The control system of robot manipulators working
Místopřísežné prohlášení studenta

Prohlašuji, že jsem celou bakalářskou prací včetně příloh vypracoval samostatně pod vedením vedoucího bakalářské práce a uvedl jsem všechny použité podklady a literaturu.

V Ostravě 21. 5. 2010

podpis studenta
Prohlašuji, že

- jsem celou bakalářskou prací včetně příloh vypracoval samostatně pod vedením vedoucího diplomové práce a uvedl jsem všechny použité podklady a literaturu.
- byl jsem seznámen s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.
- byl jsem seznámen s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.
- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně ke své vnitřní potřebě bakalářskou práci užít (§35 odst. 3).
- souhlasím s tím, že jeden výtisk bakalářské práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že údaje o bakalářské práci, obsažené v Záznamu o závěrečné práci, umístěné v příloze mé bakalářské práce, budou zveřejněny v informačním systému VŠB-TUO.
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.
- bylo sjednáno, že užit své dílo – bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).
- souhlasím s tím, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.
- beru na vědomí, že odevzdáním své práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě : 21. 5. 2010

Podpis

Kamil Byrtus

Bukovec 345

739 85
ANOTACE BAKALÁŘSKÉ PRÁCE

Bakalářská práce se zabývá problematikou řízení polohovadla firmy ZTS. Je zde rozvedena problematika řízení stejnosměrných motorů, získávání informací ze snímačů polohy a řízení polohy polohovadla. Dále se zabývá programováním mikroprocesoru Atmel s vytvořením vhodného programu k řízení polohovadla. Je zde využito PID regulace.

ANNOTATION OF BACHELOR THESIS

The bachelor thesis deals with the management of manipulators from ZTS Company. There is specified a DC motors control, sensors tracking information acquiring and manipulators position control. It also deals with the programming of the Atmel with creating an appropriate program for the control of manipulators. Is there used of PID control.
Obsah

ANOTACE BAKALÁŘSKÉ PRÁCE...5

Význam použitých zkratek: ...7

Význam použitých symbolů: ..8

1. Úvod ...9

2. Analýza možnosti řízení DC motoru ...10
 2.1. Teorie točivého stroje: ..10
 2.2. DC motor polohovadla: ..10
 2.3. Zvolená varianta ..11

3. Návrh výkonového modulu pro řízení motoru ..12
 3.1. Použité tranzistory: ...12
 3.2. Použité budiče: ..13
 3.3. H-bridge: ...14
 3.4. Výkonový modul: ..16
 3.4.1. Stabilizátory napětí: ..17
 3.4.2. Obvody ovládající brzdy: ...18
 3.4.3. Zapojení silnoproudé části výkonového modulu:19

4. Návrh modulu umožňujícího ovládání všech funkcí polohovadla22
 4.1. Snímače ..22
 4.1.1. Snímače polohy ...22
 4.1.2. IRC snímače ...23
 4.2. Řídicí část modulu..27
 4.2.1. Mikroprocesor ...27
 4.2.2. Příslušenství mikroprocesoru ...29
 4.2.3. Programová část řídicího modulu ..31
 4.2.4. PID regulátor ...34
 4.2.5. Ovládací panel ..35

6. Závěr ...38

7. Seznam použité literatury ...40
Význam použitých zkratek:

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTS</td>
<td>Závody řádkové strojarstva (zkratka výrobního závodu)</td>
</tr>
<tr>
<td>DC motor</td>
<td>Stejnosměrný motor</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation (pulzně šířková modulace)</td>
</tr>
<tr>
<td>OZ</td>
<td>Operační zesilovač</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emited Diode (svítivá dioda)</td>
</tr>
<tr>
<td>Gate</td>
<td>Brána (řídicí elektroda tranzistoru)</td>
</tr>
<tr>
<td>FET tranzistor</td>
<td>Field-effect tranzistor (využívá k řízení proudu elektrostatické pole)</td>
</tr>
<tr>
<td>NC</td>
<td>Normaly Closed (kontakt sepnutý v klidové poloze)</td>
</tr>
<tr>
<td>KB</td>
<td>Kilo Byte (kilo bajt - velikost paměti)</td>
</tr>
<tr>
<td>LCD</td>
<td>Displej z tekutých krystalů</td>
</tr>
</tbody>
</table>
Význam použitých symbolů:

\(V_0 \) Počáteční rychlost

\(S_0 \) Počáteční dráha

\(a \) zrychlení

\(K_p \) zesílení proporcionálního členu

\(K_i \) zesílení integračního členu

\(K_d \) zesílení deriváčního členu

\(e(t) \) regulační odchylka

\(y(t) \) akční veličina
1. Úvod

Úkolem mé bakalářské práce bylo zprovoznění nefunkčního polohovadla od firmy ZTS. K polohovadlu není žádný manuál ani příručka, tudíž jsem neměl tušení, jakým způsobem fungovala předchozí regulace. Moje původní varianta řešení byla, že pouze připojím jiný řídicí systém společně s výkonovým modulem na stávající elektroinstalaci polohovadla, toto se později ukázalo jako nemožný úkol. Hlavním problémem bylo to, že jsem nevěděl, jak fungují původní snímače na motorech a brzdy na motorech byly ovládány taky zajímavým způsobem. Zjišťování funkce původní elektroinstalace se mi zdalo obrovským mařením času, proto jsem zvolil variantu, instalovat na polohovadlo novou elektroinstalaci a realizaci vlastního snímání poloh polohovadla, jak už na motoru, tak samotných osách. Polohovadlo se muže otáčet ve dvou osách, tyto osy jsou uvedeny do pohybu přes harmonické převodovky od stejnosměrného motoru. Toto polohovadlo by mělo být schopné měnit natočení obou os podle požadavků zadaných uživatelem.
2. Analýza možnosti řízení DC motoru

2.1. Teorie točivého stroje:

Vyjdeme z teorie točivého stroje, pro stejnosměrný motor platí následující vztahy:

\[U = R_a I_a + U_i, \]

kde platí, že:

\[U \] je napětí kotvy, \(R_a \) je ohmický odpor kotvy motoru, \(I_a \) je proud v obvodu kotvy, \(U_i \) je indukovaná protielektromotorická síla na kotvě motoru.

Pro elektrické motory platí pro ustálený stav:

\[U_i = c \cdot \phi \cdot n, \]
\[M = c \cdot \phi \cdot I_a. \]

kde platí, že:

\(\phi \) je budicí magnetický tok, \(M \) je moment motoru, \(n \) jsou otáčky rotoru a \(c \) je konstanta.

Dosadíme-li do rovnice pro napětí na kotvě, dostaneme:

\[U = R_a I_a + c \cdot \phi \cdot n, \]
\[n = \frac{U - R_a I_a}{c \cdot \phi} = \frac{U}{c \cdot \phi} - \frac{R_a}{c \cdot \phi} M. \]

Poslední rovnice definuje mechanickou charakteristiku stejnosměrného motoru s cizím buzením. Je zřejmé, že tato charakteristika vyjadřuje lineární závislost otáček na momentu motoru, čímž z ní vyplývají možnosti regulace otáček motoru. Výhodně je tyto otáčky regulovat napětím připojeným ke kotvě, neboť i zde je závislost lineární. Plynulá regulace napětí například pomocí předřadného odporu je z hlediska účinnosti velice neefektivní, zvláště u motorů s větším výkonem, jelikož se nevyužítá energie proměňuje na teplo v odporcích.

2.2. DC motor polohovadla:

<table>
<thead>
<tr>
<th>Parametry motoru polohovadla:</th>
<th>Napájecí napětí: 64V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximální proud: 16A</td>
<td></td>
</tr>
<tr>
<td>Jmenovitý výkon: 750W</td>
<td></td>
</tr>
<tr>
<td>Otáčky:</td>
<td>3000ot/min</td>
</tr>
</tbody>
</table>
K řízení motoru takového výkonu nám nezbývá nic jiného, než zvolit řízení pomocí PWM, tato regulace se používá k regulaci DC motorů a nejen jich. Jedná se o regulaci využívající změny šířky proudového pulzu, neboli střídy, který teče do motoru, tím se liší od obyčejné regulace, kde dochází nejen ke změně proudu, ale i napětí. Navíc takto regulovaný motor má větší točivý moment při nízkých otáčkách. U polohovadla je navíc třeba měnit polaritu tohoto napětí, proto bude nutné zapojení, které bude měnit i polaritu.

2.3. Zvolená varianta

Motory budu tedy řídit PWM, spínací prvky budou jako obvykle nejspíš nějaké tranzistory, tyto tranzistory je třeba něčím ovládat. Jako řídicí člen zvolím mikrokontrolér značky Atmel, se kterým už mám nějaké praktické zkušenosti. Ve výkonovém modulu budou umístěny všechny spínací prvky, to znamená ovládání brzd a jejich napájení a ovládání motorů, k jejichž napájení použijí laboratorní zdroj 40V/40A. Na ovládacím panelu bude umístěn displej pro lepší ovládání doplněný vhodnými tlačítky pro zadávání požadovaných úkonů. V tomto ovládacím panelu bude umístěn i řídicí mikrokontrolér.

Obr. 2: Situáční schéma modulů polohovadla
3. Návrh výkonového modulu pro řízení motoru

Proto volím zapojení tohoto modulu do klasického H-bridge, kde jsou dvě dvojice spínačů ovládána tak, aby bylo dosaženo regulace v obou směrech. Pokud budou sepnuty spínače S1 a S4 bude se motor točit jedním směrem a pokud budou sepnuty spínače S2 a S3 bude se točit naopak.

Obr. 3: Principiální schéma zapojení H-bridge

3.1. Použité tranzistory:

Díky velmi dobrým výkonovým parametřům volím unipolární tranzistory typu HEXFET. Hlavním parametrem je zde schopnost sepnout proud v řádově desítkách ampér ve velice krátkém čase. Díky tomu nedochází prakticky k žádným ztrátám. V sepnutém stavu má takovýto tranzistor odpor okolo 13mΩ u tranzistoru s kanálem typu N a 60 mΩ u
tranzistoru s kanálem typu P. Tyto tranzistory mají však velkou vstupní kapacitu, tato kapacita je v jednotkách nF a to je u spínání v jednotkách kHz obrovský problém. Při takto rychlých dějích je tato kapacita tak velká, že nejsme schopni normálním způsobem, například výstupem z OZ tento tranzistor sepnout a rozepnout dostatečně rychle. Navíc velký výstupní odpor obvodu ovládající elektrodu Gate společně s vstupní kapacitou vzniká jakýsi jednoduchý RC obvod fungující jako zpožďovací člen, který zkresluje výstupní proud. Napětí na Gate roste pomalu a navíc se zpožděním, což způsobuje vyšší ztráty na tranzistoru, jelikož přechází ze stavu rozepnuto do stavu sepnuto pomalu. Tranzistory v sobě mají integrovanou ochrannou diodu, nutnou při spínání indukčních zátěží.

Tranzistory typu HEXFET jsem zvolil IRF5210, který má kanál typu P a IRF2807 s typem kanálu N, jejich podrobný popis naleznete v použité literatuře [6] a [7]. Tranzistor IRF5210 se ovládá záporným napětím a IRF2807 se ovládá kladným napětím vůči elektrodě Source, maximální napětí na Gate je +/- 20V.

Obr. 4: HEXFET tranzistory s jejich parametry

3.2. Použité budiče:

Pro rychlé sepnutí nebo vypnutí tranzistoru je zapotřebí obvod s vysokým špičkovým proudem. Jsou vyráběny speciální obvody tzv. budiče FET tranzistorů, tyto obvody mají velký špičkový proud právě pro rychlé nabíti nebo vybití vstupní kapacity tranzistoru, tudíž sepnou nebo rozepnou tranzistor velice rychle.
Jako budič jsem zvolil obvod HCPL-3101, který je na ovládání těchto tranzistorů ideální, kapacitu 3000pF je schopen sepnout za dobu 0.5µs, jeho další parametry naleznete v použité literatuře [8]. Vedlejší funkcí tohoto obvodu je optické oddělení vstupu od výstupu. To jsem ocenil hlavně při tom, když jsem zničil tranzistor, což se ve fázi ladění zapojení stávalo poměrně často, proud na vstup LED byl pořád stejný, nedošlo tím ke zničení řídícího obvodu. Výstup z tohoto budiče bude připojen přes rezistory na Gate tranzistorů.

3.3. H-bridge:

V zapojení mám tedy čtyři HEXFET tranzistory zapojené do klasického tzv. H-bridge a na každém vstupu tohoto tranzistoru mám přes odpor připojené budiče. V klidovém stavu, jsou stále sepnuty oba horní tranzistory (IRF5210) a dolní jsou rozepnuty (IRF2807). Po přivedení signálu na svorku LOG.1 nebo LOG.2 se horní tranzistor rozepne a dolní sepně, tím dojde k uzavření obvodu přes svorky M1 a M2, kde je připojen motor. Tím že přivedeme signál na svorku LOG.1 nebo LOG.2 měníme polaritu napětí na motoru. Na svorku LOG.3 je připojeno napájení +5V a na svorku LOG.1 nebo LOG.2 připojujeme zem, z důvodu možné větší zatížitelnosti logických obvodů ovládajících tyto vstupy. Tímto zapojením se také předešlo možnému nechtěnému sepnutí horního i dolního tranzistoru zároveň, což by byl zkrat a v nejlepším případě by to odnesla jen pojistka. Navržené cesty na plošném spoji nejsou dimenzovány na proud 16A proto jsem je ještě dopájal cinem, aby zde průchodem proudu nevznikaly ztráty.
Obr. 6: Deska plošného spoje

Obr. 7: Osazená deska plošného spoje H-bridge
3.4. Výkonový modul:

Kompletní výkonový modul bude obsahovat 2 plošné spoje H-bridge, které budou řídit motory. Dále by měl obsahovat plošný spoj ovládající brzdy motorů, plošný spoj stabilizátorů napětí a zdroje, které budou napájet brzdy (24V), řídicí část (5V) a obvody HCPL (2x12V). Navíc bude ve výkonovém modulu umístěn jistič a stykač, který bude spínat transformátory a zásuvku umístěnou vně modulu. Do této zásuvky bude zapojen externí zdroj pro napájení motorů polohovadla. Na výkonovém modulu bude umístěn konektor Canon. Do tohoto konektoru se připojí řídicí modul, který bude ovládat jednotlivé části polohovadla. Na modulu je umístěn 37 pinový konektor, ve kterém byly zapojeny všechny nutné výstupy, to znamená přívod PWM k motorům a výstup z IRC snímačů. Nakonec se to ukázalo jako velice nevhodné, jelikož kabely vedoucí z IRC snímačů jsou stíněné z důvodu možného naindukování napětí z PWM signálu, a v konektoru už stínění nelze provést. Při zapojení do jednoho konektoru se stávalo, že při rozjezdu napočítal mikroprocesor klidně navíc sto impulzů. Po zapojení do dvou oddělených konektorů se to výrazně zlepšilo. Nakonec je 37 pinový konektor jen minimálně využit, je v něm zapojeno jen řízení obou motorů, jejich brzd a spínače koncových a nulových poloh. Ve druhém 15 pinovém konektoru jsou zapojeny pouze IRC snímače. Řídicí modul bude tedy zapojen pomocí dvou konektorů.

Obr. 8: Konektor Canon
Zapojení jednotlivých pinů v konektoru na výkonovém modulu

<table>
<thead>
<tr>
<th>Číslo pinu</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Napájení IRC +</td>
</tr>
<tr>
<td>2</td>
<td>Napájení IRC -</td>
</tr>
<tr>
<td>3</td>
<td>Osa 1.-1.kanál</td>
</tr>
<tr>
<td>4</td>
<td>Osa 1.-2.kanál</td>
</tr>
<tr>
<td>5</td>
<td>Osa 2.-1.kanál</td>
</tr>
<tr>
<td>6</td>
<td>Osa 2.-2.kanál</td>
</tr>
<tr>
<td>7</td>
<td>Osa 1. impulz</td>
</tr>
<tr>
<td>8</td>
<td>Osa jedna N.P.</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>Osa 2. impulz</td>
</tr>
</tbody>
</table>

Zapojení jednotlivých pinů k IRC snímačům

3.4.1. Stabilizátory napětí:

Jak již bylo řečeno, ve výkonovém modulu bude za potřebi napětí 2x12V pro napájení obvodů HCPL-3101 a větráku chlazení H-bridge, 5V pro napájení řídicího mikroprocesoru a 24V pro napájení cívek brzd, tyto napětí je vhodné stabilizovat z možného důvodu poklesu napětí při zatížení, kromě 24V, tam stabilizace není nutná, z důvodu možného rozptylu napájení cívek elektromagnetu, který je 24V +/-4V. Jako zdroj střídavého napětí slouží dva transformátory, toroidní transformátor 230V/2x12V a klasický transformátor 230V/24V. Tyto napětí jsou usměrněna v usměrňovacích můstcích, a dále stabilizovaná, uvedeno v použité literatuře [13]. Jako stabilizátor na napětí 12V jsem použil obvod LM7812 a na napětí 5V jsem použil obvod LM7805, na jehož vstup jsem přivedl již stabilizovaných 12V. Po usměrňení a stabilizaci jsem na výstup stabilizátorů
připojil elektrolytické kondenzátory, ty slouží k vyhlazení výstupního napětí. Kondenzátory připojené mezi vstupem a zemí a výstupem a zemí slouží k zabránění možného rozkmitání stabilizátorů.

Obr. 9: Deska plošného spoje stabilizátorů

3.4.2. Obvody ovládající brzdy:

3.4.3. Zapojení silnoproudé části výkonového modulu:

Na výkonovém modulu budou umístěny dva tlačítka a to tlačítko START a STOP, těmito tlačítky se bude zapínat nebo vypínat polohovadlo jakožto celek, to znamená všechny jak výkonové části, tak i části řídící. Samotné zapojení je velice jednoduché,
k samotné přídrži kontaktů nám poslouží jeden spínací kontakt stykače. Tlačítkem START přivedeme napětí na cívku elektromagnetu, která sepne kontakty. Po sepnutí kontaktů je cívka napájena přes jeden kontakt a byla by sepnuta pořád, pokud by tento obvod něco nepřerušilo, k tomu nám slouží tlačítko STOP, jelikož jeho rozpínací kontakt je zařazen před cívku. Po jeho stisku se obvod přeruší a dojde k rozepnutí všech kontaktů stykače. Ostatní kontakty stykače slouží pro napájení obou transformátorů a zásuvky, do které je zapojen zdroj, který napájí motory.

Obr. 12: Schéma zapojení silnoproudé části
Obr. 13: Kompletace výkonového modulu
4. Návrh modulu umožňujícího ovládání všech funkcí polohovadla

4.1. Snímače

4.1.1. Snímače polohy

Pro řízení polohovadla jsou nutné určité snímače, které budou snímat koncové polohy a nulové polohy polohovadla. Snímání koncových poloh je nutné pouze u osy 2, jelikož ta je osazena dorazy. Tento doraz je tam umístěn z konstrukčního hlediska. Aby nebylo možné vlivem poruchy řídícího modulu, aby se osa 2. neotáčela neustále. To by došlo k utržení přívodních kabelů.

Osu 2. tedy musíme osadit koncovými spínači tak, aby polohovadlo nenarazilo v plné rychlosti do tohoto dorazu, čímž by mohlo dojít k vážnému poškození. Osu 1. není třeba těmito spínači osazovat, protože zde nehrozí žádné poškození, osa 1. se může otáčet stále. K realizaci koncových spínačů jsem použil taktílní snímače, které jsou vhodně umístěny na konstrukci polohovadla, tak aby včasně zaznamenaly polohu polohovadla.

Nulová poloha je zvolena tak, aby byla plocha polohovadla rovnoběžná s podlahou. Zde je nutné osadit spínači obě osy, aby poloha byla vždy stejná. U osy 1. jsem zvolil původní snímač, jedná se o magnetické jazyčkové relé, které reaguje na magnet umístěný na otáčejícím se talíři osy 1. U osy 2. jsem původní snímač odstranil z důvodu nevhodné polohy a umístil zde taky taktílní snímač tak, jak u snímačů koncových poloh. Ještě zde bylo nutné vyřešit problém, který vznikne při výpadku napětí a polohovadlo bude někde v nespecifikované poloze a bude nutné najít nulovou polohu. Výpadkem napětí dojde k vymazání všech registrů a dojde k resetu celého systému. Při hledání nulové polohy by mikroprocesor nevěděl, jakým směrem se má osa otáčet, aby se poloha bližila nulové poloze. Toto se týká zase pouze osy 2., protože u osy 1. je to vcelku jedno, z které strany se k nulové poloze dostaneme. U osy 2. by to šlo taky vyřešit snímáním koncových spínačů a po následném zjištění koncové polohy bychom věděli, že nulová poloha se nachází opačným směrem. To se mi zdálo zdluhavé, proto jsem na polohovadlo umístil kolébkový přepínač, který se po průjezdu přes nulovou polohu vždy přepne, a já vím, v které polovině polohy se polohovadlo nachází a to i po výpadku napětí.

Pro výše uvedené snímače jsem zvolil mechanický mikrospínač, na jehož konci je umístěno kolečko s čepem, je to takzvaná rolna. Je to vhodné pokud na mikrospínač najdeme protější výběžek s obou stran, na který má mikrospínač reagovat.
U všech těchto snímačů jsem použil kontakty NC, které jsou v klidovém stavu sepnuty, při změně stavu se rozpojí. Bylo zde myšleno na bezpečnost, protože by mohlo při přerušení kabelů dojít k havárii.

4.1.2. IRC snímače

Ke snímání poloh obou motorů jsem použil IRC snímače vlastní výroby. Toto řešení jsem zvolil z důvodu levného pořízení a také proto, že si můžu sám určit počet impulzů na jednu otáčku.

Počet impulzů na jednu otáčku si odvodím od požadované přesnosti, která by měla být +/- 0.1 mm na obvodu polohovadla. Průměr kotouče polohovadla je 500 mm. Převodový poměr převodovky je roven 1:200.

\[
o = \pi d = 3.14 \times 500\text{mm} = 1570\text{mm} \rightarrow 1570\text{mm} = 360^\circ
\]

\[
\pm 0.1\text{mm} = 0.2\text{mm} = \frac{360}{7850} = 0.04586^\circ
\]

Kotouč polohovadla je tedy nutné zastavit s přesností větší jak 0,04586 stupně.

\[
0.04586^\circ \times 200 = 9.172^\circ
\]

Což je přes harmonickou převodovku 9,172 stupně na rotoru motoru.
Počet impulzů na jednu otáčku motoru je tedy 40.

Jako infra fototranzistor jsem zvolil fototranzistor L-53P3BT. Hlavním parametrem této součástky je zde doba sepnutí po přijetí světelného toku a doba rozepnutí po jeho ztráte. Doba sepnutí a rozepnutí je zde stejná a je rovna 3 µs, další parametry v použité literatuře[10]. Při maximálních otáčkách, což je 3000 otáček za minutu a se 40 impulzy na otáčku bude jedna perioda impulzu trvat 0.5 ms. Tento čas je, jak vidět více než 150krát větší než doba náběžné a sestupné hrany.

![Fototranzistor L-53P3BT](image)

![Fotodioda L-53F3BT](image)

Obr. 16: Fotodioda L-53F3BT

Je zde ještě nutné uvést, že signál přímo z fototranzistoru není zcela úplně vhodný ke zpracování mikroprocesorem. Veliké problémy totiž vznikají při pomalu se točícím motoru. Přechody mezi logickou nulou a jedničkou jsou příliš pomalé, a tak se může stát, že velice rychlý mikroprocesor napočítá stovky impulzů najednou. Je to způsobeno tím, že se na přívodních kabelech k mikroprocesoru indukují rušivá napětí, a ty jsou právě viníky tohoto problému. Proto je zde umístěn Schmitův klopny obvod, který v zásadě plní funkci jakéhosi hysterezního prvku, který tyto pomalé změny převede na velice čistý obdélníkový signál, charakteristiky hystereze naleznete v použité literatuře[12]. Další funkci konkrétního obvodu je negace vstupního signálu. V jednom pouzdro IO jsou umístěny čtyři tyto obvody, tak bude mít každá osa svůj IO, na zbylý čtvrtý obvod bude připojen snímač nulové polohy, aby bylo taky ošetřeno případné vicenásobné zaznamenání při pomalé změně.
Obr. 17: Schmitův klopný obvod

Obr. 18: Deska plošných spojů IRC snímače
Bakalářská práce - Řídicí systém polohovadla

Obr. 19: Realizace IRC snímače

Obr. 20: Výstupní signál z vyrobeného snímače

4.2. Řídicí část modulu

4.2.1. Mikroprocesor

Jako základ řízení celého polohovadla jsem použil mikroprocesor značky Atmel a jedná se o ATMEGA16, je to osmi bitový procesor s programovatelnou Flash pamětí o velikosti 16 KB, datasheet mikroprocesoru naleznete v použité literatuře[9]. Tento procesor bude komunikovat s displejem a ovládacími tlačítky, dále bude zpracovávat data
s IRC snímačů na motorech a podle toho bude ovládat brzdy a otáčet s jednotlivými motory, tak aby splnil požadovaný úkon. Asi ten nejzákladnější požadavek je, aby daný procesor uměl generovat PWM signál, který bude dále veden na výkonové moduly, dalším požadavkem bude, aby zvládal dostatečně rychle zpracovávat signály z IRC snímačů.

Obr. 21: Popis pinů mikroprocesoru Atmel ATMEGA16

Pro generování PWM signálu jsem použil jeden ze čtyř čítačů/časovačů. Tento čítač počítá impulzy od nuly po námi stanovené číslo, které je umístěno v registru Icr, tímto číslem se ovlivňuje frekvence, protože po dosažení tohoto čísla začne čítač počítat směrem dolů. V průběhu čítání se aktuální hodnota čísla porovnává s číslem, které jsme si zvolili, a je umístěno v registru Ocr, toto číslo ovlivňuje střídavý PWM signál. Pokud bude toto číslo menší než hodnota čítače, výstup se přepne do log. 1. Princip funkce je vidět na obrázku níže.

4.2.2. Příslušenství mikroprocesoru

Jelikož na mikroprocesoru využívám pouze jednoho výstupu PWM, je nutné ho doplnit logickými obvody tak, aby se toto PWM mohlo přepínat mezi jednotlivé osy popřípadě přepínat směr otáčení. Tohoto jsem dosáhl použitím třívstupových hradel.
NAND, které jsem použil ke čtyřem výstupům k motorům a dvěma výstupům k brzdám. Výhodou použití hradel bylo, že pokud by došlo k nechtěnému zkratu někde u obvodů ovládajících brzdy nebo motory, dojde ke zničení těchto hradel a ne mikroprocesoru. Třístupové hradla volím proto, jelikož jeden vstup bude PWM signál, druhý vstup bude jakési povolení výstupu, to znamená, že signál PWM bude na výstupu, bude-li povolen mikroprocesorem, no a poslední třetí vstup do hradla je z bezpečnosti, zde bude připojen výstup, který povede na brzdy. Pokud tedy nebude odbržděný motor, nepůjde do motoru žádný signál, bude tedy stát.

Jako další příslušenství mikroprocesoru by se dal jmenovat krystal, tento krystal určuje frekvenci, na jaké mikroprocesor pracuje. Musí se to ale nastavit u programování, aby pracoval na této frekvenci, jinak si bere vlastní frekvenci, má totiž svůj integrovaný oscilátor. Krystal má frekvenci rovnu 16,000 MHz.

U mikroprocesoru je u napájení ještě připojen elektrolytický kondenzátor, ten filtruje možné napěťové špičky a vyhlazuje napětí. Další kondenzátory jsou připojeny na vstupech z IRC snímačů, ty mají za úkol také filtrovat možné napěťové špičky, díky nimž by mohlo dojít k nežádoucímu přerušení a přičtení nebo odečtení proměnné.
4.2.3. Programová část řídícího modulu

Samotné řízení polohy motoru je zde provedeno klasickou regulací pomocí PID regulátoru. Po zadání příslušného pootočení, které zadáváme ve stupních, se toto číslo přepočítá na impulzy z IRC snímače. Konstantu přepočtu zjistíme z převodového poměru a počtu impulzů na jednu otáčku motoru. Převodový poměr harmonické převodovky 1:200 a IRC snímač má rozlišovací schopnost 40 impulzů na jednu otáčku motoru. Převodový poměr harmonické převodovky 1:200 a IRC snímač má rozlišovací schopnost 40 impulzů na jednu otáčku motoru.

\[
360° = 200 \times 40 \text{ impulzů} \quad \Rightarrow \quad 1\text{ otáčka} = 8000 \text{ impulzů}
\]

\[
1° = \frac{200}{9} \text{ impulzů}
\]
Tedy číslo pootočení ve stupních nejprve podělím 9 a pak vynásobím 200. Nyní mám číslo potřebného pootočení v impulzech.

Dále je potřeba vypočítávat déli tak, aby zprostředkovávala rovnoměrně zrychlený pohyb, pohyb rovnoměrný a na závěr rovnoměrně zpomalný pohyb tak, aby se napočítal přesný počet impulzů, jaký byl zadaný uživatelem. Jak je vidět na obrázku níže, vypočítávání dély bude muset být rozděleno do tří úseků, ve kterých budu muset vhodně upravit konstanty rovnice. Konstanty rovnice se rozumí počáteční rychlost, počáteční déla, zrychlení a čas. To znamená, jílekož mám tři úseky, budu muset dvakrát změnit zadání do rovnice počítající déli. V prvním případě, to znamená mezi úsek I. a II. Dám zrychlení rovno nule, vypočítám a zadám počáteční rychlost a taktěž vypočítám a zadám počáteční délu, čas dám roven nule. Je třeba si ale uvědomit, kdy tento okamžik nastane, kdy má výpočet dély začít počítat rovnoměrný pohyb, mám to provedeno tak, že zjišťuji výstup z PID regulátoru, a když dávám na výstupu maximální otáčky motoru, změnim průběh výpočtu na rovnoměrný pohyb. V tomto okamžiku si taky zapiši počet impulzů, při kterých k této změně došlo, abych věděl, kdy má počítání dély přijít na rovnoměrně zpomalený pohyb. To zjistím z rozdílu celkových žádaných impulzů a zapsaného počtu impulzů. V případě, že je zadání pootočení natolik malé, že se motor ani na plné otáčky neroztočí, automaticky po polovině výpočtu dély dojde k přepsání konstant na rovnoměrně zpomalený pohyb.

\[S_{celk} = S_0 + v_0 t + \frac{1}{2} a t^2 \]

Obr 25: Graf rychlosti polohovadla
Tato vypočítávaná dráha bude sloužit jako řádná veličina. Skutečná veličina budou napočítané impulzy z IRC snímače, z těchto dvou čísel vypočítám regulační odchylku, kterou zpracuje PID regulátor.
4.2.4. PID regulátor

Pro realizaci PID regulátoru v mikroprocesoru je třeba si uvědomit pár základních poznatků o funkci PID regulátoru. Víme, že PID regulátor, se skládá ze tří složek, a to proporcionální, integrační a derivační. Do regulátoru vstupuje regulační odchylka $e(t)$ a výstupem je akční veličina $y(t)$. Přenos regulátoru je dán jejich poměrem.

Derivační složka regulátoru derivuje změnu regulační odchylky. Akční veličina je tedy přímo úměrná derivaci regulační odchylky. Tento druh regulátoru zrychluje regulační děj, ale zesiluje šum.

Celkový přenos regulátoru je tedy roven:

$$
y(t) = K_p e(t) + K_i \frac{de(t)}{dt} + K_i \int_0^t e(t)dt + y(0)\$$

Obr. 28: Blokové schéma vnitřní struktury PID regulátoru

4.2.5. Ovládací panel

Úkolem ovládacího panelu bude komunikace s obsluhou. Na tomto panelu bude umístěn LCD displej, čtyři tlačítka a dvě LED diody. Díky těmto prvkům dostane obsluha polohovadla zprávu o aktuálním stavu polohovadla a bude moci pohodlně měnit požadované souřadnice obou ovládaných os. V krabičce ovládacího panelu je umístěn i
řídící mikroprocesor. Ovládací panel jako celek je zapájen do desky plošných spojů a je propojen plochým kabelem s deskou mikroprocesoru.

Led diody jsou připojeny na +5V a dále jsou přes rezistory vedeny k mikroprocesoru, to znamená, že budou svítit, pokud bude výstup mikroprocesoru roven logické nule. Ve schématu jsem uvedl čtyři LED diody, ve skutečnosti jsou využity pouze dvě, další byly myšleny jako případná rezerva pro další funkce polohovadla a nebyly do desky plošného spoje zapájeny.

Tlačítka jsou v klidové poloze rozpojena, tudíž je na vstupech do mikroprocesoru pořád logická jednička, ta je tam přivedena přes rezistory. Po stisku tlačítka se vstup přepne do logické nuly.

LCD displej komunikuje s mikroprocesorem pomocí šesti vodičů, čtyři datové (D4…D7) a pak RS a E, tyto vodiče je třeba nadefinovat v programu a to následujícím způsobem:

Config Lcd = 16 * 2

Config Lcdpin = Pin , Db4 = Porta.4, Db5 = Porta.5, Db6 = Porta.6, Db7 = Porta.7, E = Porta.3, Rs = Porta.2

Obr. 30: Deska plošných spojů ovládacího panelu
Obr. 3: Ovládací panel
6. Závěr

Celkový systém je zhotoven z komponentů jako na obrázku níže, skládá se z výkonového modulu, ovládacího panelu a zdroje.

Ovládací panel je zakomponován do plastové krabičky, ve které je umístěn i plošný spoj řídicího mikroprocesoru. Ovládací panel je umístěn v blízkosti polohovadla na držáku vyrobeného z jeklu a ten je přišroubovaný na železnou konstrukci, která je umístěna pod polohovadlem. Je nutné, aby tento ovládací panel byl snadno demontovatelný, z toho důvodu, že je v blízkosti robot, na kterém když se pracuje, mohl by o tento panel zavatit. K demontáži stačí rozpojit dva konektory a odšroubovat jeden šroub.

Výkonový modul je umístěn hned vedle polohovadla z důvodu čím jak nejkratších přívodních kabelů k motorům. Modul je položen na stejné konstrukci, na které je také přišroubován ovládací modul.

V počátcích realizace bakalářské práce byl asi největší problém ve zhotovení výkonového modulu, aby vydržel požadované hodnoty proudu a napětí. Jako další problém se ukázal vyrobený IRC snímač, jehož výstupní signál nebyl zcela podle mých představ, výstupní signál se musel doladit polohou fototranzistoru a fotodiody. Dalším celkem závažným problémem bylo odladění vhodných konstant PID regulátoru tak, aby se osa v určité poloze nerozkmitala. Je zde nutno podotknout, že na polohovadlo, jako regulovanou soustavu působí značné poruchy, a to hlavně u osy 2., kde je veliký rozdíl, pokud se polohovadlo rozjíždí z nulové polohy, nebo z polohy, která je o 90 stupňů od nulové polohy. Kdy vlastní tíha polohovadla působí buď proti směru působící síly anebo po směru. Snímáním absolutní polohy osy 2. by šlo vhodně upravovat konstanty regulátoru, aby bylo řízení ještě lepší, než je to stávající. K řízení je použit pouze regulátor PI, zesílení derivační složky je rovno nule.

Cílem bylo zprovoznit polohovadlo tak, aby si obsluha mohla natočit jednotlivé osy podle potřeb. Tento úkol jsem splnil, když, to někdy vypadalo, že se ke zdánímu konci ani nedostanu. Pořád se objevovaly další a další problémy, které se musely neustále řešit. Osobně jsem si při řešení bakalářské práce prohloubil znalosti v programování mikroprocesorů a snímání polohy pomocí IRC snímačů. Součástí bylo i testování polohovadla a systém fungoval podle představ.
Obr. 32: Kompletní sestava modulů a jejich umístění
7. Seznam použité literatury

Bakalářská práce - Řídicí systém polohovadla

[cit. 2010-5-10].

Dostupné: http://panwiki.panska.cz/index.php/S%C3%A9riov%C3%AD_stabiliz%C3%A1tor\nnap%C4%9Bt%C3%AD [cit. 2010-5-10].

[cit. 2010-5-10].

Dostupné: http://www.datasheetcatalog.org/datasheet/philips/74HC_HCT10_CNV_2.pdf
[cit. 2010-5-10].

[16] PID regulátory
Dostupné: http://cs.wikipedia.org/wiki/PID_regul%C3%A1tor [cit. 2010-5-10].

[17] H-bridge

8. Přílohy

Schéma zapojení:

- Schéma zapojení ovládacího panelu - Příloha A
- Schéma zapojení modulu ovládajícího brzdy a stabilizátorů - Příloha B
- Schéma zapojení IRC snímače a H-bridge - Příloha C
- Schéma zapojení mikroprocesoru – Příloha D

Přiložené CD:

- Text bakalářské práce
- Program, soubor typu *.bas
- Video polohovadla