Realization of measuring terminal of cartridge fuses

2010 Pavel Nevlud
Prohlášení studenta

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

V Ostravě dne: ...

podpis studenta

Poděkování

Rád bych poděkoval vedoucímu mé bakalářské práce, panu Ing. Davidu Helštýnovi z VŠB-TU Ostrava, za odbornou pomoc a rady, které mi poskytl při psaní této práce.
Abstrakt

Bakalářská práce pojednává o patronových pojistkách nízkého napětí, jakožto o jednom ze základních elektrických přístrojů určených k jištění elektrických obvodů. První část práce je zaměřena na teorii pojistek. Jsou zde jednotlivě popsány jejich základní části, dále jsou uvedeny jednotlivé konstrukční typy pojistek a v neposlední řadě je vysvětlena jejich funkce. V druhé části je popsán návrh měřícího pracoviště pro měření patronových pojistek a jeho praktická realizace. Poslední část práce je věnována samotnému měření vypínacích charakteristik. Je zde popsán návrh jednoho z možných způsobu jejich měření. Tato část je doplněna o výsledky zkušebního měření provedeného pro ověření funkčnosti přípravku a hlavně zvoleného způsobu měření.

Abstract

The Bachelor thesis deals with low-voltage patron fuses as one of the essential electrical appliances for protection of electrical circuits. The first part is focused on theory of fuses. Their individual parts are described here, as well as their various parts and last but not least is their function. The second part describes the design of a workplace for measuring of patron fuses and their practical realization. The last part is devoted to the measurement of tripping characteristics. I describe the application of one possible measuring method. This part is also filled with the results of the testing measuring to verify the functionality of the product and especially the chosen measuring method.

Klíčová slova

Pojistka, tavná vložka, tavný vodič, kontakt pojistky, ampérsekundová charakteristika, omezovací charakteristika, jmenovitý proud, krajní proud, nadproud, zkratový proud, zkrat, zotavené napětí, vypínací schopnost, vypínací doba, odpínáč, stykač, hlavní kontakt, pomocný kontakt.

Keywords

Fuse, fuse-link, fuse-element, fuse-contact, time-current characteristic, cut-off current characteristic, nominal current, non-fusing current, over-current, short-circuit current, short-circuit, recovery voltage, breaking capacity, opening time, switch-disconnector, contactor, main contact, auxiliary contact,
Seznam použitých symbolů a zkratek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Jednotka</th>
<th>Označení</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>m2</td>
<td>plocha</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td>střídavý proud</td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td>bakalářská práce</td>
</tr>
<tr>
<td>c</td>
<td>J·m3·K$^{-1}$</td>
<td>objemová tepelná kapacita</td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>průměr</td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td>stejnosměrný proud</td>
</tr>
<tr>
<td>DP</td>
<td></td>
<td>diplomová práce</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
<td>proud</td>
</tr>
<tr>
<td>I_n</td>
<td>A</td>
<td>jmenovitý proud</td>
</tr>
<tr>
<td>I_p</td>
<td>A</td>
<td>proud pojistkou</td>
</tr>
<tr>
<td>\dot{E}_t</td>
<td>A2s</td>
<td>propuštěná energie</td>
</tr>
<tr>
<td>KM</td>
<td></td>
<td>stykač</td>
</tr>
<tr>
<td>l</td>
<td>m</td>
<td>délka</td>
</tr>
<tr>
<td>nI_n</td>
<td>A</td>
<td>násobek jmenovitého proudu</td>
</tr>
<tr>
<td>nn</td>
<td></td>
<td>nízké napětí</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td>počítač</td>
</tr>
<tr>
<td>R</td>
<td>Ω</td>
<td>elektrický odpor</td>
</tr>
<tr>
<td>R_p</td>
<td></td>
<td>předřadný rezistor</td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td>tlačítko</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>čas</td>
</tr>
<tr>
<td>t_v</td>
<td>s</td>
<td>vypínací čas</td>
</tr>
<tr>
<td>U_G</td>
<td>V</td>
<td>napětí zdroje</td>
</tr>
<tr>
<td>U_{zn}</td>
<td>V</td>
<td>zotavené napětí</td>
</tr>
<tr>
<td>V</td>
<td>m3</td>
<td>objem</td>
</tr>
<tr>
<td>a_0</td>
<td>W·m$^{-2}$·K$^{-1}$</td>
<td>součinitel přestupu tepla</td>
</tr>
</tbody>
</table>
Obsah

1 ÚVOD 7

2 FUNKCE A KONSTRUKCE PATRONOVÝCH POJISTEK NN ... 7

2.1 KONSTRUKCE POJISTEK .. 7

2.1.1 Konstrukční části pojistek ... 7

2.1.2 Typy pojistek a konstrukce jednotlivých druhů ... 11

2.1.3 Značení pojistek ... 16

2.2 PRINCIP PŮSOBĚNÍ POJISTKY ... 17

2.2.1 Podstata vypínacího pochodu pojistek, omezovací schopnost 20

3 NÁVRH A REALIZACE MĚŘICÍHO PRACOVIŠTI .. 23

3.1 KONSTRUKCE NOSNÉ DESKY .. 23

3.2 OSAZENÍ PŘÍSTROJÍ.. 24

4 NÁVRH ZPŮSOBU MĚŘENÍ A OTESTOVÁNÍ FUNKČNOSTI............................... 27

4.1 NÁVRH ZPŮSOBU MĚŘENÍ .. 27

4.1.1 Realizovaný způsob měření... 28

4.2 OTESTOVÁNÍ FUNKČNOSTI ... 30

4.2.1 Postup měření... 30

4.2.2 Seznam použitých přístrojů .. 31

4.2.3 Výsledky zkušebního měření ... 32

5 ZÁVĚR ... 34

6 SEZNAMY .. 35

6.1 SEZNAM POUŽITÉ LITERATURY A CITACÍ ... 35

6.2 SEZNAM TABULEK .. 35

6.3 SEZNAM OBRÁZKŮ ... 35

6.4 SEZNAM PŘÍLOH ... 37
1 Úvod

2 Funkce a konstrukce patronových pojistek

2.1 Konstrukce pojistek

Pojistky nízkého napětí jsou přístroje, které se začaly používat již před mnoha lety. Během této dlouhé doby se jejich vývoj rozšířil do mnoha různorodých odvětví. Pro každé z těchto odvětví se vyvíjel vývoj pojistek různými směry odražejícími požadavky na ně. A právě lišící se požadavky na pojistky úzce souvisí s jejich konstrukcí.

2.1.1 Konstrukční části pojistek

Tavný vodič

Tavný vodič je jedna z nejdůležitějších částí pojistkové vložky, která tvoří proudovodnou dráhu. Pro malé proudy má vodič tvar drátku, pro větší proudy, hlavně u výkonových pojistek, se používá pásek. U pojistek na velmi velké jmenovité proudy vychází průřez tavného vodiče příliš velký, proto se používá několik vodičů (páskového tvaru) zapojených paralelně.

Tavné vodiče se vyrábí z kovových materiálů, které mají co nejlepší hodnoty elektrické vodivosti. Čím vyšší hodnota elektrické vodivosti bude, tím bude mít vodič menší průřez a materiálu k jeho výrobě bude potřeba méně, což je výhoda jak funkční tak ekonomická. U všech typů pojistek na
Všechny velikosti vypínaných výkonů se používá k výrobě tavného vodiče výhradně stříbro nebo měď. V dřívějších dobách se pro výrobu tavných vodičů pro obyčejné pojistky na malé vypínací výkony používalo hliníku, zinku, výjimečně cíně, olova nebo jejich slitin. Tyto materiály se dnes již vůbec nepoužívají a byly nahrazeny vhodnější mědí nebo stříbrem. U pojistek se znovým hasivem se z důvodu lepší vodivosti a hlavně menší hodnoty výparného tepla dává přednost stříbru.

Největší materiálovou nevýhodou stříbra a mědi je jejich vysoká tepelná odolnost. Fyzikálně údaje nejpoužívanějších materiálů jsou tabulce v Příloha 1.

Ideální tavný vodič má mít co nejlepší vodivost a co nejnižší teplotu tavení. Kov, který by tyto podmínky splnil ovšem neexistuje, proto se tavné vodiče různými způsoby upravují. Úpravy mají mnoho důvodů a také způsobují jak je lze provést. Nejčastější jsou popsány v následujících odstavcích.

a) **Přerušením vodiče a spojením nízkotavitelnou pájkou.** Jako pájka je nejčastěji použita cínová s teplotou tavení 200 až 250 °C. Ohřeje-li se takto upravený vodič na tuto teplotu, začne se pájka tavit, zároveň se zvýšuje její odpor, což tavení urychluje, a pájka z vodiče steče, čímž přeruší obvod. Taková úprava vodiče je na vidět na Obr. 1.

![Obr. 1: Úprava tavného vodiče přerušením a spojením pájkou [3]](image1)

b) **Nanesením pájky na jednom místě na nepřerušený vodič.** Při zahřívání se pájka tavit a rozpouští vodič na němž je nanesena a začne se tvořit slitina. Tato slitina má teplotu tavení jen o málo vyšší než pájka (přibližně 400 °C), a zároveň má větší odpor než tavný vodič, takže se začne rychleji zahřívat a dojde tak k rychlejšímu přetavení. Ukázka takto upraveného tavného vodiče je na Obr. 2.

![Obr. 2: Úprava vodiče nanesením nízkotavitelné pájky [3]](image2)

Obě metody nejsou v praxi příliš obvyklé a dociluje se jimí snížením doby tavení. Tyto metody mají své opodstatnění pouze při malých nadproudech. Pro vyšší nadproudy se vliv pájky
neuplatní, proto se používá úpravy vodičů odlišného způsobu. Úpravy spočívají ve zmenšení průřezu tavného vodiče.

c) **Zmenšení průřezu tavného vodiče.** Nejčastěji je tato úprava provedena perforací tavného vodiče, jak lze vidět na Obr. 3. Tento způsob úpravy se provádí výhradně u pojištek vyšších výkonů, u kterých je tavný vodič tvořen páskem.

![Obr. 3: Úprava vodiče zmenšením průřezu [2]](image)

d) Kombinace více úprav. U některých tavných vodičů se používá kombinace zmíněných úprav. Nejběžnější je kombinace perforace pásku a nanesení nízkona vitelné pájky. Ukázka je na Obr. 4.

![Obr. 4: Úprava tavného vodiče kombinující několik metod [3]](image)

Jak lze vidět na ukázkách tak u úprav tavných vodičů je tendenci tyto úpravy provádět co nejblíže středu vodiče a to z důvodu spolehlivého zhášení oblouku.

Vhodným způsobem úpravy vodiče se dá upravovat tavná charakteristika pojištění. Je to rovněž způsob jak lze vytvořit rozdíl mezi rychlou a pomalou pojiští, jak ukazuje Obr. 5, na kterém je naznačen vzhled samotných vodičů.
Obr. 5: Rozdíly v tavných charakteristikách pro různé tavné vodiče [3]

Na závěr je nutno podotknout, že všechny zmíněné úpravy tavných vodičů mají smysl pouze při nadproudech. Při zkratech nastávají na vodiči tak markantní jevy, že se vodič většinou roztaví po celé jeho délce.

Pouzdro

Pouzdro je vnější obal pojistky vyplňující prostor mezi kontakty. Pouzdro je nejčastěji vyrobeno z porcelánu nebo jiné keramiky. U pojistek na velmi malé proudy je vyrobeno ze skleněné trubíčky. Tvar pouzdra je u jednotlivých typů pojistek jiný jak tvarově tak velikostí. Ve všech případech se jedná o dutý válec s různým průřezem, na jehož čelech jsou umístěny kontakty. Ve vnitřním prostoru se nachází tavný vodič obklopen hasivem.

Hasivo

Hasivem se rozumí materiál vyplňující prostor kolem tavného vodiče. Hasivo má za úkol uhasit elektrický oblouk, který vznikne mezi dvěma konci tavného vodiče po jeho přetavení. V dnešní době se používá křemičitý písek. Písek má zrnitost 0,1 až 0,5 mm a musí být prosetý a dokonale vysušený. V dnešní době se používá také kapalinová hasiva (tetrachloretyleen) nebo hasiva s plynotvorným hasivem (tzv. vyfukovací pojistky). Pojistky s těmito typy hasivy ovšem neměly omezovací schopnost, a proto se v dnešní době již nevyváží. U pojistek na velmi malé jmenovité proudy (tedy u kterých se nepředpokládá vznik elektrického spojení mezi tavnou vložkou a pojistkovým držákem) se používá přímo písek.

Kontakty

Kontakty jsou vodivé části pojistkové tavné vložky, tvořící proudovodnou dráhu, určené k zajištění elektrického spojení mezi tavnou vložkou a pojistkovým držákem (spodkem). Kontakty se liší tvarem u různých typů pojistek a také velikostí pro různé hodnoty jmenovitých proudů. Jako materiálu pro výrobu kontaktů se používá výhradně měď, nebo její slitin (mosaz), opatřené vhodnou povrchovou úpravou.

Ukazatel stavu

Slouží k indikaci, zda již pojistka zapůsobila. Ne každá pojistka musí ukazatel stavu obsahovat. Bývá vyroben v podobě kulatého nebo páskového vodiče z odporového kovového
materiálu. Vysoký odpor odporového materiálu zaručuje, že se tento vodič přetaví až po přetavení tavného vodiče.

2.1.2 Typy pojistek a konstrukce jednotlivých druhů

Jak již bylo zmíněno pojistky se využívají v mnoha aplikacích a proto jich existuje mnoho druhů, typů a velikostí souvisejících se způsobem použití a nároku na ně kladených. Z těchto hledisek je možné pojistky dělit podle několika kritérií.

První dělení je podle toho co bude pojistka chránit. Zde můžeme zařadit např. pojistky pro jištění vedení (obyčejně), transformátorů, motorických obvodů, polovodičů, pojistky určené pro trakční zařízení či pojistky pro doly.

Další rozdělení může být podle toho jaké jsou kladené nároky na rychlost vypnutí. Podle rychlosti dělíme pojistky na pomalé, rychlé, a velmi rychlé.

Dále můžeme dělit pojistky podle velikosti jmenovitého proudu neboli velikosti výkonu. Norma ČSN 35 4701 dělí také pojistky na dvě skupiny a to na pojistky pro kvalifikovanou a nekvalifikovanou obsluhu.

Druhé písmeno určuje kategorii užití. Zde se používá písmen G pro všeobecné užití, M pro jištění motorových obvodů, R nebo S pro jištění polovodičů, Tr pro jištění transformátorů (distribučních na straně nn), v normě jsou dále ještě uvedeny písmena D a N.

Výsledné označení je dáno kombinací těchto písmen např. aM, gG, gR atd.

Nejběžnější a nejrozšířenější dělení pojistek je podle konstrukce. Typ konstrukce pojistky je hlavně závislý na způsobu užití a na velikosti výkonu, který bude přes pojistku procházet. Pojistky lze dělit na tyto typy.

Přístrojové pojistky

Tyto pojistky slouží k jištění přístrojů a zařízení s malými odběry. Vyrábí se pro hodnoty proudů v řádech mA. Jejich konstrukce je jednoduchá. Jsou vyrobeny ze skleněné trubičky, na jejíž čelech jsou umístěny kontakty, které přidržují tavný vodič. U těchto pojistek není většinou použito hasivo. Hodnota jmenovitého proudu je většinou vyražena spolu s hodnotou jmenovitého napětí na jednom z kontaktu pojistky.

Obr. 6: Přístrojová pojistka firmy Schurter [12]
Závitové pojistky

Tento druh pojistek se nejčastěji používá pro domovní rozvody (převážně v dřívějších dobách) nebo pro průmyslové rozvody malého výkonu. Z rozsahu použití vyplývá, že se používají pro malé hodnoty jmenovitých proudu. Vyrábějí se pro hodnoty jmenovité proudu od 2 do 100 A.

Obr. 7: Závitová pojistka

Pojistková vložka (patrona) má tvar dutého válce, který má na obou koncích umístěné kontakty, ovšem s rozdílným průměrem. Patrony mají několik velikostí, jež jsou uvedeny v tabulce v Příloha 2. Spodní kontakt, jež se zasunuje do pojistkového spodku, má pro každou vyráběnou hodnotu J_a, jiný průměr. Platí, že čím větší je jmenovitý proud pojistky, tím větší průměr kontakt má. Odstupňování velikostí průměru spodního kontaktu má nesmírnou výhodu v tom, že nelze patronu vyměnit za jinou pro větší jmenovitý proud. Tento fakt umožňuje využití těchto pojistek i pro nekvalifikovanou obsluhu dle ČSN 35 4701.

Obr. 8: Závitová pojistka; 1 pouzdro, 2 spodní kontakt, 3 horní kontakt, 4 tavný vodič, 5 hasivo [7]

Druhý kontakt patrony (horní) je většího průměru a v jeho středu je umístěn ukazatel stavu. Ukazatel má tvar malého terče, který je přidržován pružinkou. Po zapůsobení pojistky tato pružinka terčí uvolně, a ten odpadne. Signální terčí má pro každou jmenovitou hodnotu proudu jinou barvu, čímž lze od sebe rozzeznat pojistky pro jednotlivé jmenovité proudy. Hodnota jmenovitého proudu bývá někdy vyražena i na horním kontaktu, nebo vytištěna na pouzdře pojistky.
Obr. 9: Nákres závitové pojistky ve spodku; 1 hlavice, 2 spodek, 3 přívod, 4 terčík ukazatele stavu, 5 víko vložky, 6 vložka, 7 patka vložky, 8 vymezovací kroužek, 9 přívod [1]

Vymezovací kroužek je rovněž označen barevně, aby bylo poznat jakou hodnotu Iₐ má patrona mít. Pro konkrétní jmenovité proudy je barevné označení vymezovacího kroužku stejné s barvou signálního terčíku patrony. Barvy označení odpovídající jmenovitým hodnotám jsou normalizovány a jsou uvedeny v Tab. 1.

Tab. 1: Barevné značení jmenovitých hodnot proudů závitových pojistek [8]

<table>
<thead>
<tr>
<th>I_n (A)</th>
<th>Barva ukazatele pojistky</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Růžová</td>
</tr>
<tr>
<td>4</td>
<td>Hnědá</td>
</tr>
<tr>
<td>6</td>
<td>Zelená</td>
</tr>
<tr>
<td>10</td>
<td>Červená</td>
</tr>
<tr>
<td>13</td>
<td>Černá</td>
</tr>
<tr>
<td>16</td>
<td>Šedá</td>
</tr>
<tr>
<td>20</td>
<td>Modrá</td>
</tr>
<tr>
<td>25</td>
<td>Žlutá</td>
</tr>
<tr>
<td>35</td>
<td>Černá</td>
</tr>
<tr>
<td>50</td>
<td>Bílá</td>
</tr>
<tr>
<td>63</td>
<td>Barva mědi</td>
</tr>
<tr>
<td>80</td>
<td>Stříbrná</td>
</tr>
<tr>
<td>100</td>
<td>Červená</td>
</tr>
</tbody>
</table>

Válcové pojistky

Obr. 10: Válcové pojistky OEZ Letohrad [10]
Pojistky se vyrábějí ve čtyřech velikostech podle Tab. 2, v hodnotách od 0,25 do 125 A. Válcové pojistky se vyznačují velkou vypínací schopností, která může být až 120 kA. Pojistky tohoto typu neobsahují ukazatel stavu. Tuto nevýhodu lze ale kompenzovat přidáním signalizace přímo na odpínací.

Tab. 2: Normované velikosti válcových pojistek [8]

<table>
<thead>
<tr>
<th>Velikost</th>
<th>AC 400 V</th>
<th>AC 500 V</th>
<th>AC 690 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gG</td>
<td>aM</td>
<td>gG</td>
</tr>
<tr>
<td>d×l</td>
<td>(I_{n,\text{max}})</td>
<td>(I_{n,\text{max}})</td>
<td>(I_{n,\text{max}})</td>
</tr>
<tr>
<td>(mm)</td>
<td>(A)</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>8×32</td>
<td>16</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>10×38</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>14×51</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>22×58</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Norma povoluje vyrábět vložky i vyšších jmenovitých proudů.

Pojistky výkonové

Výkonové pojistky, často nazývané taky pojistkami nožovými. Tento typ pojistek je určen většinou pro obvody velkých výkonů převážně pro průmyslové rozvody. Vyrábí se v mohutnějších a velikostech, pro různé aplikace, ve velkém rozsahu hodnot od 4 do 1600 A, s vypínací schopností až 120 kA.

Obr. 11: Výkonové (nožové) pojistky OEZ Letohrad [10]

Vložka má většinou čtverhranný (rozebíratelné vložky) nebo kruhový tvar (nerozebíratelné vložky; v dnešní době méně časté) keramického pouzdra, na jehož koncích jsou nasazena kovová čela,
na která navazují nožové kontakty. Na jedné straně navazují na čela třmeny, za které lze patronu chytit izolačním držadlem a manipulovat s ní tedy i pod napětím (ale ne pod zatížením).

Obr. 12: Výkonová (nožová) pojistka; 1 kontakt, 2 víka, 3 pouzdro, 4 okénko, 5 ukazatel stavu, 6 tavný vodič, 7 třměny [1]

Ukazatel stavu je u tohoto typu pojistek řešen jako samostatný vodič. Přerušení tohoto signálního vodiče je viditelné přes malinké okénko v pouzdu patrony, za nimž je umístěno zúžené místo tohoto vodiče. Tento typ se používal u dříve vyráběných pojistek. Druhým způsobem, dnes používanějším, je použití malinké pružinky (v páskovém provedení), která je přitahována signálním vodičem. Po jeho přerušení pružinka odskočí.

Pojistkový spodek nožových pojistek bývá zhotoven jako keramická podložka, na jejíž koncích jsou umístěny kontakty. Každý z kontaktů má čelísti a šroub pro uchycení přívodních vodičů. Čelísti jsou tvořeny dvěma kovovými nadstavci, které jsou k sobě přítlučovaný ocelovou pružinou. Do těchto kontaktů se zasouvají nožové kontakty pojistkové vložky. Vzdálenost kontaktů na spodku a jejich robustnost je dána velikostí vložky a tím souvisejícím jmenovitým proudem.

2.1.3 Značení pojistek

Značení pojistkových vložek je velmi důležité a proto jsou stanoveny určitá pravidla, která jsou uvedena v normách (ČSN 35 4701).

Každá pojistková vložka, s výjimkou malých, na kterých je to neproveditelné, musí být vyznačena tyto údaje:
- jméno výrobce nebo obchodní značka
- identifikační údaje umožňující vyhledat všechny charakteristiky
- jmenovité napětí
- jmenovitý proud
- druh proudu a jmenovitý kmitočet, přichází-li to v úvahu
- rozsah vypínání a kategorie užití, kde to přichází v úvahu
- velikost nebo provedení
- jmenovitá vypínací schopnost

Norma ČSN 35 4701 udává normalizované hodnoty jmenovitých napětí a proudů. Pro napětí to jsou např. hodnoty 230, 400, 500 a 690 V střídavého napětí a 110, 125, 220, 250, 440 a 600 V pro napětí stejnosměrné. Pro hodnoty proudů to jsou hodnoty 2, 4, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1 000 a 1 250 A.

Označování jednotlivých údajů se (pokud to je možné) provádí potiskem na pouzdro vložky. Označení jmenovitého proudu a napětí u nožových pojistek musí být viditelné zepředu. Pro pojistky s charakteristikou gG je normou určena černá barva potisku a pro pojistky s charakteristikou aM musí být značení provedeno barvou zelenou. Příkłady označování je možno vidět na Obr. 10 a Obr. 11.

2.2 Princip působení pojistky

Pro malé hodnoty proudů probíhá oteplovací děj pomalu. Většina tepla se odvádí z vodiče pryč, přičemž dominuje odvod tepla vedením v samotném vodiči směrem ke kontaktům pojistkové vložky. Zbylá část tepla vodič pozvolně otepluje. Oteplení vodiče má exponenciální charakter a je popsán rovnicí

$$\Delta \vartheta = \Delta \vartheta_\infty \left(1 - e^{-\frac{t}{\tau}}\right) \text{ (°C)}$$

kde $\Delta \vartheta_\infty$ je hodnota maximálního oteplení v čase $t \to \infty$ a je dána vztahem $\Delta \vartheta_\infty = \frac{RI^2}{\alpha_0A}$ [1]

τ je časová konstanta, která udává za jakou dobu by těleso dosáhlo teploty $\Delta \vartheta_\infty$ kdyby se veškeré teplo spotřebovalo ke zvyšování jeho teploty; a je dána $\tau = \frac{cV}{\alpha_0A}$ [1]

R odpor vodiče (Ω)
I proud tekoucí vodičem (A)
Objemová tepelná kapacita \((J \cdot m^{-3} \cdot K^{-1}) \)

Objem vodiče \((m^3)\)

Součinitel přestupu tepla \((W \cdot m^{-2} \cdot K^{-1})\)

Ochlazovací plocha \((m^2)\)

Maximální teplota, které může vodič pro daný proud dosáhnout je \(\Delta \theta_{\infty} \). Pokud je tato teplota menší než teplota tavení materiálu, ze kterého je vodič vyroben (popř. materiálu, který je použit k úpravě tavného vodiče) protéká pojistkou proud menší nebo roven proudu jmenovitému uvedeném na pojistkové vložce. Jmenovitý proud \(I_n \) lze také definovat jako takovou hodnotu proudu, kterou je pojistková vložka schopna trvale snést, aniž by teplota přetahovála přípustné meze a pojistková vložka by zapusobila. Jmenovitý proud je jedním z nejdůležitějších údajů pojistkových vložek. Všechny vyšší hodnoty proudu označujeme jako nadproudy.

Pokud začne proud narůstat nad jmenovitý, začne se oteplování vodiče zvyšovat až dohodně hodnoty odpovídající teploty tavení materiálu, ze kterého je tavný vodič vyroben. Takovou hodnotu proudu nazýváme proudem krajním. Je definován jako proud, při jehož trvalém průchodu se pojistková vložka právě jen nepřetaví. Obvykle se udává jako 1,3 až 1,6-ti násobek proudu jmenovitého.

Při dalším zvyšování proudů se již tavný vodič během stanovené doby přetaví. Pokud bude tavný vodič po celé své délce konstantního průřezu a materiálu, dojde k přetavení na náhodném místě, což může vést k prodloužení doby vypnutí, případně až k selhání pojistky. Z tohoto důvodu se provádí úpravy vodiče, popsané v kapitole 2.1.1, abychom určili přesné místo ve kterém má k přerušení dojít. Nejvýhodnější a nejčastější je přerušení uprostřed tavného vodiče. Jsou ovšem i případy, kdy se úpravy na tavném vodiči upravují, aby k přerušení tavného vodiče došlo na více místech, hlavně u výkonových pojistek.

Čím vyšší proud bude pojistkovou vložkou procházet, bude docházet k většímu uvolňování tepla, které nebudou stačit z vodiče odvádět a tudíž se bude měnit poměr tepla odvedeného a tepla akumulovaného, které tavný vodič ohřívá. Množství akumulovaného tepla tedy úzce souvisí s dobou, za kterou se tavný vodič přetaví. Tuto závislost nám udávají charakteristiky pojistkových vložek, kterým se říká tavné nebo také vypínací či ampéresekundové. Tavná charakteristika nám určuje, za jakou dobu se tavný vodič přetaví pro konkrétní hodnotu proudu. Tyto charakteristiky jsou také jedním z nejdůležitějších údajů, které výrobci udávají v katalogách, neboť hlavně podle nich si projektoři vybírají správný typ pojistky pro konkrétní aplikaci.

Další důležitou charakteristikou pojistek je charakteristika \(\hat{I}t \). Tato charakteristika udává kolik energie přenese pojistka do zařízení než zařízení odpojí od sítě. Tato energie je definovaná Joulovými ztrátami v zařízení a vyjadřuje hodnotu výrazu \(\int i^2 \, dt \). Ukázka takové charakteristiky je na Obr. 14.

Pro případy, kdy proud procházející tavným vodičem má velmi rychlý a strmý nárůst hovoříme o zkratech, a takovou hodnotu proudu označujeme jako proud zkratový. Jeho rychlý déj má za následek prudký nárůst oteplení vodiče. Vzniklé teplo se nestačí z vodiče odvěst a tím se veškeré vzniklé teplo akumuluje ve vodiči a ohrává jej po celé jeho délce. Oteplení vodiče je tak markantní, že se tavný vodič doslova vypaří v celé své délce a dojde tedy k vypnutí pojistky ve velmi krátké době.

Z uvedených faktů vyplývá, že čím vyšší proud bude pojistkou protékat, tím rychleji dojde k jejímu vypnutí, což ukazuje tavnou charakteristiku.
2.2.1 Podstata vypínacího pochodu pojistek, omezovací schopnost

Jak bylo řečeno v předchozích kapitolách tak k vypnutí pojistky dojde po přetavení tavného obvodu. Toto ovšem platí jen v miziněm procentu případů a výhradně u obvodů s velmi malými výkony. U všech ostatních případů musíme počítat u vypínání pojistek se vznikem elektrického oblouku. Elektrický oblouk vznikne mezi konci přetaveného tavného vodiče a k vypnutí pojistky dojde až po jeho uhašení.

Přechodem tavného vodiče do kapalného skupenství vzroste náhle jeho odpor a vlivem elektrodynamických sil a povrchových napětí se z něj vytvoří kuličky tektého kovu. Mezi těmito kuličkami vzniknou oblouky. Vlivem velké obloukové teploty se kuličky kapalného kovu začnou vypařovat a vznikají kovové výpary, které expandují do okolního prostoru s hasivem (nejčastěji křemičitým pískem). Na zrnech písku, které jsou v porovnání s teplotou páru a okolní teplotou téměř studené, tyto částice kondenzují. Při vypařování kapiček tektého kovu se jednotlivé oblouky začnou postupně spojovat v jeden. Samotný oblouk se má tendenci neustále zvětšovat jak do délky tak do šířky. Jelikož je okolní prostor kolem oblouku vyplněn pískem, který má velkou tepelnou vodivost a tak oblouku odebírá energii a ochlazuje ho. Zároveň se písek vlivem velké teploty taví, čímž vzniká kolem oblouku skleněná hmota, která vytvoří oblouku obal. Oblouk se nemůže dále zvětšovat, jeho
odpor roste, tím roste napětí a proud klesá až k nule a tím oblouk uhasne. Tento děj je důležitý hlavně u zatáčení obvodu v stejnosměrných obvodech, ve střídavých obvodech oblouk uhasne sám při průchodu proudu nulou.

Z důvodu spolehlivého jižšení zařízení se od pojistky vyžaduje, aby nedovolila propuštění maximální hodnoty zkratekého proudu. Z toho vyplývá, že se tavný vodič musí přetavit ještě v počáteční fázi průběhu zkratekého proudu. Jinými slovy pojistka musí zkratový proud omezit. U omezení zkratekého proudu není důležitá pouze velikost proudu, kterou pojistka propustí a který by mohl zařízení poškodit jak svými tepelnými tak i silovými účinky, ale zajímá nás také množství energie, které pojistka do zařízení propustí. Toto množství energie úzce souvisí s charakteristikou I^2t popsanou v kapitole 2.2, a zajímá nás hlavně u zkratekých proudů. Množství energie, kterou pojistka propustí je dobře vidět (vyšrafovaná plocha) na Obr. 15, kde jsou znázorněny průběhy proudu a napětí při zkratech pro stejnosměrný obvod. Na Obr. 16 je potom znázorněn průběh proudu a napětí při zkraťtu ve střídavém obvodu.

Propuštěná energie pojistkou musí být menší než tepelná odolnost chráněného zařízení. Část propuštěné energie, jež na Obr. 15 vyznámená šrafovanou plochou do bodu A, musí způsobit přetavení tavného vodiče. Dobu, za kterou toto nastane, je nazývána dobou tavení. Druhá část energie (šrafovaná plocha za bodem A) je energie propuštěná pojistkou během zhášení oblouku tj. za dobu zhášení. Doba tavení a doba zhášení nejsou stejně velké. Jejich velikost se mění s velikostí proudu, i s parametry obvodu. Lze říci, že pro malé nadproudě je doba tavení mnohem delší než doba zhášení, zatímco při zkratech je doba zhášení delší než doba tavení. Z Obr. 15 a Obr. 16 je dále vidět jak při přetavení vodiče vzrostou napětí. Velikost špičky napětí je větší než napětí jmenovité, tudíž jde o přepětí, se kterým se musí také počítat.

Obr. 15: Průběh proudu a napětí při přerušování stejnosměrného proudu pojistkou [1]
Omezovací schopnosti jednotlivých pojistek jsou také jedním z důležitých parametrů. Výrobci proto uvádějí pro pojistky omezovací charakteristiky. Z těchto charakteristik lze vyčíst jaká maximální hodnota proudu se může za pojistkou objevit pro konkrétní nadproud. Ukázka omezovací charakteristiky je na Obr. 17.

Obr. 16: Průběh napětí a proud při přerušování střídavého proudu pojistkou [1]

Obr. 17: Omezovací charakteristika válcových pojistek OEZ Letohrad PV10, 14, 22 gG [10]
3 Návrh a realizace měřicího pracoviště

Hlavním úkolem návrhu měřicího pracoviště bylo navrhnout a zkonstruovat měřicí přípravek, na kterém by se daly měřit vypínací charakteristiky válcových (patronových) pojistek nízkého napětí. Od počátku návrhu bylo počítáno s tím, že se budou ověřovat válcové pojistky výrobce OEZ Letohrad. Je nutné podotknout, že výběr výrobce není rozhodující pro pojistky, které lze v tomto přípravku měřit. Válcové pojistky, jakožto jeden konstrukční typ pojistek, mají v příslušné normě stanovení velikosti vložek, takže lze použít pojistky různých výrobců. Zvolení již zmíněného výrobce mělo pouze jediný důvod, a to výběr vhodného pojistného spodku ze stejného výrobního programu.

Výrobce OEZ nabízí tři typy pojistkových spodků. Prvním typem jsou klasické pojistkové spodky se dvěma kontakty, do kterých je nutné pojistkovou vložku nasunout. Tento typ je naprosto stejný jako např. u přístrojových pojistek. Druhým typem spodků jsou pojistkové odpínače. Třetím typem jsou pojistkové odpojovače. Při řešení výběru vhodného typu bylo zamítnuto použití odpojovače, protože tento typ spodku se vyrábí pouze pro pojistkové vložky s průměrem 22 mm. Odpínače mají využití hlavně v el. obvodech dopravních prostředků (např. tramvaje, trolejbusy), tedy obvody pracující s velkými proudy, na které jsou pojistky této velikosti zejména určeny. Klasické pojistkové spodky byly zamítnuty z podobného důvodu jako odpínače. V jejich případě se ale nevyhrál výběr spodky pro vložky velikostí 10×38, které jsou vyráběny pro obvody s nejmenšími výkony a v případě ověřování charakteristik, by byly zřejmě vybrány jako nejvhodnější typ. Jako vhodný typ bylo vybráno pojistkových odpínačů. Odpínače jsou vyráběny pro všechny tři velikosti pojistkových vložek, dále mnoho variant podle počtu pólů (1, 2, 3, 4-pólové, případě u 1 až 3 pólůvých s odpojením i nulového vodiče), jsou bezpečnější v ohledu na riziko úrazu elektrickým proudem, atd.

3.1 Konstrukce nosné desky

Po výběru odpínače, který bude tvořit hlavní část měřicího přípravku, již bylo možno vytvořit základovou desku měřicího přípravku.

Pro základovou desku přípravku bylo použito pertinaxové desky o tloušťce 6 mm. Jde o velmi tvrdý materiál, takže bude pro přípravek dobrým základem. Samotná základová deska má rozměry 300×250 mm. Na této desce jsou zepředu přichyceny tři DIN lišty o délce 240 mm (viz. Příloha 3). Jde o klasickou DIN lištu o rozměrech 35×7,5 mm. Každá z lišt je k základové desce přišroubována pomocí tří šroubků M4×10. Ze spodní strany desky jsou pro lepší stabilitu v každém rohu pomocí šroubků M3×15 přišroubovány gumové nožičky. Přesné rozmístění jednotlivých částí na základové desce je znázorněno na Obr. 18 (detaily jsou v Příloha 4 a Příloha 5).
3.2 Osazení přístrojů

Jak již bylo řečeno, bylo jako pojistkových spodků použito pojistkových odpínačů. Tyto odpínače se montují na DIN lištu šíře 35 mm. Z mnoha vyráběných typů bylo použito třípólového. Tento typ byl vybrán z důvodu možnosti měření pojistek i v trojčázových obvodech. Jelikož byl přípravek opatřen DIN lištou o délce 240 mm bylo možno připevnit na ni dva odpínače. Jeden byl v provedení OPV10/3 pro pojistkové vložky velikosti 10x38 mm a druhý v provedení OPV14/3 pro patrony velikosti 14x51 mm. Výběr parametrů udávaných výrobcem jednotlivých odpínačů je
v Příloha 6. Jelikož je tento systém upevnění na DIN lišty univerzální, lze bez problému vyměnit kterýkoli z těchto odpojovačů buď za jiný typ pro stejně velikosti patron nebo za odpínač pro patrny velikosti 22×58 mm. Vybrané typy odpojovačů jsou umístěny na prostřední liště, na které, i když drží samovolně, jsou zajištěny svěrkami.

Obr. 19: Elektrické zapojení měřicího přípravku
4 Návrh způsobu měření a otestování funkčnosti

4.1 Návrh způsobu měření

Pro měření vypínacích charakteristik pojistek je zapotřebí především proudový zdroj. Tento proudový zdroj by měl svými vlastnostmi co největší hladnější kopírovat vlastnosti skutečných obvodů. První takovou vlastností je rozsah výstupního proudu. Tento rozsah by měl být tak velký aby pokryl hodnoty proudu od jmenovité hodnoty měřené pojistkové vložky až po proudy, které se pohybují v oblasti zkratových proudu, pro měřenou pojistkovou vložku. Platí, že čím vyšší maximální proud bude, tím lépe. Zkratovým proudem se myslí proud, který je vyšší než přibližně 10-ti násobek proudu jmenovitého, záleží na typu pojistky. Další důležitou vlastností takového zdroje je volba výstupního napětí a jeho tvrdost. Tyrová spočívá v tom, že zdroj je schopen dodávat nastavený proud (nejlépe v celém rozsahu) stále pro stejnou hodnotu výstupního napětí. Další, z méně důležitých vlastností, je druh výstupního napětí. Pro měření pojistek by mělo největší vypovídací schopnost, kdyby měl zdroj střídavé výstupní napětí s kmitočtem 50 Hz. Dosáhnout těchto ideálních parametrů u proudových
zdrojů je velmi obtížné, a každé přiblížení k ideálnosti nese sebou zvýšení nákladů na pořízení a hlavně na provoz těchto zdrojů.

4.1.1 Realizovaný způsob měření

Při realizováném zkušebním měření byl použit stejnosměrný zdroj s rozsahem napětí do 40 V a rozsahem výstupního proudu do 40 A. Tento zdroj byl pro realizované měření dostačující. Kromě tohoto zdroje a měřícího přístroje bylo použito několik přístrojů využitých pro nastavení vhodných parametrů zdroje před tím, než se zdroj připojil k přípravku pro samotné měření na pojistkách. Celkové zapojení tohoto nastavovacího obvodu je znázorněno na Obr. 21.

Funkce jednotlivých prvků nastavovacího obvodu

Hlavními prvky jsou dvojice kontaktů stykačů KM1 a KM2. Jedná se o 3-fázové stykače, jejichž hlavní (silové) kontakty jsou zapojeny paralelně z důvodu zmenšení jejich odporu. Stykač KM1 zapíná nebo vypíná nastavovací obvod a stykač KM2 zapíná nebo vypíná hlavní měřící obvod. Dále je do obvodu zařazen předřadný odpor \(R_p \), který má upravit poměr odporu obvodu při nastavování a při samotném měření na pojistce. Tyto obvody se budou lišit vždy o odpor pojistky, která bude měřena. Proto obvod pro samotné měření bude mít o tento odpor vždy větší, neboť je zapojen s odporom kontaktů stykače vždy do série. Protože se jedná o velmi malé hodnoty odporů (jejich přesná velikost byly změřeny digitálním ohmmetrem a jsou uvedeny v Tab. 3), je hodnota jejich poměrů mnohem větší než v ideálním případě. Z tohoto důvodu je záměrně použito předřadného odporu, který tento poměr značně zmenší.

<table>
<thead>
<tr>
<th>(R) ((\Omega))</th>
<th>Pojistka 4 A gG</th>
<th>Pojistka v přípravku</th>
<th>Kontakty stykačů</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,088</td>
<td>0,36</td>
<td>0,227</td>
<td></td>
</tr>
</tbody>
</table>

Zmenšení je tím menší, čím je hodnota \(R_p \) větší. Je třeba si ale uvědomit, že zařazením předřadného odporu do obvodu má také negativní důsledky. Jelikož má tento odpor mnohem větší odpor než jednotlivé větve obvodu za ním, vzniká na něm značný úbytek napětí (představující velkou část napětí zdroje, přibližně 75 %), který bude tím vyšší čím vyšší bude jeho hodnota. Dále je třeba zvolit výkonový odpor, neboť přes \(R_p \) poteče vždy celý proud ze zdroje, který může dosáhnout velmi velkých hodnot a na odporu budou vznikat tedy velké výkonové (Joulovy) ztráty a odpor se bude tedy zahřívat. Z těchto důvodů je zapotřebí zvolit vhodnou velikost tohoto odporu. V realizovaném zapojení bylo použito odporu 1,2 \(\Omega \). Poslední součástí obvodu je napěťový dělicí tvořený rezistory R₁ a R₂, který je připojen paralelně k předřadnému odporu. Tento dělicí má za úkol upravit velikost výstupního napětí pro vstupní obvod měřicího přístroje pro měření vypínacích částí, v tomto případě PC sestavy se softwarom LabWiev. Na vstupní obvody určené pro tento program lze přivést maximální napětí 10 V, což poměr odporů dělíce splňuje. Pokud by pro měření byl použit jiný zdroj s maximálním výstupním napětím větším než 40 V musely by se použít rezistory s jinými hodnotami odporů.
Obr. 21: Schéma zapojení nastavovacího obvodu

Stykače jsou ovládány pomocí sérií tlačítek umístěných na ovládací liště přípravku, na kterém jsou umístěny i samotné stykače. Ovládací schéma je znázorněné na Obr. 22.

Obr. 22: Ovládací schéma nastavovacího obvodu
Popis ovládacího obvodu

Ovládací obvod je napájen ze zdroje 230 V, 50 Hz/24 V DC umístěném přímo na přípravku. Samotný ovládací obvod obsahuje vypínací tlačítko SB1, které vypíná oba stykače KM1 a KM2. Dále obsahuje zapínací tlačítko SB2, které zapíná stykač KM1, a tím i jeho hlavní kontakty KM1 v hlavním nastavovacím obvodu, a také rozepína pomocný kontakt KM1, čímž zabraňuje zapnutí stykače KM2 a tím sepnutí obou větví v nastavovacím obvodu. Tlačítko SB3 má stejnou funkci jako tlačítko SB2, s tím rozdílem, že ovládá stykač KM2, a tím druhou větev v nastavovacím obvodu.

4.2 Otestování funkčnosti

4.2.1 Postup měření

Nejprve je zapotřebí propojit všechny tři jednotlivé části dohromady, tz. napájecí zdroj ke vstupu nastavovacího obvodu a měřicí přípravek k výstupu nastavovacího obvodu. Propojení jednotlivých částí musí být provedeno vodiči takového průřezu, aby trvale snesly maximální proud, který bude ze zdroje odebrán, v tomto případě 40A. Dále je třeba zajistit, aby oba stykače v nastavovacím přípravku byly vypnuté. Po zapnutí zdroje nejlépe nastavit jeho maximální výstupní napětí.

Obr. 23: Pohled na měřicí pracoviště
Potom se pomocí tlačítkem SB2 sepní stykač KM1, a tím sepní nastavovací obvod. V tuto chvíli je možné na zdroji nastavit potřebnou hodnotu výstupního proudu. Po nastavení proudu stiskem tlačítka SB1 rozezní stykač KM1 a tím nastavovací obvod ze zdroje pouští do odpínání osazeného pojistky. V tomto případě to byly věcové pojistky OEZ Letohrad velikostí PV14 s hodnotou I_n 4 A s charakteristikou gG. Po zapuštění pojistky se obvod přeruší a měřící software zaznamená čas od sepnutí tlačítka SB3 po vypnutí pojistky, neboli čas, jak dlouho procházal pojistkou proud. Tady je vhodné poznamenat, že software musí být navržený s obracenou logikou. Tj. musí zahájit měření při nárůstu napětí a vypnout při poklesu napětí na nulu. Tento fakt je způsoben tím, že stav pojistky není snímán přímo na pojistce, ale na předřadném odporu. Dále je vhodné podotknout, že software se nemělo setkat s vývody klešťového ampérmětry a řízení systému na řízení obvodu, pouze v tom, že došlo k nárůstu. Tento požadavek vyplývá z vlastnosti použitého zdroje, který není schopen podařit konstantní napětí pro celý interval výstupních hodnot proudu, nýbrž si sám napětí upravuje. Po zapuštění pojistky a ověření zaznamenaného času je možné obvod vypnout pomocí vypínacího tlačítka SB1, vyměnit pojistku za novou a měření opakovat pro jinou velikost proudu. Z důvodu, aby samotné měření bylo co nejvěrohodnější je třeba zajistit, aby pojistky měly v době měření stejnou teplotu, která má vliv na odporný odpor. Tento požadavek je možné zajistit použitím klamové komory, do které by se vložil celý měřicí přípravek. V tomto případě je ovšem nutné dodržet některé postupy. Tím nejdůležitějším je, aby byla zachována určitá časová prodleva mezi vypnutím pojistky a začátkem měření. Tato prodleva musí být dostatečná k vyrovnání teploty vložené pojistky s teplotou v klimatické komoře. Je tedy logické, že tato prodleva bude tím delší, čím vyšší bude rozdíl mezi teplotou v klimatické komoře a teplotou pojistky, kterou budeme měřit, a taky čím větší je rozdíl mezi teplotou pojistky a teplotou v klimatické komoře. Pokud bude měřena větší rozdíl mezi teplotou pojistky a teplotou v klimatické komoře, je možné měření urychlit tím, že se využije prokameralizovaného systému na řízení obvodu.

4.2.2 Seznam použitých přístrojů

Měřicí přípravek
Zdroj: Stabilizovaný zdroj MESIT MN 40V - 40A
Stykač: V 16M 24V ~500V/16A
Zdroj 24V DC.
Předřadný odpor: 1,2Ω; 20A
Klešťový ampérmeter: Eskort ECT-670; rozsah 100A, převod 1mV/1A
Voltmetr (pro převod klešťového ampérmétru): UNITEK HAXAGON 320; rozsah 500mV, přesnost ±0,06+2d.
Voltmetr: METEX M-3860M; rozsah 0-500V, přesnost ±0,3%+1dig.
PC sestava s měřicím softwarem
Propojovací vodič

31
4.2.3 Výsledky zkušebního měření

Pro otestování funkčnosti bylo naměřeno 5 hodnot. Velikosti nastavených proudů a k nim odpovídající vypínací časy jsou uvedeny v následující tabulce. Na Obr. 24 je znázorněná naměřená vypínací charakteristika v kombinaci s charakteristikou uváděnou výrobcem pojistky.

Tab. 4: Naměřené hodnoty vypínacích časů pojistky PV14 4 A gG

<table>
<thead>
<tr>
<th>I (A)</th>
<th>t_c (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21,7</td>
</tr>
<tr>
<td>15</td>
<td>0,23</td>
</tr>
<tr>
<td>20</td>
<td>0,076</td>
</tr>
<tr>
<td>30</td>
<td>0,018</td>
</tr>
<tr>
<td>40</td>
<td>0,0095</td>
</tr>
</tbody>
</table>
Obr. 24: Srovnání naměřené vypínací charakteristiky
5 Závěr

Měřicí přípravek zhotovený jako měřicí pracoviště pro měření vypínacích charakteristik patronových (válcových) pojistek je navržen tak, aby se na něm daly měřit pojistky velikosti 10×38 a 14×51 mm v jednofázových nebo třífázových obvodech. Z důvodů použití všech prvků s montáží na DIN lišty není jejich rozmístění pevně dané a může se dle potřeby měnit. Základnu přípravku lze popřípadě osadit jinými komponenty, což ukazuje na jeho univerzálnost. Přípravek nemusí být rovněž použit pouze na měření vypínacích charakteristik. Proudové a napěťové omezení je dané použitými komponenty. Tento přípravek lze tedy využít jako učební pomůcku při měřeních v laboratořích VŠB nebo jako základ pro měření vypínacích charakteristik jakožto téma BP nebo DP.

Navrhovaný a také odzkoušený postup měření vypínacích charakteristik je dostatečný. Při vyhodnocování výsledků je ale nutno ověřit a určit hřídele chybějící průtok a měření v nastavovacím obvodu. Jistou mírou se toto ověření a přístroje. Pro minimalizaci chyby měření by bylo třeba zvolit vhodnější zapojení měření, popř. upravit stávající (např. přesnějšími vyrovnanými odporům nastavovacího a měřeného obvodu).

Z výsledků zkušebního měření lze vidět, že naměřená charakteristika se přibližně shoduje s charakteristikou udanou výrobcem. Nepřesnosti mohly být způsobeny již zmíněnou chybou měření popřípadě z důvodu nestojných teplotních podmínek (při měření nebylo použito klimatické komory). Zvolený proudový zdroj byl pro měření dostačující, ale musí se počítat s tím, že pro pojistkové vložky o hodnotě jmenovitého proudu 4 A lze proměňovat pouze část vypínací charakteristiky a to v oblastech nadproudů. Pro proměňování většího rozsahu hodnot proudu by bylo potřeba zvítězit výkonnější zdroj, nebo proměňovat pojistky o nižších jmenovitých proudu.
6 Seznamy

6.1 Seznam použité literatury a citací

[8] ČSN 35 4701: Pojistky nízkého napětí
[9] ČSN 33 0165: Základní a bezpečnostní zásady pro rozhnaní člověk-stroj, značení a identifikaci – Označování vodičů barvami, písmeny a číslicemi

6.2 Seznam tabulek

Tab. 1: Barevné značení jmenovitých hodnot proudů závitových pojistek [8]
Tab. 2: Normované velikosti válcových pojistek [8]
Tab. 3: Hodnoty odporu důležitých prvků
Tab. 4: Naměřené hodnoty vypínacích časů pojistky PV14 4 A gG

6.3 Seznam obrázků

Obr. 1: Úprava tavného vodiče přerušením a spojením pájkou [3]
Obr. 2: Úprava vodiče nanesením nízkotavitelné pájky [3]
Obr. 3: Úprava vodiče zmenšením průřezu [2]
Obr. 4: Úprava tavného vodiče kombinující několik metod [3]
Obr. 5: Rozdíly v tavných charakteristikách pro různě tavné vodiče [3]
Obr. 6: Přístrojová pojistka firmy Schurter [12]
Obr. 7: Závitová pojistka
Obr. 8: Závitová pojistka; 1 pouzdro, 2 spodní kontakt, 3 horní kontakt, 4 tavný vodič, 5 hasivo [7]
Obr. 9: Nákres závitové pojistky ve spodku; 1 hlavice, 2 spodek, 3 přívod, 4 terčík ukazatele stavu, 5 víko vložky, 6 vložka, 7 patka vložky, 8 vymezovací kroužek, 9 přívod [1]
Obr. 10: Válcové pojistky OEZ Letohrad [10]
Obr. 11: Výkonové (nožové) pojistky OEZ Letohrad [10]
Obr. 12: Výkonová (nožová) pojistka; 1 kontakt, 2 víka, 3 pouzdro, 4 okénko, 5 ukazatel stavu, 6 tavný vodič, 7 třměny [1]
Obr. 13: Vypínací charakteristika válcových pojistek OEZ Letohrad PV14 gG [10]
Obr. 14: Charakteristika I^2t válcových pojistek OEZ Letohrad PV10,14,22 gG [10]
Obr. 15: Průběh proudu a napětí při přerušování stejnosměrného proudu pojistkou [1]
Obr. 16: Průběh napětí a proud při přerušování střídavého proudu pojistkou [1]
Obr. 17: Omezovací charakteristika válcových pojistek OEZ Letohrad PV10, 14, 22 gG [10]
Obr. 18: Základová deska osazena základními prvky
Obr. 19: Elektrické zapojení měřicího přípravku
Obr. 20: Měřicí přípravek
Obr. 21: Schéma zapojení nastavovacího obvodu
Obr. 22: Ovládací schéma nastavovacího obvodu
Obr. 23: Pohled na měřicí pracoviště
Obr. 24: Srovnání naměření vypínací charakteristiky
6.4 Seznam příloh

Příloha 1: Fyzikální hodnoty kovů nejpoužívanějších pro výrobu tavných vodičů [2]
Příloha 2: Velikosti patron závitových pojistek [8]
Příloha 3: DIN lišta
Příloha 4: Detail základové desky 1
Příloha 5: Detail základové desky 2
Příloha 6: Podrobné informace k odpínacím [10]
Příloha 7: Podrobné informace ke svorkám RSA6 [11]