Realizace digitálního řízení na modelovém kolejíšti

Vypracoval: Bc. Michal Kubín
Vedoucí diplomové práce: Ing. Roman Pavlas, Ph.D.
Datum odevzdání: 6.10.2009
Prohlášení

Prohlašuji, že jsem celou bakalářskou práci včetně příloh vypracoval samostatně pod vedením vedoucího diplomové práce a uvedl jsem všechny použité podklady a literaturu.

V Ostravě:..........................

Podpis:
Prohlašuji, že

- byl jsem seznámen s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.
- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně ke své vnitřní potřebě diplomovou práci užít (§35 odst. 3).
- souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prozenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci, obsažené v Záznamu o závěrečné práci, umístěném v příloze mé diplomové práce, budou zveřejněny v informačním systému VŠB-TUO.
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.
- bylo sjednáno, že užít své dílo – diplomovou práci nebo poskytnou licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečných výše).
- beru na vědomí, že odevzdáním své práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě:

Podpis:

Adresa trvalého pobytu:
U Fortny 2158,
Uherský Brod, 688 01
ANOTACE DIPLOMOVÉ PRÁCE

Kubín, M. Realizace digitálního řízení na modelovém kolejišti. Ostrava : katedra ATŘ-352 VŠB-TUO, 2008. 54 s. Diplomová práce, vedoucí: Pavlas, R.

Diplomová práce se zabývá digitalizací modelového kolejiště. V úvodu je rozehrán současný stav kolejiště a technologie na něm použité. V další části je proveden rozbor dostupných technologií pro digitalizaci modelového kolejiště a zvolení jedné z nich. Zvolená zařízení jsou vyrobena a digitalizace provedena na dvou lokomotivách. Celá sestava je oživená a otestována.

ANNOTATION OF THESIS

Thesis, head: Pavlas, R.

Thesis deal with digitizing modelling yard. In introduction is out of print actual state of yard and technology used on that. In next parts is effected analysis accessible technology for digitizing modelling yard and election ones of them. All the parts are made and digitizing effected on two engines. All group is activationed and tested.
Obsah diplomové práce

Obsah diplomové práce ... 1
Seznam použitého značení .. 2
1 Úvod... 3
2 Současný stav modelového kolejiště.. 4
 2.1 Řízení kolejiště... 7
 2.2 Programové vybavení.. 10
 2.3 Světelná signalizace... 11
 2.4 Uvedení kolejiště do provozu... 13
3 Dostupné prostředky digitálního řízení modelového kolejiště velikosti TT 15
 3.1 Úvod do technologie ... 15
 3.2 Rozšíření technologie (použitá technologie)... 16
 3.3 Dekodéry .. 17
 3.4 Centrály .. 18
 3.5 Ovladače ... 20
4 Požadavky a rozpočet .. 21
5 Možnost použití alternativních snímačů polohy vlaku .. 22
6 Realizace digitálního řízení.. 24
 6.1 Centrála DCCMinibox ... 24
 6.2 Ovladač HUGO ... 29
 6.3 Zesílovač VedZes ... 32
 6.4 Rozbočovač .. 34
 6.5 Lokodekodéry Zimo MX64 a MX63 .. 35
 6.6 Digitalizace lokomotivy Taurus BR 182 .. 38
 6.7 Digitalizace lokomotivy Sergej T679 ... 45
 6.8 Upravený ovladač HUGO ... 50
 6.9 Jednotka řízení ovladačů ... 51
 6.10 Zakrytování, a umístění sestavy .. 52
7 Další vývoj a možnosti zlepšení modelového kolejiště .. 59
8 Závěr ... 60
Conclusion ... 62
Seznam použité literatury: .. 64
Příloha... 66
Seznam použitého značení

AC Alternating Current - střídavé napětí
DC Direct current - stejnosměrné napětí
DCC Digital Command Control – Sběrnice digitálního řízení modelového kolejiště
GND Ground - uzemnění, záporný pól napájení
IO integrovaný obvod
I/O Input /Output – vstup / výstup
I²C Inter-Integrated Circuit – sériová sběrnice pro připojení pomalých periferií
IR Infra Red – infračervené
LED Light Emiting Diode – světlo vyzařující dioda
LOCONET Část DCC vyčleněná pro ovládání lokomotiv
NPN, PNP Typy tranzistorů (písmena charakterizují typ přechodu)
PLC Programmable Logic Controller - programovatelný logický automat
PROFIBUS PRoces FIeld BUS – průmyslová sběrnice
RS-232 Sériová synchronní komunikační sběrnice
SMD Surface Mount Device - součástky určené pro povrchovou montáž
SUSI Serial User Standard Interface – rozšiřující sběrnice lokodekodéru
SW Software – programové vybavení
TCP/IP Transmission Control Protocol/Internet Protocol – internetový protokol
TT Označení měřítka modelové železnice 1:120
1 Úvod

Železniční modelářství je snad tak staré jak železnice sama. Odedávna se lidé snaží napodobit reálnou železnici v menším méřítku. Původně byly vlakové modely určeny jako hračky pro zábavu dětí a postupně se z hraček staly věrné modely a vyvinulo se železniční modelářství.

Vlakové modelářství se rozvíjelo od nepohyblivých modelů, přes modely na páru, klíček až po modely na elektřinu. Elektrická energie přinesla do vlakového modelářství revoluci a to nejen v pohonu lokomotiv, ale také v pohonu výhybek, přestavníků semaforů a dalších.

Dalším milníkem v oboru železničního modelářství bylo použití digitálního řízení. Digitální řízení způsobilo, že lokomotivy jsou schopny se chovat na kterémkoli úseku kolejiště nezávisle. Dokud byly řízeny lokomotivy pomocí ovládání napájení jednotlivých úseků, kolejiště motor lokomotivy byl napřímo spojen s napájením v daném úseku a choval se podle polarity a velikosti napětí v něm. Při digitálním řízení jsou koleje napájeny konstantním napětím, do nějž je namodulován ovládací signál. Tento signál každá lokomotiva zpracovává a jedná podle příkazu určeného lokomotivě se správnou adresou.
2 Současný stav modelového kolejiště

Modelové kolejiště bylo zakoupeno katedrou pro demonstraci různých druhů řízení. Při zakoupení kolejiště, bylo kolejiště ovládáno pomocí kláves a přepínačů, nacházejících se v pravém dolním rohu kolejiště, jak je vidět na Obr. 1. Průběhem času na něm bylo realizováno několik diplomových a bakalářských prací, které ovládání kolejiště kompletně přetvořily. Bylo zde realizováno řízení pomocí PLC (programovatelného logického automatu) a manuální ovládání bylo odstraněno. Dále bylo kolejiště vybaveno návěšti a zabezpečeným přejezdem, rovněž ovládanými pomocí PLC. Pomocí PLC jsou krom návěšti ovládány přestavby a napájení jednotlivých úseků kolejiště.

Dalším krokem v rozvoji kolejiště je realizovat digitální řízení, takovým způsobem, aby na ně bylo možno demonstrovat jak analogové tak digitální ovládání lokomotiv. Digitalizace ovládání lokomotiv je cílem této diplomové práce. Konstrukce kolejiště

Kolejiště Obr. 1 má klasickou „modelářskou“ konstrukci, která se skládá ze základní nosné překližkové desky, polystyrénových bloků, segmentů kolejnic a dalšího vybavení, jako jsou stavby a světelná signalizace. Model je v měřítku 1:120, což je modelová velikost TT s rozchodem kolejnic 12mm.

Obr. 1 Celkový pohled na kolejiště
Samostatné kolejíště je rozděleno do více segmentů, kvůli možnosti analogového řízení více souprav současně, nezávisle na sobě. V kolejíšti jsou 2 hlavní okruhy, lokomotivní depo, vlečka, odstavná kolej a rozvětvené odstavné koleje v úseku nádraží. Kolejiště je rozděleno do 10 samostatně ovládaných úseků:

- 4 úseky na hlavních okruzích,
- 4 úseky v nádraží,
- 2 úseky v místě lokomotivního depa,
- 1 úsek na odstavné kolej,
- 1 úsek na vlečkové kolej.

Jednotlivé úseky jsou napájeny napětím o velikosti 0 – 12V, přičemž změnou polarity kolejí se určuje směr jízdy lokomotivy. Tyto úseky jsou ovládány pomocí PLC přes modul diskrétních vstupů (rozebráno dále).

K jednotlivým úsekům je přiřazena světelná signalizace, která je ovládána paralelně s jednotlivými úseky. Signalizace odpovídá standardní signalizaci na reálném drážním systému. Oproti reálnému systému však nereagují vlaky na semafor, ale pouze se na semaforu rozsvětuje značení odpovídající stavu modelového kolejíště (Obr. 2).

Kolejiště je vybaveno více druhů světelné signalizace, a to:

- signalizace na přejezdech (signalizace je spouštěna pomocí magnetických jazýčkových relé, po přejetí magnetu umístěného ve vlaku, nad kontaktem),
- 4 světlová signalizace jako návěst pro vjezd do stanice (žlutá, bílá, zelená, červená),
- 3 světlová signalizace jako návěst pro odjezd ze stanice (žlutá, zelená, červená),
- 2 světlová signalizace jako předvěst pro vjezd do stanice (žlutá, zelená),
- signalizace pro posuv (modrá, bílá).
Dalším segmentem kolejiště jsou výhybky. Většina výhybek je ovládána pomocí elektrických přestavníků, které jsou rovněž ovládány pomocí PLC přes moduly diskrétních vstupů. Na kolejišti jsou použity jak jednoduché výhybky (Obr. 3), tak i výhybky „křížové“ (Obr. 4). Kolejiště rovněž obsahuje 2 jednoduché výhybky s manuálními přestavníky.

Budovy na kolejišti jsou postaveny ze stavebnic určených pro modelové kolejník TT. Terén kolejiště je převážně rovinný, jen v jednom rohu je vytvořena pomocí polystyrénového bloku terénní nerovnost, ve které je vybudován tunel. Tunel je bohužel nízký a zabraňuje pozdější elektrifikaci kolejníků. Povrch je tvořen modelářským posypem imitujícím zatravněné
plochy, štěrkový výsyp kolem trati a jiné. Povrch doplňují imitace stromů. Silnice jsou tvořeny speciálními tapetami.

2.1 Řízení kolejiště

Jak již bylo zmíněno, je kolejiště řízeno pomocí PLC firmy ABB řady 800xA. Toto PLC je modulární, fyzicky rozdělen na 2 skupiny modulů. Jedna skupina modulů je na straně řízení u PLC (Obr. 5) a druhá skupina modulů je umístěna u kolejiště (Obr. 6). Tyto skupiny spolu komunikují pomocí sběrnice ProfiBus. Pro účely řízení modelového kolejiště je použito těchto modulů (zahrnuty obě skupiny modulů):

- procesorový modul AC800M typ PM860,
- komunikační rozšíření ProfiBus CI854A,
- modul pro připojení I/O karet ke sběrnici ProfiBus CI830,
- vstupní modul DI801,
- výstupní modul DO801,
- napájecí zdroje SD821 a SD823.

Obr. 5 Modul na ovládacím stanovišti (ProfiBus modul, Procesorová jednotka)

Procesorový modul AC800M je vlastně centrálním „mozkem“ celého systému. Modul umožňuje pomocí sběrnice ModuleBus připojení 192 I/O signálů pomocí „drátově“ nebo
1344 I/O signálů „bezdraťově“ (optický přenos). Modul má také další komunikační prostředky s okolím, jako jsou konektory (CN1 a CN2) pro připojení ETERNET IEEE 802.3 (10BaseT), 2 x RS-232C, přičemž jeden slouží pro komunikaci (CN3) a druhý pro nastavování PLC (CN4). Modul také disponuje konektorem sběrnice CEX-Bus, která slouží pro připojení komunikačních jednotek. Data o PLC jsou brána z webových stránek výrobce, společnosti ABB.

Základní technické údaje jednotky AC800M:
- 2MB flash PROM2,
- 8MB SDRAM,
- CPU MPC860 48MHz,
- příkon 5W,
- hodnota logické 1 min. 15V,
- hodnota logické 0 max. 8V.

Komunikační rozšíření CI854A umožňuje PLC komunikovat po sběrnici ProfiBus. Toto rozšíření umožňuje PLC komunikovat až se dvanácti zařízeními. Tento modul umožňuje
Diplomová práce - Realizace digitálního řízení na modelovém kolejišti

PLC komunikovat po ProfiBus rychlostmi 9.6, 19.2, 93.75, 187.5, 500, 1500, 3000, 6000 a 12000 kbit/s.

Modul pro připojení I/O karet CI830 je zařízení pro připojení vzdálených I/O karet pomocí ProfiBus-DP. Tento modul má totožnou sběrnici pro připojení I/O modulů jako základní procesorová jednotka (ModuleBus), což umožňuje používat totožné I/O moduly.

Vstupní modul DI801 disponuje 16 diskrétními vstupními kanály. Každý kanál je galvanicky oddělen optočlenem, chráněn proudovým omezením, chráněn proti el. mg. rušení a vybaven indikační LED. Modul je připojen sběrnici ModuleBus. Na modelu kolejiště jsou použity 2 tyto moduly.

Výstupní modul DO801 disponuje 16 diskrétními výstupními kanály. Po sepnutí se na výstupní svorce objeví napětí 24 V s maximálně využitým proudem 0,5 A. Modul je opět vybaven galvanickým dělením od sběrnice ModuleBus, odolný proti el. mg. rušení, zkratu na svorkách, tepelnému přetížení a každý výstup je rovněž vybaven indikační LED. Těchto modulů je na modelu kolejiště použito 6 ks.

Napájecí zdroje dodávají el. energii řídící jednotce AC800M a modulu pro připojení I/O karet CI830. Oba použité zdroje DS821, DS823 mají výstupní napětí 24 V a maximální výstupní proud DS821 – 5 A DS823 - 20 A.

U řídícího systému jsou jako vstupy do diskrétních vstupních jednotek použity magnetické relé (Obr. 7), umístěné v různých částech kolejiště (většinou před semafory, přejezdy, na nádraží a odstavných kolejích). Tato magnetická relé dokážou systému vypovědět, kde se nachází vlaková souprava (v soupravě musí být umístěn magnet, který spíná mg. relé).
Výstupní I/O jednotka ovládá jednotlivé úseky kolejíště, přestavování výhybek a ovládání světelné signalizace.

2.2 Programové vybavení

PLC je možno programovat více způsoby (jazyky):

- Jazyk reléových schémat je grafickým jazykem, pracuje na principu „poskládání“ grafického zapojení řídící funkce pomocí reléového schématu. Kromě schémat klasických relé, lze použít i speciální relé, jako časovače atd. Program je vykonáván podle schématu z leva doprava. Věci, které nelze zobrazit pomocí relé, se zaznamenají jako obdélník, do kterého se logická funkce vepíše.

- Jazyk mnemokódu je obdobný assembleru používanému u PC. Do programu se přímo zadávají instrukce „zadrátované“ v řídícím čipu PLC. Tyto instrukce je poté PLC schopno vykonávat. Jedná se o základní jazyk všech procesorových jednotek.

- Jazyk logických schémat je obdobný s jazykem reléových schémat, místo relé se však používají bloky logických funkcí, časovačů, pamětí atd.

- Jazyk strukturovaného textu patří do kategorie vyšších programovacích jazyků, jako jsou například C++ nebo Pascal.
- Jazykem sekvenčních blokových schémat zaznamenáváme program po krocích, které se mají vykonat. Tento program je nadřazen všem předchozím zmínovaným programovacím jazykům.

Program, který řídí provoz na kolejišti je momentálně ve stavu, kdy soupravy dokážou projet přesně naprogramovanou úlohu a poté se zastaví na koncových stanovištích. Soupravy nedokážou akci opakovat. Pro opakování průjezdu kolejištěm je potřeba umístit soupravy do výchozích stanovišť a spustit program znovu.

2.3 Světelná signalizace

Světelná signalizace na modelovém kolejišti je totožná se světelnou signalizací z reálného světa. Signalizace na kolejišti je realizována pomocí LED-diodového světelného značení. Světelné značení je ovládáno pomocí PLC, kde se vyskytl problém - PLC má logickou 0 kolem 4V. Tato vlastnost způsobovala problémy a bylo potřeba před návštědou předřadit obvod s invertory, který tento problém vyřešil.

Význam barevného značení je uveden na [Obr. 8], kde je ukázáno řazení světel, které je vzorem pro sestavení návštědla. Nepoužívaná světla se z tohoto předpisu vynechají, ale pořadí zůstává neustále stejné.

horní žluté světlo
zelené světlo
červené světlo
bílé světlo
modré světlo
dolní žluté světlo
první zelený nebo žlutý pruh ukazatele rychlosti
druhý zelený pruh ukazatele rychlosti

Obr. 8 Světelné návěští [BP T. Habernal]
Na modelu jsou použita následující návěstidla (světla jsou napsána v pořadí shora, při označování návěstí jsou x libovolné čísla na schématu na Obr. 9):

- **2 světelná seřaďovací (provoz ve stanici – označení: Sexx)**
 - bílé světlo (posuv povolen)
 - modré světlo (posuv zakázán)

- **2 světelné předvěsti** (informuje o stavu následující signalizace – označení: PrxS, PrxL)
 - žluté světlo (výstraha – na další signalizaci je červená)
 - zelené světlo (vjezd povolen - na další signalizaci je zelená)

- **3 světelná odjezdové** (odjezd ze stanice na okruh – označení: Lx, Sx)
 - bílé světlo (posuv povolen)
 - červené světlo (stůj)
 - zelené světlo (výjezd povolen)

- **4 světelná vjezdová** (příjezd z okruhu do stanice – označení: xL, xS)
 - žluté světlo (výstraha – na další signalizaci je červená)
 - bílé světlo (posuv povolen)
 - červené světlo (stůj)
 - zelené světlo (stůj)
2.4 Uvedení kolejiště do provozu

Pro zprovoznění kolejiště je potřeba udělat několik kroků:
- zkontrolovat propojení řídící části s řízenou částí,
- zajistit napájení kolejiště,
- zkontrolovat program v PLC.

Zkontrolujeme, zda je zapojen propojovací kabel ProfiBus (fialový kabel zakončený CANON konektory). Tímto kabelem musí být propojeny ProfiBus jednotky na straně kolejiště a ovládacího panelu.

Napájení kolejiště zprovozníme pomocí několika komponent:
- připojíme do zásuvky zdroj výhybek (velká šedá krabice pod kolejištěm), které spojíme i s kolejištěm (pod kolejištěm visí modré „banánky“, ty zapojíme do červených zdířek v pravém dolním rohu kolejiště),
- zapneme zdroj světelného značení vypínačem na zdroji (počítačový zdroj, většinou položený na zdroji výhybek),
- zajistíme připojení ProfiBus modulu (zapneme do zásuvky napájecí zdroj ProfiBus modulu umístěný z boku kolejiště),
- zkontrolujeme napájení PLC modulu na ovládacím panelu (měl by být zapojen neustále),
- připojíme regulovaný zdroj pro ovládání kolejiště (vláčkový transformátor připojíme do zásuvky a výstupní napětí přivedeme „banánky“ do modrých zdířek v pravém dolním rohu kolejiště).

Pokud je v PLC správný program, je kolejiště připraveno na provoz. To můžeme zkontrolovat tím, že vyzkoušíme, zda kolejiště reaguje na ovladač (kovový průmyslový box se třemi přepínači). Přepínač STOP restartuje program kolejiště a start je spustí (přepínače mají mít funkce tlačítka a proto je nutné přepínač pro správnou funkci vždy zapnout a vypnout!). Zda kolejiště reaguje na ovladač, zjistíme podle reakce návěstidel.

3 Dostupné prostředky digitálního řízení modelového kolejíště velikosti TT

V odvětví železničního modelářství je velké množství komponent pro digitální řízení. V železničním modelářství převažuje technologie postavená na DCC (Digital Command Control).

Rovněž pro digitalizaci lokomotiv lze sehnat od základních dekodérů až po dekodéry s velkým množstvím funkcí použitelných pro různé akustické či vizuální efekty. Je tu tedy možnost ovládat na lokomotivě nejen směr a rychlost, ale i rozsvícení světel, zvuk lokomotivy v závislosti na rychlosti, kterou lokomotiva jede (potřeba snímač otáček kol modelu), vyvíječe kouře, či zvedání pantografů.

Bohužel ve velikosti TT (v které je kolejíště), není možno tyto efekty příliš využívat kvůli velikosti lokomotivy a velmi malému množství volného prostoru v lokomotivě, jak je vidět v kapitole 6.6.

3.1 Úvod do technologie

Pro digitální řízení modelových kolejíště vznikla samostatná sběrnice nazývaná DCC (Digital Command Control), která umožňuje ovládat jak lokomotivy, tak i příslušenství, jako signalizaci, výhybky a jiné. Část sběrnice DCC pro řízení lokomotiv se nazývá LocoNet®.

Tato sběrnice funguje na principu proměnné délky pulsu (Obr. 10) namodulovaného do napájecího napětí kolejíště. Do kolejíště je signál namodulován pomocí tzv. centrály. Každá lokomotiva má v sobě integrovaný dekodér, který dokáže oddělit ovládací signál od napájecího napětí a reagovat podle něj. Každá lokomotiva má vlastní adresu a tak může být řízeno více lokomotiv naráž. Základní architekturu digitálního ovládání standartu DCC, můžeme vidět na Obr. 11.

Obr. 10 Vzorek ovládacího signálu DCC [www.volny.cz/mtbbus]
3.2 Rozšíření technologie (použitá technologie)

Technologie uvedená v minulé kapitole se používá pro manuální řízení modelového kolejíště. Na realizaci zadané úlohy však potřeba tuto technologii rozšířit tak, aby digitální ovládání bylo možno propojit s PLC.

Původně bylo záměrem spojit systém s PLC pomocí rozhraní RS-232. Tato varianta byla zvolena z nedostatku I/O portů. Tento způsob však nebylo možno realizovat z důvodu že námí použité PLC neumí na sběrnici RS-232 zapisovat pomocí programu libovolné řetězce a tato sběrnice slouží jen pro servisní účely. PLC však bylo rozšířeno o 1 vstupní a jeden výstupní modul a tím bylo možné systém k PLC připojit. Pro toto použití bylo potřeba ovladače upravit.

Celá úprava technologie spočívá v úpravě ovladače HUGO 4. Úpravy spočívají v přemostění spínačů a tím přímého propojení jednochipu ATMELO s jednochipem PIC. Toto „krkolomně“ řešení bylo zvoleno z důvodu nemožnosti získat princip sběrnice LOCONET.
Každý z až osmi ovladačů komunikuje pomocí sběrnice I²C s řídící jednotkou, která je ovládána pomocí I/O signálů z řídícího PLC (Obr. 12).

![Diagram](image)

Obr. 12 Upravená technologie digitálního ovládání

Jednotlivé ovladače jsou navrhnuty modulárně, tak aby bylo možné na nich dělat samostatné úpravy bez potřeby předčítovat celý systém. Jak již bylo zmíněno, centrála je schopna ovládat až 8 lokomotiv a k tomu je potřeba 8 ovladačů. Z ohledu na velikost kolejiště byla zadána výroba čtyř ovladačů. Díky vývodu sběrnice na boku rozvaděče však není problém připojit další ovladače.

3.3 Dekodéry

Pro digitalizaci každé (nedigitalizované) lokomotivy je potřeba vybavit lokomotivu dekodérem. V našem případě je to jakýkoliv dekodér stanartu DCC. Těchto dekodérů je na trhu poměrně velké množství. Dekodéry se od sebe liší především velikostí a množstvím výstupů (krom základních funkcí je možno ovládat také např. světla, sirénu a jiné). Díky univerzálnosti dekodérů lze digitalizovat jakoukoliv lokomotivu, je-li v ní prostor na umístění dekodéru. Při digitalizaci lokomotivy se nejprve provede demontáž karoserie lokomotivy a v případě předpřípravy pro digitalizaci naleznete výměnný modul (Obr. 13). Odstraníme propojovací modul (propoj mezi kartáči lokomotivy a motorem), abychom mohli instalovat dekodér. Propojovací modul je složen z obvodu s diodami, který spouští pření světlomet
lokomotivy. Pro srovnání vidíme propojovací modul a dekodér na Obr. 13 (dekodér je na obrázku více vpravo). Montáž dekodéru můžeme provést buď pouhým zasunutím dekodéru do připravené patice, nebo (pokud nemáme originální dekodér) propojením dekodéru pomocí drátů (Obr. 15). Použití neoriginálního dekodéru má své výhody i nevýhody. Mezi nevýhody patří nutnost upravit lokomotivu, mezi výhody pak možnost namontovat dekodér s větším počtem funkcí než má originální dekodér.

Obr. 13 Příprava lokomotivy na digitalizaci Obr. 14 Propojka a dekodér

Obr. 15 Lokomotiva po digitalizaci

3.4 Centrály

Centrála má více funkcí. Jednou z funkcí je, posílání příkazu přes DCC sběrnici jednotlivým periférie (lokomotivám, návěštím, výhybkám atd.). Druhou funkcí je
možnost naprogramování jednotlivých DCC dekodérů. Naprogramování spočívá v první řadě přidělení adresy jednotlivým zařízením (adresa musí být pro každé zařízení unikátní). Některé složitější dekodéry umožňují nastavit funkce výstupů pro jednotlivé příkazy. Při programování lokodekodérů je potřeba lokomotivu s dekodérem umístit na separátní (programovací) kolej, aby se tím nerušil provoz kolejíště.

Centrály se dají pořídit od jednoduších centrál pro domácí použití (Obr. 16), až po složité centrály pro použití na velkých kolejíštích (Obr. 16). Jiný systém používá centrály, které se můžou navzájem propojovat a ovládat jimi samostatně rozsáhlá kolejíště (Obr. 18), pro přidělování adres, je však potřeba originálního ovladače. Lze také najít návody jak jednoduchou DCC centrálu vyrobit. Rovněž se dají pořídit centrály ovládané pomocí specializovaných ovladačů, nebo řízené pomocí PC a specializovaného software.

Obr. 16 Multifunkční centrála

Obr. 17 Základní centrála (vlastní realizace)

Obr. 18 Sériově vyráběná centrála (pro přidělení adresy nutný originální ovladač)
3.5 Ovladače

Rovněž ovladače můžou být jak multifunkční profesionální (Obr. 21), tak i jednoúčelové (Obr. 19), popřípadě jednoúčelové, které si můžeme sami vyrobit (Obr. 19). Z důvodu rozšíření stávajícího kolejíště je pro realizaci zadaného úkolu vhodnější vyrobit vlastní ovladač. Vlastní ovladač lehce upravíme, a to tak, že ovládací prvky nahradíme svorkovnicí pro připojení výstupů z PLC. Protože ovladač je kompatibilní s většinou centrál používaných pro DCC řízení, výroba vlastního ovladače nijak neomezuje výběr ostatních komponent. Ovladač je nutno vyrobit z důvodu, že na trhu chybí vstup připravený pro připojení PLC. Jinou možností je upravení sériově výroběněho ovladače.

Obr. 19 Jednoduchý ovladač (stavebnice)

Obr. 20 Jednoduchý ovladač (sériově výroběný)

Obr. 21 Rozšířený ovladač umožňující programování (sériově výroběný)
4 Požadavky a rozpočet

Dekodéry

Je potřeba pořídit pro každou digitalizovanou lokomotivu jeden dekodér. Tyto dekodéry se pohybují v cenách od cca 500-1500 Kč. Druhy a ceny dostupných dekodérů jsou zmíněny v příloze.

Centrála

Centrála vlastní výroby byla zvolena jednoduchá centrála MiniBox dle návrhu společnosti Digitrax. Pro toto řešení lze pořídit komponenty pro stavbu v hodnotě přibližně 1100 Kč rozepsané v příloze. Schéma i seznam součástek je převzat z internetu [http://www.zababov.cz].

Ovladač

Pro úlohu je možné použít dvě nejčastěji amatérsky vyráběné verze ovladačů FRED a HUGO. Oba dva tyto ovladače mají víceméně totožné funkce, liší se však v použitých technologiích. Ovladač FRED je možno vyrobit za cenu cca 800Kč, a ovladač HUGO za cca 450Kč. Schéma i seznam součástek je převzat z internetu [http://www.railnet.sk].

Součástky potřebné pro výrobu ovladače HUGO naleznete v příloze.

Celkem

Ceny u elektrosoučástek i převodníku jsou brány z internetu [www.gme.cz], [www.modely.biz].

Tab. 1 Celkový rozpočet pro realizaci řízení jedné lokomotivy

<table>
<thead>
<tr>
<th>Součást</th>
<th>Poznámka</th>
<th>Cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrála</td>
<td>Hlavní jednotka, jejíž pomocí lze přímo řídit lokomotivu a lze k ní připojit 2 ovladače.</td>
<td>900 Kč</td>
</tr>
<tr>
<td>Ovladač</td>
<td>Každým ovladačem lze ovládat jednu lokomotivu (cena je pro ovladač HUGO).</td>
<td>450 Kč</td>
</tr>
<tr>
<td>Dekodér</td>
<td>Pro každou digitalizovanou lokomotivu je potřeba jeden dekodér (cena uvedena pro Lokodekodér Viessmann 750 mA).</td>
<td>920 Kč</td>
</tr>
<tr>
<td>Celkem</td>
<td>Rozpočet proveden pro ovládání jedné lokomotivy.</td>
<td>2 270 Kč</td>
</tr>
</tbody>
</table>
5 Možnost použití alternativních snímačů polohy vlaku

Hlavním důvodem alternativního řešení je špatná funkce stávajícího řešení určování polohy vlaku. Stávající systém je založen na principu magnetického snímání, jak je uvedeno výše. Tento princip má několik nedostatků. Mezi hlavní nedostatky tohoto systému patří potřeba silného magnetického pole pro sepnutí jazýčkového relé. Toho se dá docílit silným magnetem, který nelze umístit do lokomotivy kvůli své velikosti a silnému magnetickému poli, které ruší elektromotor a vyfazuje jej z činnosti.

Toto lze obejít vložením magnetu do vagónu za lokomotivou, což má za následek, že lokomotiva nezastavuje na místě, kde je požadováno (zastavuje až za návěstidlem) a v případě dlouhé lokomotivy může zůstat stát na výhybce.

Jako alternativu snímání polohy, která by mohla nahradit s minimálními úpravami stávající systém, byl vybrán optický snímač, řízený mikroprocesorem. Tento snímač podle dostupných zdrojů je ve vlakovém modelářství nejpoužívanější, spolehlivý a není potřeba příliš velká úprava lokomotivy.

Tento snímač je tvořen IR LED diodou (pro lidské oko neviditelné Infračervené záření) a fotodiodou. Parsek se odráží od lokomotivy (popřípadě jiného snímaného objektu) a je snímán fotodiodou (Obr. 22). Snímaný objekt je třeba opatřit reflexní plochou. Reflexní plochu můžeme realizovat buďto nátěrem objektu ze spodní strany, nebo nalepením reflexního štítku. Toto označení neruší estetický dojem, protože je ze spodní strany objektu a není vidět.

![Princip a realizace optického snímače](image)

Obr. 22 Princip a realizace optického snímače
Umístění snímače v kolejišti není o moc znatelnější, než umístění jazýčkového relé (Obr. 23). Nahrazení systému rovněž nebude příliš obtížné. Nevýhodou tohoto systému je však vyšší pořizovací cena oproti současnému systému. Cena se pohybuje kolem 60-70 Kč/snímač (jedna jednotka dokáže ovládat 2 snímače).

Elektronické zapojení snímače (Obr. 24) je ovládáno procesorem PIC12C508 který je schopen vyhodnocovat 2 snímače. Infra LED dioda vysílá cca 500 světelných impulzů/sekundu a jejich odraz je vyhodnocován fotodiódou. Program v procesoru je chráněn proti náhodným impulsům. Program v procesoru je rovněž vybaven zpožděním rozepnutím o délce cca 3s, z důvodu zanedbání díry mezi vagóny. Seznam součástek naleznete v přílohách.

Obr. 23 Umístění optického snímače do kolejiště

Obr. 24 Řídicí elektronika a optický snímač polohy
6 Realizace digitálního řízení

Pro realizaci digitálního ovládání byly vybrány komponenty vlastní výroby dle návrhů amatérských železničních modelářů především z ČR a SR ve spolupráci s členů železničních klubů Zababov a RailNet. Pro realizaci bylo potřeba sestavit centrálu DCC MiniBox, ovladač HUGO 4, zesilovač SHMDBOOST, rozbočku a lokodekodér. Jednotlivé prvky se spolu spojují pomocí plochých, šesti žilových kabelů zakončených konektory RJ-12.

6.1 Centrála DCCMinibox

Centrála byla vybrána díky její dostatečnosti pro řízení daného modelového kolejiště a příznivé ceně. Pro stavbu byla zvolena novější verze centrály s integrovaným ACK dekodérem, který umožňuje číst data z již naprogramovaných lokodekodérů. Tato centrála umožňuje ovládat nezávisle na sobě až 18 lokomotiv, číst adresy a nastavení z již naprogramovaných lokodekodérů a tyto lokodekodéry rovněž programovat. Centrála sice dokáže ovládat až 18 lokomotiv, ale v sobě má integrován poměrně slabý zesilovač DCC a sama o sobě dokáže zvládnout pouze jednu lokomotivu. Pro ovládání více lokomotiv je potřeba k centrále připojit zesilovač, jako třeba zesilovač SHMBOOST.

Zapojení centrály

Provedení centrály

Centrála je realizována na oboustranném plošném spoji podle návrhů a návodů amatérských modelářů z klubu RailNet. Tento návrh se skládá z 3 základních součástí, kterými jsou základní deska s konektorem napájecího napětí (Obr. 27), konektory pro připojení ovladačů a sběrnice lokonet a konektorem pro připojení programovací koleje. Dále
pak vedlejší deska se zobrazovacím displejem (Obr. 28) a ovládacím čipem tohoto displeje a maticová klávesnice sloužící k ovládání centrály (Obr. 29).

Obr. 27 Základní deska centrála DCC MiniBox

Obr. 28 Deska se zobrazovacím displejem centrály DCC MiniBox

Obr. 29 Ovládací klávesnice centrály DCC MiniBox
Ovládací a zobrazovací prvky MiniBoxu

Klávesnice

- **Numerické klávesy**

 Umožňují vkládat adresu lokomotivy při provozu, nebo zadávat adresy dekodérů při programování.

- **Klávesa „A“**

 Tato klávesa slouží k nouzovému zastavení a znovuspuštění provozu na kolejišti.

- **Klávesa „B“**

 Slouží k přechodu do programovacího módu a výběru typu programovacího módu.

- **Klávesa „C“**

 Slouží k vymazání slotu a listování seznamem adres registrů (směrem nahoru).

- **Klávesa „D“**

 Slouží k výběru uloženého slotu a listování seznamem adres registrů (směrem dolů).

- **Klávesa „#“**

 Slouží jako potvrzení vložení adresy do slotu, nebo jako přepínáč režimu práce hodnoty registru z byte na bit a zpět.

- **Klávesa „∗“**

 Slouží k zobrazení rychlosti v aktuálním slotu, nebo ke čtení a zápisu adres, či hodnoty registru.

Displej

Na MiniBoxu je hlavním vizuálním informačním prvkem 4 - místný LED displej (Obr. 28). Tento displej zobrazuje informace dle módů, ve kterých se právě centrála nachází. Z displeje jsme schopni odečítať adresu dekodéru při programování, kontrolovat naprogramovanou adresu a další údaje, popsané v dalších kapitolách. Za zmínku stojí také první tečka zleva, která problikává při činnosti DCC sběrnice.

Připojení MiniBoxu

MiniBox má několik konektorů, jak je vidět na Obr. 30. Jako první je zde zmíněn napájecí konektor, ke kterému by měl být připojen zdroj o napětí 13 V. Toto napětí se může být i mírně vyšší, protože centrála je vybavena stabilizátorem napětí. Dále se na centrále nacházejí konektory RJ-12 kterými se připojuje DCC sběrnice. K těmto konektorům je možno
připojit ovladač, rozbočovače a zesílovače. Posledním konektorem je konektor pro připojení programovací koleje. Při programování lokodekodéru musí centrála komunikovat s lokomotivou obousměrně. Z tohoto důvodu, je na centrále umístěn výstup na programovací kolej, který umožňuje obousměrnou komunikaci. Tento výstup umožňuje lokomotivu i ovládat, avšak kvůli proudovému omezení pouze jednu. Pro ovládání více lokomotiv slouží zesílovač připojení přes DCC sběrnici, který ale neumí s lokomotivou komunikovat obousměrně. V praxi se tenhle problém řeší tak, že přes zesílovač je ovládané celé kolejiště a programovací kolej je umístěna někde na kolejišti separátně (oddělená od zbytku okruhu), nebo někde zcela mimo kolejiště.

![Obr. 30 Popis konektorů centrály DCC MiniBox](image)

Provozní módy

Centrála má dva základní provozní módy, RUN a STOP. Tyto módy se přepínají pomocí klávesy „A“ jak již bylo zmíněno výše. V módu RUN můžeme ovládat lokomotivy a provozovat kolejiště, avšak nemůžeme programovat lokodekodéru, ani vyčítat z nich adresu. V módu STOP jsou všechny lokomotivy na kolejišti zařízena a lze provádět programování a nastavování lokodekodéru (pokud se nachází na programovací kolejí).

Vyčtení adresy dekodéru

Aby bylo možno ovládat lokomotivu, je potřeba znát adresu, která je jí přirozena. Tuto adresu jsme schopní vyčíst pomocí ACK detektoru (ktéří je již v této verzi centrály integrován). Pro vyčtení adresy je potřeba mít lokomotivu umístěnou na programovací kolejí.
a na této kolej se nesmí nacházet žádná jiná lokomotiva. Centrálu převedeme tlačítkem „A“ do stavu STOP. Poté přejdeme tlačítkem „B“ do módu vyčítání adresy, kde se na displeji objeví blikající nápis „Addr“. Poté stisknutím tlačítka „*“ spustíme vyčítání adresy z lokodekodéra. Při vyčítání adresy bliká na displeji nápis „Addr“ rychleji a po vyčtení adresy se objeví adresa na displeji. Pokud se rychle blikající nápis změní na pomalu blikající, nepovedlo se vyčíst adresu z dekodéru a je potřeba zkontrolovat, zda je lokomotiva dekodérem správně osazena, je správně nasazena na kolejích, nebo není na testovací kolej více lokomotiv.

Nastavení adresy dekodéru

Může se stát, že nejsme spokojeni s přeprogramovanou adresou v lokodekodéru, nebo potřebujeme adresu změnit kvůli její kolizi s jiným lokodekodérem. V tom případě postupujeme podobně jako při vyčítání adresy, takže zastavíme chod centrály a klávesou „B“ přejdeme do módu vyčítání adresy. Poté stiskneme klávesu „B“ ještě jednou a na displeji se objeví nápis „dir“. Následovně zadáme novou adresu pomocí numerických kláves a potvrďme ji klávesou „*“. Můžeme zadávat tzv. krátké (1 - 127), nebo dlouhé (128 - 9999) adresy, avšak při provozu na jednom kolejišti by měli mít adresy všech lokodekodérů stejný formát.

6.2 **Ovladač HUGO**

Ovladač HUGO (Obr. 32) byl vybrán díky jeho snadné realizaci, jednoduchému zapojení (Obr. 31) a dostatečnému množství funkcí. Tento ovladač slouží pro ruční ovládání lokomotivy a je postaven pro testovací účely a vyzkoušení a ověření funkce centrály, zesilovače, lokomotivy a jiných.
Funkce ovladače

Prvotním krokem při použití ovladače je jeho zapnutí, které můžeme provést stlačením tlačítka „start“. Pokud je baterie v ovladači nabyta, je připojen a byla mu přiřazena adresa, můžeme jím ihned ovládat patřičnou lokomotivu.

Ovladač umožňuje řízení jedné lokomotivy, kde můžeme volit rychlost, směr přídavné funkce lokomotivy.

Na ovladači jsou voliče rychlosti očíslované „0-14“ (Obr. 32), ke kterým jsou přiřazeny různé rychlosti v rozsahu 0 - 127 (centrála podporuje 128 rychlostních úrovní pro každý směr jízdy). Při rychlostech 0 a 1 lokomotiva stojí. Dvě rychlosti pro zastavení jsou použity z důvodu plynulého zastavení. Při zastavení tlačítkem „0“ lokomotiva zastaví okamžitě, zatímco při zastavení tlačítkem „1“ lokomotiva zpomaluje postupně (reálně). Rychlost se nastavuje pro oba směry současně a směr se přepíná tlačítkem „směr“. Směr pohybu lokomotivy je znázorněn na ovladači LED s označením „↔“. I při přepnutí směru lokomotiva nejprve postupně zpomalí a opět se postupně rozjede opačným směrem. Charakteristiky zrychlení a zpomalení nezávisí jen na tiskárně ale také na použitém dekodéru.
Rychlost můžeme nastavovat ve dvou rozmezích – jízda (1/1) a posun (1/2). Tyto módy přepínáme pomocí tlačítka „posun“ a vybraný mód je signalizován pomocí dvou LED s označením „1/1“ a „1/2“. Toto přepnutí lze provést, pouze pokud je na daném ovladači nastavena rychlost „0“!!!

Dalšími věcmi, které můžeme ovladačem ovládat, jsou přídavné funkce. U mnou používaných dekodéru jsou to 4 funkce (světla, houkání, atd.) a jejich využití záleží na způsobu digitalizace lokomotivy. Přídavné funkce se spouští nejprve zmáčknutím tlačítka „funkce“ po kterém se jako indikace na ovladači rozsvítí obě dvě diody jízdního módu (1/1 a 1/2) a poté zmáčknutí tlačítka s číslem aktivované funkce. Funkce se vypíná totožným způsobem, jako se zapíná. Funkce jsou nezávislé na rychlosti jízdy lokomotivy (krom světel, kdy bývá spušťená funkce závislá na směru jízdy lokomotivy).

Zbývající 2 tlačítka na ovladači slouží k uspání a programování adresy ovladače. Uspání lze možné provést pouze při zvolené rychlosti jízdy „0“ a po uspání nesvítí na ovladači žádná led. Ovladač je dobré uspávat, čímž se omezí riziko ztráty adresy při vybití akumulátoru. Funkce tlačítka „adresa“ je popsáno v další kapitole.
Přiřazení ovladače k lokomotivě

Pro to, aby byl ovladač schopný ovládat lokomotivu, je potřeba do něj zadat její adresu. To provedeme tak, že ovladač připojíme k centrále pomocí plochého kabelu zakončeného konektory RJ-12. Ovladač zapneme tlačítkem „Start“, poté by se na ovladači měli rozsvítit 2 LED. V případě že se tak nestane, je záložní akumulátor v ovladači zcela vybitý a je potřeba počkat, než se dobije. Ovladač je napájen pomocí sběrnice DCC a nabíjení do provozuschopného stavu by nemělo trvat déle, než několik minut. Poté zmáčkneme tlačítko „adresa“ (toto tlačítko je zapuštěné pod povrchem desky ovladače a je potřeba použít například tužku). Po stlačení se rozsvítí všechny LED na ovladači. Pokud se tak nestane, baterie v ovladači ještě nemá dostatečné napětí, chvíli počkáme, zmáčkneme klávesu „start“ a opět zmáčkneme klávesu „adresa“. Poté co se rozsvítí všechny LED, můžeme zadat pomocí numerické klávesnice adresu. Při každém zmáčknutí tlačítka, probliknou LED (tím zjistíme, zda jsme klávesu dostatečně domáchní). **Adresu je nutné zadávat v pěticiferném formátu,** to znamená, že když chceme zadat například adresu 1, musíme na klávesnici vymákat 00001. Poté je již ovladač připraven k provozu.

Vlastnosti ovladače

Ovladač má vlastní záložní akumulátor, díky jemu je možné zachovat adresu zadanou v ovladači i několik měsíců. V případě, že se akumulátor vybije, je potřeba znovu zadat jeho adresu. Software ovladače je napsán tak, aby se po odpojení sběrnice lokonet (pomocí níž je ovladač napájen) automaticky vypnul. Jinak je možno také ovladač vypnout pomocí tlačítka sleep (musí být nastavena rychlost „0“). V případě úplného vybití ovladače, je nutné jej nechat zotavit. Po připojení k centrále by měl být ovladač provozuschopný do několika minut. Tento ovladač nebyl na rozdíl od ostatních komponent sestaven, ale byl zakoupen jako již funkční výrobek a to z důvodu testování. Při oživování centrály nastali problémy a bylo potřeba získat ovladač, který je otestován a funkční. Ovladač bude dále sloužit jako předloha k ovladači ovládané z PLC pomocí RS-232 a k ručnímu ovládání lokomotivy na kolejišti.

6.3 Zesilovač VedZes

Pro ovládání více lokomotiv je potřeba zesilovač (Obr. 34), a to z důvodu že zesilovač v centrále MiniBox je schopen poskytnout maximální proud jen do 600mA. To stačí stěží na ovládání jedné lokomotivy, a ani ta není schopna dosáhnout maximálního výkonu.
posílení signálu se používají zesilovače signálů. Je možno si rovněž vybrat ze sériově vyráběných zesilovačů nebo si postavit zesilovač svépomocí dle návodu (podstatně nižší cena). Zesílení signálu lze realizovat buď to zesílením signálu ze zesilovače centrály (funguje jako opakovač signálu), nebo připojením autonomního zesilovače ovládaného přes LocoNet.

Schéma zapojení vidíme na Obr. 33. Jak již bylo zmíněno, zesilovač je k centrále připojen pomocí sběrnice LokoNet a jeho výstupem je DCC které se propijí přímo s kolejištěm. Každý zesilovač má svůj vlastní zdroj energie a na LocoNet lze pomocí rozbočovače lze připojit těchto zesilovačů libovolné množství.

Obr. 33 Schéma zapojení zesilovače VedZes
Připojení a kontrolky zesilovače

Na předním panelu se pak nachází dvojice kontrolních LED diod, kde zelená signalizuje zapnutí zesilovače (Power) a červená (Bus Error) chybu komunikace sběrnice Loconet (viz. Obr. 35 Přední panel zesilovače VedZes). Tato chyba může být způsobena nepropojením zesilovače s centrálou, špatnými kabely, nebo chybou protokolu. Na předním panelu se rovněž nachází konektor RJ14 pro připojení sběrnice Loconet (viz. Obr. 35 Přední panel zesilovače VedZes). Posledním komponentem na panelu jsou dvě zdířky (Rail), které se připojují ke kolejím. Vždy jedna zdířka k jedné kolejnici – s polaritou není potřeba se zabývat. Případná změna polarity se jednoduše vyřeší tím, že je lokomotiva na kolejích otočí „čelem vzad“.
6.4 Rozbočovač

Rozbočovač (Obr. 36) slouží pouze pro rozšíření portů pro připojení dalších zařízení, jako jsou ovladače a zesilovače. Všechny zásuvky jsou zapojeny 1 ku 1 (píny jsou propojeny identicky na všech zásuvkách). Na rozbočovač se nachází LED s odporem, které slouží pro indikaci provozu na LocoNet sběrnici. Kontrolka je připojena mezi napájecí kontakty konекторu (1,6 svorka + a 2,5 svorka -). Zapojení konекторů je řešeno souměrně, vůli nemožnosti spálit část centrály opačným nakrimpováním konекторů.

6.5 Lokodekodéry Zimo MX64 a MX63

Jako lokodekodéry byly použity mini-lokodekodéry firmy Zimo. Jedná se o modely MX64 (Obr. 37) a MX63 (Obr. 38 Lokodekodér Zimo MX63). Tyto dekodéry byly zvoleny nejen z důvodů poměrně nízké pořizovací ceny, dostatečného výkonu (zatížitelnost až 1 A) a
dostatečnému vybavení, ale i dobrých uživatelských zkušeností modelářů (z modelářského klubu RailNet).

Dekodér disponuje nejen výstupy na motor, ale i 4 dalšími programovatelnými funkcemi přičemž dvě jsou předurčeny pro ovládání světel (lze přeprogramovat). Tyto dekodéry jsou také vybaveny sběrnicí SUSI (Serial User Standard Interface), na kterou lze připojit rozšiřující zvukový modul. Konektor SUSI je 4-pinový (napájení, zem, data, clock) umístěn na spodní straně dekodéru v podobě měděných plošek. Tento rozšiřující modul však lze použít jen u větších modelů, protože je potřeba nejen zvukový modul, ale i snímač otáček kol. Tento snímač otáček je potřeba např. u parních lokomotiv, kde by nevypadalo nejlépe, kdyby nebyly synchronizovány zvuky páry unikající od pístnic s pohybem pístnic.

Obr. 37 Lokodekodér Zimo MX64

Obr. 38 Lokodekodér Zimo MX63

Lokodekodéry Zimo jsou vyráběny v různých variantách připojení. Jsou zde lokodekodéry zakončené konektory podporovaných výrobcem lokomotiv Tilig, jiné
konektory kompatibilní s výrobcem Piko a pak lokodekodéry zakončeny kably. Cena všech těchto variant je téměř totožná. Pro naše účely byl vybrán lokodekodér s kabelovým vývodom kvůli testovacím účelům a nevětší univerzalnosti. Dva různé typy lokodekodérů byly zvoleny z důvodu velikosti prostoru v digitalizovaných lokomotivách.

Význam kabelů lokodekodéru

Lokodekodér má 6 kabelových vstupů/výstupů, jak je vidět na Obr. 39. Lokodekodér se připojuje černým a červeným kabelem ke kartáčům, snímačích signál z kol (koleji), šedý a oranžový kabel k motoru. Ostatní kably slouží k ovládání jednotlivých funkcí a připojí se jako spínaný záporný kontakt. Kladný kontakt, modrý kabel mají všechny funkce společné. V základním nastavení lokodekodéru jsou bílý a žlutý kabel předurčeny pro ovládání světel a jejich sepnutí je závislé nejen na zpuštění funkce, ale i na směru jízdy lokomotivy. Dalším zapojením lokodekodéru se budeme zabývat v příštích kapitolách „Digitalizace lokomotivy Taurus BR 182“ a .

![Obr. 39 Náčrt lokodekodérů Zimo a význam jednotlivých kabelů](image)

Rozjezdové a brzdné charakteristiky

Lokodekodér má v sobě naprogramováno „reálné chování lokomotivy“. Ve skutečnosti není možné lokomotivu zastavit okamžitě, ale i při brzdění všemi možnými prostředky lokomotiva zastavuje až po několika desítkách metrech. V modelovém kolejišti (díky nízké hmotnosti modelu) to možné je, avšak modelu to ubírá na opravdu dosti. Proto jsou v lokodekodéru naprogramovány rozjezdové a brzdné křivky, podle nichž se lokomotiva chová. Tyto předprogramované křivky můžeme v případě potřeby přeprogramovat a tak změnit charakteristiku rozjezdu a brzdění lokomotivy.
Ovládání motoru pomocí PWM

Motor digitalizovaní lokomotivy není ovládán pomocí velikosti napětí, jak je tomu u analogového řízení. U analogového řízení lokomotivy vznikají problémy, když chceme aby, lokomotiva jela velmi pomalu. Nízké napětí, není schopno překonat odpor mechanických součástí lokomotivy, a aby se dala lokomotivy do pohybu, musíme napětí zvýšit a poté co se lokomotiva rozjede jej snížit tak, aby lokomotiva jela požadovanou rychlostí. Tento skok vypadá velmi nereálně a na modelovém kolejišti působí jako rušivý vliv.

Z tohoto důvodu se při digitalizaci lokomotivy motor ovládá PWM (Pulse-Width Modulation) signálem. Jak již sám název napovídá, jedná se o signál s proměnlivou délkou pulsu. Principem tohoto ovládání je to, že se do motoru pouští pulsy o různé délce, ale stejném napětí (plné napětí 12 V). Pro názornost můžeme vidět na Obr. 40 ukázkou PWM signálu pro nižší a vyšší otáčky motoru. Z toho plyne, že tento signál je schopen pohybovat lokomotivou i velmi malou rychlostí.

![PWM signál](image)

6.6 Digitalizace lokomotivy Taurus BR 182

Před započetím vlastní digitalizace modelu školní lokomotivy Siemens Taurus BR182 byla celá soustava odzkoušena na vlastním modelu lokomotivy Škoda E 499 (přezdívaném bobina) kterou vidíme na Obr. 41. Tento krok byl zvolen z důvodu nezkušenosti s technologií a především poničení poměrně nákladného modelu lokomotivy Taurus. Zkouška digitalizace
proběhla v pořádku, byly ověřeny možnosti centrály, ovladače i digitalizované lokomotivy. Na této zkušební lokomotivě bylo také otestováno, jak se digitalizovaná lokomotiva chová při přejezdu přes přestavby, chování v různých rychlostech a jiné. Byl zde vyzkoušen jen pohon, ovládáním přídavných funkcí a osvětlení jsem se při testech nezabýval.

Obr. 41 Lokomotiva Škoda E 499 - zkouška digitalizace

Zjištění možností digitalizace lokomotivy Taurus

Obr. 42 Lokomotiva Škoda E 499 - zkouška digitalizace
Návrh a výroba osvětlení lokomotivy

Jak již bylo zmíněno výše, díky své velikosti a nedostatku prostoru v lokomotivě byla zvolena pro výrobu osvětlení technologie SMD osazování plošných spojů. I přes miniaturní součástky SMD nebylo zaručeno, že se osvětlení do lokomotivy vejde. Deska s osvětlovacími prvky se musela vejít do prostoru 18 x 8 x 3 mm. Na jednu osvětlovací desku bylo potřeba umístit:

- 5 SMD LED velikosti 0805 (2 x žlutá, 2 x červená, 1 x bílá),
- 6 SMD odporů velikosti 0805 (2 x 750 Ω, 2 x 680 Ω, 1 x 560 Ω, 1 x 35 kΩ, 1 x 3,5 kΩ),
- 1 SMD tranzistor (BC856B SMD).

Zapojení můžeme vidět na schématu Obr. 43. Je na něm vidět, že se skládá z diod předních (žlutých) a zadních (červených) pozičních světel a jejich předřadných diod. Jelikož LED různých barev mají i různý příkon, bylo potřeba určit pro každou barvu jiný předřadný odpor. Předřadný odpor je zde důležitý, protože LED jsou napájeny napětím o velikosti 12 V a bez odporu by se LED zničila. Dále na schématu vidíme bílou LED, která slouží jako hlavní světlomet. Před LED je rovněž předřadný opor avšak dioda je navíc spínána tranzistorem BC856B, na jehož bázi je přivízet přes odpor 35 kΩ kontakt přenížních světel. Toto zapojení je zde z důvodu, aby hlavní světlomet bylo možné spustit pouze při zapnutých pozičních světech. Toto zapojení rovněž řeší, že hlavní světlomet je rozsvícen pouze na té
Diplomová práce - Realizace digitálního řízení na modelovém kolejíšti

straně lokomotivy, která je ve směru jízdy. Dál bylo nutno přidat odpor 3,5 kΩ, který naplno uzavírá bázi tranzistoru a zabraňuje tak problikávání hlavního světlometu na opačné straně lokomotivy.

Po navržení obvodu přišla na řadu výroba plošného spoje, jejíž výsledek můžete vidět na obr. 44, kde je pro lepší představu o velikosti plošných spojů přiloženo měřidlo. Na obrázku je starší verze plošného spoje, kde byly všechny odpory o velikostech 330 Ω a 35 kΩ. Tato verze však svítila až nereálně mnoho a proto byly odpory nahrazeny většími a tím se intenzita svitu snížila. Nové rozmístění odporů lze vidět na schématu obr. 43.

Dalším krokem před vlastní instalací osvětlení do lokomotivy bylo otestování celé sestavy na nepájivém kontaktním poli (obr. 45). Tam byl lokodekodér připojen k centrále,
připojeny k němu osvětlovací obvody a motor podobných parametrů, jako motor v lokomotivě. Při testech bylo sledováno chování jednotlivých komponent a také jejich teplota.

Obr. 45 Test komponent na nepájivém kontaktním poli

Osazení digitalizace do lokomotivy

Po otestování komponent a opravení chyb (např. přílišný svit LED), jsme mohli přikročit k instalaci technologií do lokomotivy. V zápětí bylo zjištěno, že je potřeba upravit jak elektroniku a podvozek, tak i karoserii lokomotivy. Na podvozku bylo potřeba demontovat žárovku a odpilovat výčnělek, který sloužil jako stínítko žárovky jak je vidět na Obr. 46.

Obr. 46 Podvozek lokomotivy před a po úpravě

Další úpravou byla demontáž interiéru lokomotivy, která byla původně části karoserie. Interiér se stal po úpravě součástí podvozku, jak je uvedeno dále. Další úpravou podvozku
byla úprava elektroniky. Původní plošný spoj (Obr. 47) byl demontován a nahrazen nově navrženým plošným spojem (Obr. 48), který byl optimalizován pro potřeby digitálního řízení lokomotivy včetně osvětlení. Nový plošný spoj byl navržen mírně nevhodně, protože se ukázalo, že jedna z cest se dotýká kovové části podvozku. Tento nedostatek byl opraven pomocí přelepení místa doteku izolační páskou, jak je patrné na Obr. 48. Při výrobě nového plošného spoje byly použity součástky ze starého. Dále byl tento nový plošný spoj propojen s plošnými spoji s osvětlením a lokodekodérem.

Dalším krokem bylo zakomponovat plošné spoje s osvětlením do lokomotivy. K tomu byly použity interiéry demontované z karoserie lokomotivy. Tyto plastikové kusy byly použity jako držáky plošných spojů s LED a přilepeny k podvozku lokomotivy, jak je vidět na Obr. 49. Veškerá montáž na lokomotivě byla prováděna pomocí tavné pistole. Tento způsob montáže byl zvolen kvůli možnosti, mechanicky odstranit části lepidla při nesprávném přilepení. Tuto úpravou vznikl problém s optickým vlákem, které přivádělo světlo do hlavního světlometu. Díky tomuto vláknu nebylo možno nasadit karoserii lokomotivy na
podvozek. Zkrácením vlákna byl problém vyřešen a lokomotivu bylo možno složit. Posledním úkonem bylo uspořádání kabelů na podvozku lokomotivy. To bylo provedeno opět pomocí tavné pistole, jak je vidět na Obr. 50.

Tímto je digitalizace lokomotivy kompletní a lokomotiva je plně funkční a připravena pro provoz na modelovém kolejišti. Lze na ní nezávisle zapnout poziční světla, přičemž poziční světla svítí dopředu žlutě (Obr. 51) a dozadu červeně. Tyto světla jsou závislá na zvoleném směru pohybu lokomotivy (i když je lokomotiva nehybná). Dále je možno zapnout
hlavní světlomet (lze zapnout jen s pozičními světly a jen na straně po směru jízdy). Lokomotiva rozlišuje 128 rychlostních úrovní pro každý směr jízdy.

Obr. 51 Digitalizovaná lokomotiva se zapnutými pozičními světly

6.7 Digitalizace lokomotivy Sergej T679

Po předchozí zkušenosti s digitalizací lokomotivy Taurus byly tyto zkušenosti zhodnoceny při digitalizaci další lokomotivy a to T679. Této lokomotivě byla Československými železničáři dána přezdívka „Sergej“ dle jejího původu v tehdejším SSSR.

Zjištění možností digitalizace lokomotivy Taurus

Tato lokomotiva měla rovněž jako předchozí Taurus z výroby udělanou přípravu pro digitalizaci (Obr. 52 Sergej před digitalizací). Tak jako u předchozího modelu, nebyla tato příprava použitelná pro požadované funkce lokomotivy. Stejně jako u lokomotivy Taurus by při použití přípravy lokomotivy by byla pouze schopna pohybu a podle směru jízdy by na čelní straně byly rozsvíceny světlometry. Tyto světlometry jsou rozsvěceny přes dvě diody, které zabraňují, aby svítila žárovka osvětlení na zadní části lokomotivy (Obr. 52 Sergej před digitalizací). Dalším problémem při digitalizaci byl prostor pro umístění locodekodéru. Tento prostor byl pro daný dekodér příliš malý. Jedním z dalších problémů byla nemožnost protáhnout bez úprav kabely od připravené svorkovnice na místo, kam by bylo možno umístit dekodér. Dalším problémem byla tloušťka originálního plošného spoje. Tento spoj je o
tloušťce 0,8mm a jak je vidět na Obr. 52 Sergej před digitalizací slouží jako uložení podvozkových segmentů. Plošný spoj o této tloušťce je obtížné vyrobit.

Obr. 52 Sergej před digitalizací

Návrh a výroba osvětlení lokomotivy

Stejně jako u Sergeje bylo zvoleno osvětlení, které svítí dopředu žlutě, dozadu červeně, samostatně zapínatelný dálkový světlimet a na rozdíl od Tauruse i samostatně zapínatelné osvětlení motorového prostoru. Na rozdíl od Tauruse, kde je na každé straně jedna osvětlující deska, je u Sergeje osvětlení rozděleno do 5-ti segmentů. Tyto segmenty jsou umístěny v čelech lokomotivy, kde vždy na jednom segmentu jsou žluté (přední) a červené (zadní) světla. A na druhém segmentu je umístěn tranzistor pro spínání bílého světla (dálkový světlimet). Posledním segmentem je osvětlení motorového prostoru. Všechny segmenty i s měřidlem pro porovnání velikosti můžeme vidět na Obr. 53 Osvětlovací moduly lokomotivy Sergej s měřidlem.
Osazení digitalizace do lokomotivy

Nejprve byly otestovány všechny funkce locodekodéru na nepájivém kontaktním poli. Po otestování bylo potřeba navrhnout umístění locodekodéru na lokomotivě. Stejně jako u lokomotivy Taurus se zde vyskytly problémy s nedostatkem místa a ještě přibyly problémy s tažením kabelů, které rovněž nebylo kudy vést. Z tohoto důvodu bylo potřeba provést na lokomotivě drobné úpravy. Jednou z úprav bylo vypilování drážek pro kably na těle lokomotivy, jak je vidět na Obr. 55 Drážka na těle lokomotivy a přilepení locodekodéru. Na tomto obrázku je taky vidět, jak je připevněn locodekodér. Veškeré lepení na modelu je provedeno pomocí tavné pistole a to proto, že lepení touto metodou se nepoškozuje lepený materiál. V případě opravy stačí pouze mechanicky očistit přidanou hmotu a problém opravit, či odstranit. Dalším krokem bylo odstranění nepožívaných součástek z modelu. Jednalo se o diody, které jsou na modelu proto, aby svítily světla jen ve směru jízdy a konektor, který je zde jako předpříprava pro digitalizaci. Tento konektor nebylo možno použít z důvodu, že měl pro naše potřeby malé množství kontaktů. Úpravy a přivedení kabelů z locodekodéru na horní straně těla lokomotivy ke kontaktům na spodní straně těla lokomotivy můžeme vidět na Obr. 56 Změny v zapojení lokomotivy Sergej.
Poté byla část lokomotivy složena a bylo pokračováno na digitalizaci na osvětlení lokomotivy. K osvětlovacím panelům byly připojeny kabely a poté byly panely přilepeny na příslušná místa jak je vidět na Obr. 57 Osazení osvětlení na lokomotivě a Obr. 58 Kompletní osazení lokomotivy před zakrytováním.
Obr. 57 Osazení osvětlení na lokomotivě

Obr. 58 Kompletní osazení lokomotivy před zakrytováním

6.8 Upravený ovladač HUGO

Ovladač je upraven tak, aby byla zachována jeho funkce, ale zároveň jej bylo možno ovládat pomocí PLC. Z již zmíněných důvodů nemožnosti se dostat k principu funkce sběrnice LOCONET, bylo nutno zvolit poněkud krkolomné řešení, kde jsou tlačítka duplicitně spojena s replikátorem portů ovládaným řídící jednotkou ovladačů. Díky modulárnosti ovladačů je možné tyto ovladače nahradit ovladači přímo používající sběrnice LOCONET.
Schéma zapojení upraveného ovladače můžeme vidět na Obr. 59. Toto zapojení je jen zjednodušené, ve skutečnosti jsou jednotlivé vstupy připojeny přes optočleny k replikátory portu. Jak je vidět z porovnání upraveného a neupraveného ovladače, jedná se jen o velmi lehké úpravy. Tyto spočívají v připojení všech I/O částí chipu ATMEG (srdce ovladače) k replikátorů portů MCP23017, který komunikuje s řídící jednotkou ovladačů pomocí sběrnice I^2C. Sběrnice I^2C umožňuje adresovat až 8 zařízení, což je postačující pro tyto účely. Každý replikátor umožňuje řídící systém rozšířit o 16 I/O portů. Pro plnou kontrolu ovladače je potřeba 10 výstupních a 2 vstupní porty, tím je tento replikátor portů pro naše potřeby rovněž plně vyhovující.

Obr. 59 Schéma upraveného ovladače HUGO 4

6.9 Jednotka řízení ovladačů

Jednotka řízení ovladačů tvoří jakýsi most mezi jednotlivými ovladači a PLC. Je postavena na jednochipe PIC16F877A, ke kterému jsou připojeny ovladače na pravé straně čelního panelu digitalizační jednotky. K chipu jsou rovněž pomocí sběrnice I^2C připojeny všechny ovladače.
Celá jednotka řízení ovladačů se skládá jen z jednochipu PIC16F877A, který přes sběrnici I2C ovládá pomocí replikátorů portů dané ovladače. Další periferií připojenou na tento jednochip je 16-ti znakový, 2 řádkový displej, na nějž vypisuje jednotlivé stavy systému. Tento displej je zde jen pro diagnostiku systému. Na displeji jsou znázorňovány povely přicházející z PLC, aby bylo možno celou sestavu lépe diagnostikovat.

Další věcí, kterou tento jednochip ovládá je sada relé, které se starají o přepínání mezi digitálním a analogovým řízením lokomotiv. Tyto režimy se přepínají pomocí zeleného tlačítka na čelním panelu centrály. Při přepnutí vypínače do polohy digitálního řízení lokomotiv, je toto řízení potvrzeno rozsvícením tohoto zeleného vypínače. Při vypnuté centrále je defaultně vybráno analogové řízení lokomotiv.

6.10 Zakrytování, a umístění sestavy

Z důvodů bezpečného provozu a hlavně ochrany jednotlivých částí sestavy, byly komponenty umístěné do plastového ochranné krabice. Tato krabice je vyrobená ze standardní plastové elektro-rozvodné krabice.

V boxu jsou umístěny jednotlivé komponenty digitálního řízení tak, jak je znázorněno na Obr. 60 Čelní panel řídící jednotky. Jednotlivé části jsou připevněny ke dnu, nebo víku krabice, popřípadě zasunuty do konektorů (ovladače). Na vrchní části krabice je umístěna programovací kolej, tak aby bylo možné na ni položit lokomotivu, kterou je možno naprogramovat a odzkoušet. Konce kolejnice jsou opatřeny zarážkami, aby bylo zabráněno vyjetí lokomotivy mimo kolej a její pád. Z boční strany krabice je pak sada konektorů. Tyto konektory slouží k připojení jednotlivých periferií:

- napájení celé sestavy,
- vývod pro připojení zesilovače,
- konektor pro připojení PLC,
- konektory pro připojení externích ovladačů.
Čelní strana krabice je určena k manuálnímu ovládání jednotlivých lokomotiv a programování locodekodérů. Levá část panelu je věnována programování lokodekodérů, spodní pak k manuálnímu ovládání lokomotiv. Na pravé horní polovině se nachází návod jak se zařízením pracovat. Tento návod je tu hlavně z důvodu moci obsluhoval kolejiště bez potřeby jakéhokoliv dalších dokumentů.

Programovací část (levá část)

Na této části se nachází klávesnice, která se skládá z numerické a znakové části. Pomocí této klávesnice je možné programovat locodekodéry lokomotivy umístěné na programovací koleji. Způsob programování je popsán v předchozí kapitole **Centrála DCCMinibox.** Dále se nachází na levé polovině čelního panelu také čtyřmístný sedmisegmentový displej, na němž je možno zobrazovat rychlost jednotlivých lokomotivy a vyčítat jejich adresy, jak je rovněž popsáno v předchozí kapitole.
Ovládací část (spodní část)

Jak již bylo zmíněno, spodní část slouží pro manuální ovládání jednotlivých lokomotiv. Tato část se skládá vlastně ze 4 ovladačů HUGO4, jejichž ovládací prvky jsou vyvedeny ven přes čelní panel. Toto ovládání je popsáno v kapitole Ovladač HUGO. Na čelním panelu je rovněž informační textový displej, na němž se vypisují jednotlivé stavy zvoleného ovladače a komunikační jednotky ovladačů.

Napájení

Dalším komponentem centrály je zdroj. Aby byla centrála soběstačná, bylo potřeba postavit a zabudovat do ní zdroj. Zdroj je navržen jako jednoduchý stabilizovaný zdroj, který však postačuje našim účelům. Schéma zdroje můžeme vidět na Obr. 61 Schéma stabilizovaného zdroje.

Zdroj je umístěn uvnitř rozvaděče spolu s dalšími komponenty, jak můžeme vidět na Obr. 62 Vnitřní část centrály.
Zdroj je opatřen chladičem, aby nedošlo k přehřívání centrály, je rozváděč vybaven dvěma ventilátory. Tyto ventilátory (Obr. 63 Chlazení a připojení zdroje) jsou uvedeny do chodu se zapnutím centrály. Tyto ventilátory jsou napájeny 5V aby se tím snížila jejich hlučnost. Na boční straně je rovněž konektor pro připojení napájení ze sítě (230V) a pouzdro pojistky.

Obr. 62 Vnitřní část centrály

Obr. 63 Chlazení a připojení zdroje
Přepínání mezi programováním a provozem

Dalším komponentem centrály je přepínání mezi provozem kolejiště a programovací kolejí. Tento přepínací (modrý přepínací na čelním panelu) slouží jako bezpečnostní přepínací, který zabraňuje kolizím na kolejišti. Tento přepínací zabrání, aby se současně mohly pohybovat lokomotivy na kolejišti, a na programovací kolejí. Schéma zapojení můžeme vidět na Obr. 64 Schéma přepínače provoz/programování. Přepnutí je signalizováno modrou kontrolkou na vypínači, ale také dvoubarevnými kontrolkami u programovací koleje a zásuvky pro připojení zesilovače.

Obr. 64 Schéma přepínače provoz/programování

Programovací kolej

Jak již bylo zmíněno, na vrcholu centrály je umístěna programovací kolej, vyrobená z modelářského mostu. Toto řešení bylo zvoleno z důvodu bočních ochran zabraňujících pádu lokomotivy mimo kolej. Tuto kolej, včetně kontrolky, která znázorňuje, zda je kolej aktivní (kontrolka svítí zeleně) či není (kontrolka svítí červeně). Kolej můžeme vidět na Obr. 65 Programovací kolej.
Propojení s PLC

Propojení mezi PLC a centrálou je realizováno pomocí digitálních I/O signálů. Tyto signály jsou rozděleny do 3 podskupin:
- určení ovladače,
- povel,
- status.

Z důvodu malého počtu použitelných výstupů z PLC, bylo potřeba výstupy multipexovat. Toto znamená, že 2 výstupy určují pro který ovladač je daný povel určen (2 výstupy = 2 bity = 4 stavy = 4 ovladače). Celý systém pak pracuje tak, že se vždy vybere požadovaný ovladač a zvolí se daný povel. Zároveň při vybrání ovladače je vždy vyčten status ovladače (stavy ovladače, jako vybraný směr a rychlost). Z tohoto důvodu je vždy v programu potřeba resetovat centrálu (nastavit směr na jednu stranu a nulovou rychlost) a nastavit tak ovladače do startovacího stavu.
Z důvodu malého množství výstupů z PLC bylo potřeba povely minimalizovat. To znamená, že nejsou plně využity možnosti ovladače. Využité všech rychlostí je zbytečné, protože jsou odstupňovány velmi jemně. Na ovladači jsou používány tyto funkce:

- směr (přepínání směru lokomotivy),
- funkce (přepnutí funkčních kláves),
- rychlosti 0-3 (klávesy kombinované s funkční klávesou),
- rychlosti 7, 10, 12, 14 (klávesy rychlostí).

Jako výstupní hodnoty z centrály jsou vyvedeny stavy jednotlivých kontrolek ovladače:

- směr,
- vybráno funkční tlačítko.

Tyto hodnoty se posílají na PLC z toho ovladače který je právě ovládán (vybrán pro ovládání).

Připojení k PLC je realizováno přes reléový přepínač. To je z důvodu, aby bylo možno využívat stejné porty pro různé druhy úloh. Při zapnuté centrále digitálního řízení jsou porty spojeny z PLC do centrály a při vypnutí digitálního řízení jsou tyto samé porty připojeny k jiné úloze realizované na modelovém kolejišti.
7 Další vývoj a možnosti zlepšení modelového kolejiště

Jak již bylo zmíněno, na kolejišti je realizováno více diplomových a bakalářských prací. Dalšími body realizovanými na modelovém kolejišti by mělo být sepsání souhrnné dokumentace, návodů a popřípadě návodů do praktických cvičení pro demonstraci různých řízení modelového kolejiště.

Dalším velmi podstatným krokem je vyřešit snímače sledující polohu vlaku na kolejišti. Nyní je poloha vlaku snímána pomocí magnetických jazyčkových relé. Na to, aby se relé sepnulo, je potřeba přiložit magnet. Magnety se nyní vozí na vagónech, z čehož plyne několik problémů:
- magnet pro sepnutí musí být silný a je tudíž velký (neestetické řešení),
- i silný magnet nesepne spolehlivě jazyčkové relé,
- magnet se vozí za lokomotivou a dlouhé lokomotivy se zastavují až za návěštími,
- na lokomotivu nelze magnet umístit – ruší chod motoru.

Řešením by byly opticke snímače, které jsou zmíněny v předchozí kapitole Řízení kolejiště. Tyto snímače jsou řízeny procesorem a dokážou eliminovat rušivé vlivy prostředí, čímž by měla být zaručena spíš funkce snímače. Jako výstupem z tohoto snímače je linkedý kontakt, tím pádem by neměla změna technologie snímaní činit větší problémy.

Další úlohou na modelovém kolejišti by mohlo být řízení pomocí PC programu. Komunikace s digitalizační jednotkou je možná s PLC pak pomocí SCADA. Program by proto bylo možno napsat v jakémkoliv programovacím jazyku s možností komunikace po těchto rozhraních.

Jako částí jedné z dalších úloh by poté mohlo být nasimulování „reálného“ provozu na kolejišti. Tato úloha by mohla obsahovat uzavřenou smyčku, kde jeden průběh může trvat i několik hodin a bude se pohybovat větší množství lokomotiv, nebo souprav. Tento program by mohl navozovat reálný provoz modelového kolejiště.
8 Závěr

Účelem diplomové práce bylo seznámit se s kolejištěm a jeho provozem. S kolejištěm jsem se důkladně seznámil a na jeho zprovoznění byl napsán návod v prvním bodě semestrálního projektu.

Dalším bodem bylo zjistit možnosti digitálního řízení modelového kolejíště dostupné na trhu a navrhnout vhodné řešení. Z důvodu potřeby nejprve vyzkoušet schopnost realizace digitálního řízení na daném kolejíšti, byl nalezen a zvolen systém popsaný ve druhé kapitole. Tento systém lze postavit za poměrně příznivou cenu a otestovat na něm možnost realizovat digitální řízení na daném kolejíšti. Tento systém je kompatibilní s vyššími systémy a lze jej pořídit za zlomkovou cenu. Celý systém pro řízení jedné lokomotivy lze pořídit do 3000 Kč, na rozdíl od profesionálních systémů, kde je problém za tuto cenu sehnat jen základní jednotku. Dalším důvodem pro zvolení jednoduchého systému, vyráběného svépomocí je, že digitální řízení potřebujeme sklobit se stávajícím ovládáním kolejíště, které je řízení pomocí PLC. V případě, že bychom zvolili firemní řešení, bylo by potřeba ovladač rozdělat a propojit jej s PLC, což by mělo za následek ztrátu záruky na tento komponent. Z firemních řešení jsou používány dekodéry, které díky své miniaturizaci a univerzálnosti nemá smysl vyrábět. Poté byl vytvořen rozpočet na pořízení součástek a potřebných věcí po výrobě jedné centrály, jednoho ovladače a byl vybrán lokodekodér, který by měl být snadno instalovatelný do lokomotivy.

Dalším bodem projektu pak bylo uvažovat změnu senzorů pro zjišťování polohy vlaku na kolejíšti. Jako nejlepší (a také v železničním modelářství nejpoužívanější) se jeví optická závora snímající polohu vlaku na základě odrazu paprsku od reflexní plochy ze spodní strany snímaného objektu. Tento systém má podle dostupných informací zvýšenou odolnost proti nežádoucímu rušení způsobeného okolním světlem, nebo mezerou mezi snímanými objekty.

Následovně byly postaveny komponenty nutné pro digitalizaci. Byly osazeny plošné spoje centrály DCC MiniBox a centrála oživena. Oživování centrály bylo prověřeno nejprve na nepájivém kontaktním poli, kde byly vyzkoušeny všechny funkce centrály, posléze na pokusné lokomotivě Škoda E499. Všechny testy proběhly v pořádku a bylo možno přistoupit k digitalizaci lokomotivy Siemens Taurus a T679.

Prvním krokem při digitalizaci Tauruse byla úvaha, zda půjde použít předpříprava pro digitalizaci od výrobce. Bylo shledáno, že to není vhodné z důvodu více zamýšlených přídavných funkcí. Následkem toho byl navržen a vyroben nový centrální plošný spoj. Poté

Dalším krokem diplomové práce bylo navržení a vyrobení multiovladače. Tento multiovladač by měl obsahovat 4 ovladače které, budou mít tlačítka vysunuty přes čelní panel boxu, a s PLC komunikuje pomocí I/O portů. Tímto způsobem centrála komunikuje s PLC a díky přepínači mezi analogovým a digitálním řízením lokomotiv, neomezuje jiné úlohy realizované na modelovém kolejíšti. Posledním krokem by mělo být zakomponování digitálního řízení do krytu, na němž jsou umístěny všechny ovládací prvky pro programování lokodekodérů a přidělování adres jednotlivých ovladačů. Na krytu je několik zásuvek RJ-12 pro připojení ručních ovladačů pro demonstraci ručního ovládání lokomotivy.
Conclusion

Purpose of semester project was meet yard and his running. I was properly meet with yard and on his launching was written instruction at first point of semester project.

Another point was to find out possibilities of digital control of modelling yard available in sale and suggest appropriate solution. On the ground of needs at first try out ability of realization digital controlling on given to yard, was found and elected system described in second chapter. This system is possible build for relatively favorable price and test on them possibility to realize digital controlling on given to yard. This system is compatible with higher systems and it is possible come off for fraction of price. Whole system for controlling one’s locomotive is possible come off to the 3000 Kč, in contradistinction to professional systems, where is problem for this price get only central processing unit. To other reason for election simple system, producing by self-help is, that the digital controlling need joint with current operating of yard, which is controlling by the help of PLC. In the event that we would selected firm solution, it would be need to undo the driver and connect it through with PLC, which should in result waste of guarantee on this component. From firm solutions are used decoders, which thanks their miniaturization and catholicity there's no point in produce.

After it was created budget for acquisition parts and needed things for production one’s central unit, one's drivers and was chosen lokodecoder, which should have been easy to install to the locomotive.

Another point of project was thinking about change of sensors for recognition position of train on yard. As the best (and in railway's clay-modelling mostly used too) shows optical bar panning position of train on the basis of reflection ray from reflective surface from bottom sensing object. This system has by accessible information increased immunity against undesirable disturbance incurred by surrounding light, or gap between sensing objects.

Subsequently were built components, which are necessary for digitizing. It was staffers by printed wiring of central unit DCC MiniBox and central unit was debugged. Debugging of central unit was audited at first on non-soldered contact field, where were to be proof all functions of central unit, finally on experimental locomotive Škoda E499. All tests went ahead in good order and it was possible to approach digitizing of locomotives Siemens Taurus and T679.
First move at digitizing Taurus was consideration, whether will go use advance preparation for digitizing from the manufacturer. Be found, that the it is not fit on the ground of more intended auxiliary functions. As a result was designed and made new central printed circuit. After it were to be all needless single parts displaced, inclusive withdrawal impedimentary part undercart. Subsequently were to be designed, implemented and enemy-occupied printed wiring lighting. All these component were to be again certified on contact field, where was check reliability and temperature single part of. Were to be downright change adjustment parts and system was get together like serviceable. Last step was assembly of all part of on undercart locomotives and her assembling and full well - tried whole listings.

Next step diploma work work was proposition and made multicontroller. This multicontroller should contain 4 drivers which, will have buttons protuberant over front panel boxing, and with PLC communicates help I/O ports. In this way central communicate with PLC and thanks commutator among analog and digital drive engines, indulge other exercise realized on modelling yard. Last step would had be behind - composition digital drive to the canopy, whereon are placed all controls for programming lokodekoder and admeasurement address single drivers. On canopy is several drawers RJ- 12 for interface hand drivers for demonstration hand control locomotives.
Seznam použité literatury:

ABB: Dokumentace a podpora výrobce
<URL: http://www.abb.com/product/seitp334/b312569f8a37b9e1c1257164002bf507.aspx>,

Bakalářská práce: Laboratorní úlohy řízení provozu na modelovém kolejišti, Tomáš Habernál,

Diplomová práce: Řízení provozu na modelovém kolejišti, Bc. Pavel Stachiv,

GM Elektronic, firma zabývající se dovozem a distribucí elektrosoučástek
< URL: http://www.gme.cz>,

Košická koľaj, webové stránky zabývající se železničním modelářstvím < URL: http://zmrail.webpark.sk>,

Malá železnice: Elektrotechnika pro začínající železniční modeláře. Valašské Meziříčí : Malá železnice, s. r. o., 1990, 40 s., ISBN 80-900126-1-2,

Malá železnice: Elektronické doplňky modelového kolejiště. Valašské Meziříčí : Malá železnice, s. r. o., 1990, 60 s., ISBN 80-900126-3-9,

Marathon, internetový obchod zabývající se železničním modelářstvím < URL: http://www.vltava2000.cz/marathon>,

Modely.biz, internetový obchod zabývající se železničním modelářstvím
<URL: http://www.modely.biz>,

Oficiální webové stránky klubu Zababov, zabývajícího se železničním modelářstvím
< URL: http://www.zababov.cz>,

FS – VŠB TU Ostrava
Bc. Michal Kubín

Webové stránky modelářského klubu RailNet, zabývajícího se železničním modelářstvím
< URL: http://www.railnet.sk>,

Webové stránky zabývající se digitálním řízením modelových kolejíště
< URL: http://www.volny.cz/mtbbus>,

Zákon o drahách č. 299/1994 Sb. V aktuálním znění. ASPI,

Zimo, výrobce komponent pro digitální řízení modelové železnice
< URL: http://www.zimo.at>,

Příloha

Seznam základních běžně dostupných lokodekodérů

Tab. 2 Přehled a ceny Lokodekodérů

<table>
<thead>
<tr>
<th>Dekodér</th>
<th>Popis</th>
<th>Cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenz Elektronik - GOLDmini</td>
<td>proud do motoru 0,5 / 0,8A, rozměry 11 x 9 x 2,8 mm, programovatelné výstupy A+B s proudovým zatížením 200 mA</td>
<td>1 110 Kč</td>
</tr>
<tr>
<td>Lenz Elektronik - SILVERmini</td>
<td>proud do motoru 0,5 / 0,8A, rozměry 11 x 9 x 2,8 mm</td>
<td>929 Kč</td>
</tr>
<tr>
<td>Viessmann 750 mA</td>
<td>dva funkční výstupy (150 mA pro každý), NMRA kompatibilní, rozměry 11,4x8,8x3,3mm</td>
<td>920 Kč</td>
</tr>
<tr>
<td>ZIMO ELEKTRONIK - MX63</td>
<td>proud motoru 1A, rozměry 20x12x4mm, dva programovatelné výstupy</td>
<td>979 Kč</td>
</tr>
<tr>
<td>ZIMO ELEKTRONIK - MX64R</td>
<td>Zatížitelnost 1,2A, rozměry 26x16x3mm, 4 funkční výstupy, 4 logické výstupy</td>
<td>789 Kč</td>
</tr>
<tr>
<td>ZIMO ELEKTRONIK - MX620</td>
<td>proud motoru 1A, rozměry 14x9x3mm, dva programovatelné výstupy</td>
<td>1 029 Kč</td>
</tr>
<tr>
<td>ROKO Lokodekodér</td>
<td>maximální zatížení 1,1A, rozměry 26,6x16x6,5mm, 3 výstupy</td>
<td>890 Kč</td>
</tr>
</tbody>
</table>

Seznam součástek pro stavbu centrály

Tab. 3 Seznam a ceny součástek potřebných pro sestavení DCC centrály

<table>
<thead>
<tr>
<th>Součástka</th>
<th>Hodnota</th>
<th>Pouzdro</th>
<th>Poznámka</th>
<th>Kat. č. (GM)</th>
<th>Počet (ks)</th>
<th>Cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1</td>
<td>B**C1500</td>
<td>WOM</td>
<td>Diodový můstek</td>
<td>227-004</td>
<td>1</td>
<td>3,00 Kč</td>
</tr>
<tr>
<td>C1, C2, C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6/IA, C6/IB, C6/OA, C6/OB, C8, C10, C12, C14</td>
<td>100N_63V/5%</td>
<td>FÓLIE_7,2x2,5</td>
<td>Kondenzátor</td>
<td>121-414</td>
<td>1</td>
<td>1,50 Kč</td>
</tr>
<tr>
<td>C4, C5</td>
<td>10M/25V</td>
<td>TANTAL_6x3</td>
<td>Elektrolytický kondenzátor</td>
<td>122-028</td>
<td>1</td>
<td>5,00 Kč</td>
</tr>
<tr>
<td>C7</td>
<td>1000M/25V</td>
<td>RADIAL_13x26 LEZI</td>
<td>Elektrolytický kondenzátor</td>
<td>123-175</td>
<td>1</td>
<td>6,00 Kč</td>
</tr>
<tr>
<td>C9</td>
<td>10N/50V</td>
<td>KERAMIKA 5X3</td>
<td>Kondenzátor</td>
<td>120-108</td>
<td>1</td>
<td>1,50 Kč</td>
</tr>
<tr>
<td>C11</td>
<td>47P/50V</td>
<td>KERAMIKA 5X3</td>
<td>Kondenzátor</td>
<td>102-141</td>
<td>1</td>
<td>1,50 Kč</td>
</tr>
<tr>
<td>C13</td>
<td>10M/16V</td>
<td>TANTAL_6x3</td>
<td>Elektrolytický kondenzátor</td>
<td>122-027</td>
<td>1</td>
<td>3,50 Kč</td>
</tr>
<tr>
<td>Součástka</td>
<td>Hodnota</td>
<td>Pouzdro</td>
<td>Poznámka</td>
<td>Kat. č. (GM)</td>
<td>Počet (ks)</td>
<td>Cena</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>D1</td>
<td>BAT85</td>
<td>DO34</td>
<td>Zenerova dioda</td>
<td>223-009</td>
<td>2,00 Kč</td>
<td></td>
</tr>
<tr>
<td>D2, D3, D4, D5, D6</td>
<td>1N4148</td>
<td>DO35</td>
<td>Dioda</td>
<td>220-003</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>HD-BQ- N403RD</td>
<td></td>
<td>4DIGIT_LED_DISPLAY</td>
<td>512-928</td>
<td>55,00 Kč</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>1,25A</td>
<td>5x20F</td>
<td>Pojistka</td>
<td>633-018</td>
<td>3,00 Kč</td>
<td></td>
</tr>
<tr>
<td>J1, J2</td>
<td>RJ12</td>
<td>RJ12</td>
<td>Patice RJ12 pro připojení dálkového ovládání</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3, JP1</td>
<td>ISP_CONN Jumper</td>
<td>2x5, 2x1</td>
<td>Lámací pinové kolíky</td>
<td>832-023</td>
<td>4,00 Kč</td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>TRACK_A&B</td>
<td>ARK2500R-A-2P</td>
<td>Konektor</td>
<td>821-106</td>
<td>2,00 Kč</td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>Napájení</td>
<td>K375A</td>
<td>Napájecí konektor</td>
<td>806-049</td>
<td>8,00 Kč</td>
<td></td>
</tr>
<tr>
<td>J7</td>
<td>KEYPAD_16_CONN_T</td>
<td>1x8_TOP</td>
<td>Uvedeno pro úplnost, neletuje se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>BC337-40</td>
<td>TO92</td>
<td>Tranzistor</td>
<td>210-019</td>
<td>1,50 Kč</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>BC557B</td>
<td>TO92</td>
<td>Tranzistor</td>
<td>210-038</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>360R_06W/1%</td>
<td>VELIKOST_0207</td>
<td>Odpor</td>
<td>110-062</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R2, R3</td>
<td>RXE050</td>
<td>PS_II</td>
<td>PolySwitch pojistka</td>
<td>633-214</td>
<td>17,50 Kč</td>
<td></td>
</tr>
<tr>
<td>R4, R5</td>
<td>RXE025</td>
<td>PS_I</td>
<td>PolySwitch pojistka</td>
<td>663-213</td>
<td>20,50 Kč</td>
<td></td>
</tr>
<tr>
<td>R6, R14, R15, R20</td>
<td>10K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-124</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R7, R8</td>
<td>12R_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-206</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R9, R23</td>
<td>47K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-058</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>100K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-006</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>150K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-225</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>100R_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-057</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>240K_0,6W/1%</td>
<td>VELIKOST_0207</td>
<td>Odpor</td>
<td>110-130</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R16, R17</td>
<td>4K7_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-132</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R18</td>
<td>2M2_0,6W/1%</td>
<td>VELIKOST_0207</td>
<td>Odpor</td>
<td>110-153</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R19</td>
<td>120K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-224</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>27K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-254</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>R22</td>
<td>39K_0,4W/1%</td>
<td>VELIKOST_0204</td>
<td>Odpor</td>
<td>119-087</td>
<td>1,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>74HC138</td>
<td>DIL16</td>
<td>Logický obvod</td>
<td>425-035</td>
<td>5,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>PIC12F508-I/P</td>
<td>DIL8</td>
<td>Microchip</td>
<td>434-251</td>
<td>28,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>7805</td>
<td>TO220</td>
<td>Stabilizátor (1,5 A)</td>
<td>330-001</td>
<td>6,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U4</td>
<td>78L05</td>
<td>TO92</td>
<td>Stabilizátor</td>
<td>330-011</td>
<td>5,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U5</td>
<td>PIC16F628A-I/P</td>
<td>DIL18</td>
<td>Microchip</td>
<td>434-230</td>
<td>51,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U6</td>
<td>7815</td>
<td>TO220</td>
<td>Stabilizátor (1,5 A)</td>
<td>330-006</td>
<td>7,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U7</td>
<td>L2938</td>
<td>DIL16</td>
<td>Motorový budič</td>
<td>399-010</td>
<td>80,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U8</td>
<td>LM393</td>
<td>DIL8</td>
<td>Operační zesilovač</td>
<td>314-007</td>
<td>5,00 Kč</td>
<td></td>
</tr>
<tr>
<td>U9</td>
<td>MAX7219 CNG</td>
<td>DIP24_UZKA_7-62</td>
<td>LED Budič</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Seznam součástí pro stavbu ovladače HUGO

Tab. 4 Seznam součástek pro sestavení ovladače HUGO

<table>
<thead>
<tr>
<th>Součástka</th>
<th>Hodnota</th>
<th>Popis</th>
<th>Kat. č. (GM)</th>
<th>Počet (ks)</th>
<th>Cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>78S05</td>
<td>Stabilizátor 5V</td>
<td>330-018</td>
<td>1</td>
<td>15,00 Kč</td>
</tr>
<tr>
<td>C1, C2</td>
<td>33pF</td>
<td>Keramický kondenzátor</td>
<td></td>
<td>1</td>
<td>2,00 Kč</td>
</tr>
<tr>
<td>C3</td>
<td>1µF</td>
<td>Elektrolytický kondenzátor</td>
<td></td>
<td>1</td>
<td>8,00 Kč</td>
</tr>
<tr>
<td>C4, C6,</td>
<td>10µF</td>
<td>Elektrolytický kondenzátor</td>
<td></td>
<td>1</td>
<td>6,00 Kč</td>
</tr>
<tr>
<td>C7, C9,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5, C8</td>
<td>ker. 100nF</td>
<td>Keramický kondenzátor</td>
<td></td>
<td>1</td>
<td>3,00 Kč</td>
</tr>
<tr>
<td>D1, D2,</td>
<td>4148</td>
<td>Dioda</td>
<td></td>
<td>1</td>
<td>2,00 Kč</td>
</tr>
<tr>
<td>D3, D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>DUOLED</td>
<td>Dvoubarevná LED</td>
<td></td>
<td>1</td>
<td>15,00 Kč</td>
</tr>
<tr>
<td>IC1</td>
<td>AT89C205</td>
<td>Microchip</td>
<td></td>
<td>1</td>
<td>35,00 Kč</td>
</tr>
<tr>
<td>IC2</td>
<td>LM339N</td>
<td>Integrovaný obvod</td>
<td></td>
<td>1</td>
<td>15,00 Kč</td>
</tr>
<tr>
<td>Součástka</td>
<td>Hodnota</td>
<td>Popis</td>
<td>Kat. č. (GM)</td>
<td>Počet (ks)</td>
<td>Cena</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>IC3</td>
<td>93-C46AP</td>
<td>Integrovaný obvod</td>
<td></td>
<td></td>
<td>15,00 Kč</td>
</tr>
<tr>
<td>J1</td>
<td>520250-3</td>
<td>Integrovaný obvod</td>
<td></td>
<td></td>
<td>20,00 Kč</td>
</tr>
<tr>
<td>Q1</td>
<td>XTAL/S</td>
<td>Rezonátor</td>
<td></td>
<td></td>
<td>13,00 Kč</td>
</tr>
<tr>
<td>Q2, Q3</td>
<td>BC337</td>
<td>Transtor</td>
<td></td>
<td></td>
<td>2,00 Kč</td>
</tr>
<tr>
<td>R1</td>
<td>20k</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R2, R3, R4</td>
<td>1k2</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R5</td>
<td>47k</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R6</td>
<td>100k</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R7, R8</td>
<td>20k</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R10, R11</td>
<td>1k2</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R12</td>
<td>22k</td>
<td>Trimer</td>
<td></td>
<td></td>
<td>25,00 Kč</td>
</tr>
<tr>
<td>R13, R14, R15</td>
<td>1k2</td>
<td>Odpor</td>
<td></td>
<td></td>
<td>0,50 Kč</td>
</tr>
<tr>
<td>R9</td>
<td>ptcmt 10k/N</td>
<td>Potenciometr</td>
<td></td>
<td></td>
<td>18,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>krabička</td>
<td></td>
<td></td>
<td>39,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>přepínač směru</td>
<td></td>
<td></td>
<td>12,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tlačítka funkci 5x4</td>
<td></td>
<td></td>
<td>20,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>knoflík ptcmt</td>
<td></td>
<td></td>
<td>8,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>šňůra 1 m</td>
<td></td>
<td></td>
<td>6,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>samec RJ12 2x4</td>
<td></td>
<td></td>
<td>8,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>patice 20</td>
<td></td>
<td></td>
<td>4,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>patice 12 2x2</td>
<td></td>
<td></td>
<td>4,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>patice 18 2x3</td>
<td></td>
<td></td>
<td>6,00 Kč</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tel. tlačítka 5 x4</td>
<td></td>
<td></td>
<td>20,00 Kč</td>
</tr>
<tr>
<td>Cena celkem bez DPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>354,50 Kč</td>
</tr>
<tr>
<td>Cena celkem včetně DPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>421,86 Kč</td>
</tr>
</tbody>
</table>

Uvádění do provozu

Pro rychlé uvedení do provozu potřebujeme:

- zapojíme centrálu do sítě,
- zapneme hlavní vypínač,
- zapneme a zkontrolujeme připojení zesilovače,
- přepneme centrálu do programovacího režimu (modrý přepínač, musí svítit),
- vyzkoušíme, zda lokomotivy reagují na příslušné ovladače,
- pokud ne, vyčteme adresy lokomotiv (viz: Centrála DCCMinibox) a nastavíme příslušnou adresu do příslušného ovladače (viz: Ovladač HUGO),
- zapneme digitální ovládání (zelený přepínač musí svítit),
- vyzkoušíme manuální provoz na kolejišti,
- přejdeme k provozu řízenému PLC.