Continued fractional measure of irrationality

By

Jaroslav Hančl, Tapani Matala-aho, Simona Pulcerová

Abstract

This new concept of continued fractional measure of irrationality for the real number \(a\) is introduced with the help of the classical measure of irrationality. Some relationships between this new and the classical measures are included.

Acknowledgements. Supported by the grants no. 201/07/0191, ME09017 and MSM6198898701.

1991 Mathematics Subject Classification(s). N/A
2000 Mathematics Subject Classification(s). 11J82, 11A55
Additional information
Communicated by N/A
Received Date
Additional information(s)
Revised Date
Revised Dates

*Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic
**Department of Mathematical Sciences, University of Oulu, Finland
***Department of Mathematical Methods in Economics, VŠB – Technical University of Ostrava, Czech Republic
1. Introduction

Following Erdős [4] we call $C(a) = \inf \{I(y); y = [a_1c_1, a_2c_2, \ldots], c_n \in \mathbb{Z}^+\}$ the continued fractional measure of irrationality for the number a while $a = [a_1, a_2, \ldots]$ is its continued fractional expansion and $I(x)$ is the measure of irrationality of the number x. In some sense the continued fractional measure of irrationality better characterizes the nature of the number a mainly in the direction of the approximation of its partial continued fractions in average. We prove the following theorem.

Theorem 1.1. Let $K \geq 2$ and $a_1 \geq 1$ be integers and define a continued fraction $a = [a_1, a_2, \ldots]$ with $a_{n+1} = a_n^K + n!$ for each $n = 1, 2, \ldots$. Then $C(a) = I(a) = K + 1$.

In the same spirit Erdős [4] defined the irrational sequences and proved that the sequence $\{2^{2^n}\}_{n=1}^{\infty}$ is irrational. See also [9]. Later Hančl, Nair and Šustek [7] defined in the similar way the expressible set of the sequence. More information about this can be found in [8], [10], [11] and [12]. Davenport and Roth [3] proved that if $\limsup_{n \to \infty} \sqrt[n]{n \log q_n} = \infty$ and $a_n \in \mathbb{Z}^+$ for every $n \in \mathbb{Z}^+$ then the number a is transcendental. See also [1].

Matala-aho and Merilä [16] found some measures of irrationality for the Ramanujan type q-continued fractions. As an application of their work let us mention the results concerning the Ramanujan-Selberg continued fractions [18] and the Eisenstein continued fractions [5]. Certain hypergeometric functions in connection with the measure of irrationality and using continued fractions were studied by Shiokawa [17]. Further Komatsu [15] published some results concerning the Hurwitz and Tasoev's continued fractions. By using monodromy principle for hypergeometric functions Huttner and Matala-aho [14] obtained
measures of irrationality for certain Gauss continued fractions. See also Hata and Huttner [13] while Bundschuh [2] worked with the special continued fractions containing finite number of arithmetic progressions and found some estimations of the measures of irrationality for them.

Throughout the whole paper we consider \(a = [a_1, a_2, \cdots] \) to be the continued fraction expansion such that \(a_n \in \mathbb{Z}^+ \) for each \(n \in \mathbb{Z}^+ \). The \(n \)-th partial fraction is equal to \(\frac{p_n}{q_n} = [a_1, a_2, \cdots, a_n] \). The continued fraction expansion of the number \(a \) is infinite so \(a \) is an irrational number. The measure of irrationality of the number \(a \) we define as \(I(a) = -\lim \inf_{n \to \infty} \log q_n | a - \frac{p_n}{q_n} | \) since we know that the best approximations are directly in its partial fractions. We also use the well-known inequality for the approximation of the \(n \)-th partial fraction
\[
\frac{1}{q_n^2(a_{n+1}+2)} < |a - \frac{p_n}{q_n}| < \frac{1}{q_n^2 a_{n+1}}
\]
which follows e.g. from (10.7.5), Hardy and Wright [6].

The notation \([x]\) means the integral part of the real number \(x \). Denote \(\mathbb{Z}^+ \) the set of all positive integers. For the convenience set \(\log_2 0 = 0 \).

2. Main Results

Theorem 2.1. We have
\[
C(a) = 2^{\lim \sup_{n \to \infty} \frac{1}{2} \log_2 \log_2 a_n + 1}.
\]

Corollary 2.1. We have
\[
I(a) \geq 2^{\lim \sup_{n \to \infty} \frac{1}{2} \log_2 \log_2 a_n + 1}.
\]

Corollary 2.2. Let \(\lim \sup_{n \to \infty} \frac{1}{2} \log_2 \log_2 a_n = \infty \). Then \(C(a) = I(a) = \infty \) and thus \(a \) is a Liouville number.

Theorem 2.2. Let \(K \) be a real number with \(K > 1 \). Assume that
\[
1 < R_1 = \lim \inf_{n \to \infty} a_n^{\frac{1}{K}} \leq \lim \sup_{n \to \infty} a_n^{\frac{1}{K}} = R_2,
\]
where \(R_1 \) and \(R_2 \) are real numbers, \(R_2 \) can be also infinity. Then
\[
K + 1 \leq I(a) \leq \frac{\log_2 R_2}{\log_2 R_1} (K - 1) + 2.
\]

Example 2.1. Let \(R_1, R_2 \) and \(K \) be the real numbers with \(K > 1 \) and \(0 < R_1 \leq R_2 \). Set
\[
a_n = [2^{(2R_1 |\sin(\log \log n)| + 2R_2 (1 - |\sin(\log \log n)|))K^n}]
\]
for each \(n \in \mathbb{Z}^+ \). Then \(\lim \inf_{n \to \infty} a_n^{\frac{1}{K}} = 2^{2R_1}, \lim \sup_{n \to \infty} a_n^{\frac{1}{K}} = 2^{2R_2} \) and \(I(a) = K + 1 \).
Example 2.2. Let \(R_1, R_2 \) and \(K \) be the real numbers with \(K > 1 \) and \(0 < R_1 \leq R_2 \). Set
\[
a_n = 2^{(R_1(1+(-1)^{\lceil \log \log n \rceil}) + R_2(1+(-1)^{1+\lceil \log \log n \rceil}))K^n}
\]
for each \(n \in \mathbb{Z}^+ \). Then \(\liminf_{n \to \infty} a_n^{\frac{1}{n}} = 2^{2R_1} \), \(\limsup_{n \to \infty} a_n^{\frac{1}{n}} = 2^{2R_2} \) and \(I(a) = \frac{R_2^2}{R_1^2} (K-1) + 2 \).

Remark 1. Examples 2.1 and 2.2 demonstrate in some sense that we cannot substantially improve upper and lower bounds for the measure of irrationality in Theorem 2.2.

Corollary 2.3. Let \(K \) be a real number with \(K > 1 \). Assume that
\[
1 < \lim_{n \to \infty} a_1 K^n
\]
Then \(I(a) = K + 1 \) and \(a \) is a transcendental number.

Example 2.3. Let \(K \) be a real number such that \(K > 1 \). Set \(a_n = [2^{K^n}] \) for each \(n \in \mathbb{Z}^+ \). Then \(I(a) = K + 1 \).

3. Proofs

Theorem 1.1 is the immediate consequence of Theorems 2.1 and Corollary 2.3 as follows. First we have
\[
a_{n+1}^{-\frac{1}{n}} = (a_n^K + n!)^{\frac{1}{n+1}} = a_n^{\frac{1}{n}} (1 + \frac{n!}{a_n^K})^{\frac{1}{n+1}} = a_n^{\frac{1}{n}} \prod_{k=1}^{n} \left(1 + \frac{k!}{a_n^K}\right)^{\frac{1}{n+1}}
\]
which implies that
\[
1 \leq a_1^n < a_2^n < \cdots < a_n^{\frac{1}{n}} < a_{n+1}^{\frac{1}{n+1}} < \cdots < a_1^n 2^{\pi x_{K+1}}.
\]
Hence \(1 < \lim_{n \to \infty} a_n^{\frac{1}{n}} < \infty \).

Proof. (proof of Theorem 2.1) The proof falls into two cases.

1. First we prove that \(C(a) \geq 2^{\limsup_{n \to \infty} \frac{1}{n} \log_2 \log_2 a_n} + 1 \). Suppose that there exists the sequence \(\{c_n\}_{n=1}^\infty \) of positive integers such that \(I(y) = I([a_1c_1, a_2c_2, \cdots]) \leq 2^{\limsup_{n \to \infty} \frac{1}{n} \log_2 \log_2 a_n} + 1 \). Set \(A_n = a_n c_n \) for each \(n \in \mathbb{Z}^+ \). So there exists \(Q \geq 2 \) and sufficiently small \(\delta_1 \) such that
\[
I(y) = I([A_1, A_2, \cdots]) = Q < Q + 4\delta_1 \leq 2^{\limsup_{n \to \infty} \frac{1}{n} \log_2 \log_2 A_n} + 1 \leq 2^{\limsup_{n \to \infty} \frac{1}{n} \log_2 \log_2 A_n} + 1 \tag{3.1}
\]
From this we obtain that
\[
\limsup_{n \to \infty} A_n^{\frac{1}{n} \log_2 \log_2 A_n} = \infty \tag{3.2}
\]
This implies that for infinitely many \(N \)

\[
A_{N+1}^{\frac{1}{Q-1+3\delta_1}} > \sup_{j=1,2,\ldots,N} A_j^{\frac{1}{Q-1+3\delta_1}} \tag{3.3}
\]

otherwise there exists \(n_0 \) such that for every \(n > n_0 \)

\[
A_{n+1}^{\frac{1}{Q-1+3\delta_1}} \leq \sup_{j=1,2,\ldots,n} A_j^{\frac{1}{Q-1+3\delta_1}} = \sup_{j=1,2,\ldots,n-1} A_j^{\frac{1}{Q-1+3\delta_1}} = \cdots = \sup_{j=1,2,\ldots,n_0} A_j^{\frac{1}{Q-1+3\delta_1}}
\]
a contradiction with (3.2). Now from (3.3) we obtain that for infinitely many \(N \)

\[
A_{N+1} > (\sup_{j=1,2,\ldots,N} A_j^{\frac{1}{Q-1+3\delta_1}}) \frac{(Q-1+3\delta_1)^{N+1}}{(Q-2+3\delta_1)^{\prod_{k=1}^N (\frac{Q-1+3\delta_1}{Q-2+3\delta_1})^{k}}} \geq \frac{1}{Q_N^2} D_0 \prod_{k=1}^N A_k (Q-2+3\delta_1)
\]

(3.4)

where \(D_0 \) is a positive real number which does not depend on \(n \). Let \([A_1, A_2, \ldots, A_k] = \frac{P_k}{Q_k} \) be the \(k \)-th partial fraction of the number \(A = [A_1, A_2, \ldots] \). This and (3.4) yield that for infinitely many \(N \)

\[
|A - \frac{P_N}{Q_N}| \leq \frac{1}{Q_N^2 A_{N+1}} \leq \frac{1}{Q_N^2 D_0 \prod_{k=1}^N A_k} (Q-2+3\delta_1) \leq \frac{1}{Q_N^{Q-2+3\delta_1}}.
\]

But this is the contradiction with (3.1) and \(C(a) \geq 2\limsup_{n \to \infty} \frac{1}{Q_n} \log_2 \log_2 a_n + 1 \) follows.

2. Now we prove that \(C(a) \leq 2\limsup_{n \to \infty} \frac{1}{Q_n} \log_2 \log_2 a_n + 1 \). To prove this we find for every sufficiently small positive real number \(\delta_2 \) the sequence \(\{c_n\} \) of positive integers such that \(I(y) = I([a_1c_1, a_2c_2, \ldots]) < 2\limsup_{n \to \infty} \frac{1}{Q_n} \log_2 \log_2 a_n + 1 + 2\delta_2 \). Set \(S = 2\limsup_{n \to \infty} \frac{1}{Q_n} \log_2 \log_2 a_n + 1 \). From this we obtain that there exists \(n_0 \) such that for each \(n > n_0 \) we have

\[
a_n < 2^{S-1+2\delta_2}.
\]
Now we take the sequence \(\{c_n\}_{n=1}^{\infty} \) of positive integers such that \(c_1 = c_2 = \cdots = c_{n_0} = 1 \) and for every \(n > n_0 \)

\[
(3.5) \quad 2^{(S-1+\delta_2)n} \leq A_n = a_n c_n \leq 2^{(S-1+\delta_2)n+1}
\]

where we set \(A_n = a_n c_n \) for each \(n \in \mathbb{Z}^+ \). From (3.5) we obtain that there exists a positive real number \(D_1 \) which does not depend on \(n \) and such that for every positive integer \(n \)

\[
D_1 \prod_{k=1}^{n} 2^{(S-1+\delta_2)^k} \leq \prod_{k=1}^{n} A_k.
\]

Hence

\[
(3.6) \quad D_2 2^{(S-1+\delta_2)^{n+1}} \leq \prod_{k=1}^{n} A_k
\]

where \(D_2 \) is a suitable positive real constant which does not depend on \(n \). Let \([A_1, A_2, \cdots, A_k] = \frac{P_k}{Q_k} \) be the \(k \)-th partial fraction of the number \(A = [A_1, A_2, \cdots] \). Inequalities (3.5) and (3.6) yield that for every sufficiently large positive integer \(n \)

\[
| A - \frac{P_n}{Q_n} | \geq \frac{1}{Q_n^2 (A_{n+1} + 2)} \geq \frac{1}{Q_n^2 8 (\frac{1}{D_2} \prod_{k=1}^{n} A_k)^{(S-2+\delta_2)}} \geq \frac{1}{Q_n^{S+2\delta_2}}.
\]

From this and the fact that partial continued fractions are the best approximations we obtain that \(I(A) \leq S + 2\delta_2 \).

Proof. (proof of Theorem 2.2) From (2.1) we obtain that for every sufficiently small \(\delta_3 \) there exists \(n_0 \) such that for each \(n > n_0 \) we have

\[
1 < R_1 - \delta_3 \leq a_n^{\frac{1}{n}} \leq R_2 + \delta_3.
\]

Hence

\[
(3.7) \quad 2^{K^n \log_2 (R_1 - \delta_3)} \leq a_n \leq 2^{K^n \log_2 (R_2 + \delta_3)}.
\]

It implies that there exists a positive real number \(D_3 \) such that for all sufficiently large positive integers \(n \) we have

\[
(3.8) \quad D_3 2^{\frac{\log (R_1 - \delta_3) K^n}{K - 1}} \leq \prod_{k=1}^{n} a_k.
\]

Now the proof falls into two cases.

1. First we prove that \(I(a) \geq K + 1 \). From (3.7) we obtain that

\[
\limsup_{n \to \infty} \frac{1}{n} \log_2 \log_2 a_n \geq \log_2 K.
\]
Then this and Corollary 2.1 imply that \(I(a) \geq K + 1 \).

2. Now we prove that \(I(a) \leq \log_{R_2} \log_{R_1} K(1) + 2 \). To prove this we will estimate the partial continued fractions of the number \(a \). By the way assume that \(R_2 < \infty \) since the case \(R_2 = \infty \) is trivial. From (3.7) and (3.8) we obtain that for every sufficiently large positive integer \(n \) we have

\[
|a - \frac{p_n}{q_n}| \geq \frac{1}{q_n^4(\prod_{k=1}^{a_n} a_k)^{(K-1)\log_{R_2}(R_2+2\delta_3)}/\log_{R_1}(R_1-2\delta_3)}} \geq \frac{1}{q_n^{(K-1)\log_{R_2}(R_2+2\delta_3)}/\log_{R_1}(R_1-2\delta_3)}}.
\]

This and the fact that partial continued fractions are the best approximations yield that \(I(a) \leq \log_{R_2} \log_{R_1} (K-1) + 2 \) and (2.2) follows.

Corollaries 2.1 and 2.2 are immediate consequences of Theorem 2.1. Corollary 2.3 is an immediate consequences of Theorem 2.2. Example 2.3 is an immediate consequence of Corollary 2.3.

Proof. (of Example 2.1)

1. First we prove that \(I(a) \geq K + 1 \).

From the fact that the sequence \(\{|\sin(\log_{\log_2} k)|\}_{k=1}^\infty \) is dense in \([0,1]\) we obtain that \(\liminf_{n \to \infty} a_n \frac{\log_2 n}{\log_2 \log_2 n} = 2^{2R_2} \) and \(\limsup_{n \to \infty} a_n \frac{\log_2 n}{\log_2 \log_2 n} = 2^{2R_2} \). This and Theorem 2.2 yield that \(I(a) \geq K + 1 \).

2. Let \(\varepsilon \) be sufficiently small and let \(n \) be sufficiently large. From the mean value theorem we obtain that for every \(k, j \in \{\lfloor n/2 \rfloor, \cdots, n, n+1\} \)

\[
||\sin(\log_{\log_2} k) \mid - |\sin(\log_{\log_2} j)| \mid \leq |\sin(\log_{\log_2} k) - \sin(\log_{\log_2} j)| = \frac{1}{\xi \log_2 \xi} \leq \frac{3}{\log_2 n},
\]

where \(\xi \in \{\lfloor n/2 \rfloor, n+1\} \).

The definition of the sequence \(\{a_k\}_{k=1}^\infty \) and (3.9) yield that for every \(k \in \{\lfloor n/2 \rfloor, \cdots, n, n+1\} \)

\[
2(2R_2 + (2R_1 - 2R_2) |\sin(\log_{\log_2} n)| + \frac{\log_2 \log_2 n}{\log_2 n}))(\log_{\log_2} K)^k \leq a_k \leq 2(2R_2 + (2R_1 - 2R_2) |\sin(\log_{\log_2} n)| - \frac{\log_2 \log_2 n}{\log_2 n}))(\log_{\log_2} K)^k,
\]

hence

\[
S_n^{(1+\varepsilon)K} \leq a_k \leq S_n^{(1-\varepsilon)K}.
\]

where

\[
S_n = 2^{2R_2 + (2R_1 - 2R_2) |\sin(\log_{\log_2} n)|}.
\]
Now we prove that \(I(a) \leq K + 1 \). To prove this we find the lower bound for \(\prod_{k=1}^{n} a_k \). Inequality (3.10) implies that

\[
\prod_{k=1}^{n} a_k \geq \prod_{k=\lfloor \frac{n}{2} \rfloor}^{n} S_n^{(1-\varepsilon)K^k} \geq S_n^{(1-\varepsilon)K^{n+1}}.
\]

This and (3.10) yield that

\[
|a - \frac{p_n}{q_n}| \geq \frac{1}{q_n^2(a_n+1+2)} \geq \frac{1}{q_n^24(\prod_{k=1}^{n} a_k)^{(K-1)(1+\varepsilon)}} \geq \frac{1}{q_n^{(K-1)(1+2\varepsilon)}+2}.
\]

Proof. (of Example 2.2)

1. We have either \(a_k = 2^2R_1K^k \) or \(a_k = 2^2R_2K^k \). From this we obtain that \(\liminf_{n \to \infty} \frac{a_n}{q_n} = 2^2R_1 \) and \(\limsup_{n \to \infty} \frac{a_n}{q_n} = 2^2R_2 \). This and Theorem 2.2 yield that \(I(a) \leq \frac{R_2}{R_1}(K - 1) + 2 \).

2. Now we prove that \(I(a) \geq \frac{R_2}{R_1}(K - 1) + 2 \). Let \(s \) be a sufficiently large positive integer and \(\varepsilon \) sufficiently small positive real number. Set \(n + 1 = 2^s \). Then \(a_{n+1} = 2^2R_2K^{n+1} \) and \(a_k = 2^2R_1K^k \) for all \(k = \frac{n+1}{2}, \ldots, n \). From this we obtain that

\[
\prod_{k=1}^{n} a_k \leq \prod_{k=1}^{\frac{n+1}{2}} 2^2R_2K^k \prod_{k=\frac{n+1}{2}}^{n} 2^2R_1K^k \leq 2^2\frac{R_2(1+\varepsilon)}{K-1} K^{n+1}.
\]

This yields

\[
|a - \frac{p_n}{q_n}| \leq \frac{1}{q_n^2(a_n+1+2)} \leq \frac{1}{q_n^2(\prod_{k=1}^{n} a_k)^{(K-1)(1+\varepsilon)}} \leq \frac{1}{q_n^{(K-1)(1+2\varepsilon)}}.
\]

This implies that \(I(a) \geq \frac{R_2}{R_1}(K - 1) + 2 \). \(\square \)

References

Continued fractional measure of irrationality

