Racionalizace obrábění děrovacího trnu
v podmínkách firmy ArcelorMittal Tubular Products Ostrava a.s.

Cutting Rationalization of Punching Spine for ArcelorMittal Tubular Products Ostrava a.s.

Student : Bc. Libor Trvaj
Vedoucí diplomové práce: Ing. Jiří Kratochvíl

Ostrava 2009
PROHLÁŠENÍ STUDENTA

Prohlašuji, že jsem celou diplomovou práci včetně příloh vypracoval samostatně pod vedením vedoucího diplomové práce a uvedl jsem všechny použité podklady a literaturu.

V Ostravě

........................

Trvaj Libor
Prohlašuji, že:

- byl jsem seznámen s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.

- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně ke své vnitřní potřebě diplomovou práci užít (§35 odst. 3).

- souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci budou zveřejněny v informačním systému VŠB-TUO.

- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.

- bylo sjednáno, že užit své dílo – diplomovou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

- beru na vědomí, že odezdáním své práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě

........................

Trvaj Libor
ANOTACE DIPLOMOVÉ PRÁCE

ANOTATION OF THESIS

Thesis is themed Rationalization cutting punching thorn in conditions firm ArcelorMittal Tubular Products Ostrava a.s., this subject was realized in firm ArcelorMittal Tubular Products Ostrava a.s. in Ostrvě- Kunčice . Thesis is divided to the of several big capitol. First chapter includes accessible materials for cutting implement. Further is circumscribed workability plus attrition cutting implement. Next chapter describes contemporary technological process cutting punching thorns. In next chapter are suggested changes with single step. At last parts is lumped thesis.
Obsah diplomové práce

SEZNAM POUŽITÉHO ZNAČENÍ A ZKRATEK ... 7

1 ÚVOD ... 8
1.1 Představení firmy ArcelorMittal Tubular Products Ostrava a.s. 8
1.2 Cíle diplomové práce ... 9

2 MATERIÁLY PRO ŘEZNÉ NÁSTROJE ... 10

2.1 Nástrojové oceli .. 10
 2.1.1 Uhlikové oceli ... 11
 2.1.2 Legované oceli ... 11
 2.1.3 Rychlořezné oceli ... 11
 2.1.4 Rychlořezné oceli vyrobené průskovou metalurgií 11
 2.1.5 Povlakované rychlořezné oceli ... 12

2.2 Slinuté karbidy ... 12
 2.2.1 Nepovlakované slinuté karbidy ... 15
 2.2.2 Povlakované slinuté karbidy ... 15

2.3 Cermety ... 17

2.4 Řezná keramika.. 18
 2.4.1 Rozdělení a značení řezné keramiky ... 19

2.5 Supertvrdé řezné materiály .. 19
 2.5.1 Diamant .. 19
 2.5.2 Kubický nitrid boru .. 20

3 FAKTORY OVLIVŇUJÍCÍ OBRÁBĚNÍ ... 21

4 OBROBITELNOST ... 22

5 OPOTŘEBENÍ ŘEZNÉHO NÁSTROJE ... 24

5.1 Klasifikace typu opotřebení .. 26
 5.1.1 Opotřebení hřbetu .. 26
 5.1.2 Tvorba nárůstku ... 27
 5.1.3 Hřebenovité trhliny .. 27
 5.1.4 Oxidační rýha na vedlejším břitu ... 28
 5.1.5 Plastická deformace špičky .. 28
 5.1.6 Vrubové opotřebení na hlavním břitu .. 29
 5.1.7 Křehké porušování řezné hrany ... 29
 5.1.8 Výmol na čele ... 30
 5.1.9 Porušování řezné hrany (mimo záběr) .. 30
 5.1.10 Unavové trhliny podél hřbetu .. 31
 5.1.11 Destrukce břitu resp. špičky nástroje ... 31
6 SOUČASNÝ TECHNOLOGICKÝ POSTUP ... 32

7 NÁVRH NOVÉHO TECHNOLOGICKÉHO POSTUPU ... 38
 7.1 Volba vhodné břitové destičky .. 38
 7.2 Testování jednotlivých VBD ... 40
 7.2.1 VBD od firmy Boehlerit při prvních zvolených řezných parametrech ... 41
 7.2.2 VBD od firmy Boehlerit při druhých zvolených řezných parametrech ... 42
 7.2.3 VBD od firmy Mitsubishi při prvních zvolených řezných parametrech ... 44
 7.2.4 VBD od firmy Mitsubishi při druhých zvolených řezných parametrech ... 46
 7.3 Použití soustružnického poloautomatu DIFAK SPT 32 CNC 47

8 TECHNICKO EKONOMICKÉ ZHODNOCENÍ ... 49

9 ZÁVĚR .. 50

SEZNAM POUŽITÉ LITERATURY ... 51

SEZNAM PŘÍLOH .. 53
SEZNAM POUŽITÉHO ZNAČENÍ A ZKRATEK

<table>
<thead>
<tr>
<th>značení</th>
<th>VÝZNAM</th>
<th>jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposition - chemická metoda nanášení povlaků</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>průměr</td>
<td>mm</td>
</tr>
<tr>
<td>HB</td>
<td>tvrdost podle Brinella</td>
<td>-</td>
</tr>
<tr>
<td>HRC</td>
<td>tvrdost podle Rockwella</td>
<td>-</td>
</tr>
<tr>
<td>HV</td>
<td>tvrdost podle Vickerse</td>
<td>-</td>
</tr>
<tr>
<td>ISO</td>
<td>mezinárodní organizace pro standardizaci</td>
<td>-</td>
</tr>
<tr>
<td>KB</td>
<td>šířka žlabku na čele nástroje</td>
<td>mm</td>
</tr>
<tr>
<td>KNB</td>
<td>kubický nitrid boru</td>
<td>-</td>
</tr>
<tr>
<td>P, M, K, N, S, H</td>
<td>označení druhu řezného materiálu podle normy</td>
<td>-</td>
</tr>
<tr>
<td>PKD</td>
<td>polykrystalický diamant</td>
<td>-</td>
</tr>
<tr>
<td>PSDNN</td>
<td>označení druhu a tvaru nožového držáku</td>
<td>-</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapour Deposition - fyzikální metoda nanášení</td>
<td>-</td>
</tr>
<tr>
<td>Ra</td>
<td>parametr drsnosti – střední aritmetická úchylka</td>
<td>μm</td>
</tr>
<tr>
<td>Rm</td>
<td>pevnost v tahu</td>
<td>MPa</td>
</tr>
<tr>
<td>SK</td>
<td>slinutý karbid</td>
<td>-</td>
</tr>
<tr>
<td>SNMA</td>
<td>označení druhu a tvaru vyměnitelné břitové destičky</td>
<td>-</td>
</tr>
<tr>
<td>SNMG</td>
<td>označení druhu a tvaru vyměnitelné břitové destičky</td>
<td>-</td>
</tr>
<tr>
<td>VB</td>
<td>šířka opotřebované plochy na hřbetě nástroje</td>
<td>mm</td>
</tr>
<tr>
<td>VBD</td>
<td>vyměnitelná břitová destička</td>
<td>-</td>
</tr>
<tr>
<td>VR</td>
<td>velikost radiálního otupení na čele nástroje</td>
<td>mm</td>
</tr>
<tr>
<td>ap</td>
<td>hloubka řezu</td>
<td>mm</td>
</tr>
<tr>
<td>f</td>
<td>posuv</td>
<td>mm</td>
</tr>
<tr>
<td>n</td>
<td>otáčky vřetene</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>t</td>
<td>čas obrábění</td>
<td>min</td>
</tr>
<tr>
<td>vc</td>
<td>řezná rychlost</td>
<td>m.min⁻¹</td>
</tr>
<tr>
<td>γ</td>
<td>úhel čela</td>
<td>°</td>
</tr>
<tr>
<td>εs</td>
<td>úhel špičky</td>
<td>°</td>
</tr>
<tr>
<td>λs</td>
<td>úhel sklonu ostří</td>
<td>°</td>
</tr>
<tr>
<td>Ky</td>
<td>úhel nastavení hlavního ostří</td>
<td>°</td>
</tr>
</tbody>
</table>
1 ÚVOD

1.1 Představení firmy ArcelorMittal Tubular Products Ostrava a.s

1.2 Cíle diplomové práce

Mezi cíle diplomové práce lze zařadit tyto body:

a) rozbor stávajícího stavu, tzn.: přiblížení problematiky obrábění děrovacích trnů ve firmě ArcelorMittal Tubular Products Ostrava a.s.

b) napomoci řešit problém navržením vhodnější technologii pro obrábění.

Diplomová práce bude novou technologii nápomocná řešit problém, při obrábění děrovacích trnů, kde dochází při hrubovacích operacích k rychlému opotřebení nástroje. Největší důraz bude kladen na použití nového řezného materiálu a možnost používání jiného obráběcího stroje. Tyto změny by měli vést k zvýšení produktivity a celkové úspornosti nákladů při výrobě.
2 MATERIÁLY PRO ŘEZNÉ NÁSTROJE

Soudobé řezné nástroje pro strojní obrábění jsou vyráběny z rozmanitých materiálů – od nástrojových ocelí přes slinuté karbidy, cermy, řeznou keramiku až po supertvrdé řezné materiály. Tento široký sortiment materiálů je důsledkem dlouholetého a intenzivního výzkumu. V současné době ani v blízké budoucnosti nelze očekávat objevení zcela nového řezného materiálu, a proto je úsilí výzkumných týmů všech významných výrobců nástrojů a nástrojových materiálů zaměřeno spíše na zdokonalování technologie výroby a specifikaci optimálního využití již známých materiálů, s přesným vymezením aplikačních oblastí. [1]

Požadované vlastnosti řezných materiálů:

- Dostatečnou tvrdost, která by zajistila odolnost proti opotřebení a plastické deformaci,
- Vysokou houževnatost, tj. odolnost proti vylomení a vyštípnutí břitu,
- Chemicky neutrální chování vůči obráběným materiálům,
- Chemickou stabilitu, která by zajistila odolnost proti oxidačnímu a difuznímu opotřebení,
- Odolnost proti teplotnímu rázu,
- Schopnost neztrácet tvrdost a chemickou stálost při vysokých teplotách.

2.1 Nástrojové oceli

Nástrojové oceli patří mezi nejstarší průmyslově používané materiály obráběcích nástrojů. Tepelným zpracováním mohou získat vhodné vlastnosti pro obrábění. Převážná část nástrojových ocelí se v současné době vyrábí klasickou technologií v elektrických obloukových pecích nebo v pecích indukčních. Jedná se o vysoko jakostní oceli, u nichž požadujeme dostatečnou čistotu a co nejlepší chemickou a fázovou homogenitu.

Stávající sortiment nástrojových ocelí je běžně členěn podle chemické koncepce a použití na tyto skupiny:

- Uhlikové oceli,
• Legované oceli,
• Rychlořezné oceli. [3]

2.1.1 Uhlíkové oceli

Mají odstupňovaný obsah uhlíku od 0,6 do 1,35 % podle namáhání nástroje. Pokud mají mít nástroje maximální houževnatost, snižuje se obsah uhlíku na 0,6–0,7 %. Tím se však snižuje odolnost proti opotřebení. Naopak čím vyšší je obsah uhlíků, tím vyšší bude odolnost proti opotřebení, protože ve struktuře je přítomen po zakalení tvrdý nadeutektonidní cementit.

Nevýhodou uhlíkových nástrojových ocelí je nízká teplotní stálost (asi do 200 °C) a malá prokalitelnost. Používají se proto na nástroje o maximálním rozměru 30 mm. [4]

2.1.2 Legované oceli

Tyto oceli mají ve struktuře do 1,25% C, navíc až 1,5% Cr, W, Mo, V. Výhodou legovaných nástrojových ocelí je jejich vyšší odolnost proti otupení, vyšší popouštěcí teploty, vyšší tvrdost a pevnost za tepla. Legované oceli jsou lépe prokalitelné. Používají se převážně při obrábění ocelí nízkými řeznými rychlostmi (výstružníky, závitníky).

2.1.3 Rychlořezné oceli

Jsou vysocelegované nástrojové oceli, které se od ostatních druhů nástrojových ocelí liší obsahem legujících přísad a rozdílnými podmínkami tepelného zpracování. Díky tomu získávají oproti uhlíkovým a legovaným nástrojovým ocelím vyšší tvrdost a odolnost proti popouštění. Disponují rovněž poměrně vysokou pevností, a tím i příznivou houževnatostí. Tvrdost 60-70 HRC si udržují až do teploty 600 °C. Využívají se především pro nástroje s přesným ostřím, jako jsou šroubovité vrtáky, výstružníky, frézy, protahovací nástroje aj.

2.1.4 Rychlořezné oceli vyrobené práškovou metalurgií

Představují kvalitativně nový přístup, který umožňuje vytváření velmi disperzních a homogenních struktur a vývoj nadstandardních chemických variant. Ve srovnání s tradiční technologií zabezpečuje prášková metalurgie tyto výhody:

• Homogenní strukturu,
• Dobré provozní technologické vlastnosti (tvářitelnost, leštitelnost, brousitelnost),
• Zvýšenou tvarovou a rozměrovou stálost při tepelném zpracování,
• Zlepšenou houževnatost,
• Nižší energetickou, materiálovou a ekologickou náročnost.

2.1.5 Povlakované rychlořezné oceli

Vedle snah o zlepšení vlastností základního materiálu, kvality tepelného zpracování a ostření mají mimořádný význam především metody úprav povrchových vrstev funkčních částí nástroje. Jejich cílem je nejen zvýšení životnosti nástroje, ale i jeho výkonnosti.

Rychlořezné oceli se povlakují fyzikální metodou PVD. Je založena na rozprašování nebo odpařování pevného terče (Ti, Cr, Al), na bombardování podložky (nástroje) směsí neutrálních atomů a iontů a kondenzaci chemické sloučeniny, např. nitridu, karbidu nebo oxidu zvoleného kovu na nástroje ve vakuované komoře. [3]

2.2 Slinuté karbidy

Slinutý karbid je produktem práškové metalurgie, který se vyrábí v první řadě z různých karbidů a z kovového pojiva. Tyto karbidy jsou velmi tvrdé. Mezi nejdůležitější patří karbid wolframu, karbid niobu. Jako pojivo se ve většině případů používá kobalt. Uvedené karbidy mohou i bez kovového pojiva tvořit slinutý karbid, protože jsou navzájem rozpustné. Velikost tvrdých částic se pohybuje v rozmezí 1 až 10 µm a jejich množství tvoří 80 až 95% celkového objemu řezného materiálu. Vlastnosti slinutých karbidů značně kolísají, pokud se jedná o tvrdost a houževnatost. Hlavními rozdíly u druhů používaných obvykle pro výrobu vyměnitelných brýtových destiček jsou:

• Typ a velikost tvrdých částic,
• Druh kovového pojiva a jeho podíl,
• Výrobní technologie,
• Kvalita výroby.

Na počátku vývoje byly slinuté karbidy WC-Co, které byly vhodné hlavně pro obrábění šedé litiny. U téhož materiálů se jedná o dvousložkový slinutý karbid, u kterého je první složka zvaná alfa – tvořena tvrdým karbidem wolframu a složku beta tvoří kobaltové pojivo. Tyto velmi jednoduché karbidy neměly dostatek ještě při obrábění oceli odolávat opotřebení na čele v podobě žlábku. Afinita oceli vůči slinutému karbidu vede při kontaktu třísky s čelem brítu k rozpouštění wolframu a uhlíku, což způsobuje vznik žlábků.
Karbidy titanu a tantalu jsou podstatně stabilnější než karbidy wolframu a při obrábění oceli a při vysokých teplotách řezání odolávají jevům rozpouštění. Karbid titanu je mimo to mimořádně tvrdý, projevuje se však u něj – rovněž jako u jiných karbidů – pokles tvrdosti při vysokých teplotách vznikajících při obrábění. Přídání dalších karbidů, například TiC a TaC, umožnilo vyvinout lepší druhy slinutých karbidů, speciálně pro obrábění ocelí. Tyto nové materiály jsou trojsložkové slinuté karbidy s přidanou γ – složkou a obsahující karbidy TiC, TaC a NbC. Tímto způsobem byly vyvinuty slinuté karbidy, vhodné jak pro obrábění neželezných a litých materiálů, tak také ocelí.

Vyšší podíl tvrdých částic, vzhledem k jejich vyšší tvrdosti a pevnosti v tlaku, zvyšuje u slinutých karbidů odolnost proti opotřebení. Naproti tomu větší podíl kovového pojiva uděluje slinutému karbidu houževnatost. Pevnost v ohybu, která je vyjádřena houževnatostí řezného materiálu a jeho odporem proti lomu je nepřímo úměrná tvrdosti a je vyšší u slinutých karbidů s větším podílem kovového pojiva. Také velikost zrna tvrdých částic může být obměňována, aby bylo možné dosáhnout určité kombinace tvrdosti a houževnatosti.

Velká zrna způsobují houževnatost slinutého karbidu, zatím co zrna malá udělují slinutému karbidu relativně vysokou tvrdost. Při určitém objemovém podílu pojiva ve slinutém karbidu znamená malé zrno velkou povrchovou plochu smáčenou pojivem. Tím ale v případě použití jemného zrna (a stejného podílu pojiva) klesá tloušťka pojiva mezi zrní. To sice vede k větší tvrdosti, ale současně i k nižší základní houževnatosti.

V praxi to znamená: složení a struktura slinutého karbidu mohou být velmi rozdílné, aby se splnily velmi různorodé podmínky obrábění.

Porovnáním základní vlastností slinutého karbidu s vlastnostmi ideálního řezného materiálu, pochopíme, proč je slinutý karbid nejčastěji používaným řezným materiálem pro obrábění kovů. Přestože tvrdost a pevnost v tlaku s narůstající teplotou klesají, zachovává si slinutý karbid vynikající odolnost proti opotřebení i při vysokých řezných rychlostech. Relativně vysoké hodnoty a kolísající rozsah pevnosti v ohybu meze pevnosti v ohybu a tuhosti znamenají, že se pracovní podmínky, druhy obrábění a materiály obrobků, mohou značně měnit, aniž by došlo k ohrožení břitu.

Chemická afinita nemá u většiny materiálů obrobků, zvláště při vyšších teplotách, tak výrazný vliv, aby mohla omezit použitelnost slinutých karbidů. Tepelná vodivost je vysoká a použitím vhodného povlaku je rovněž vysoká i odolnost proti reakci s kyslíkem.
Při porovnání s ocelí je slinutý karbid podstatně tvrdší a má mnohem vyšší pevnosti v tlaku, je ovšem citlivější na namáhání tahem. Jeho hustota činí přibližně dvojnásobek hustoty oceli, což se samozřejmě nevztahuje na druhy, zhotovené na bázi titanu, které jsou lehčí. Modul pružnosti je slinutých karbidů dva – až třikrát vyšší než u oceli (z tohoto důvodu je slinutý karbid mimořádně vhodný pro výrobu vrtaných tyčí s dlouhým vyložením, protože vychýlení osy je minimální). Také součinnost tepelné roztažnosti slinutých karbidů je poloviční než u oceli, což ztěžuje jejich pájení na tělesa nástrojů vyrobená z oceli. [2]

![Obr. 2.1 - Břitové destičky ze slinutého karbidu:](a), b) povlakované, c) nepovlakované břitové destičky [2]

Norma ČSN ISO 513 specifikuje použití slinutých karbidů do jednotlivých skupin:

- Skupina P (značena modrou barvou) – pro obrábění železných kovů s dlouhou třískou,
- Skupina M (značena žlutou barvou) – pro obrábění železných kovů s dlouhou nebo krátkou třískou a obrábění neželezných kovů,
- Skupina K (značena červenou barvou) – pro obrábění železných kovů s krátkou třískou, neželezných kovů a nekovových materiálů,
- Skupina N (značena zelenou barvou) – pro obrábění neželezných slitin na bázi hliníku, hořčíku nebo mědi, obrábění plastů, kompozitu a dřeva,
- Skupina S (značena hnědou barvou) – pro obrábění slitin titanu a žárovebných slitin na bázi niklu, kobaltu nebo železa,
- Skupina H (značena šedou barvou) – pro obrábění zušlechtěných a kalených ocelí a obrábění tvrzených litin. [1]

![Obr. 2.2 - Barevné označení jednotlivých skupin [1]](P M K N S H)
2.2.1 Nepovlakované slinuté karbidy

Současné nepovlakované slinuté karbidy pro řezné aplikace jsou podle normy ČSN ISO 513 označovány symboly HW (zrnitost ≥ 1 µm) a HF (zrnitost < 1 µm) a podle užití rozdělovány do šesti skupin – P, M, K, N, S, H.

2.2.2 Povlakované slinuté karbidy

První povlakované břitové destičky ze slinutého karbidu se na trhu objevily koncem 60. let 20. století firmou Sandvik Coromant, povlak TiC, tloušťka vrstvy 4-5 µm. Brzy na to byly vyvinuty povlaky typu TiN a TiCN, povlaky Al₂O₃ přišly na trh v polovině 70. let. Povlaky byly vytvářeny metodou CVD jako jedno- i vícevrstvé. Povlaky metodou PVD se objevily na začátku 80. let. Původně postačovalo několik typů povlaků jako konkurence jiným nástrojovým materiálům, v současnosti je z hlediska uspokojování rostoucích požadavků každoročně vyvíjeno a zdokonalováno mnoho nových druhů povlakovaných slinutých karbidů pro různé řezné aplikace. Jednotlivé materiály se navzájem liší druhem povlaku, kombinací vrstev, tloušťkou povlaku, metodou povlakování, substrátem atd. Pro konkrétní aplikaci řezného nástroje s povlakovanou břitovou destičkou (obráběný materiál, řezné podmínky) je velmi důležitá správná kombinace všech uvedených faktorů, protože zejména na této skutečnosti závisí efektivnost jeho využití.

Obvykle se uvádějí tyto vývojové stupně povlakovaných slinutých karbidů:

- 1. Generace: Jednovrstvý povlak (téměř výhradně TiC) s tloušťkou asi 6 µm a špatnou soudržností podkladu a povlaku,

- 2. Generace: Jednovrstvý povlak (TiC, TiCN, TiN) s tloušťkou 7 až 10 µm bez eta- karbidů na přechodu podklad- povlak,

- 3. Generace: Vícevrstvý povlak (dvě až tři vrstvy, případně i více) s ostře ohraničenými přechody mezi jednotlivými vrstvami. Řazení vrstev odpovídá jejich vlastnostem tak, že jako první jsou na podklad obvykle nanášeny vrstvy s lepší přilnavostí k podkladu, a jako poslední jsou nanášeny vrstvy, které nemusí mít dobrou přilnavost k podkladu, ale požaduje se od nich zejména vysoká tvrdost a odolnost proti opotřebení a oxidaci za zvýšených teplot,

- 4. Generace: Speciální vícevrstvý povlak, velmi často složený z více než deseti vrstev a mezivrstev, s méně či více výraznými přechody mezi jednotlivými vrstvami.
Metody povlakování

Povlakované slinuté karbidy jsou vyráběny tak, že na podklad z běžného slinutého karbidu typu K, P nebo M se nanáší tenká vrstva materiálu s vysokou tvrdostí a vynikající odolností proti opotřebení (povlak ve formě tenké vrstvy má vyšší tvrdost i pevnost než stejný homogenní materiál v jakékoli jiné formě). Tyto výhodné vlastnosti vyplňují zejména z toho, že povlakový materiál ve srovnání se substrátem neobsahuje žádné pojivo, má o jeden i více řádů jemnější zrnitost a méně strukturních defektů a navíc tvoří bariéru proti difuznímu mechanismu opotřebení nástroje. Vlastnosti povrchové vrstvy povlaku se významně podílejí na zamezování tvorby nárůstku na břitu nástroje. Metody povlakování lze rozdělit do dvou základních skupin:

- Metoda PVD (Physical Vapour Deposition - fyzikální napařování), která je charakteristická nízkými pracovními teplotami (pod 500 °C). Tato metoda byla původně vyvinuta pro povlakování nástrojů z rychlořezných ocelí (nízká teplota zaručuje, že nedojde k tepelnému ovlivnění nástroje), v posledním období dochází k velmi významnému rozvoji metod PVD a rozšířování jejich aplikací také pro slinuté karbidy. Povlak je nejčastěji vytvářen:
 - Napařováním – přímé, reaktivní, aktivované reaktivní, s asistencí iontového parseku,
 - Naprašováním – doutnavý výboj, iontový parsek,
 - Iontovou implantací – doutnavý výboj, iontový paprsek.

Obr. 2.3 - Schéma vzniku PVD povlaku [1]
• Metoda CVD (Chemical Vapour Deposition – chemické napařování z plynné fáze), která probíhá za vysokých teplot (1000–1200 °C). Tato metoda je hlavní metodou povlakování slinutých karbidů a může být realizována ve čtyřech variantách:
 - Tepelně indukovaná,
 - Plazmaticky indukovaná,
 - Elektronově indukovaná,
 - Fotonově indukovaná. [1]

2.3 Cermety

Cermet je název pro řezný materiál obsahující tvrdé částice TiC, TiN, Ti (C, N) asi 60–80 % a další v kovovém (Ni, Mo, Co) pojivu, vyrobený obdobně jako slinuté karbidy práškovou metalurgií. Skladba spěkané směsi určuje též teplotu spěkání, která se pohybuje od 1600 °C do 1900 °C. Název zahrnuje počáteční písmena slovního spojení CERamic/METal použitý pro označení tvrdých keramických částic houževnatém kovovém pojivu.

První cermety byly tvořeny karbidem titanu v Ni, Mo pojivu a nazývaly se většinou bezwolframové slinuté karbidy. Uvedený název se stal nepřesným v 70. letech, kdy byl tento materiál obohacen dalšími tvrdými tvrdými částicemi legovanými karbidy a nitridy (Mo, Ta/Nb, W, V, Zr, Al).

Cermety disponují velmi dobrou odolností proti opotřebení čela i hřbetu, vysokou tvrdostí za tepla a chemickou stabilitou. Oproti slinutým karbidům vykazují menší houževnatost a odolnost proti tepelnému rázu. K výhodám dále patří i malý sklon k oxidačnímu opotřebení, lepší jakost obrobené plochy a díky velké trvanlivosti i vysoká přesnost rozměrů obrobku. [3]

![Obr. 2.4 - Porovnání mikrostruktury SK a Cermetu [1]](image-url)
2.4 Řezná keramika

Keramika je polykrystalický materiál se zrny malých rozměrů (velmi často pod 1 µm). Výchozím materiálem pro výrobu řezných keramik jsou oxidy Al₂O₃, Y₂O₃, ZrO₂, karbid TiC a nitridy TiN a Si₃N₄. Jedná se vesměs o chemicky velmi stabilní látky s vysokou tvrdostí, tlakovou pevností a odolností proti vysokým teplotám.

Materiál keramik obsahuje náhodné technologické defekty a mikrostrukturní nehomogenity a vyznačuje se zejména vysokou tvrdostí, nízkou houževnatostí a nízkou měrnou hmotností.

Tyto faktory spolu s dalšími (jako je např. struktura, tepelná vodivost, délková roztažnost, omezená tvárnost) určují finální mechanické vlastnosti a potencionální aplikační možnosti tohoto materiálu. Omezená tvárnost má rozhodující a přitom degradační roli z hlediska možnosti dosažení maximálních hodnot mechanických vlastností. Tvrdoz v případě keramiky nelze jednoznačně definovat jako fyzikální veličinu, protože více než kterákoli jiná mechanická vlastnost závisí na zkušebních podmínkách. Z hlediska měření tvrdosti spočívá největší rozdíl mezi kovem a keramikou v tom, že plastická deformace keramiky je velmi nízká a energie přivedená do materiálu při zkoušce tvrdosti se uvolňuje vznikem trhlin různého typu. S narůstající teplotou tvrdost keramiky klesá. Nízká tepelná vodivost je další typickou vlastností keramických materiálů a má negativní vliv na jejich mechanické vlastnosti. Z hlediska struktury jsou mechanické a lomové vlastnosti keramiky ovlivněny zejména následujícími skutečnostmi:

- Charakterem chemické vazby, která je převážně iontová nebo kovalentní, a protože výrazně ovlivňuje pohyblivost dislokací, je hlavní přičinou křehkosti keramiky,
- Složitější krystalovou strukturou,
- Prostorovým uspořádáním částic různých tvarů a rozměrů, fází, pórů a trhlin.

Typickou mechanickou vlastností keramiky je křehkost – keramika není prakticky schopna plastické deformace a porušuje se křehkým lomem. Chybí ji tedy vlastnosti typické pro kov, jako je tvárnost a houževnatost.
2.4.1 Rozdělení a značení řezné keramiky

Pro dělení a značení keramických řezných materiálů neexistuje konkrétní norma (jako je např. u slinutých karbidů), všeobecně je přijímáno následující dělení:

- **Oxidová keramika:**
 - Čistá - Al$_2$O$_3$,
 - Polosměsná - Al$_2$O$_3$ + ZrO$_2$,
 - Al$_2$O$_3$ + ZrO$_2$ + CoO,
 - Směsná - Al$_2$O$_3$ + TiC,
 - Al$_2$O$_3$ + Ti (C, N),
 - Al$_2$O$_3$ + ZrO$_2$ + TiC,
 - Al$_2$O$_3$ + TiC + TiN,

- **Nitridová keramika** - Si$_3$N$_4$,
 - Si$_3$N$_4$ + Y$_2$O$_3$,
 - Si$_3$N$_4$ + TiN, sialony. [1]

2.5 Supertvrdé řezné materiály

Pod všeobecný název supertvrdé materiály lze zahrnout dva synteticky vyrobené materiály, a to diamant (PKD - polykrystalický diamant) a kubický nitrid boru (KNB nebo PKNB - polykrystalický). Vzhledem k vynikajícím mechanickým vlastnostem (pevnost v tlaku, tvrdost a další) lze PKD i PKNB s výhodou použít jako řezné nástrojové materiály, a to zejména pro speciální aplikace.

2.5.1 Diamant

Diamant je nejtvrdší přírodní látkou, má poměrně nízkou teplotní stálost (při dosažení teplot nad 650 °C se mění na grafit), nesmí být používán pro obrábění materiálů na bázi železa (oceli, litiny), kde by při nadměrném ohřevu docházelo k silné difuzi mezi nástrojem a obráběným materiálem a tím i k velmi rychlému opotřebení v důsledku probíhajících chemických reakcí, hlavně na čele nástroje.
Široké aplikační možnosti poskytuje diamant v oblasti obrábění hliníkových slitin (soustružení i frézování – v některých případech lze použít řezné rychlosti, které přesahují hodnotu 5000 m.min\(^{-1}\)), zejména s vysokým obsahem křemíku, který působí na nástroj velmi silným abrazivním účinkem. Často je doporučován i pro obrábění slitin mědi (bronzy, mosazi), kompozitu vyztužených různými druhy vláken, titanu a jeho slitin, keramiky, grafitu a tvrdých přírodních materiálů.

![Obr. 2.5 Břitové destičky z polykrystalického diamantu [1]](image1)

2.5.2 **Kubický nitrid boru**

Základními prvky jsou bor a dusík. Bor patří mezi polokovové prvky s vysokým bodem tání i varu. V zemské kůře se vyskytuje výhradně v boritanových minerálech nebo borosilikátech. Kubický nitrid boru se používá pro soustružení a frézování kalených ocelí i tvrzených litin, kde s výhodou nahrazuje operace broušení. Minimální doporučovaná tvrdost obráběného materiálu je 45 HRC, obrábění měkčích materiálů je vzhledem k vysoké ceně neekonomické. [1]

![Obr. 2.6 Vrstva PKNB na SK podložce [1]](image2)
3 FAKTORY OVLIVŇUJÍCÍ OBRÁBĚNÍ

Nástroj řeže kov, protože je relativně ostřejší a tvrdší než obrobek. Ale současná situace v oblasti vysoké produktivity je mnohem komplexnější. Nástroj, vhodný pro jednu operaci obrábění, musí být proto kombinací geometrie břitu a řezného materiálu, která musí zohledňovat následující základní faktory:

1. Druh operace obrábění,
2. Materiál a tvar obrobku,
3. Obráběcí stroj,
4. Řezné podmínky,
5. Požadavky jakosti povrchu,
6. Stabilitu technologie obrábění,

K uvedeným faktorům patří ještě, zda se jedná o hrubovací nebo dokončovací operaci, kontinuální nebo přerušovaný řez a jaké jsou přídavky na obrábění.

Mezi faktory obráběčího stroje patří mimo jiné: pracovní podmínky, výkon, stabilita, mechanika, rozsah otáček a posuvu, způsob upínání obrobku atd. Řezné podmínky ovlivňují teplotu při obrábění a zatížení břitu a tím také řezného materiálu. [2]

Obr. 3.1 Faktory ovlivňující obrábění [2]
4 OBROBITELNOST

Obrobitevnost není obecně platnou definovanou standardizovanou vlastností. Pod pojmem obrobitevnost matriálu se rozumí souhrn vlastností obráběného materiálu z hlediska jeho vhodnosti pro výrobu součástí konkrétním způsobem obrábění. Myslí se tím, jak jednoduché, případně obtížné je opracovávat obrobek při použití řezných nástrojů. Uhlíková ocel střední jakosti se v porovnání s žáropevnou slitinou obrábí snadno, při obrábění šedé litiny vzniká méně problémů, než při obrábění tvárné perliticko - feritické litiny odléváno do kokil, zatímco například ocel se skloní k nalepování s nízkým obsahem uhlíku je náročnější na obrábění, než různě druhy legované oceli. Pojem obrobitevnosti však není jednoznačně definován z důvodu různorodosti operací obrábění, kontinuálního vývoje a zlepšování řezných nástrojů. Není rovněž jednoduché měřit obrobitevnost na podkladě porovnávání hodnot.

Podstatně přesnější, avšak o to náročnější je, sestavit všechny vlastnosti materiálů obrobku, které ovlivňují proces obrábění, do porovnávací tabulky. Ne všichni dodavatelé mají k dispozici odpovídající podrobné podklady. Metalurgie, chemie a mechanika určují obrobitevnost materiálu, stejně jako tepelné zpracování, druh legujících přísad, vřetny a charakter povrchu materiálu obrobku. Důležitými faktory vlivu jsou dále kvalita břitu a držáku nástroje, obráběcí stroj a podmínky obrábění. Hodnoty relevantní pro obrobitevnost materiálu mohou - i přepečlivém posouzení - posloužit vždy pouze jako směrné hodnoty, určené pro další optimalizaci.

Pro uživatele nejsou důležité pouze dokonalé znalosti vlastností opracovávaného materiálu obrobku, je rovněž nutné znát prostředky a cesty, které umožní vyhodnocení faktorů určujících úspěšný průběh obrábění. Často však existují nadřazené priority, jako například náklady na jeden obrobek, požadavky na produktivitu práce, ale také kalkulované trvanlivost břitu, zaručující specifickou jakost obrobeného povrchu a spolehlivost obrábění, v závislosti u individuálních koncepcí obrábění, v závislosti na výrobě.

Obrobitevnost je možné zlepšit jakosti odlitků, případně použitím automatových ocelí, nebo také změnou řezných nástrojových materiálů, geometrie břitu, způsobu upnutí, řezné kapaliny apod.
V širším smyslu je obrobitelnost funkční veličinou vztahu nástroj/obrobek, pro kterou jsou důležitá následující kritéria:

- Trvanlivost břitu,
- Utváření třísky,
- Stav povrchové vrstvy,
- Výkon obrábění,
- Řezná síla / příkon,
- Sklon k vytváření nárůstku.

Hlavní skupiny materiálů v oblasti obrábění kovů jsou:

1. Ocel,
2. Korozivzdorná ocel,
3. Litina,
4. Žárovevné slitiny,
5. Neželezné kovy,
6. Kalené oceli,

![Obr. 4.1 Utváření třísky u jednotlivých materiálů 1. ocel, 2. korozivzdorná ocel, 3. litina, 4. žárovevné slitiny, 5. neželezné kovy, 6. kalené oceli, 7. titan [2]]
5 OPOTŘEBENÍ ŘEZNÉHO NÁSTROJE

Opotřebení je běžným důsledkem funkce všech strojních součástí, které jsou ve vzájemném kontaktu a relativním pohybu. Při obrábění dochází v důsledku řezného procesu k relativnímu pohybu nástroj-obrobek a nástroj-ťříska, což vede k opotřebení nástroje. Proces opotřebení nástroje je velmi složitý důj, který závisí na mnoha faktorech a v jehož průběhu působí mnoho odlišných fyzikálně-chemických jevů. [13]

Při obrábění na čisto je břit VBD považován za opotřebený tehdy, není-li již schopen dosahovat požadované jakosti opracování povrchu.

Naopak u hrubovacích operací se opotřebení vyvíjí v podstatně větších dimenzích. Nebere se příliš velký ohled na stav povrchu obrobku a přesnost rozměrů a toleruje se větší hodnoty opotřebení. V tomto případě může být doba trvanlivosti omezena tím, že břit pozbývá schopnost zajistit kontrolovaný odchod třísky nebo opotřebení dosahuje takových hodnot, že hrozí riziko náhlého lomu destičky. [2]

Obráběný materiál a odcházející tříška namáhají břit nástroje tepelně a mechanicky. Vysoká teplota v místě řezu a otěrné účinky třísky i obráběného materiálu způsobují při práci postupné opotřebování břitu nástroje až k jeho úplnému otupení, kdy nástroj ztrácí svoji schopnost řezat.

Opotřebení břitu řezného nástroje lze běžně určovat následujícími délkovými charakteristikami a rovněž objemem nebo hmotou opotřebovaného materiálu:

- Šířkou otřené plochy na hřbetu VB,
- Hloubkou řlábků na čele KT,
- Šířkou řlábku na čele KB,
- Vzdálenosti od ostří k okraji řlábku KL,
- Vzdálenosti od ostří ke středu řlábku KM,
- Radiálním opotřebováním VR.

Opotřebení dle uvedených charakteristik závisí na vlastnostech obráběného materiálu, na druhu materiálu, stavu a tvaru obráběcího nástroje, na řezných podmínkách a na druhu práce jak je zachyceno na obr. 5.1. [16]
Obr. 5.1 Délkové charakteristiky otupení břitu [16]

Základní mechanizmy opotřebení břitu:

- Abraze – brusný otěr vlivem tvrdých mikročástic obráběného materiálu i mikročástic uvolněných z nástroje,
- Adheze – vznik a okamžité následné porušování mikrosvarových spojů na stýkajících se vrcholcích nerovností čela a třísky, v důsledku vysokých teplot a tlaků, chemické příbuznosti materiálů a kovově čistých styčných povrchů,
- Difúze – migrace atomů z obráběného do nástrojového materiálu a naopak a z ní vyplývající vytváření nežádoucích chemických sloučenin ve struktuře nástroje,
- Oxidace – vznik chemických sloučenin na povrchu nástroje v důsledku přítomnosti kyslíku v okolním prostředí,
- Plastická deformace – důsledek vysokého tepelného a mechanického zatížení, kumulovaného v čase, která se může ve svém nejneprůznivějším důsledku projevit ve formě tzv. lavinového opotřebení,
- Křehký lom – důsledek vysokého mechanického zatížení, např. přerušovaný řez, nehomogenity a vměstky v obráběném materiálu. [13]
5.1 Klasifikace typu opotřebení

Klasifikace typu opotřebení břitu nástroje byla provedena za účelem vytvoření báze pro posouzení operací obrábění a tím i možnost ovlivnění produktivity. Mimo to jsou pro volbu správných druhů řezných nástrojových materiálů a pro určení odpovídajících parametrů obrábění k dispozici následující kritéria obrábění:

- Přesnost rozměrů,
- Jakost obrobené plochy,
- Kontrolovaný odchod třísky.

Pohled na břit při zvětšení a posouzení, jaká opotřebení jsou na něm viditelná, umožňuje kontrolovat vhodnost trvanlivosti, její spolehlivost a dokonce i možnost jejího prodloužení. Pro každý proces existuje optimální průběh opotřebení. Správný nástroj a odpovídající řezné podmínky, kvalifikovaná odborná pomoc, vlastní zkušenost, dobrá jakost materiálu obrobku a dobré podmínky pro obrábění jsou důležitými předpoklady pro vznik optimálního průběhu opotřebení. [2]

5.1.1 Opotřebení hřbetu

Oteř hřbetu je jedním z hlavních kritérií charakterizujících trvanlivost VBD. Vzniká v důsledku styku nástroje a obráběného materiálu v průběhu řezného procesu. Jeho velikost (intenzitu) lze pouze snížit.

Opatření:

- Použít otěruvzdornější typ slinutého karbidu,
- Snižit řeznou rychlost,
- Zvýšit posuv (v případě, že posuv je menší než 0,1 mm ot⁻¹),
- Použít chladicí emulzi resp. zvýšit intenzitu chlazení.

Obr. 5.2 Opotřebení hřbetu nástroje [12]
5.1.2 Tvorba nárůstku

Opatření:
- Změnit (zvýšit) řeznou rychlost,
- Změnit (zvýšit) posuv,
- Aplikovat povlakované typy slinutých karbidů,
- Použít jinou řeznou geometrii,
- Použít chladící emulzi s vyšším protinárůstkovým účinkem (pokud není k dispozici, upustit od chlazení).

Obr. 5.3 Tvorba nárůstku na břitu nástroje [12]

5.1.3 Hřebenovité trhliny

Hřebenovité trhliny - tento jev je důsledkem dynamického tepelného zatížení při přerušovaném řezu.

Opatření:
- Upustit od chlazení kapalinou (možno použít vzduch z důvodů odstranění třísek z místa řezu),
- Zvolit houževnatější materiál VBD,
- Snížit řeznou rychlost.

Obr. 5.4 Hřebenovité trhliny na ostři [12]
5.1.4 Oxidační rýha na vedlejším břitu

Oxidační rýha na vedlejším břitu - je jedním z nejvýznamnějších kritérií limitujících životnost VBD. Setkáváme se s ní zejména u soustružení. Propojení oxidační rýhy s výmolem na čele se jednoznačně projeví na zvýšení drsnosti povrchu obrobku, dojde k jevu, který je slangově nazýván jako“chlapacení”.

Opatření:

- Použít povlakovaný resp. otěruvzdornější typ slinutého karbidu, dovolují-li to podmínky, použít VBD s povlakem obsahující Al₂O₃,
- Použít chladící emulzi resp. zvýšit intenzitu chlazení,
- Snížit řeznou rychlost.

Obr. 5.5 Oxidační rýha na vedlejším břitu [12]

5.1.5 Plastická deformace špičky

Plastická deformace špičky - důvodem tohoto typu opotřebení je přetížení břitu v důsledku vysokých řezných teplot (tedy vysokých rychlostí a posuvů).

Opatření:

- Použít otěruvzdornější typ slinutého karbidu,
- Snížit řeznou rychlost,
- Snížit posuv,
- Použít chladící emulzi resp. zvýšit intenzitu chlazení,
- Použít VBD s větším poloměrem zaoblení špičky,
- Použít VBD s větším úhlem špičky.

Obr. 5.6 Plastická deformace špičky nástroje [12]
5.1.6 Vrubové opotřebení na hlavním břitu

Vrubové opotřebení na hlavním břitu - vzniká v oblasti styku břitu nástroje s povrchem obrobku. Je zapříčiněno převážně zpevněním povrchových vrstev obrobku a otřepy. Tento typ opotřebení se vyskytuje zejména u nerezavějících austenitických ocelí.

Opatření:
- Použít povlakovaný resp. otěruvzdornější typ slinutého karbidu, dovolují-li to podmínky, použít VBD s povlakem obsahující Al2O3,
- Zvolit nástroj s menším úhlem nastavení,
- Nerovnoměrně rozdělit třísku.

Obr. 5.7 Vrubové opotřebení na hlavním břitu nástroje [12]

5.1.7 Křehké porušování řezné hrany

Křehké porušování řezné hrany (mikrovyštipování) – ve většině případů se vyskytuje v kombinaci s jiným typem opotřebení, je samostatně obtížně identifikovatelné. Jeho příčinou bývá zejména nízká tuhost soustavy stroj-nástroj-obrobek nebo „tvrdé utváření“.

Opatření:
- Použít houževnatější typ slinutého karbidu,
- Zvolit méně intenzivní řezné podmínky,
- Použít jinou řeznou geometrii,
- Při najíždění do záběru zmenšit posuv.

Obr. 5.8 Křehké porušování řezné hrany nástroje [12]
5.1.8 Výmol na čele

Výmol na čele je typ opotřebení, které se nejvýrazněji projevuje u VBD s rovným čelem, jeho výskyt není však omezen pouze na tento typ destiček. Při obrábění měkkých materiálů vzniká výmol širší a mělčí, u tvrdých materiálů naopak výmol úzký a hluboký.

Opatření:

- Použít otěruvzdornější typ slinutého karbidu,
- Použít povlakovaný typ, zejména (MT) CVD,
- Snížit řeznou rychlost,
- Použít jiný (pozitivnější) typ řezné geometrie,
- Použít chladící emulzi resp. zvýšit intenzitu chlazení.

5.1.9 Porušování řezné hrany (mimo záběr)

Porušování řezné hrany (mimo záběr) - jeho příčinou je nevhodné utváření třísky, která při svém odchodu naráží na břit a ten mechanicky poškozuje.

Opatření:

- Změnit posuv,
- Zvolit nástroj s jiným úhlem nastavení,
- Použít jinou řeznou geometrii (jiný utvařeč),
- Použít houževnatější typ slinutého karbidu.

Obr. 5.9 Výmol na čele nástroje [12]

Obr. 5.10 Porušování řezné hrany mimo záběr [12]
5.1.10 Únavové trhliny podél hřbetu

Vznikají v důsledku dynamického zatížení oblasti těsně za břitem.

Opatření:

- Použít houževnatější typ slinutého karbidu,
- Změnit způsob najíždění a vyjíždění nástroje,
- Změnit záběrové podmínky,
- Použít jiný typ řezné geometrie resp. VBD s jinou úpravou řezné hrany ,
- Změnit posuv.

Obr. 5.11 Únavové trhliny podél hřbetu nástroje [12]

5.1.11 Destrukce břitu resp. špičky nástroje

Destrukce břitu resp. špičky nástroje - příčiny tohoto jevu mohou být různé a jsou závislé na materiálu nástroje i materiálu obrobku, stavu a zejména tuhosti soustavy stroj-nástroj-obrobek, vliv má i velikost a typ opotřebení a záběrové podmínky.

Opatření:

- Použít houževnatější typ slinutého karbidu,
- Zvolit méně intenzivní řezné podmínky (snížit posuv i hloubku),
- Použít VBD s větším poloměrem zaoblení špičky,
- Použít VBD s větším úhlem špičky,
- Použít jinou řeznou geometrii (jiný utvařeč),
- Stabilizovat řeznou hranu (břit),
- Při najíždění do záběru zmenšit posuv. [12]

Obr. 5.12 Destrukce břitu nástroje [12]
6 SOUČASNÝ TECHNOLOGICKÝ POSTUP

Univerzální hrotový soustruh SUS 63-80:

Univerzální hrotový soustruh SUS 63-80, je zvláště vhodný pro soustružení, řezání závitů, zapichování, vrtání a kopírování. Vhodný pro kusovou i sériovou práci pro obrobky do průměru 390 mm.

Technické parametry stroje:

- Rok výroby: 1992,
- Výkon hlavního motoru: 18,5 [kW],
- Rozsah otáček: 9-1120 [min⁻¹],
- Rozsah posuvu: 0,049-3 [mm],
- Max. rozměry stroje: - délka 3950 [mm],
 - výška 1400 [mm],
 - šířka 1750 [mm],
 - hmotnost 5200 [Kg]. [8]

Obr. 6.1 Soustruh SUS 63-80
Používaný řezný nástroj:

VBD, SNMG 190616E-R; 6620; PRAMET, za 220,50Kč. Substrát je bez kubických karbidů (typ H), nanesený povlak je silný s nosnou vrstvou Al₂O₃. Vhodná pro hrubovací a dokončovací soustružení. [12]

Pro tento řezný nástroj se používá nástrojový držák PSDNN 2020, K12 od firmy Bohlerit s touto řeznou geometrií:

- Úhel čela \(\gamma = -6° \),
- Úhel sklonu ostří \(\lambda_s = -6° \),
- Úhel nastavení hlavního ostří \(\kappa_r = 45° \),
- Úhel špičky \(\varepsilon_r = 90° \).

Obráběný materiál:

Obráběným materiálem je slitina PN 22-207-96 pro lité děrovací trny Ni-Mo-Cr, dodávaný firmou ŽDB a.s. Bohumín, Závod topenářské techniky VIADRUS. [11]

<table>
<thead>
<tr>
<th>Tab. 6.1 Specifikace obráběného materiálu [11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemické složení %</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>0,24</td>
</tr>
<tr>
<td>až</td>
</tr>
<tr>
<td>0,34</td>
</tr>
<tr>
<td>Třída odpadu</td>
</tr>
<tr>
<td>Výrobek</td>
</tr>
<tr>
<td>Tvrđost</td>
</tr>
</tbody>
</table>
Obr. 6.2 Odlitky trnů různých kalibrací [11]

Kladené požadavky na trny:

- Vysoká otěruvzdornost za tepla,
- Rozměrová a tvarová stálost.

Tepelné zpracování

Trny jsou před tepelným zpracováním vloženy do speciálních palet, jež jsou pak umístěny na nístěj vozové pece. Za 3,5 hodiny jsou trny ohřátý na teplotu 845 °C ±15 °C, trny do průměru 120 mm na této teplotě setrvají 2 hodiny, trny nad průměr 120 mm setrvají na této teplotě 3 hodiny. Poté je sklopeno chladič zařízení před pecí a je pod něj najeto s nístějí, na níž jsou uloženy palety s trny. Trny jsou ochlazovány proudem stlačeného vzduchu a dochází k jejich zakalení. Po provedeném tepelném zpracování dle stanoveného režimu se po jeho ukončení provede u děrovacích trnů proměření jejich tvrdosti a naměřené hodnoty se zapíší do Knihy měření tvrdosti děrovacích trnů. Tvrdost trnů po zakalení dosahuje hodnot nad 500 HB. [10]
Upnutí obrobku na stroj

Abychom geometricky nepřesný polotovar mohli obrobit, musíme jej nejprve spolehlivě upnout. Síly vznikající při řezání jsou značné a snaží se obrobek z upínače vytačit, vyvrátit nebo jinak uvolnit. [7] Obrobek se ručně, nebo pomocí ručně ovládaného mostového jeřábu přemístí z palety na obráběcí stroj, kde se upne mezi tříčelisťové sklíčidlo a koník.

Řezné podmínky

Jako řezné podmínky se označují veličiny, které určují velikost strojního času při obrábění. Jsou to:

a) Řezná rychlost \(v_r \) [m.min\(^{-1}\)], tj. obvodová rychlost na povrchu součásti, na němž pracuje nástroj nebo rychlost na obvodu nástroje a na řezném břitu,

b) Posuv \(f \) [mm], tj. pohyb nástroje do záběru,

c) Hloubka řezu \(a_p \) [mm], tj. tloušťka ubírané vrstvy na jeden záběr.

Řezné podmínky závisí na druhu, tvaru, velikosti (tuhosti a pevnosti) nástroje, na druhu, velikosti (tuhosti) a výkonu obráběcího stroje, požadované drsnosti povrchu a rozměrové přesnosti obrobku a dalších podmínekách práce, především ale na řezném materiálu nástroje, na požadované trvanlivosti břitu nástroje a na materiálu obrobku. [5]
Řezná rychlost v c [m.min^{-1}] - se vypočte ze vztahu (7.1),

\[v_c = \frac{\pi \times D \times n}{1000} \] \hspace{1cm} (7.1)

kde D [mm] je soustružený průměr,

n [min^{-1}] – otáčky obrobku, nebo nástroje. [5]

Používané řezné podmínky

Pro děrovací trny průměru 180 mm se používají tyto řezné parametry:

<table>
<thead>
<tr>
<th>Hrubování:</th>
<th>Otáčky n =56 min^{-1}</th>
<th>Kopírování: n =56 min^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Řezná rychlost v_c = 31,6 m.min^{-1}</td>
<td>v_c = 31,6 m.min^{-1}</td>
<td></td>
</tr>
<tr>
<td>Posuv f = 0,295 mm</td>
<td>f = 0,75 mm</td>
<td></td>
</tr>
<tr>
<td>Hloubka řez a_p = 3-8 mm</td>
<td>a_p = 0,5–1,5 mm</td>
<td></td>
</tr>
</tbody>
</table>

Postup při obrábění

Obrábění děrovacích trnů probíhá ve dvou cyklech.

1) Hrubovací cyklus – při hrubování odstraníme povrchovou vrstvu s nerovnoměrným povrchem a zbytky ulpělého písku po odlévání. Při tomto procesu dochází k rychlému opotřebení VBD (trvanlivost břitu cca. 10 minut).

Obr. 6.4 Odlitek trnů připraveny k obrábění
2) Kopírovací cyklus – při kopírování dosahujeme přesných požadovaných rozměrů obrobku přesným kopírováním podle vzorové šablony. Kopírovací zařízení sestává v principu ze šikmo nastavitelného vodícího pravítka, zpevněného k zadní vodící ploše lože, po kterém se posouvá vodítko, které je spojené s příčným suportem – příčným vodícím šroubem. Při podélém posuvu suportu se plynule pohybují i příčné saně a na obrobku se vytváří kuželová plocha. [8]
7 NÁVRH NOVÉHO TECHNOLOGICKÉHO POSTUPU

Důvodem pro racionalizaci obrábění děrovacích trnů ve firmě ArcelorMittal Tubular Products Ostrava a.s. je snaha o snížení finančních nákladů a časových úspor v této oblasti obrábění.

Za tímto účelem byly navrženy dvě změny:

- Nahrazení původního řezného nástroje,
- Možnost obrábět na soustružnickém poloautomatu DIFAK SPT 32 CNC, který je ve firmě používán na jiném pracovišti, ale není vždy plně využit.

7.1 Volba vhodné břitové destičky

Vývoj v obrábění je rychlý. Metody, používané v soustružení, frézování a vrtání před deseti nebo i jen pěti lety, jsou ve většině případů zastaralé. Vývoj nástrojů byl takový, že na dvou stejných strojích, na jednom s pět let starými nástroji a druhém s dnešními nástroji, je možno pozorovat ohromný rozdíl denní produkce. Proto je možné dosáhnout výrazného zvýšení denní produkce na jednu obsluhu stroje především změnou používaných řezných nástrojů. Efektivnost obrábění zvyšuje výkon starého stroje a zproduktivňuje práci obsluhy.

Neexistují tedy žádné rozumné argumenty pro použití zastaralých nástrojů namísto moderních, ať už na novém nebo starém stroji. [6]

Navržení břitových destiček

Postup volby:

1. Upínací systém destiček, to znamená systém držáků nástrojů v provedení P (upnutí pomocí páky) nebo U (upnutí šroubem),

2. Typ a velikost držáku nástroje ze zvoleného systému a v souladu s tím co se od nástroje při příslušné operaci očekává,

3. Tvar vyměnitelné destičky podle typu držáku nástroje a cest nástroje při příslušné operaci,
4. Geometrie destičky, vyhovující typu operace a plánovaným řezným datům,

5. Třída destičky, správný materiál nástroje,

6. Velikost destičky,

Výběr testované břitové destičky

Pro vhodnou geometrii obrábění a co nejnižší náklady při testování jsme ponechali původní nástrojový držák. Na tomto základě byly vybírány takové destičky, které je možno použít pro původní nástrojový držák PSDNN 2020, K12 od firmy Boehlerit. Od různých firem bylo vybráno na odzkoušení několik břitových destiček, vhodné pro obrábění tvrdých materiálů s vysokou odřezvzdorností.

První testovaný řezný nástroj byl vybrán od firmy Boehlerit s normalizovaným tvarem SNMG 190616 BMR; LC225C. Jedná se o slinutý karbid s vícevrstvým povlakem, řazený v pořadí TiCN-Al₂O₃-TiN. Cena destičky činí 220,71 Kč. [15]

![Obr. 7.1 VBD od firmy Boehlerit](image1)

Druhý testovaný řezný nástroj byl vybrán od firmy Mitsubishi s normalizovaným tvarem SNMA 190616; UC5105. VBD se vyznačuje, celo černým dokonale rovným povlakem. Povlak je tvořen slinou vrstvou Al₂O₃-TiCN. Cena destičky je 259,20 Kč. [14]

![Obr. 7.2 VBD od firmy Mitsubishi](image2)
7.2 Testování jednotlivých VBD

Při testování obou řezných nástrojů jsme se zaměřili na hrubovací operace, kde se nejedná tak o kvalitu obrobené plochy, ale o dosažení co nejvyšší trvanlivosti nástroje. Proto jsme také více kontrolovali opotřebení na čela, aby nedošlo k nečekané destrukci břitu. Pro praktické zkoušky na trnech o průměru 180 mm, byla navržena trvanlivost minimálně 12 minut a z toho navrhované parametry:

1) Otáčky n = 56 min⁻¹, Řezná rychlost v_c = 31,6 m.min⁻¹, Posuv f = 0,295 mm, Hloubka řezu a_p = 3-8 mm.

2) Otáčky n = 90 min⁻¹, Řezná rychlost v_c = 50,8 m.min⁻¹, Posuv f = 0,295 mm, Hloubka řezu a_p = 3-8 mm.

Vyhodnocování velikosti opotřebení se provádělo následovně:

- Digitálním fotoaparátem Olympus v režimu super makro se po každých dvou minutách obrábění pořídily snímky opotřebení břitové destičky,

Obr. 7.3 Měření opotřebení v programu Micrometrics
7.2.1 VBD od firmy Bohlerit při prvních zvolených řezných parametrech

Průběh opotřebení v závislosti na čase

Sledovaným parametrem bylo opotřebení břitové destičky při prvních zvolených řezných parametrech po dvou minutách.

Opotřebení břitové destičky na čele nástroje nemělo po celé délce záběru břitu rovnoměrný průběh, ale měnilo se v různých místech, jak je patrné z obr. 7.4.

Obr. 7.4 Průběh opotřebení na čele nástroje

V místě kde končí kontakt ostří a obrobku je opotřebení největší. To může být zapříčiněno nerovnoměrným povrchem obrobku a zároveň ulpělými pískovými zrny na povrchu, které tam zůstaly při odlévání.

Tab. 7.1 Hodnoty opotřebení v jednotlivých časových úsecích

<table>
<thead>
<tr>
<th>čas [min]</th>
<th>Opotřebení</th>
<th>Čela</th>
<th>Hřbetu VB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Začátek KB [mm]</td>
<td>Střed KB [mm]</td>
<td>Konec KB [mm]</td>
</tr>
<tr>
<td>2'</td>
<td>0,44</td>
<td>0,54</td>
<td>0,62</td>
</tr>
<tr>
<td>4'</td>
<td>0,48</td>
<td>0,56</td>
<td>0,67</td>
</tr>
<tr>
<td>6'</td>
<td>0,53</td>
<td>0,58</td>
<td>0,74</td>
</tr>
<tr>
<td>8'</td>
<td>0,57</td>
<td>0,61</td>
<td>0,80</td>
</tr>
<tr>
<td>10'</td>
<td>0,58</td>
<td>0,65</td>
<td>0,85</td>
</tr>
<tr>
<td>12'</td>
<td>0,61</td>
<td>0,67</td>
<td>0,88</td>
</tr>
<tr>
<td>14'</td>
<td>0,63</td>
<td>0,69</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Opotřebení na čele u špičky a na středu bylo téměř o jednu třetinu menší než na koci. Na hřbetě nástroje opotřebení narůstalo konstantně po celé délce záběru. Po čtrnácti min. obrábění jsme již nemohli dále pokračovat, protože docházelo k chvění celého stroje. Vzniklé opotřebení na VBD můžeme klasifikovat jako výmoly (žlábky) na čele, které byly úzké a hluboké.
Po vyhodnocení tab. 7.1 graficky, získáme následující průběhy opotřebení v jednotlivých částech ostří.

![Diagram showing the wear profile in various parts of the tool]

Obr. 7.6 Průběh opotřebení na čase obrábění v jednotlivých částech ostří

7.2.2 *VBD od firmy Bohlerit při druhých zvolených řezných parametrech*

Průběh opotřebení v závislosti na čase

Při vyšší řezné rychlosti, bylo již po 12 minutách obrábění nutné řezný nástroj vyměnit z důvodu změny zvuku při obrábění. Opět se na čele vytvořilo opotřebení ve tvaru výmolů s nerovnoměrným průběhem obr. 7.7 a na hřbetě téměř konstantní opotřebení po celé délce záběru obr. 7.8.
Tab. 7.2 Hodnoty opotřebení v jednotlivých časových úsecích

<table>
<thead>
<tr>
<th>čas [min]</th>
<th>Čela</th>
<th>Hřbetu VB [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Začátek KB [mm]</td>
<td>Střed KB [mm]</td>
</tr>
<tr>
<td>2'</td>
<td>0,59</td>
<td>0,63</td>
</tr>
<tr>
<td>4'</td>
<td>0,64</td>
<td>0,67</td>
</tr>
<tr>
<td>6'</td>
<td>0,72</td>
<td>0,69</td>
</tr>
<tr>
<td>8'</td>
<td>0,75</td>
<td>0,72</td>
</tr>
<tr>
<td>10'</td>
<td>0,79</td>
<td>0,74</td>
</tr>
<tr>
<td>12'</td>
<td>0,85</td>
<td>0,77</td>
</tr>
</tbody>
</table>

Po vyhodnocení tab. 7.2 graficky, získáme následující průběhy opotřebení v jednotlivých částech ostří.
Průběh opotřebení na čase obrábění v jednotlivých částech ostří

Jak je znázorněno na obr. 7.9 opotřebení na začátku narůstalo rychleji, poté pozvolna a na konec opět rychleji nárůst až do úplného otupení.

7.2.3 VBD od firmy Mitsubishi při prvních zvolených řezných parametrech

Průběh opotřebení v závislosti na čase

Test této destičky prokázal zcela odlišné opotřebení, než bylo u VBD od firmy Boehlerit. Zvláště se odlišovalo opotřebení na čele nástroje, kde bylo opotřebení jen s malými odchylkami téměř po celé délce záběru stejně, a netvořily se výmoly obr. 7.10. Opotřebení na hřbetě nástroje narůstalo konstantně po celé délce záběru.

Obr. 7.10 Opotřebení na čele nástroje
Jak je patrné z tab. 7.3 trvanlivost VBD při řezné rychlosti \(v_c = 31,6 \) m.min\(^{-1} \) je 18 minut. Při stejné řezné rychlosti je to o 4 minuty více než první testovaný nástroj.

Tab. 7.3 Hodnoty opotřebení v jednotlivých časových úsecích

<table>
<thead>
<tr>
<th>čas [min]</th>
<th>Čela</th>
<th>začátek VR [mm]</th>
<th>Střed VR [mm]</th>
<th>Konec VR [mm]</th>
<th>Hřbetu VB [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'</td>
<td></td>
<td>0,12</td>
<td>0,15</td>
<td>0,16</td>
<td>0,17</td>
</tr>
<tr>
<td>4'</td>
<td></td>
<td>0,16</td>
<td>0,20</td>
<td>0,21</td>
<td>0,21</td>
</tr>
<tr>
<td>6'</td>
<td></td>
<td>0,22</td>
<td>0,23</td>
<td>0,25</td>
<td>0,24</td>
</tr>
<tr>
<td>8'</td>
<td></td>
<td>0,25</td>
<td>0,27</td>
<td>0,28</td>
<td>0,26</td>
</tr>
<tr>
<td>10'</td>
<td></td>
<td>0,28</td>
<td>0,28</td>
<td>0,32</td>
<td>0,29</td>
</tr>
<tr>
<td>12'</td>
<td></td>
<td>0,30</td>
<td>0,32</td>
<td>0,34</td>
<td>0,33</td>
</tr>
<tr>
<td>14'</td>
<td></td>
<td>0,34</td>
<td>0,35</td>
<td>0,39</td>
<td>0,37</td>
</tr>
<tr>
<td>16'</td>
<td></td>
<td>0,35</td>
<td>0,37</td>
<td>0,43</td>
<td>0,39</td>
</tr>
<tr>
<td>18'</td>
<td></td>
<td>0,38</td>
<td>0,42</td>
<td>0,46</td>
<td>0,41</td>
</tr>
</tbody>
</table>

Po vyhodnocení tab. 7.3 graficky, získáme následující průběhy opotřebení v jednotlivých částech ostří.

Obr. 7.11 Průběh opotřebení na čase obrábění v jednotlivých částech ostří
Z obr. 7.11 je vidět vznikající opotřebení s lineárním postupem až do úplného otupení nástroje.

7.2.4 VBD od firmy Mitsubishi při druhých zvolených řezných parametrech

Průběh opotřebení v závislosti na čase

Obrábění probíhalo do doby úplného otupení. Značné opotřebení se začalo projevovat po 16 minutách, kdy docházelo ke změně zvuku a výrazně zvyšujícímu se chvění stroje. Očekávali jsme destrukci břitu, ke které nakonec nedošlo.

Obr. 7.12 Opotřebení na čele nástroje

Tab. 7.4 Hodnoty opotřebení v jednotlivých časových úsecích

<table>
<thead>
<tr>
<th>čas [min]</th>
<th>Opotřebení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Čela</td>
</tr>
<tr>
<td></td>
<td>Začátek VR [mm]</td>
</tr>
<tr>
<td>2'</td>
<td>0,14</td>
</tr>
<tr>
<td>4'</td>
<td>0,18</td>
</tr>
<tr>
<td>6'</td>
<td>0,23</td>
</tr>
<tr>
<td>8'</td>
<td>0,28</td>
</tr>
<tr>
<td>10'</td>
<td>0,33</td>
</tr>
<tr>
<td>12'</td>
<td>0,35</td>
</tr>
<tr>
<td>14’</td>
<td>0,39</td>
</tr>
<tr>
<td>16’</td>
<td>0,42</td>
</tr>
<tr>
<td>18’</td>
<td>0,46</td>
</tr>
</tbody>
</table>

Po vyhodnocení tab. 7.4 graficky, získáme následující průběhy opotřebení v jednotlivých částech ostří.
Při vyšší řezné rychlosti je průběh opotřebení mírně odlišný od předchozího testu s řeznou rychlostí \(v_c = 31,6 \text{ m.min}^{-1} \). Zejména opotřebení měřené na středu ukazovalo po šesté minutě obrábění vyšší hodnoty než na konci. Mohlo to být zaviněno špatným upnutím nebo tvarem odlitku, kdy byl v měřené oblasti VBD její střed delší dobu v záběru. Jedná se pouze o teoretické tvrzení, které nelze dokázat.

7.3 Použití soustružnického poloautomatu DIFAK SPT 32 CNC

Stroj DIFAK SPT 32 CNC je vyráběn ve společnosti Difak a na tento stroj je použitý operační systém Siemens.

Stroj je určen pro nasazení v malosériové a kusové výrobě. Je možné na něm provádět soustružení povrchových, vnitřních a čelních ploch, vrtání a soustružení otvorů, řezání vnějších a vnitřních závitů. Stroj SPT 32 je určen pro obrábění hřídelů a přírub do max. průměru 320 mm, délka hřídele může být až 1500 mm. Použitý řídící systém Siemens umožňuje provoz stroje nejen v automatickém cyklu, ale i v ručním režimu. Programování je zjednodušeno možností využívání podprogramů a pevných cyklů. Systém umožňuje editaci přímo na stroji.
Parametry stroje:

- **Rok výroby**: 1997,
- **Otáčky vřetene**: 31 - 2240 [min⁻¹],
- **Rozsah posuvů**: 1 - 2000 [mm],
- **Max. hmotnost obrobku**: 300 [Kg],
- **Půdorysné rozměry**: 4920 [mm] x 2080 [mm],
- **Největší výška stroje**: 2680 [mm],
- **Celková hmotnost stroje**: 8100 [Kg],
- **Celkový příkon stroje**: 65 [kV]. [9]

![Obr. 7.14 Soustružnický poloautomat DIFAK SPT 32 CNC](image)

Pro vyráběný sortiment (tj. bezešvé ocelové trubky) se používá celá řada trnů. Nejvíce využívané jsou trny s průměrem od 110 mm do 140 mm, které plánujeme obrábět na tomto soustružnickém poloautomatu. Stroj je pravidelně udržován a vyznačuje se vysokou tuhostí a přesností. Předpokládá se zvýšení produkce s plynulou a bezproblémovou výrobu.

Řezný nástroj a řezné parametry

Použity budou opět nástroje z materiálu UC5105 firmy Mitsubishi a LC225C firmy Boehlerit. Pro obrábění trnů s průměrem 115mm a 120 mm na stroji SPT 32 CNC byly navrženy programy (příloha 2), dle rozměrů trnů z výkresů s těmito řeznými parametry:

- **Řezná rychlost** \(v_c = 40 \text{ m.min}^{-1} \),
- **Posuv** \(f = 0,4 \text{ mm} \),
- **Hloubka řezu** \(a_p = 1\text{-}6 \text{ mm} \).
8 TECHNICKO EKONOMICKÉ ZHODNOCENÍ

Každý řezný proces se svým charakterem odlišuje, proto pro získání přesnějších výsledků měření je nutné udělat mnohem více zkoušek těchto řezných materiálů. I přesto je možné charakterizovat dosažené výsledky za uspokojivé.

Výsledky testů ukazují finanční úsporu u obou vybraných řezných materiálů. Řezný nástroj z materiálu LC225C firmy Boehlerit má stejnou cenu (220,71 Kč) jako původní nástroj, ale o 40 % delší trvanlivost. Řezný materiál UC5105 od firmy Mitsubishi prokázal od původního nástroje o 80 % delší trvanlivost břitu. Pořizovací cena destičky je o 39 Kč více (259,20 Kč), proto celková úspora je 62,2 %.

Větší odolnost proti opotřebení obou nástrojů také vede ke zkrácení strojního času, kdy břit nástroje je delší dobu v záběru a není nutné tak často zastavovat stroj pro otočení, nebo výměnu řezného nástroje. Podrobnější vyčíslení výsledků v tab. 8.1.

Tab. 8.1 Hodnoty opotřebení v jednotlivých časových úsecích

<table>
<thead>
<tr>
<th>ČASOVÉ ÚDAJE</th>
<th>Původní metoda</th>
<th>Navržená metoda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v<sub>c</sub> = 31,6 m.min<sup>−1</sup></td>
<td>v<sub>c</sub> = 50,8 m.min<sup>−1</sup></td>
</tr>
<tr>
<td></td>
<td>v<sub>c</sub> = 31,6 m.min<sup>−1</sup></td>
<td>v<sub>c</sub> = 50,8 m.min<sup>−1</sup></td>
</tr>
</tbody>
</table>
| Výroba 1Ks [min] | 14’11" | 13’19" | 8’12" | 13’19" | 8’12"
| Úspora [min] | - | 52" | 5’59" | 52" | 5’59"
| Výroba za směnu [min] | 226’56" | 213’4" | 140’44" | 220’ | 138’8"
| Úspora [min] | - | 13’52" | 86’12" | 6’56" | 88’48"

NÁKLADY

| Výroba 1Ks [Kč] | 55 | 27,5 | 27,5 | 32,4 | 32,4
| Úspora [Kč] | - | 27,5 | 27,5 | 22,6 | 22,6
| Výroba za směnu [Kč] | 605 | 440 | 302,5 | 388,5 | 291,4
| Úspora [Kč] | - | 165 | 302,5 | 216,5 | 313,6

Částky v tab. 8.1 jsou rozpočítány jen na řezný materiál a na jeho jednotlivé opotřebené břity. Jinak by cena na výrobu jednoho kusu trnu činila celou částku nové destičky.

Výhody nové technologie:

- Finanční úspora,
- Zkrácení strojního času,
- Zvýšena produktivita výroby.

Nevýhody nové technologie:

- Časová náročnost při zkoušení nových nástrojů.
9 ZÁVĚR

Cílem diplomové práce bylo stanovit produktivnější obrábění děrovacího trnu v podmínkách firmy ArcelorMittal Tubular Products Ostrava a.s.

V této diplomové práci byla řešena vhodnost obráběcích nástrojů z povlakovaných SK pro použití při obrábění odlitků děrovacích trnů. Výsledky testů vybraných řezných materiálů dosáhly poměrně dobrých hodnot. Především řezný materiál firmy Mitsubishi svou tvrdostí a zároveň houževnatostí dosáhl oproti původnímu řeznému materiálu o 80% delší trvanlivost (tj. 18 minut). Oba materiály dokazují, neustálé zdokonalování řezných materiálů svou vyšší pevností, houževnatostí a zlepšenou odolností proti opotřebení. Další zkoušky obou řezných materiálů budou probíhat na stroji Difakt SPT 32 CNC, který se vyznačuje vyšší tuhostí, a dostatečným výkonem. Předpokládáme tak dosažení ještě lepších výsledků.
SEZNAM POUŽITÉ LITERATURE

SEZNAM PŘÍLOH

<table>
<thead>
<tr>
<th>Příloha 1</th>
<th>Výkresy některých obráběných trnů</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příloha 2</td>
<td>Programy pro obrábění trnů na SPT 32 CNC</td>
</tr>
</tbody>
</table>