, kterou musí daný signál překonávat (72 až 74 tis. km), velice nízkou úroveň signálu na přijímací straně, různé podmínky příjmu atd. Z tohoto důvodu se uplatňuje několik metod sloužících na ochranu proti chybám při přenosu a k optimalizaci šířky pásma modulovaného signálu.

Paketizovaný signál z transportního multiplexu, který má konstantní délku 188 bytů, je nejdříve "rozptylovan" pomocí pseudonáhodné binární sekvence. Účelem je dosáhnout plynulý datový tok, z důvodu rovnoměrnosti rádiového spektra na satelitním transpondéru. Tato součást je trvale aktivní, aby nedocházelo k vysílání nemodulované nosné původního signalu.

Takto upravený signál je po celých paktech kódován tzv. vnějším kódem Reed-Solomon (204/188). Výsledkem jsou pakety chráněné proti chybám s konstantní délkou 204 bytů. Bitová rychlost se úměrně zvyšuje (o 8,5%) v závislosti na rychlosti datového toku z transportního multiplexu.

Obrázek 5: Adaptace satelitního kanálu

Dalším krokem je prokládání rámů, kterým se dociluje optimalizace signálu a vnitřní konvoluční kódování (FEC 1/2, 2/3, 3/4, 5/6, 7/8), u kterého se vhodná kódová rychlost stanovuje na základě dané přenášené aplikace (TV, IP atd.) Bitová rychlost se opět zvyšuje v závislosti na kódové rychlosti.

Signál, který je takto upraven, vstupuje do modulátoru QPSK (čtyřstavové klíčování fázovým posuvem). Úkolem modulátoru je převzít signál na vstupu, který je ve formě logických nul a jedniček, do rádiového spektra s určitým nosným kmitočtem a s odpovídající šířkou pásma. Stručně řečeno, bitový tok nejprve vstupuje do sériově-paralelního převodníku, který rozděluje a poté sdružuje bity do dvojic. Každá dvojice může nabývat čtyři hodnoty (01, 11, 10 a 00). To znamená čtyři různé stavy fáze modulovaného nosného kmitočtu.

Na výstupu modulátoru je modulovaný rádiový signál s daným kmitočtem o dané rychlosti. Ten je přiváděn na vstup konvertoru, který signál převádí do pásma Ku, tedy 14 GHz. Z tohoto místa putuje signál do výkonového zesilovače a parablickou anténou je vysílán na družici.

Signál z pozemské stanice je satelitním transpondérem převáděn do pásma 11/12 GHz a vysílán zpět na Zem. Přijímaný signál je v LNB (Low Noise Block) zesílen a dále převáděn do pásma L (950 - 2000 MHz).

Obrázek 6: Příjem satelitního DVB signálu

_Zdroj: www.parabola.cz/abc/rychlost_dvbs (9.11.2008)_

Signál s danou rychlostí je přiváděn na vstup demodulátoru QPSK (Quadrature Phase Shift Keying), kde je demodulován, prochází obvodem obnovy synchronizace časování (důležité pro dekódování) a postupuje do dekodéru Viterbi (používá algoritmus Viterbi pro dekódování bitstreamu, který byl kódován pomocí FEC (Forward error correction), který je založen na konvolučním kódu). Tady jsou ze signálu odebrány ochranné kódy a po dekódování synchronizačních bytů MPEG-2 vstupují pakety do vnějšího dekodéru Reed-Solomon, kde jsou "odfiltrovány" další ochranné kódy. Z takto zpracovaného datového toku je ještě odebrána pseudonáhodná posloupnost, po které už dostáváme čistá data s danou bitovou rychlostí MPEG-2. Pakety MPEG-2 jsou pak na základě dalších podmínek zpracovávána a převáděna do potřebného zobrazení (TV, Audio, IP). Celý proces je znázorněn na obrázku 6.
2.5 **DVB-H**

Standard DVB-H (Digital Video Broadcasting for Handhelds) je určen pro příjem digitálního vysílání z pozemních vysílačů na kapesních přístrojích, jako jsou například mobilní telefony, kapesní počítače a multimediální přehrávače, které se často pohybují. I když základní princip přenosu komprimovaného digitalizovaného obrazu a vícekanálového zvuku na frekvencích v pásmu UHF (Ultra high frequency) je u DVB-T i DVB-H podobný. "Velká" přenosová rychlost 3 - 6 Mbit/s potřebná pro přenos obrazu ve velkém rozlišení, není u malých displejů potřeba. Pro rozlišení 352 × 288 bodů například dostačuje rychlost menší než 400 kb/s, co právě umožňuje standard DVB-H. Další rozdíl je v odlišném příjmu signálu, kde klasický příjem DVB-T se vyžaduje dost velkou spotřebu elektrické energie, kterou nelze akceptovat u bateriově napájených přístrojů. Proto příjem u DVB-H probíhá trošku odlišným způsobem.

Co se týče vysílacích frekvencí, jsou pro DVB-H v evropských zemích určena pásmá 470–890 MHz a 1 452–1 477 MHz. Pro případ testování však v několika oblastech bylo vyčleněno i pásmo mezi 1 670 MHz a 1 675 MHz. Pro komprimaci video se využívá kodek MPEG-4 (H.264/AVC), což je mimochodem kodek používaný pro kódování HDTV (High-definition television) v multiplexu klasické digitální televize (DVB-T). Obraz je vysílán v rozlišení 352 × 288 bodů, přičemž je dost kontrastní pro bezproblémové čtení všech titulků, včetně rolovací zpravodajské lišty na zpravodajských kanálech. Zvuk je vysílán ve stereo a využívá kódování AAC (Advanced Audio Coding). Technologie kromě obvyklého vysílání podporuje také vysílání spouštění nejrůznějších dodatečných zpráv a interaktivních služeb, které si pak na mobilním telefonu bude možné současně s programem nechat zobrazit či přehrávat. Součástí DVB-H služeb je například elektronický programový průvodce označovaný jako ESG/EPG obsahující informace o vysílaných programech.

2.6 CSA

Pro kódování CSA je použit tzv. control word (klíč). Tento klíč je poskytován mechanismem podmíněného přístupu, který jej generuje z kontrolní zašifrované zprávy umístěné v transportním toku.

Šifrovací algoritmus je založen na dvou základech: 64-bitová bloková šifra a proudová šifra. Šifrovací algoritmus může vypadat jako kaskáda blokové šifry a proudová šifra. Obě šifry užívají stejný 64-bitový klíč K.[13]

Obrázek 7: Kombinace blokové a proudové šifry

Na obrázku 7 je znázorněn dešifrovací proces. Pro šifrování dat m-bytového paketu je rozdělen do bloků (DBi), kde každý má 8 bytů. Velikost paketu nemusí být vždy násobkem 8. Proto se může stát, že délka posledního bloku n je menší než 8 bytů a lze ho nazvat zbytkový. Posloupnost 8-bytových bloků je šifrována v obráceném pořadí s blokovou šifrou v CBC módu, kde je zbytek zleva nedotknutý. Poslední výstup řetězce IB0 je poté použit pro proudovou šifru.

Prvních m – 8 bytů šifrovaného streamu proudovou šifrou je funkci XOR vloženo do šifrovaných bloků (IBi)_1, za kterými se nachází zbytek.\[13\]

2.6.1 Proudová šifra

Proudová šifra je založena na dvou posuvných registrech (FSR1 a FSR2) a logickým obvodem s pamětí (Combiner). Proudová šifra pracuje ve dvou módech. První mód je inicializační, ve kterém je nastaven počáteční stav šifry. Druhý mód je generující, ve kterém šifra vytváří dva náhodné bity pro hodinový cyklus.\[13\]

Obrázek 8: Proudová šifra

2.6.2 Bloková šifra

CSA používá opakující blokovou šifru, která pracuje na 64-bitových blocích dat a užívá 64-bitový klíč K. Každá smyčka šifry používá stejnou smyčku transformace Φ, která zabírá 8 bytový vektor s jedním bytem rozšiřujícího klíče jako vstup a výstup 8-bytového vektoru. Tato smyčka transformace se provede 56krát.\cite{13}
3 IPTV

IPTV (Internet protocol TV) neboli televize přes internetový protokol je systém, kde jsou služby digitální televize šířeny prostřednictvím IP (Internet Protocol) protokolu přes počítačové sítě, což může být součástí dodávky širokopásmového připojení. Použití technologií pro počítačové sítě je hlavní rozdíl IPTV od klasického plošného nebo kabelového vysílání.

Pro domácí uživatele je IPTV často poskytována v souvislosti s VoD (Video on Demand, viz. kapitola 3.5). Obchodní spojení IPTV, VoIP (Voice over IP) a přístupu k internetu je označováno jako služba Triple Play (se současným mobilním přístupem pak Quadruple Play). IPTV je často dodávána v uzavřené sítě infrastruktury nebo f firmní LAN na rozdíl od internetové televize, která je šířena v rámci celého internetu (tzv. webcasting, streaming).[16]

3.1 Architektura IPTV

Vysílání IPTV má 2 hlavní formy architektury: volně a s poplatkem. Tento sektor je rychle rostoucí a hlavní televizní vysílače přenášejí jejich vysílací signál přes internet. Tyto volně dostupné IPTV kanály vyžadují ke sledování IPTV vysílání pouze internetové připojení. Použít lze zařízení jako je osobní počítač, HDTV (High-definition television) připojenou k počítači nebo dokonce 3G mobilní telefon.

V prosinci 2005 se nezávisle vytvořená mariposaHD stala prvním originálním IPTV vysíláním dostupným v HDTV formátu. Různé webové portály nabízejí přístup k této volně přístupnému IPTV kanálu.

Protože IPTV využívá standardních síťových protokolů, slibuje nižší náklady pro operátory a nižší ceny pro uživatele. Používání set-top boxů s širokopásmovým připojením k internetu umožňuje dělení videa do domácností efektivněji než běžný koaxiální kabel. ISP (Internet service provider) rozšiřuje své sítě, aby přinesly vyšší rychlosti, a aby poskytovaly HDTV kanály. IPTV využívá obousměrný digitální vysílační signál posílaný přes přepínanou telefonní nebo kabelovou síť prostřednictvím širokopásmového připojení a set-top boxu naprogramovaného tak, že může zpracovat divákovy požadavky na přístup k mnoha dostupným médiím.

Provozovatelé IPTV musí optimalizovat svoje sítě na větší šířku pásma a rychlejší spojení s koncovým uživatelem (konkrétně vysokorychlostní připojení ADSL2+), případně využívat VDSL sítě či optické kabely, jelikož přes telefonní linku a připojku s vysokorychlostním internetem ADSL by se
tolik dat, kolik je třeba pro streamování televizního vysílání na klasický televizor či dokonce televizor HD ready (s vysokým rozlišením obrazu), do domácnosti nedostalo.

Robustnější síť však většinou nevede až k zákazníkovi IPTV, nýbrž do sběrných bodů, tzv. DSLAMů (Digital Subscriber Line Access Multiplexer), odkud do domácnosti putuje vždy jen jedna zvolená služba. V určitém centrálním bodu je k dispozici celá programová nabídka všech televizních stanic. Divák si na svém televizoru zvolí program, stisknutím příslušného tlačítka dálkového ovladače vyšle signál do této centrály a ta mu do jeho televizoru pošle právě tuto jednu stanici.

Obrázek 9: Princip IPTV

Od centrály k divákovi tedy putuje pouze jeden televizní program a není nutné, aby optimalizovaný (a pro telekomunikační společnost velmi drahý) kabel vedl do každé domácnosti. Existují ale určitá omezení. Příjemce IPTV by neměl být dále než 3,5 kilometru od DSLamu a počet domácností napojených na jeden takový centrální bod by měl být omezený, aby nedošlo k výpadkům. IPTV se zpočátku omezí na větší města, zatímco u menších obcí bude záležet na počtu zájemců, aby se operátorovi vůbec vyplatilo modernizovat přenosovou síť.[16]

3.2 Channel zapping

Pokud tedy ke koncovému příjemci (divákovi) "přichází" u IPTV vždy jen jeden program, pak je velmi důležité, jak vlastně funguje přepínání mezi různými kanály, resp. programy. Hlavně jak rychle. A tady je právě určitý problém, protože přepínání u IPTV (tzv. channel zapping) přece jen může trvat o poznání déle než u klasického vysílání, kde k přepínání dochází až přímo u diváka. V nejhorším případě i několik sekund, v nejlepším případě méně než půl sekundy podobně jako u tradičních systémů.
V mezidobí od roku 2004 technologie určitě zase o něco pokročily a problém s dlouhým přepínáním se mohl zmírnit, ale nejspíše nezmizel úplně. V každém případě jde o jeden z faktorů, který vypovídá o celkové kvalitě poskytované služby.

Obrázek 10: Představa šíření "lineárních" programů v sítích IPTV

Na obrázku 10 je nahoře z tohoto pohledu tzv. head-end, se kterým se lze setkat například i u systémů kabelové televize. V tomto bodě provozovatel "nabírá" potřebné vnější vstupy, což jsou zejména jednotlivé televizní (a rozhlasové) programy, a připravuje je pro šíření ve své síti. Způsobů, jakým je příslušný signál získáván, může být více (včetně satelitu, zemského vysílání atd.).

Už z head-endu mohou vycházet "individuální datové proudy" (individuální streamy), vedoucí vždy k jednomu koncovému příjemci, a přinášející uživatelem aktuálně navolený program. Jenže v praxi tomu tak není, a to z jednoho významného důvodu: velký počet takových individuálních streamů by představoval neúnosně velkou zátěž pro páteřní síť poskytovatele.
Proto to funguje jinak a z head-endu ještě nevychází N individuálních streamů (kde N je počet aktuálních diváků), ale podstatně menší počet "kolectivních" streamů, z nichž každý nese jeden konkrétní program. Počet těchto streamů je pak dán počtem programů v nabídce či nabídáčích (včetně těch různě rozšířených) je nezávislý na počtu právě aktivních přijímacích (diváků) a představuje tedy mnohem snesitelnější zátěž pro páteřní sítě.

K nezbytnému "rozvětvení" k jednotlivým přijímacím pak dochází co možná "nejpozději", resp. nejníže (Obrázek 10). Z hlediska zátěže nejlépe tam, kde sdílená páteř přechází do přístupové sítě, která už má vyhrazený charakter. Tedy v případě IPTV nad ADSL v místě, kde jsou umístěny jednotlivé DSLAM, z jedné strany připojené ke sdílené páteřní síti a z druhé strany napojené na místní smyčky. Případně někde těsně před (nad) DSLAM.y.[16]

3.3 Výhody

Založení IPTV na IP platformě nabízí podstatné výhody, zahrnující schopnost spojit televizi s dalšími IP službami jako jsou vysokorychlostní internet a VoIP (Voice over IP). Celistvost těchto služeb muže znamenat pro ISP tolik tíženou výhodu před konkurencí.[16]

3.4 Interaktivita

Založení na IP platformě také umožňuje udělat zážitky ze sledování TV interaktivnější a osobnější. Dodavatel může např. zahrnout interaktivního programového průvodce, který divákovi pro jeho spokojenost dovolí vybrat film podle názvu, jména herce nebo funkce obraz v obraze, která mu dovolí přepínat kanály bez opuštění programu, který sleduje. Diváci mohou být schopni vyhledat statistiku hráče zatímco sledují sportovní přenos nebo ovládat zaměření kamery.[16]

3.5 VoD

VoD je zkratkou pro Video on Demand (video na požádání). VoD povoluje spotřebiteli prohlížet online programy nebo katalogy filmů, dívat se na trailer (ukázky) a potom si vybrat označený záznam pro přehrání.

Technicky, když spotřebitel vybere film, individuální připojení (unicast) je nastaveno mezi dekodérem spotřebitele (Set-top box nebo PC) a dodávajícím streamovacím serverem. Signalizace pro pauzu, zpomalene nebo zrychlené záběry je zajištěna pomocí RTSP (Real Time Streaming Protocol).
3.6 MPEG-2

MPEG-2 (Motion Pictures Experts Group) je ztrátový komprimační datový formát, který slouží ke snížení datového toku a tím i velikosti výsledného souboru u digitálně zpracovávaných videozáznamů při co nejmenší viditelném zhoršení kvality po dekomprimaci. Jeho předchůdcem je formát MPEG-1 a dokonalejším technologickým nástupcem formát MPEG-4.

MPEG-2 je standardním formátem užívaným pro ukládání a přenos videa na DVD nebo při distribuci digitálního televizního signálu DVB. U aplikací, které vyžadují MPEG-2 komprimaci či dekomprimaci videa v reálném čase, jsou kladeny výrazně vyšší nároky na výpočetní kapacitu procesoru, než u formátu MPEG-1.

Pro pochopení funkce komprimace je potřeba vědět, že každý videozáznam je sekvencí jednotlivých samostatných snímků. Základním principem MPEG (Motion Picture Experts Group) komprimace videa je pak individuální přístup k jednotlivým snímkům, konkrétně určení tzv. klíčových snímků (I - Intra Frame), které se ukládají resp. přenášejí celé - jsou to v podstatě JPEGy (Joint Picture Experts Group) a dále snímků pomocných (P - Predicted), které se ukládají zkomprimované (mezisnímková kompres) - jsou to jednosměrné předpovědi vzhledem k předcházejícímu I nebo P obrázku, přenášejí se pouze rozdíly oproti již přenesenému (referenčnímu) makrobloku, přičemž polohu ref. makrobloku udává pohybový vektor. Tyto dva typy snímků jsou pak proloženy ještě třetím typem snímků (B - Bidirectional Predicted), který se přenáší buď silně zkomprimován (také mezisnímkovou kompresí), nebo se nepřenáší vůbec - jsou to obousměrné předpovědi vzhledem k předcházejícímu I nebo P obrázku, přenášejí se pouze rozdíly oproti již přenesenému (referenčnímu) makrobloku. Tyto "chybějící" snímky jsou pak při dekomprimaci (třeba i v reálném čase) dopočítávány z informací klíčových snímků. Typické pořadí snímků je např.: IBBPBBPBBPBBPBBPBB (tato sekvence mezi dvěma "I" se nazývá GOP - Group of Pictures).

Při dopočítávání se využívá i skutečnosti, že lze některé drobné části obrazu a jejich vzájemné rozdíly na po sobě jdoucích snímcích popsat matematicky (např. statická jednobarevná plocha). Práce s takto definovanými plochami se označuje jako kvantizace (quantized). Proto se v některých případech (typicky při televizním DVB přenosu), kdy je potřeba docílit při kódování co nejmenšího datového toku (TV= 3Mb/s), ještě obraz před samotným kódováním upravuje tak, aby obsahoval co nejméně ploch s detaily a naopak co nejvíce "jednobarevných" ploch - typicky u fotbalových přenosů dochází ke "slití" trávy na hřišti do univerzální plochy téměř bez vzorku.

MPEG-2 se liší od formátu MPEG-1 tím, že dokáže pracovat s tzv. proměnlivým datovým tokem (VBR - variable bit rate). To v praxi znamená, že komprimační software rozpozná scénu, která obsahuje řadu za sebou jdoucích velmi podobných (statických) snímků, mezi kterými jsou jen velmi
malé rozdíly - např. moderátor, který (z pohledu videostopy) "pouze" otevírá ústa. V takovém případě sekvence obsahuje velmi málo klíčových snímků a relativně málo doplňkových informací k dopočtu výsledného obrazu. Opakem je např. záznam hokejového zápasu. Ve výsledku je pak průměrný datový tok (výsledný soubor) menší než při použití konstantního datového toku (CBR - constant bit rate) a současně kvalitnější, neboť u náročných scén se dočasně datový tok zvýší.

MPEG-2 na rozdíl od MPEG-1 umí pracovat s prokládanými snímkami, tzv. půlsnímkami.

MPEG-2 byl vyvinut pro rozlišení 720x576 obrazových bodů. V praxi je možné ale kódovat jakýkoliv vstupní rozměr a poměr stran a zvolit CBR nebo VBR s konkrétním datovým tokem. Obdobně lze v praxi nastavit i kvalitu komprimovaného zvuku.

Žádný ztrátově komprimovaný formát videa není sám o sobě vhodný ke střihu (v nejhorším případě se stříhá se skupinou GOP=1, tj.: samé snímky I). Před jakoukoli editací je potřeba jej převést do nativního formátu.[17]

Rozlišení:

NTSC - 720 × 480, 704 × 480, 352 × 480, 352 × 240 pixelů
PAL - 720 × 576, 704 × 576, 352 × 576, 352 × 288 pixelů

Poměr:

4:3 - klasický
16:9 – širokoúhlý (wide)

Frekvence:

NTSC – 29.97 snímků/sek.
PAL - 25 snímků/sek.[17]
4 Metody vysílání digitální TV v PC sítích

4.1 Streaming

Streaming je technologie kontinuálního přenosu audiovizuálního materiálu mezi zdrojem a koncovým uživatelem. V současné době se streamingu využívá především pro přenášení audiovizuálního materiálu po internetu (webcasting). Webcasting může probíhat v reálném čase (internetová televize nebo rádio), nebo systémem Video on demand (YouTube).[1]

4.1.1 Kvalita videa

Na přenos audiovizuálního materiálu po internetu je třeba použít kodeky na zmenšení objemu dat. Ke streamingu se nejvíce využívá flashových kodeků, MPEG-4, Windows Media, Real Time a Quick Time. I tak by přenos záznamu v televizním rozlišení (720×576) by byl příliš náročný. Proto je nejvíce rozšířený streaming v rozlišení 320×240 bodů při datovém toku 100–400 Kbps.[1]

4.1.2 Kvalita audia

Ke streamingu audia se využívá především kodeků Windows Media Audio (WMA), MP3, OGG, AAC+ v datových tocích obvykle od 16-256 kbps. Audio může být streamováno jako single bitrate, což je jeden konstantní datový tok nebo multibitrate, což je více konstantních datových toků přenášených dohromady v jednom datovém toku mezi kodérem streamu a serverem. Přehrávající multibitrate stream ze serveru dokáže potom automaticky měnit kvalitu zvuku v případě zhoršení/zlepšení kvality internetového připojení posluchače.[1]

4.2 Webcast

Největší poskytovatelé webcasteru zahrnují rádio a TV stanice, které souběžně vysílají na jejich výstupy v takové kvalitě jako internetové stanice.

Schopnost využití levných a dostupných technologií umožňuje nezávislým mediálním prostředkům, aby se rozšiřovaly. Existuje mnoho výborných pořadů, které jsou pravidelně vysílány on-line. Tyto pořady jsou vytvářeny obyčejnými lidmi, kteří je vytvářejí doma a zaměřují se v nich na různá témata.[11]

Existuje několik metod streamingu:

4.3 Unicast

V počítačových sítích označuje pojem unicast či přenos paketů pouze jedinému cíli (stаницi) v síti. Pojem "unicast" je podobný slovu broadcast, ten vysílá do všech stanic v síti najednou.

Tato metoda je používáná např. při streamování multimediálního zdroje. Unicastové servery streamují pouze jednomu uživateli, zatímco multicastové servery mohou streamovat více stanicím najednou.

Obrázek 11: Princip unicastu

4.4 Broadcast

Broadcast je přenos paketů v síti, kde tyto pakety jsou přijímány každým zařízením v síti. V dnešní době je stále více broadcasting nahrazován multicastingem, jelikož ve většině případů nechceme, aby pakety vysílané serverem byly doručeny všem klientům. Proto je tato metoda nepoužitelná pro streamování DVB, kde chceme doručit pakety pouze těm klientům, kteří si o ně požádaly a mají na ně právo.\[11\]

4.5 Multicast

Multicast je metoda posílání paketů z jednoho zdroje skupině více koncových stanic. Místo odesílání jednotlivých paketů ke každému cíli je odeslán jediný paket. IP směrování přenosů multicast bylo vyvinuto, aby doplnilo technologie unicast a broadcast, které účinně nezvládaly nové aplikace. Adresace a přenosy multicast umožňují např. více hostitelům přenést jediný paket.\[11\]
4.5.1 Základní vlastnosti

Klíčovým cílem této technologie je zásadní odlehčení zátěže vysílajícího uzlu a přenosové soustavy při přenosech typu jeden zdroj - mnoho příjemců. Zdroj tedy vysílá data, určená neznámému, potenciálně velmi velkému počtu příjemců (skupině), pouze jednou a veškerá režie spojená s distribucí příjemcům je ponechána na přenosové soustavě, v prostředí internetu tedy (v ideálním stavu) na směrovačích (routerech). Na nich také je, aby zajistily efektivní přenos dat od zdroje k příjemcům, tedy aby vysílaná data poslaly po každém spoji nejvýše jedenkrát, a to pouze tehy, je-li daným směrem skutečně nějaký příjemce. Na rozdíl od klasického přímého vysílání (unicast), kdy přenos paketu dat od zdroje k cíli je iniciován zdrojem, je tok paketů skupinového vysílání určován příjemci. K identifikaci skupin příjemců se používá speciální třída adres IP (třída D), zahrnující adresy z množiny 224.0.0.0 až 239.255.255.255. Vysílající uzel odesílá pakety dat s cílovou adresou skupiny (a svou vlastní obyčejnou zdrojovou adresou). Další šíření přes směrovače by mělo probíhat stejnou metodou best effort (aneb dělám, co můžu) jako šíření běžných paketů přímého vysílání. V případě skupinového vysílání ovšem může směrovače provést replikaci paketu a jeho vyslání do více směrů.
4.5.2 Skupinové vysílání v lokální síti

Protokoly na 2. vrstvě síťové hierarchie (v našich podmínkách je z nich daleko nejrozšířenější ethernet) obsahují ve svých specifikacích podporu skupinového vysílání v podobě speciálních MAC adres. Běžné síťové karty pracovních stanic (včetně PC) pak mají schopnost podle svého okamžitého nastavení (na základě požadavků programu) filtrovat pakety skupinového vysílání a nejbližším vrstvám programového vybavení již předávat jen relevantní část paketů skupinového vysílání, které se v lokální síti pohybují, tedy pouze skupiny, jež jsou předmětem momentálního zájmu dané stanice. Nedochází tedy k zatěžování stanic lokální sítě, jichž se dané skupinové vysílání netýká. Z výše řečeného vyplývá, že například k experimentu se skupinovým vysíláním v rámci lokální sítě může postačit běžné technické vybavení a příslušný aplikační program (a samozřejmě případně další technické prostředky, které jsou pro uvažovanou aplikaci potřebné, např. zvuková karta a reproduktory).

4.5.3 Přenos skupinového vysílání mezi sítěmi

Snadnost implementace skupinového vysílání v rámci lokální sítě se vytrácí, jakmile chceme dosáhnout přenosu v rámci propojených sítí. Do hry vstupují směrovači s jejich primárním úkolem získat informace o tom, které skupiny mají být vysílány do sítí, jež jsou ke směrovači bezprostředně připojeny. K tomuto účelu byl vyvinut speciální protokol IGMP, Internet Group Management Protocol. Jeho pomocí směrovač periodicky zjišťuje zájem stanic v připojených sítích o jednotlivé proudy skupinového vysílání. Směrovač vyšle do připojené sítě dotaz (paket se speciální skupinovou adresou 224.0.0.1) a jednotlivé stanice odpovídají (s náhodně zvoleným zpožděním, aby nedocházelo k zahalení sítě při současném odpovídání všech najednou) informací o adresách skupinového vysílání, o něž mají zájem. Odpovědi jsou rovněž vysílány na adresu 224.0.0.1 a odposlouchávány ostatními stanicemi. Tím se zamezí duplicitnímu vysílání požadavků na stejnou skupinu. Programové vybavení koncové stanice tedy musí navíc podporovat protokol IGMP. Směrovače tak pomocí protokolu IGMP sledují zájem o příjem konkrétních skupin ve svém bezprostředním okolí.
4.5.4 Směrování multicastu

Mnohem tvrdším oříškem je směrování multicastu v rozsáhlých sítích, respektive v celém internetu. Jde o to, aby se všechna data vysílaná v rámci konkrétní multicastové skupiny dostala všem přihlášeným příjemcům – a pokud možno nikomu jinému. Tuto úlohu řeší multicastové směrovací protokoly.

Směrovací protokoly musí bezpodmínečně zajistit ochranu proti smyčkám, v nichž by datagramy obíhaly až do vynulování hodnoty TTL (Time-To-Live). V případě multicastu se pro tento účel používá metoda kontroly zpětné směrovací cesty (RPF, Reverse Path Forwarding): Směrovač příjme multicastový datagram jen z toho rozhraní, z něhož vede zpátečně (unicastová) směrovací cesta ke zdrojové IP adrese uvedené v hlavičce dotyčného datagramu. Pokud tomu tak není, datagram se zahodí.

Směrování multicastu se provozuje ve dvou režimech:

- **Hustý režim (dense mode)** předpokládá, že příjemci konkrétní multicastové relace jsou téměř všude, takže každý přijatý multicastový datagram se implicitně posílal na všechna síťová rozhraní s výjimkou RPF rozhraní, z něhož datagram přišel. Nechce-li některý směrovač od svého souseda určitou skupinu dostávat, např. proto, že pro ni nemá žádné příjemce, musí mu to explicitně sdělit.

- **Řídký režim (sparse mode)** vychází naopak z toho, že příjemců je relativně málo, a proto sám od sebe přijaté multicastové datagramy nikam neposílal, leda až když některý z jeho sousedů požádá.

Použití hustého režimu se dnes omezuje na privátní (firemní) sítě, které používají multicast pro interní aplikace s velkým počtem účastníků. V globálním internetu je ale jasným favoritem řídký režim, a to v podobě směrovacího protokolu PIM-SM (Protocol Independent Multicast – Sparse Mode), který je definován v RFC 4601.

Jestliže v hustém režimu dostává data každý směrovač, který se tomu aktivně nebrání, u řídkého režimu je problém přesně opačný: jak dát dohromady všechny odesílatele a příjemce, kteří se účastní dané multicastové relace? Odesílatelé totiž nevědí, kde se nacházejí příjemci a naopak. Protokol PIM-SM proto odesílatelům a příjemcům vytváří obecně známé místo pro setkání – rendezvous point (RP). Páteřní směrovač se pro tuto roli konfiguruje buď ručně, anebo častěji pomocí automatického mechanismu zvaného PIM-SM bootstrap.[11]
5 Úprava programu Getstream

Pro práci s vysíláním digitální televize v počítačové síti dnes existuje mnoho programů. Mezi tyto nejznámější programy určitě patří program Getstream, který slouží pro tyto účely. Dále stojí za zmínku program VLC. Tento program, na rozdíl od Getstreamu, slouží pro práci se snad všemi multimediálními zdroji. Proto jsou jeho zdrojové kódy poněkud robustnější a je méně stabilní.

Jelikož cílem mé práce bylo navrhnout systém, který by umožnil sledování televizního vysílání v počítačové síti, zvolil jsem úpravu programu Getstream, protože se jedná o jednoduchý, ale za to velice stabilní program.

5.1 Program Getstream

Getstream je opensource program (jeho zdrojové kódy jsou volně stažitelné), jehož autorem je Florian Lohoff. Dnes již existují modifikace tohoto programu, které upravují některé nedostatky a doplňují jej o další vlastnosti a funkce. Jednou z těchto modifikací je Getstream-Poemple. Tato modifikace obsahuje, na rozdíl od základního Getstreamu, nástroj streamforwarder. Tento nástroj slouží k "přeposílání" streamu z jednoho zdroje na druhý. Jedná se o velmi užitečný nástroj, kterého jsem využil pro přijím streamu na straně klienta (viz. kapitola 5.3).

Veškeré další informace o tomto programu, včetně zdrojových kódů lze najít zde:

http://www.mulder.franken.de/getstream-poempel

Getstream umožňuje streamovat jak metodou unicast, tak metodou multicast. V této práci se budu zabývat pouze druhou jmenovanou metodou.

Getstream.c je hlavní soubor, ve kterém se volají všechny funkce potřebné pro streamování. Dalším významným souborem je demux.c, který obsahuje nejdůležitější funkce, především funkce dvr_read. Úkolem této funkce je přijímat pakety z TV adaptéru. Pakety nemusí přicházet samostatně, dvr_read může najednou přijmout až 10 paketů (záleží na zvolené velikosti bufferu - dočasné část paměti). Proto je třeba tyto pakety od sebe rozdělit, aby byla možná další práce s jednotlivými pakety. Pakety tohoto typu se nazývají Transport Stream pakety (dále jen TS pakety).
5.2 Cíl úpravy

V úvodu této kapitoly jsem uvedl, že cílem této práce je navrhnout systém, který by umožnil sledování televizního vysílání v počítačové síti pouze po autentizaci. Toto není moc konkrétní popis toho, čeho bych chtěl docílit. Proto zde uvedu, jak bych si představoval výsledný program a jaké úpravy zdrojových kódů budu muset provést.

V zadání se vyskytuje pojem autentizace. Autentizace patří k bezpečnostním opatřením. Je to proces ověření identity subjektu. V mém případě to znamená, že přístup ke streamu, který se bude do síti vysílat, budou mít pouze vybraní uživatelé a ostatní klienti nebudou moci vysílaný stream přehrávat. Rozlišit uživatele na ty, kteří mají přístup ke streamu a ty, kteří mají přístup zamítnutý. Z tohoto důvodu se budou muset uživatelé přihlašovat.

5.3 Popis úpravy

Jak již bylo výše zmíněno, program Getstream, který v našem případě bude reprezentovat server, přijme TS pakety a poté je rozdělí na elementární pakety. Dále už je možné tyto TS pakety odesílat. V mém případě musím před odesláním každého paketu jej zašifrovat. Pro samotné šifrování a dešifrování využívám algoritmus CSA (viz. kapitola 2.6). Tento algoritmus je implementován např. v programu VLC. Jeho volná implementace lze stáhnout z internetových stránek:

http://www.videolan.org/developers/libdvbcsa.html
Algoritmus CSA obsahuje dvě důležité funkce a to dvbcسا_encrypt a dvbcسا_decrypt. První ze zmíněných funkcí obstará zašifrování dat, které se do této funkce posílají přes parametr a druhá funkce tyto data dešifruje. Celý princip těchto dvou procesů je popsán v kapitole 2.6.

Před odesláním paketu se zavolá funkce dvbcساEncrypt, kde jako parametr vložím adresu prvního bitu TS paketu a jeho velikost (188). Toto volání se provede před voláním funkce send_ts_packet, která jej odešle.

Další věc, kterou je třeba udělat na straně klienta, je dešifrovat TS pakety. U klienta se využije upravený nástroj Streamforwarder. Tento nástroj se spouští se dvěma parametry: zdrojová adresa a cílová adresa. Jeho funkcí je totiž "přeposlat" stream ze zdrojové adresy do cílové adresy. Ze zdrojové adresy si přečte zašifrovaný stream, který dešifruje a tento dešifrovaný stream přesměruje a cílovou adresu.

V souboru Streamforwarder.c je důležitá funkce data_incoming. V této funkci se pakety načítají ze zdroje (funkce read) a poté se odešlou do cíle (funkce send_packet). Mezi těmito dvěmi funkcemi se zavolá funkce dvbcساDecrypt a opět jako parametr se pošle adresa prvního bitu TS paketu a jeho délka.

Při spuštění systému jsem došel k závěru, že server TS pakety šifruje, ale při dešifrování u klienta dochází ke chybě, jelikož stream nelze přehrát. Po chvíli testování jsem si uvědomil, že se šifrují pouze video, audio a data pakety, ale PMT a PAT nikoliv a na straně klienta se dešifrují veškeré přijaté pakety včetně PMT a PAT. Teoreticky lze říci, že PMT a PAT se u klienta šifrují, a proto nelze stream přehrát, protože program potřebuje PMT a PAT k rozeznání audio, video a data paketů.

Tento problém lze vyřešit dvěma způsoby. První možnost je šifrovat i PAT a PMT. Tento způsob je neefektivní, jelikož by se zbytečně šifrovaly pakety, u kterých to není nezbytné. Druhá možnost je využít vlastnosti TS paketů. TS pakety obsahují v hlavičce (viz. kapitola 2.3.1), mimo jiné, hodnotu "transport_scrambling_control". Tato hodnota určuje, zda je tento paket šifrován. Velikost této hodnoty jsou 2 bity. Pokud je tato hodnota rovna 0, pak paket se předešifruje. V případě, že je hodnota jiná, pak se předšifruje. Rozhodl jsem se využít tento druhou možnost.

Na straně serveru se budou stále šifrovat pouze audio, video a data pakety pouze s tím rozdílem, že se v hlavičce každého tohoto paketu změní "transport_scrambling_control" z hodnoty 0 na hodnotu 1. Tímto se budou PMT a PAT odesílat nešifrované a v hlavičce "transport_scrambling_control" bude mít hodnotu 0, kdežto další šifrované pakety budou mít tuto hodnotu nastavenou na 1. Poté stačí u klienta kontrolovat každou hlavičku TS paketu na hodnotu "transport_scrambling_control". Pokud je tato hodnota rovna 0, pak se paket pouze pošle do cíle.
Zda-li se tato hodnota bude rovnat 1, TS paket se dešifruje, hodnota se přepíše na 0 a paket se odešle se do cíle.

V kapitole, která popisuje šifrovací algoritmus (kapitola 2.6), je zmíněn pojem klíč. Podle tohoto klíče probíhá šifrování i dešifrování. Jedná se o 64-bitové číslo a je vhodné jej uložit do souboru, ze kterého jej server i klient načte. Klíč jsem uložil do souboru /etc/scrambling_key. Na straně serveru (tedy program Getstream) jsem vytvořil funkci get_key. Úkolem této funkce je načíst klíč ze souboru do proměnné, aby bylo možno TS pakety šifrovat. Funkce se volá hned po spuštění Getstramu. Opět zde využívám funkci execvp a jako parametr funkci CAT. Parametrem funkce CAT je soubor, který obsahuje klíč.

Obdobně se načtení klíče provede na straně klienta. Pokud se uživatel úspěšně přihláší k serveru, zavolá se funkce execvp se stejnými parametry. Tímto je klíč na obou stranách načten.

5.4 Instalace programu

Po přeložení zdrojových kódů se vytvoří spustitelné soubory. Proto není třeba program instalovat. Pouze je nutné mít nainstalovanou knihovnu libevent a knihovnu libdvbcsa.

Pro spuštění serveru (program Getstream) je nejdříve třeba vytvořit soubor, který bude obsahovat parametry dostupného vysílače, které lze najít na internetu. Soubor pojmenuji "ostrava". Obsah takového souboru může vypadat následovně:

```
# DVB-T Praha (Ostrava, Czech Republic)
# T freq bw fec_hi fec_lo mod transmission-mode guard-interval hierarchy
T 618000000 8MHz 2/3 NONE QAM64 8k 1/4 NONE
```

Jedná se o ostravský vysílač, který vysílá na frekvenci 618000000Hz (618MHz). Komentář nad těmito parametry popisuje, o jaké parametry se jedná.

Dále potřebujeme zjistit seznam dostupných stanic v daném multiplexu. To se provede pomocí funkce SCAN a jeho výstup se přesměruje do konfiguračního souboru, který pojmenuji např. `channels.conf`. Použiji tedy tento příkaz:

```
scan ostrava > getstream/channels.conf
```

Obsahem souboru `channels.conf` bude seznam dostupných stanic spolu s jejich parametry. Nejdůležitějším parametrem je PID, což je identifikační číslo stanice. Tento soubor je parametrem programu Getstream. Program `getstream` lze spustit takto:

```
./getstream -f ./getstream/channels.conf -p 531:224.0.0.0:8080
```

Přepínač `-f` určuje cestu ke konfiguračnímu souboru a přepínač `-p` nastavuje streamové kanály, kde hodnota 513 je PID jedné ze stanice.
Pro spuštění klienta (program Streamforwarder) je třeba zadat 3 parametry. První parametr je adresa, kam server streamuje. Druhým parametrem je port localhostu, kam se přesměruje dešifrovaný stream a třetí parametr je adresa serveru. Spuštění klienta může vypadat následovně:

`/streamforwarder udp://224.0.0.0:8080 8080 192.168.1.102`
6 Závěr

V počítačové síti je tomu jinak. Stačí si pouze nainstalovat určitý program, který je schopný televizní signál přijmout a přehrát. Tato poměrně jednoduchá možnost se stává stále více oblíbenou a využívá ji nemalé množství uživatelů. Samozřejmě toto přináší i mnoho výhod.

Došel jsem k názoru, že není složité si vytvořit systém pro streamování tak, aby splňoval mé požadavky. Proto čtenář nemusí zůstat pouze u sledování televizního vysílání. Dnes lze na internetu najít pro programy (např. Getstream), kde stačí pouze upravit nebo doplnit zdrojové kódy tak, aby bylo vyhověno požadavkům na rychlost síť, počet klientů apod.

Samozřejmě, že tato problematika je velmi obsáhlá a nebylo možné vše zahrnout do tohoto textu. Tento fakt spolu s tím, že má úprava Getstreamu sloužit pouze k streamování televizního vysílání po autentizaci a je možné jej doplnit o mnoho dalších úprav, které by vedly k využívání dalších výhod a možností, bude věst k pokračování této práce.
Internetové zdroje

Seznam obrázků

Obrázek 1: Blokové schéma DVB-C vysílače ... 8
Obrázek 2: Sdružování jednotlivých programů transportního toku ... 10
Obrázek 3: Blokové schéma vysílače DVB-T .. 11
Obrázek 4: Kódování a multiplex zdrojové informace .. 12
Obrázek 5: Adaptace satelitního kanálu .. 13
Obrázek 6: Příjem satelitního DVB signálu ... 14
Obrázek 7: Kombinace blokové a proudové šifry .. 16
Obrázek 8: Proudová šifra ... 17
Obrázek 9: Princip IPTV ... 20
Obrázek 10: Představa šíření "lineárních" programů v sítích IPTV .. 21
Obrázek 11: Princip unicastu .. 26
Obrázek 12: Princip broadcastu ... 27
Obrázek 13: Princip multicastu ... 28
Přílohy

I. CD

- Getstream-poempel-20070210
 - Originál (adresář obsahuje zdrojové kódy původního programu)
 - Upravený (adresář obsahuje zdrojové kódy upraveného programu)

- Bakalářská práce.pdf

- Zadání.pdf