Student: Bc. Zuzana Rutková

Vedoucí diplomové práce: Ing. Miroslav Čulík, Ph.D.

Ostrava 2010
Zadání diplomové práce

Bc. Zuzana Rutková

Studijní program: N6202 Hospodářská politika a správa
Studijní obor: 6202T010 Finance
Specializace: 00 Finance
Téma: Aplikace metodologie CorporateMetrics ve výrobním podniku

CorporateMetrics methodology application in the production company

Zásady pro vypracování:
1. Úvod
2. Popis metodologie CorporateMetrics a finančního modelování
3. Charakteristika podniku a jeho finančních toků
4. Odhady rizik finančních toků společnosti
5. Závěr
Seznam použité literatury
Seznam zkratek
Prohlášení o využití výsledků diplomové práce
Přílohy

Seznam doporučené odborné literatury:

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce: Ing. Miroslav Čulík, Ph.D.

Datum zadání: 20.11.2009
Datum odevzdání: 30.04.2010

[Signatures]

Ing. Iveta Ratmanová, Ph.D.
vedoucí katedry

prof. Dr. Ing. Dana Dluhošová
děkanka fakulty
Místopřísežně prohlašuji, že jsem celou práci, včetně všech příloh, vypracovala samostatně. Přílohy č. 3, 4 a 5, dané mi k dispozici, jsem samostatně doplnila.

V Ostravě dne 30. dubna 2010

podpis:

..............................
Zuzana Rutková
1 ÚVOD ..3

2 POPIS METODOLOGIE CORPORATEMETRICS A FINANČNÍHO MODELOVÁNÍ ...5

 2.1 CorporateMetrics – základní popis metodologie ..5
 2.1.1 Klíčové rysy CorporateMetrics ..6
 2.1.2 Srovnání CorporateMetrics s ostatními metodami měření tržního rizika6
 2.1.3 Charakteristika jednotlivých kroků CorporateMetrics8
 2.1.3.1 Definování finančního ukazatele ..9
 2.1.3.2 Mapování vlivů ..11
 2.1.3.3 Vytváření scénářů ..13
 2.1.3.4 Hodnocení ...14
 2.1.3.5 Výpočet míry rizika ...15
 2.1.4 Charakteristika tržního rizika ..16
 2.1.4.1 Charakteristika měnového rizika ...17

 2.2 Finanční modelování ..18
 2.2.1 Cenové změny v čase ...19
 2.2.2 Rozdělení pravděpodobnosti ...20
 2.2.2.1 Normální rozdělení pravděpodobnosti20
 2.2.2.2 Normované – normální rozdělení pravděpodobnosti21
 2.2.2.3 Logaritmicko – normální rozdělení pravděpodobnosti21
 2.2.3 Model náhodné procházky ..22
 2.2.3.1 Geometrický Brownův model s logaritmickými cenami23
 2.2.4 Mean – Reversion model ...24
 2.2.5 Statistická verifikace modelu ...26
 2.2.5.1 Test statistické významnosti parametrů modelu (t - test)26
 2.2.5.2 Test statistické významnosti modelu jako celku (F – test)27

 2.3 Value at Risk ...29
 2.3.1 Metody výpočtu Value at Risk ..30
 2.3.1.1 Metoda variancí a kovariancí ...30
 2.3.1.2 Metoda historické simulace ...30
 2.3.1.3 Metoda Monte Carlo ...31

3 CHARAKTERISTIKA PODNIKU A JEHO FINANČNÍCH TOKŮ ...35

 3.1 Charakteristika společnosti ABC, s.r.o. ...35
 3.1.1 Předmět činnosti společnosti ...35
3.2 Provozní činnost a stávající hospodářské postavení společnosti ..36
3.2.1 Provozní výsledek hospodaření ...37
4 ODHADY FINANČNÍCH RIZIK SPOLEČNOSTI ..39
 4.1 Odhad modelů jednotlivých rizikových faktorů ...39
 4.1.1 Odhad modelu pro měnový kurz CZK/CHF ...44
 4.1.2 Odhad modelu pro měnový kurz CZK/EUR ...47
 4.1.3 Odhad modelu pro měnový kurz CZK/GBP ...50
 4.1.4 Odhad modelu pro měnový kurz CZK/USD ...53
 4.2 Predikce jednotlivých rizikových faktorů ...56
 4.2.1 Odhad vývoje měnového kurzu CZK/CHF ...58
 4.2.2 Odhad vývoje měnového kurzu CZK/EUR ...60
 4.2.3 Odhad vývoje měnového kurzu CZK/GBP ...62
 4.2.4 Odhad vývoje měnového kurzu CZK/USD ...63
 4.3 Odhad provozního výsledku hospodaření na rok 2010 ..65
 4.3.1 Odhad tržeb za vlastní výrobky a služby na rok 2010 ..66
 4.3.1.1 Odhad tržeb za vlastní výrobky a služby inkasovaných v CHF67
 4.3.1.2 Odhad tržeb za vlastní výrobky a služby inkasovaných v EUR68
 4.3.1.3 Odhad tržeb za vlastní výrobky a služby inkasovaných v GBP69
 4.3.1.4 Odhad tržeb za vlastní výrobky a služby inkasovaných v USD70
 4.3.1.5 Odhad tržeb za vlastní výrobky a služby v CZK ...71
 4.3.1.6 Odhad celkových tržeb za vlastní výrobky a služby na rok 201071
 4.3.2 Odhad provozních nákladů na rok 2010 ...74
 4.3.3 Odhad provozního výsledku hospodaření na rok 2010 ..75
 4.4 Odhad Earnings at Risk na rok 2010 ...79
5 ZÁVĚR ...82
Seznam použité literatury ..84
Seznam zkratek
Prohlášení o využití výsledků diplomové práce
Seznam příloh
1 ÚVOD

V době působící finanční krize, kdy se většina výrobních i jiných společností teprve snaží stabilizovat své činnosti a operace, se znásobují rizika, která v daném oblasti podnikání existovala již dříve, a která jsou umocněna doznívající krizi na celém světě. Mezi rizika, která se v podnikové sféře vyskytují nejčastěji, patří tržní rizika, především úrokové, měnové a komoditní riziko. Všechna tato rizika včetně jejich rozsahu musí každá výrobní společnost zohledňovat při svém rozhodování a v plánování krátkém i dlouhém časovém horizontu. Všechny podniky si musí být vědomy toho, v jaké míře a který typ tržního rizika ovlivňuje jejich celkovou výkonnost, tedy jaký dopad má dané riziko na hospodářský výsledek společnosti.

Tržní riziko, které představuje potenciální ztrátu vlivem změny tržních cen v důsledku nepříznivých tržních podmínek, ovlivňuje výkonnost všech společností napříč celého spektra podnikání, a proto právě tržní riziko a měření jeho vlivu na provozní hospodaření podniku je stěžejním tématem práce.

Cílem diplomové práce je aplikace metodologie CorporateMetrics při kvantifikaci tržního rizika společnosti působící ve výrobním odvětví. Riziko bude kvantifikováno pomocí ukazatele Earnings at Risk (EaR) na úrovni provozního výsledku hospodaření firmy, která je z důvodu zachování anonymity označena zkratkou ABC. Práce je rozdělena na dvě části, na teoretickou (kapitola 2) a na praktickou (kapitola 3 a 4).

V teoreticky – metodologické části práce je pozornost věnována popisu dané metodologie a finančního modelování, jehož součástí jsou podkapitoly rozdělení pravděpodobnosti, změny tržních cen, odhady jednotlivých finančních modelů a statistická verifikace. K popisu této části práce jsou použity metody analýzy a srovnání. Samostatnou větší podkapitolou této části je popis metody Value at Risk a její aplikaci.

Ve třetí kapitole je obsažena charakteristika vybrané výrobní společnost, na kterou je metodologie CorporateMetrics aplikována, její předmět činnosti, stávající hospodářské postavení společnosti na trhu a provozní výsledek hospodaření za rok 2008 včetně výčtu těchto výkonnostních ukazatelů z minulých let. Právě provozní výsledek hospodaření je vybraných finančním výsledkem společnosti, který je základem pro specifikaci finančního ukazatele, kterým je Earnings at Risk.
Čtvrtá, aplikačně – ověřovací část, je věnována popisu odhadů rizik finančních toků společnosti. Tato kapitola zahrnuje odhad modelů jednotlivých rizikových faktorů (měnových párů CZK/CHF, CZK/EUR, CZK/GBP a CZK/USD). Ty to čtyři devizové kurzy se nejvíce podílejí na tržbách společnosti za vlastní výrobky a služby. Součástí kapitoly jsou také predikce vývoje jednotlivých rizikových faktorů na rok 2010 pomocí simulace. Na základě predikce vývoje faktorů jsou spočítány také tržby za každý měnový kurz i tržby celkově a z těch je odvozen výpočet provozního výsledku hospodaření společnosti na vybraných hladinách významnosti a odhady hodnot Earnings at Risk na zmíněných hladinách významnosti.
2 POPIS METODOLOGIE CORPORATEMETRICS A FINANČNÍHO MODELOVÁNÍ

V této teoretické kapitole je věnována pozornost popisu metodologie CorporateMetrics a finančního modelování, jehož součástí jsou podkapitoly rozdělení pravděpodobnosti, změny tržních cen, odhady jednotlivých finančních modelů a statistická verifikace. K popisu této části práce jsou použity metody analýzy a srovnání. Důležitá je podkapitola věnující se popisu Value at Risk a její aplikaci.

2.1 CorporateMetrics – základní popis metodologie

CorporateMetrics je komplexní balíček definicí, metodologií, souborů dat a softwaru pro měření tržního rizika v podnikovém prostředí. V širším slova smyslu se CorporateMetrics soustředí na dva podnikové finanční výsledky, které ovlivňují a které jsou obvykle používány k posouzení hodnoty společnosti. Těmito finančními výsledky jsou hospodářské výsledky dané společnosti a peněžní toky v dané společnosti neboli cash flow. Tato metodologie podnikům umožňuje předpovídat zisk a peněžní toky v rozmezí mnoha odlišných plánných tržních sazeb jako jsou například devizové kurzy, úrokové sazby, ceny komodit a ceny vlastního kapitálu. Z výsledného rozmezí předpovědí může být naměřeno tržní riziko.

Balíček je navržen jako dlouhodobá předpověď, aby se shodoval s dlouhodobým manažerským cyklem, který je běžný pro podnikové plánování a obchodní řízení. Mimo jiné CorporateMetrics nabízí metodologii Value at Risk (VaR), což je metodologie založená na principech, které jsou dlouhodobě široce využívány v portfolií rizikových analytiků, kde je vystavení finančních aktiv tržnímu riziku běžně kvantifikováno.

Odtud, kdy VaR měří neurčitost (prostředí nejistoty nebohlí riziko) nebo odchylky od hodnoty, bez ohledu na to jaká hodnota je definována, může být snadno použita pro měření rizika daného podniku.

Přizpůsobením se technikám VaR ze souboru portfolií, CorporateMetrics poskytuje pevný základ metodám, ze kterých se určí kvantitativně tržní riziko v rámci podnikového prostředí.
2.1.1 Klíčové rysy CorporateMetrics

1. Definice kvantifikovaného rizika - jedná se například o hospodářský výsledek na určité hladině rizika (EaR), zisk na akcii na dané hladině rizika (EPSaR) nebo peněžní toky na určité hladině rizik, tedy CFaR.

2. Metodické směrnice – vysvětluji jak rozpoznat a zaznačit projevy citlivosti trhu a popsat (vysvětlit) metody použitelné k určení tržního rizika.

3. Soubory dat a metody pro dlouhodobou předpověď – jedná se o předpovědi na dva až dvacet čtyři měsíce.

4. Webové stránky – které v sobě obsahují historická data, důležité (stresové) scénáře, dlouhodobé předpovědi a metodologické diskuze, které mohou být zpřístupněny na internetových stránkách autorské společnosti.

2.1.2 Srovnání CorporateMetrics s ostatními metodami měření tržního rizika

CorporateMetrics využívá klíčové principy od nejznámějších technik měření tržního rizika, jako jsou RiskMetrics a již zmínovaná Value at Risk, která se přibližila portfoliím tržních nástrojů a přípustobila je podnikovému prostředí. Tím se rozšířily typické podnikové postupy (praktiky) jakými jsou běžné analýzy citlivosti, ale s ohledem na riziko napříč celým rozpětím scénářů tržních sazeb nebo jiných rizikových faktorů namísto pár vybraných scénářů jako tomu bylo v minulosti.

CorporateMetrics i RiskMetrics poskytují analytickou kostru pro kvantifikaci tržního rizika, ovšem RiskMetrics je navržena pro portfolio analýz a naopak CorporateMetrics pracuje striktně s podnikovými finančními výsledky.

RiskMetrics je používána pro predikci možných změn v hodnotách tržních portfolií finančních aktiv (nástrojů), jako je devizový kurz, komodity, majetková práva a jejich derivátů, vlivem působení tržního rizika. Analyzovaný časový horizont je relativně krátký v rozsahu od jednoho dne do jednoho měsíce. Je zde kladen důraz na potencionální změny v hodnotách daných portfolií.

VaR je vhodné měřítko rizika pro skupinu manažerů, kteří potřebují odhadovat potencionální ztráty na tržní hodnotě portfolia obvykle s ohledem na tržní ukazatele.

CorporateMetrics je naopak mnohem vhodnější pro podnikové prostředí, protože se zaměřuje na finanční výsledky dané společnosti. V rámci této metodologie je využito výkonových srovnávacích testů, které vychází ze specifických interních a vlastnických analytických předpovědí a zaměřují se striktně na zjistitelné tržní ukazatele.
Ačkoli se RiskMetrics i CorporateMetrics soustředí na rozdílné hodnoty měření, obě metody vyžadují předpoklady pro rozdělení tržních faktorů s cílem dosažení správných hodnot pro vybraný horizont. Pro podniky jsou typické předpovědi v horizontu dvacet čtyři měsíců za účelem plánování rozpočtu a sestavování finančního plánu.

Tabulka 2.1 obsahuje porovnání manažerských přístupů využívaných v podnikovém prostředí a jak je možné vidět, tak mezi oblasti porovnání obou metod, RiskMetrics i CorporateMetrics, patří nejen samotná měřená hodnota, ale také účetní a cenové položky (výstupy), časové horizonty a výkonnostní srovnání obou metodologií (měřítko).

Nicméně i zde je potvrzeno, že metoda RiskMetrics je přizpůsobena finančnímu prostředí zatímco CorporateMetrics je přizpůsobena podnikovému prostředí.

<table>
<thead>
<tr>
<th>Rizkové parametry ve finančním a podnikovém prostředí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metodologie</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Rizikové parametry</td>
</tr>
<tr>
<td>Měřená hodnota</td>
</tr>
<tr>
<td>Účetní ošetření</td>
</tr>
<tr>
<td>Časový horizont</td>
</tr>
<tr>
<td>Měřítko</td>
</tr>
</tbody>
</table>

Zdroj: LEE, A. CorporateMetrics Technical Dokument

CorporateMetrics metodologie nabízí širší přístup k měření tržního rizika. S použitím rozdělení pravděpodobnosti tržních sazeb (tržních rizikových faktorů) pro četné třídy jako základ může společnost souhrnně tvořit mnoho odlišných scénářů tržních sazeb, které budou odrážet celý rozsah pravděpodobnostně – vážených tržních výsledků. Scénáře mohou být tvořeny tak, aby odrážely stanovené (specifické) předpoklady v rámci korrelace mezi odlišnými tržními sazbami. Scénáře mohou být vyvinuty na základě technik dlouhodobé předpovědi, které jsou postaveny na aktuálních tržních informacích (například forwardové sazby, ceny opci), ekonometrických modelech nebo vybraných parametrech. Přístup CorporateMetrics může rozšířit tradiční podnikové analýzy rizika a tím poskytnout více komplexní pohled na riziko.

Metodologie CorporateMetrics má přesně stanovený postup k měření tržního rizika, který zahrnuje pět základních kroků:

1. **Definování finančního ukazatele.** Jedná se o specifikaci finančního výsledku, na jehož úrovni je riziko měřeno, tedy zda se bude jednat o zisky nebo o peněžní toky společnosti (cash flow). Dále se musí specifikovat časový horizont a určit hladinu spolehlivosti pro měřené riziko.
2. Mapování vlivů nebo odhadování rizika dané společnosti. S použitím prvního kroku je nutné rozpozna t všechny zisky nebo vhodné části peněžních toků, jejichž hodnoty se mohou měnit vlivem fluktuace tržních sazeb. Tržními sazbami se rozumí měnové kurzy, úrokové sazby, ceny komodit a další.

Tento proces pěti kroků je známý jako přístup založený na simulaci a utváření základy metody CorporateMetrics. V rámci tohoto přístupu jsou rozsáhlé soubory scénářů tržních sazeb používány pro tvorbu rozdělení budoucích finančních výsledků. Výhodou tohoto přístupu je schopnost detailně popsat rozdělení stanovených budoucích finančních výsledků, ze kterých jsou získávány různé úrovně kvantifikovaného rizika, což je především užitečné pro společnosti, jejichž finanční výsledky se mění nelineárně se změnou tržních sazeb, a které nemohou měřit vliv tržního rizika pomocí dříve používaných analytických metod. Jedinou nevýhodou simulačního přístupu oproti klasickým analytickým metodám je jeho relativní náročnost a intenzita.

2.1.3 Charakteristika jednotlivých kroků CorporateMetrics

V předchozí podkapitole bylo stručně popsáno, v jakých základních krocích se aplikuje metoda CorporateMetrics a v čem spočívají jednotlivé kroky. V následující podkapitole budou tyto kroky podrobně charakterizovány pro jejich detailnější pochopení.
2.1.3.1 Definování finančního ukazatele

V tomto kroku se společnost rozhoduje, který finanční výsledek bude analyzován a tedy, který rizikový ukazatel se bude počítat.

Jak již bylo uvedeno výše, mezi nejčastější rizikové ukazatele, kteří se používají pro analýzu metodou CorporateMetrics patří ukazatel EaR (Earnings at Risk), EPSaR (Earnings per share at Risk) nebo CFaR (Cash flow at Risk). Společnost si také v tomto kroku stanoví časový horizont pro výpočet a hladinu spolehlivosti, která bude použita při měření velikosti daného rizika. CorporateMetrics se zaměřuje při měření rizika na maximální možnou ztrátu vybraného finančního výsledku na vybrané hladině významnosti. Existuje velké množství finančních výsledků, jejichž hodnoty mohou být ovlivněny změnou tržní sazby, jedná se také, kromě výše vyjmenovaných ukazatelů, o tržní kapitalizaci, hodnotu tržního portfolia, výnos vlastního kapitálu, nárůst zisku, zadluženost vlastních zdrojů a ukazatel úrokového krytí.

Následující odstavce jsou věnovány vysvětlení důležitosti vybraných finančních výsledků a ukazatelů EaR a CFaR jako výkonnostních měřítek vymezení rizika dané společnosti, které se od nich odvíjí.

Zisk přímo ovlivňuje tržní hodnotu společnosti od doby, kdy se začal pravidelně používat investory a analytyk ke stanovení tržní hodnoty dané společnosti. Mezi nejpoužívanější ukazatele pracující se ziskem společnosti při oceňování podniku jsou Price to Earnings ratio (P/E ratio) nebo Return to equity (ROE), který měří efektivnost vložení vlastního kapitálu. Zisk může být postupně ovlivňován tržním rizikem, a proto se přidává řízení úrovně a nárůstu zisku a společnosti se zaměřují na volatilitu zisku. Díky řízení volatility zisku mohou společnosti lépe řídit ceny na burzách a hodnotu pro akcionáře. Nastalé ztráty na zisku mají špatný dopad na burzovní ceny a v tu chvíli společnosti potřebují metodologii, která by dokázala kvantifikovat citlivost zisku na tržní rizikové faktory. Porozuměním závislosti zisku na rizikových faktorech se dostávají podniky do lepší pozice ochrany proti danému riziku, a proto lépe ovládají hodnotu společnosti pro akcionáře.

Většina společností má plánovací a rozpočtový proces cílený na určitou úroveň zisku za určitou dobu (čtvrtletně nebo ročně) za účelem dosažení dlouhodobého růstu hodnoty pro akcionáře.
V případě, že je v plánovacím procesu možné identifikovat potencionální úbytek zisku vyplývající z několika vybraných negativním scénářům, proces obvykle připravuje roční působením, který počítá s:

1. volatilitou a korelací pro všechny tržní sazby, kterým je společnost vystavena,
2. potencionálním dopadem na rozsáhlé firemní zisky způsobeným kombinovaným efektem komplexní škály tržních expozic dané společnosti vzhledem k možným diverzifikačním efektům a
3. hladinou spolehlivosti odhadů negativním příjmů.

Na základě potřeby metodologie kvantifikace vlivů tržního rizika na zisky, byl zahrnut ukazatel Earnings at Risk (EaR) jako jeden ze základních měřítek rizika v metodologii CorporateMetrics.

Přístup založený na zisku se soustředí na různorodou řadu položek a složek výkazu předběžného výnosu společnosti (operačního výkazu či výkazu o činnostech). Základním definovaným ukazatelem volatility zisku je již zmíněný Earnings at Risk, který představuje maximální propad zisků, vztahující se k určenému cíli, způsobeným dopadem tržního rizika na soubor expozic (aktiv, která jsou vystavena tržnímu riziku), pro stanovenou časovou periodu a úroveň spolehlivosti.

Cash flow je spojeno s provozními činnostmi, investičními a finančními aktivitami. Ve chvíli, kdy není hotovost (peněžní toky) vytvářena v dostatečném množství a ve správnou dobu, společnosti jsou nuceny odkládat své investiční plány nebo, v nejhorším případě, musí čelit finanční nouzi či dokonce bankroto. Důležitost řízení cash flow pro fungování obchodu nutí většinu společností k monitorování a předvídaní zdrojů a výdajů jejich hotovosti.

Cash flow je také velmi významné pro analytyky a investory, kteří jej často využívají navíc vedle zisku k vymezení tržní hodnoty společnosti. Mimoto peněžní toky poskytují informaci o likviditě a ziskovosti společnosti, a proto jsou výkazy cash flow vždy zahrnovány ve veřejně publikovaných finančních výkazech společností. V rámci podnikové potřeby vymezení dopadu tržního rizika na cash flow je v rámci CorporateMatrics stanoveno měřítko volatility cash flow jako ukazatel Cash Flow at Risk (CFaR), který představuje maximální schodek čistého příjmu hotovosti, který je generován, vztahující se k určenému cíli, způsobeným dopadem tržního rizika na soubor expozic, pro stanovenou časovou periodu a úroveň spolehlivosti.
Stejně jako u EaR je CFaR definován v rámci této metodologie jako relativní rizikový ukazatel, se kterým je riziko měřeno vzhledem k cílové úrovni cash flow. Cílová úroveň pro budoucí peněžní toky může být odhadována již z prvního sestavení předběžného výkazu cash flow nebo modelováním specifických činností, které vytvářejí nebo využívají hotovost. S cash flow predikčním modelem může být cílová úroveň peněžních toků počítána s použitím rozpočtových sazeb, spotových sazeb, forwardových sazeb nebo jakýchkoli tržních sazeb a cen, které jsou společností považovány za vhodné pro očekávané činnosti, investiční a finanční aktivity za dané období.

2.1.3.2 Mapování vlivů

U druhého kroku v procesu kvantifikace tržního rizika, mapování vlivů, se předpokládá, že společnost si stanoví finanční výsledky, které budou predikovány (zisky nebo cash flow) a bude počítat s odpovídajícími ukazateli rizika, jako jsou EaR, CFaR, EPSaR atd.

Mapování vlivů je proces identifikace toho, jak pohybující se tržní sazby (náhodná proměnná) ovlivňují jednotlivé finanční výsledky. Mapování může být prováděno formou rovnic, modelů nebo předběžných finančních výkazů. Všechny tyto vyjmenované formy jsou v rámci CorporateMetrics brány jako výchozí formy pro proces mapování vlivů.

V podstatě je tento proces jedinečný pro každou společnost a pro každou situaci. Také kvantitativní vztahy mezi tržními proměnnými a finančními výsledky mohou nabývat rozmanitých forem. V nej jednodušším případě vztahy mohou být odhadovány jako lineární, naopak v rámci ekonometrického modelování mohou být několikanásobně komplikovanější. Nakonec rozdílné účetní zásady v rámci jednotlivých zemí a průmyslových odvětví mají za následek širokou škálu pravidel pro výpočet zisku.

Zisky, podobně jako jiné finanční výsledky, mohou být stanoveny jako funkce, jejichž hodnoty se mění současně se změnou tržních sazeb. Tabulka 2.2 ukazuje příklad typického portfolia skládajícího se z několika ziskových položek a tržní sazby, které na ně působí.

<table>
<thead>
<tr>
<th>Složky zisku</th>
<th>Tržní rizika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tržby mezi různými společnostmi a státy</td>
<td>Devizové riziko, komoditní riziko</td>
</tr>
<tr>
<td>Cena prodávaného zboží mezi různými společnostmi a státy</td>
<td>Devizové riziko, komoditní riziko</td>
</tr>
<tr>
<td>Provozní náklady mezi zeměmi a společnostmi</td>
<td>Devizové riziko, komoditní riziko</td>
</tr>
<tr>
<td>Úrokové náklady (výdaje)</td>
<td>Úroková sazba (úrokové riziko)</td>
</tr>
<tr>
<td>Zisky a ztráty z finančních kontraktů</td>
<td>Devizové riziko, úrokové riziko, komoditní riziko, riziko vlastního kapitálu</td>
</tr>
</tbody>
</table>

Zdroj: LEE, A. CorporateMetrics Technical Dokument
Mapa vlivů určuje, jaké tržní sazby působí na jednotlivé složky zisku a cash flow. Následující jednoduchá rovnice vyjadřuje vliv devizových kurzů na transakční podnikovou hodnotu zahraničních prodejů:

\[
\text{Příjmy} = \text{zahraniční prodeje (obchodní proměnná)} \cdot \text{devizový kurz (tržní proměnná)}
\]

Aby se mohly předvídat finanční výsledky podle různých scénářů tržních sazeb, musí se nejprve specifikovat, pomocí rovnic nebo předběžných výkazů, jak spolu finanční výsledky a tržní sazby souvisí. Právě zmiňované definiční vztahy a předběžné výkazy jsou uváděny jako mapy vlivů.

CorporateMetrics poskytuje pružný rámec, který vysvětluje, jaké riziko může být počítáno pro daný soubor expozic, zda lze pracovat i s podsouborem podnikových expozic (kombinované expozice jednotlivých obchodních jednotek), konsolidované expozice dceřiných společností nebo, na nejvyšší úrovni, konsolidované expozice (finanční výsledky, které jsou ovlivňovány tržním rizikem) za celou společnost v případě např. holdingové společnosti.

Rozsah analýz

Vybraný soubor expozic může být analyzován s použitím rovnic tak, že se finanční výsledek vyjadřuje jako funkce tržní sazby a obchodní proměnné. Vybrané analýzy mohou být vhodné jak pro měření rizika jednotlivých expozic, tak pro celé řady položek v podnikových předběžných finančních výkazech.

Pokud je vyžadována vyšší úroveň analýz (například modelování rizika pro obchodní jednotku, dceřinou společnost, mateřskou společnost), celopodnikové předběžné finanční výkazy mohou být použity jako základ pro mapování vlivů. Jednotlivé výkazové položky mohou být vyjádřeny jako funkce obchodních proměnných a tržních sazeb. Protože finanční výsledky pro dceřinou společnost nebo mateřskou společnost mohou být velmi složitými funkcemi tzv. složeného podnikání (firma má více podnikatelských aktivit, tedy částečně výrobní aktivity a částečně obchodní aktivity) a tržních proměnných, používá se model předběžných finančních výkazů poskytujících intuitivní přístup k organizaci informací a vztahů. Tento typ vysoce postavených analýz může poskytnout užitečné informace pro usnadnění jednání nejen na úrovni senior managementu a rady ředitelů dané společnosti, ale je také velmi ceněný na úrovni analytiků a investorů.
Funkce mapování

Mnoho různých typů funkcí může být použito v souvislosti s finančními výsledky pro podnikové a tržní proměnné, závisí to na požadováném typu analýzy. Například pokud je brána v úvahu společnost, která chce modelovat vztah mezi devizovými kurzy a zisky, je bráno na vědomí to, že objem prodejů je konstantní bez ohledu na sílu devizového kurzu, v takovémto případě by mapování vlivů mohlo vypadat jako jednoduchá lineární funkce měnících se devizových kurzů. V jiném případě pokud je požadována analýza, která je schopna identifikovat jak velký objem výstupu se může měnit s různými úrovněmi devizových kurzů, potom může mapování vlivů obsahovat ekonometrické vztahy, které odraží zisky jako více komplexní funkci obchodních a tržních proměnných. V této situaci je vhodné zdůraznit, že stupeň obtížnosti daného modelování je zcela na rozhodnutí konkrétní společnosti, které v sobě zahrnuje vnitřní odhad shody mezi jednotlivými faktory jako je snadnost provedení, dostupnost dat pro ekonometrickou analýzu, analýzu konkurenceschopnosti a požadovanou úroveň přesnosti.

2.1.3.3 Vytváření scénářů

Největší výzvou pro společnosti je predikce tržních sazeb pro dlouhodobý časový horizont, který je běžně spojený s plánovacím cyklem podniků. Obchodní plány se obvykle zaměřují na časové období jednoho až dvou let v kontextu se strategickým plánováním, které se provádí obvykle v horizontu pěti let. Měření tržního rizika, které je směrodatné pro stanovení finančních výsledků pro zmiňovaný plánovací horizont, požaduje vytvoření scénářů tržních sazeb, které by spadal do daného časovému horizontu. Za účelem vývoje těchto nezbytných scénářů potřebují společnosti jako první predikovat modely, které znázorňují specifické rozdělení pravděpodobnosti vybraných tržních proměnných.

Metodologie pro generování scénářů se v dlouhém období zaměřují výhradně na matematické modelování rozdělení tržních sazeb s různými předpoklady. Tato soustava zahrnuje metody pro získávání vhodných vstupních dat, vybírání a předpovídání strategií, simulování cen a sazeb napříč rozmanitostí aktiv. Existuje mnoho technik pro dlouhodobou předpověď, ale tři hlavní přístupy zahrnují použití aktuálních tržních informací (např. forwardové sazby), ekonometrických modelů a uživatelem stanovených scénářů. Tvorba scénářů tržních sazeb vyžaduje nejprve stanovení rozdělení pravděpodobnosti pro tržní ceny a sazby v rozdílných časových horizontech, poté se vytváří vzorky z každého rozdělení.

V metodologii CorporateMetrics jsou scénáře tržních sazeb stanoveny jako cesta či dráha pro jednu nebo více tržních proměnných ve stanoveném časovém období přičemž
scénář pro složené tržní proměnné specifikuje soubor souběžných cest pro vývoj proměnných skrze stejný časový horizont. Při vývoji mnoha různých scénářů pro každou tržní proměnnou lze získat vývojové cesty, které charakterizují rozsah možných hodnot, kterých mohou proměnné nabývat ve stanoveném časovém horizontu způsobem shodným s rozdělením tržních sazeb, ze kterých byly hodnoty získány.

2.1.3.4 Hodnocení

Vložením tržních sazeb pro jednotlivé scénáře do mapy vlivů se získá konkrétní hodnota pro budoucí finanční výsledek. Opakováním procesu pro každý scénář je poté získáno rozdělení finančních výsledků.

Hodnocení v nejjednodušším vyjádření zahrnuje buď použití rovnice pro výpočet zisku nebo cash flow nebo jejich vlastních komponent jako funkci předikování tržních sazeb nebo aktualizování předběžných (očekávaných) výkazů s několika novými scénáři tržních sazeb a to za účelem projektování finančních výsledků. V každém případě proces může být prezentován jako přepočet mapování vlivů podle různých tržních hodnot z rozsáhlého souboru scénářů tržních sazeb.

Pokud by bylo mapování vlivů konstruováno jako předběžný finanční výkaz, mohlo by být snadněji hodnoceno pomocí obvykle používaných metod, například sestavení tzv. „stránky předpokladů“ pro předběžné finanční výkazy, která tvoří výčet odhadovaných hodnot pro tržní sazby a ceny, proti kterým není společnost chráněna. Pro každé opakování hodnotícího procesu jsou tržní sazby na stránce předpokladů aktualizovány s tržními hodnotami stanovenými v novém scénáři. Pokud by byla použita jiná forma mapování vlivů (jiná rovnice či jiný model), potom by se pro každé opakování hodnotícího procesu zadaly nové hodnoty tržních sazeb a mapování vlivů by bylo přečíslováno. Vytvořené výstupy z každého opakování jsou zaznamenávány do tvorby rozdělení finančních výsledků. Ukázku takového rozdělení finančních výsledků společnosti lze vidět v následujícím grafu 2.1.
2.1.3.5 Výpočet míry rizika

Množství různých rizikových statistik může být počítáno z rozdělení finančních výsledků, které například obsahují směrodatné odchylky, hladinu významnosti či míru spolehlivosti, maximální ztrátu vztahující se k cílové hodnotě (relativní riziko) nebo průměrnou ztrátu. V následujícím odstavci budou vysvětleny všechny čtyři statistiky se zdůrazněním právě relativního rizika, které nejlépe charakterizují rizikové ukazatelé metodologie CorporateMetrics (EaR, EPSaR a CFaR).

Použitím rozdělení finančních výsledků získaného z fáze hodnocení lze spočítat různé statistické vzorky pro získání rozličných měřítek rizika. Níže uvedená měřítka popisují rozdílné aspekty daného rozdělení finančních výsledků a mohou přispívat k rozdílným pohledům na to, jakým tržním rizikům daná společnost čelí.

1. **Směrodatná odchylka** představuje symetrické měření rozptylu od očekávané hodnoty predikovaného finančního výsledku. Finanční výsledky mají normální rozdělení, a proto hladina spolehlivosti pro jednotlivé úrovni finančních výsledků může být odvozena od hodnoty směrodatné odchylky, ale pokud mají finanční výsledky nenormální rozdělení, pak všeobecně není možné stanovit hladinu spolehlivosti pro jednotlivé úrovni finančních výsledků za použití pouze směrodatné odchylky.

2. **Hladina spolehlivosti** odráží možnost, že finanční výsledek neklesne pod stanovenou úroveň. Interpretace hladiny spolehlivosti je přímočará a mnohem více intuitivní než je tomu u směrodatné odchylky. Konkrétní úroveň spolehlivosti je použita na základě rozhodnutí společnosti a závisí nejvíce na tom, na jaké riziko má být aplikována. Nejčastěji se používá 90%, 95% a 99% hladina spolehlivosti.
Při výpočtu hladiny spolehlivosti u nenormálního rozdělení finančních výsledků je vyžadováno, aby odporovalo právě směrodatné odchylce.

3. **Maximální ztráta vztahující se k danému cíli při stanovené hladině spolehlivosti** vyjadřuje množství, o které zisky či cash flow mohou klesnout oproti předem určené úrovni, při stanovené hladině spolehlivost vlivem tržního rizika. Odpovídající úroveň finančních výsledků na stanovené hladině spolehlivosti se poté porovnává s cílem, ze kterého může být maximální ztráta vyvozena.

4. **Průměrná ztráta** je definována jako očekávaná průměrná hodnota, o kterou očekávané finanční výsledky mohou klesnout při dané hladině spolehlivosti.

Výše uvedená statistická měřítka mohou být vypočítána z jakéhokoliv rozdělení finančních výsledků. V rámci CorporateMetrics je zaměřena pozornost na maximální ztrátu vztahující se k danému cíli na stanovené hladině spolehlivosti.1

2.1.4 Charakteristika tržního rizika

Tržní riziko představuje riziko ztráty v důsledku nepříznivých změn tržních cen, měnových kurzů, ale také změn hodnot finančních nástrojů či nástrojů v oblasti komodit a to jak na straně majetku společnosti (aktiva), tak na straně zdrojů financování (pasiva).

Jinými slovy se jedná o riziko ztráty vlivem nepříznivých podmínek na trhu, jako jsou například nepříznivý vývoj úrokových sazeb, cen akcií či měnového kurzu.

Mezi čtyři základní kategorie tržního rizika patří:

1. **úrokové riziko** (interest rate risk), které je rizikem možné ztráty vlivem změn cen nástrojů, které jsou citlivé na pohyb úrokové sazeby,
2. **akciové riziko** (equity risk) představuje riziko ztráty, které nastává změnou cen nástrojů citlivých na ceny akcií.
3. **komoditní riziko** (commodity risk), což je riziko ztráty v důsledku změn cen nástrojů reagujících na změnu ceny komodit,
4. **měnové (devizové) riziko** (currency risk, foreign exchange risk), které je rizikem ztráty v případě změn cen nástrojů citlivých na měnové kurzy.

U každé této kategorie rizika existují dva důležité parametry, kterými jsou kvalitativní a kvantitativní parametr.

1 Lee, A. (1999)
Kvalitativní parametr či rizikový faktor u úrokového rizika je měna a splatnost nástroje (např. u dluhopisů), u akciového rizika se jedná o jednotlivé národní trhy a emitenty a u měnového rizika samozřejmě o samotnou měnu.

Kvantitativní parametr udává hodnotu vybraného nástroje nebo skupiny nástrojů, v aktivech a pasivech společností. Velikost všech zmiňovaných rizik je přímo úměrná rozdílu hodnot daných nástrojů stejným kvalitativním parametrem v aktivech i pasivech. Při stejné hodnotě nástrojů o zmíněném kvalitativním parametru v aktivech i pasivech není daná společnost (subjekt) vystaven žádnému z uvedených tržních rizik.

Tržní riziko je důsledkem obchodování subjektu (společnosti) a také důsledkem aktivit spojených s řízením aktiv a pasiv na trzích všech rizikových kategorií.

2.1.4.1 Charakteristika měnového rizika

Měnové riziko je v teorii označováno jako neočekávaná změna měnového kurzu. S měnovým rizikem se v posledních letech velmi často potýkají i drobní investoři, pokud investují do cizoměnových finančních aktiv.

Měnové riziko vyplývá především z podílu podniku na zahraničním obchodu, realizace kapitálových investic v zahraničí nebo také případně ze získávání dluhového financování investic a velkých projektů v cizích měnách.

V posledních letech lze na měnových trzích pozorovat vysokou proměnlivost, jež může nepříznivě ovlivnit finanční výsledky nebo konkurenceschopnost firem ve všech odvětvích. Zvýšení české koruny vůči dané cizí měně či snížení výnosnosti investice do daného cizoměnového finančního aktiva počítané v domácí měně a naopak, to znamená, že zvýšení české měny vůči této měně výnosnost této investice zvyšuje. Pokles příjmů z exportu, vyšší náklady na importované suroviny či zboží anebo růst nákladů na správu dluhů. To jsou nejčastější problémy, ke kterým může vést nesprávný přístup k řízení finančního rizika. Tohoto cíle lze dosáhnout díky zajišťovacím transakcím s využitím finančních derivátů.
Měnové riziko je dáno změnou příslušného měnového kurzu v období trvání investice do aktiva v cizí měně. Příslušným měnovým kurzem je poté referenční měna investora vůči měně denominace vybraného aktiva.

Proti měnovému riziku se lze zajistit standardními finančními nástroji. Tyto nástroje ovšem nejsou obecně určeny pro drobné investory, jelikož se obvykle jedná o nástroje, kde je obvykle stanovena minimální zajišťovaná částka, která bývá pro menšího investora nedostupná nebo se jedná o další překážky. Drobný investor může ovšem vyhledávat takové finanční nástroje, které i když jsou denominované v cizí měně, jsou určitým způsobem zajištěny proti měnovému riziku. Může se jednat o investice do podílových fondů, kde jejich správci provádějí zajištění proti měnovému riziku. Je ovšem nutné si uvědomit, že takové zajištění není zadarmo a náklady na toto zajištění se projeví v poplatcích či v různých maržích.²

2.2 Finanční modelování

Finanční modely samy o sobě nemají žádné opodstatnění v praxi, jsou to pouze prostředky k řešení finančních problémů. Slouží pouze k účelu, pro který jsou stanoveny a napomáhají při mnoha různých typech finančního rozhodování na řídících úrovních společností.

Pro mnohá finanční aktiva je charakteristický náhodný vývoj v čase a tento průběh bývá označován jako stochastický proces. Takovýto proces lze popsat buďto diskrétně s aplikacemi při simulacích nebo spojitě s využitím zejména při analytickém řešení.

Náhodné procesy se používají pro modelový popis náhodně se měnících jevů v čase a pod označením náhodného procesu je myšlena jakákoli libovolná proměnná (veličina), která se vyvíjí náhodným způsobem v čase. Matematický přístup k modelování náhodných veličin je postaven na již zmíněném stochastickém procesu. Nejznámějších stochastickým procesem je Wienerův proces, který ve finančním modelování vychází především z podstaty Markovových náhodných procesů.

Wienerův proces, který je ne zřídka označován jako specifický Wienerův proces, je výchozím prvkem všech ostatních odvozených stochastických modelů a vychází ze dvou základních předpokladů:

1. prvním předpokladem je Markovův náhodný proces, který vychází z toho, že predikované ceny jsou ovlivněny pouze cenou aktuální a nikoli historickými cenami,
2. druhý předpoklad představuje nezávislost změny cen v čase.

Wienerův proces je definován takto:

\[\tilde{z}_t - z_0 = dz = \tilde{z} \cdot \sqrt{dt}, \]

kde \(\tilde{z} \) je náhodná proměnná z normovaného normálního rozdělení \(\Phi(0;1) \), střední hodnota, rozptyl a směrodatná odchylka jsou definovány takto:

\[
\begin{align*}
E(dz) &= 0, \\
\text{var}(dz) &= t, \\
\sigma(dz) &= \sqrt{t}.
\end{align*}
\]

V CorporateMetrics metodologii se za účelem modelování tržních cen používá několik základních typů modelů. Mezi ty nejzákladnější patří model náhodné procházky, který reprezentují Brownovy procesy, a dále Mean – Reversion modely, které se vyznačují dlouhodobou rovnováhou, ke které se sledovaná veličina postupem vývoje přibližuje.³

V rámci finančního modelování vybrané metodologie se provádí modelování tržních cen, odhad predikčního modelu a jeho statistická verifikace. Po stanovení modelu se předpovídají budoucí hodnoty zvoleného finančního výsledku a po zjištění dané hodnoty se aplikuje metodologie Value at Risk, v tomto případě Earnings at Risk.

V následujících podkapitolách jsou charakterizovány jednotlivé části procesu finančního modelování v rámci CorporateMetrics metodologie.

2.2.1 Cenové změny v čase

Finanční modely se používají jako popisný nástroj skutečného vývoje tržních cen a to za pomocí odpovídajícího matematického modelu, který je schopen co nejpřesněji odrážet skutečný vývoj vybrané tržní ceny. Aby bylo možné odhadnout nejvhodnější model pro predikci změn cen do budoucna, je nutné nejprve vyjádřit cenovou změnu na základě historických časových řad dané ceny, přičemž každá změna ceny v čase má své rozdělení pravděpodobnosti, které je také nutné stanovit ještě před odhadem samotného modelu.

Cenové změny tržních veličin mají různé podoby, jedná se hlavně o absolutní cenovou změnu, relativní změnu ceny nebo logaritmickou změnu ceny. Cenová změna, která je definována relativně k nějaké počáteční ceně vyjadřuje výnos či ztrátu dané ceny.

Absolutní cenová změna je označována jako \(D_t \) a je definována mezi časem \(t \) a \(t-1 \) následovně:

\[
D_t = P_t - P_{t-1}.
\]

kde P_t je cena v čase t a P_{t-1} je cena v čase $t-1$. Tyto cenové změny se v rámci finančního modelování využívají spíše výjimečně, protože nevyjadřují výnos, který je žádoucí pro další výpočty.

Relativní změna ceny je označována také jako procentní neboli diskrétní výnos R_t, který je definován takto:

$$ R_t = \frac{P_t - P_{t-1}}{P_{t-1}}, $$

(7)

kde P_t je cena v čase t a P_{t-1} je cena v čase $t-1$, R_t je výše zmiňovaný diskrétní výnos.

Logaritmická změna ceny v čase L_t, neboli spojitý výnos ceny, je definován za předpokladu, že celkový hrubý výnos se rovná výrazu $(1+R_t)$ a lze jen vyjádřit takto:

$$ L_t = \ln(1 + R_t) = \ln\left(\frac{P_t}{P_{t-1}}\right) = p_t - p_{t-1}, $$

(8)

kde p_t je přirozený logaritmus ceny P_t a p_{t-1} je přirozený logaritmus ceny P_{t-1}. V metodologii CorporateMetrics se používá v převážné většině právě logaritmický výnos nebo logaritmická cenová změna.

2.2.2 Rozdělení pravděpodobnosti

V předchozí podkapitole 2.2.1 bylo zmíněno, že každá cenová změna v čase může mít různá rozdělení pravděpodobnosti. Pro modelování tržních cen v rámci metodologie CorporateMetrics v této práci jsou zapotřebí následující typy rozdělení pravděpodobnosti.

2.2.2.1 Normální rozdělení pravděpodobnosti

Toto rozdělení pravděpodobnosti je nejdůležitějším rozdělením spojité náhodné veličiny. Normální rozdělení pravděpodobnosti má velký význam jak v teorii pravděpodobnosti, tak i v matematické statistice. Používá se všude, kde kolísání náhodné veličiny je zapříčiněno součtem velkého množství nepatrných a vzájemně nezávislých jevů. Normální rozdělení je označováno symbolem $N(\mu; \sigma^2)$ a obsahuje dva parametry, kterými jsou μ (střední hodnota) a σ^2 (rozptyl), kde $-\infty < \mu < \infty$ a $\sigma^2 > 0$. Náhodná veličina \tilde{z} má normální rozdělení pravděpodobnosti, pokud funkce hustoty pravděpodobnosti $f(\tilde{z})$ je dána takto:

$$ f(\tilde{z}) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \exp\left(- \frac{(\tilde{z} - \mu)^2}{2 \cdot \sigma^2}\right), $$

(9)

\[\text{CIPRA, T. (2000)}\]
kde \(\exp(x) = e^x \) a \(e \approx 2,718 \); \(\mu \) a střední hodnota, která určuje umístění vrcholu rozdělení nebojší maximum funkce, \(\sigma^2 \) je rozptyl, který ovlivňuje tvar funkce a \(\pi \approx 3,1416 \). Parametry střední hodnoty a rozptylu jsou definovány takto:

\[
\mu = E[\bar{z}_t], \tag{10}
\]

\[
\sigma^2 = E[(\bar{z}_t - \mu)^2]. \tag{11}
\]

kde všechny veličiny obsažené ve výše uvedených ve dvou vzorcích jsou popsány výše. Distribuční funkce normálního rozdělení pravděpodobnosti \(F(\bar{z}_t) \) je definována jako:

\[
F(\bar{z}_t) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(\bar{z}_t - \mu)^2}{2\sigma^2}\right), \tag{12}
\]

kde \(dt \) představuje přírůstek v čase a ostatní veličiny jsou vysvětleny v předešlých vzorcích.

2.2.2.2 Normované – normální rozdělení pravděpodobnosti

Normované normální rozdělení pravděpodobnosti je zvláštním normálním rozdělením, které je označováno jako \(\Phi(0;1) \) a má parametry \(\mu = 0 \) a \(\sigma^2 = 1 \). Náhodná veličina \(\bar{z}_t \) má normované normální rozdělení pravděpodobnosti, jestliže hustota pravděpodobnosti \(\phi(\bar{z}_t) \) je definována následujícím způsobem:

\[
\phi(\bar{z}_t) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(\bar{z}_t)^2}{2}\right), \tag{13}
\]

kde \(\exp(x) = e^x \) a \(e \approx 2,718 \), \(\pi \approx 3,1416 \).

Normované normální rozdělení má distribuční funkci \(\Phi(\bar{z}_t) \) ve tvaru:

\[
\phi(\bar{z}_t) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(\bar{z}_t)^2}{2}\right) \cdot dt, \tag{14}
\]

kde výše uvedené veličiny jsou již vysvětleny v předchozích definičních vztazích.

2.2.2.3 Logaritmicko – normální rozdělení pravděpodobnosti

Jsou-li použity logaritmické (spojité) změny \(L_t \), které mají normální rozdělení pravděpodobnosti, cena \(P_t \) má tedy potom logaritmico – normální rozdělení pravděpodobnosti, přičemž hustota této pravděpodobnosti je všeobecně vyjádřena takto:
\[
f(P_t) = \frac{1}{P_{t-1} \cdot \sigma \cdot \sqrt{2 \cdot \pi}} \cdot \exp \left(-\frac{\ln(P_{t-1} - \mu)^2}{2 \cdot \sigma^2} \right),
\]

kde \(P_{t-1} > 0 \), ostatní veličiny jsou popsány výše. Parametry střední hodnoty a rozptylu jsou v logaritmicko – normálním rozdělení pravděpodobnosti definovány takto:

\[
E(P_t) = \exp \left[\mu + 5 \cdot \sigma^2 \right],
\]

\[
\sigma^2(P_t) = \left[\exp \left(2 \cdot \mu \right) \cdot \exp \left(2 \cdot \sigma^2 \right) - \exp \left(\sigma^2 \right) \right].
\]

V aplikačně - ověřovací části práce se vychází ze všech uvedených rozdělení pravděpodobnosti, ale především z logaritmicko – normálního rozdělení, protože jsou použity spojitě nebo logaritmické výnosy kurzů.\(^5\)

2.2.3 Model náhodné procházky

Model náhodné procházky patří mezi stochastické procesy a je často aplikován ve finančním modelování. Uvedený model je využíván nejčastěji u simulací náhodného vývoje cen akcií nebo měnových kurzů. Zvláštním případem stochastického procesu je Geometrický Brownův model, který je představitelem právě modelu náhodné procházky.

U tohoto modelu se cena vyvíjí exponenciálním trendem, který má velké uplatnění ve finančním modelování a je definován takto:

\[
dP = \tilde{\alpha} \cdot P \cdot dt + \sigma \cdot P \cdot d\tilde{\varepsilon},
\]

což se dá zapsat i tak, aby byla patrná interpretace jednotlivých parametrů i celkového procesu:

\[
\frac{dP}{P} = \tilde{\alpha} \cdot dt + \sigma \cdot d\tilde{\varepsilon},
\]

kde \(P \) je tržní cena, \(\tilde{\alpha} \) je trendový parametr, který uvádí zpravidla průměrný roční výnos, \(\sigma \) je směrodatná odchylka (zpravidla roční), \(d\tilde{\varepsilon} \) je náhodná složka, která je rovna součinu \(\tilde{\varepsilon} \cdot \sqrt{dz} \), kde \(\tilde{\varepsilon} \) je náhodná proměnná z normovaného normálního rozdělení a představuje Wienerův proces.

2.2.3.1 Geometrický Brownův model s logaritmickými cenami

Jak již bylo zmíněno v podkapitole 2.2.1, v metodologii CorporateMetrics se využívají především logaritmické cenové změny L_t neboj spojitý výnos. Z tohoto důvodu se tato podkapitola věnuje právě Geometrickému Brownovu modelu s logaritmickými cenami, který je významným modelem využívaným například při analytickém oceňování opcí či predikci vývoje měnových kurzů. Model předpokládá, že proměnná (tržní cena či kurz) se vyvíjí podle procesu uvedeného v (15). Za tohoto předpokladu se dá Geometrický Brownův model definovat následovně:

$$
\frac{d \ln P}{dt} = \hat{\alpha} \cdot dt + \sigma \cdot d\tilde{z},
$$

(20)

kde $\hat{\alpha}$ je trendovým koeficientem, σ je směrodatná odchylka, $d\tilde{z}$ je náhodná složka, která se rovná součinu $\tilde{z} \cdot \sqrt{dt}$, kde \tilde{z} je náhodná proměnná z normovaného normálního rozdělení pravděpodobnosti.

Trendový parametr $\hat{\alpha}$ je stanoven metodou nejméně čtverců, jejíž podstatou je minimalizace rozdílu čtverců mezi skutečnými spojitými výnosy (L_t) a modelovanými spojitými výnosy, které jsou definovány takto:

$$
\text{Modelovaný spojitý výnos} = (\hat{\alpha} \cdot P_t),
$$

(21)

poté je možné metodu nejméně čtverců popsát následovně:

$$
\sum_{t=1}^{T} \left[L_t - (\hat{\alpha} \cdot P_t) \right]^2 = \sum_{t=1}^{T} \epsilon_t^2 \rightarrow \min,
$$

(22)

kde ϵ_t je reziduum v čase t, které udává rozdíl mezi skutečným spojitým a modelovaným spojitým výnosem.

Dalším parametrem modelu je směrodatná odchylka σ, kterou lze definovat následujícím způsobem:

$$
\sigma = \frac{\hat{\sigma}}{dt}, \text{ kde }
$$

(23)

$$
\hat{\sigma} = \sqrt{\frac{1}{N} \cdot \sum_{t=1}^{T} \left[L_t - (\hat{\alpha} \cdot P_t) \right]^2} = \sqrt{\frac{1}{N} \cdot \sum_{t=1}^{T} \epsilon_t^2},
$$

(24)

kde $\hat{\sigma}$ je roční směrodatná odchylka a ostatní použité veličiny jsou již vysvětleny výše.
Pro předpověď tržních cen je zapotřebí stanovit simulace tržních cen, střední hodnotu a kvantily logaritmico – normálního rozdělení pravděpodobnosti.

Simulace predikce náhodného vývoje tržních cen podle Geometrického Brownova modelu je vyjádřena takto:

\[P_t = P_{t-1} \cdot \exp\left(\tilde{\alpha} \cdot dt + \sigma \cdot d\tilde{\varepsilon}\right), \] (25)

kde všechny veličiny jsou vysvětleny u předchozích vzorců.

Střední hodnotu tržní ceny lze zapsat takto:

\[E(P_t) = P_{t-1} \cdot \exp(\tilde{\alpha} \cdot T), \] (26)

kde \(T = dt \cdot n \), kde \(n \) je počet proměnných, ostatní veličiny jsou vysvětleny výše.

Hodnotu kvantilu na hladině pravděpodobnosti \(\lambda \) z logaritmico – normálního rozdělení lze definovat následujícím způsobem:

\[P_{\lambda} = P_{t-1} \cdot \exp\left(\tilde{\alpha} \cdot T + \Phi^{-1}(\lambda) \cdot \sigma \cdot \sqrt{T}\right), \] (27)

kde \(\Phi^{-1} \) je inverzní funkce k distribuční funkci normovaného normálního rozdělení na hladině pravděpodobnosti (významnosti) \(\lambda \). Ostatní veličiny jsou vysvětleny výše.\(^6\)

2.2.4 Mean – Reversion model

Modelu náhodné procházky nelze využít pro predikci vývoje u všech veličin, protože u některých vybraných veličin, jako jsou úrokové sazby nebo ceny komodit, se objevuje v delším časovém období sklon k návratu k dlouhodobé rovnovážné hodnotě (rovnovážné ceně). Takovéto stochastické procesy se označují jako Mean – Reversion procesy (modely). V reverzních modelech jsou obsaženy dva základní parametry, kterými jsou parametr \(b \) představující dlouhodobou rovnováhu a parametr \(a \), který znázorňuje rychlost přibližování se aktiva (proměnné) k dlouhodobé rovnováze. Všechny reverzní procesy obsahují specifický Wienerův proces, přičemž nej jednoduší model podle Mean – Reversion procesu lze zapsat takto:

\[dP = a \cdot (b - P) \cdot dt + \sigma \cdot d\tilde{\varepsilon}, \] (28)

kde parametr \(a \) vyjadřuje rychlost přibližování se proměnné k dlouhodobé rovnováze, \(b \) vyjadřuje dlouhodobou rovnováhu, \(\sigma \) představuje směrodatnou odchylku, \(d\tilde{\varepsilon} \) je náhodná

složka modelu, která se rovná součinu \(\ddot{z} \cdot \sqrt{dt} \), kde \(\ddot{z} \) je náhodná proměnná z normovaného normálního rozdělení pravděpodobnosti.

Výchozí parametry \(a \) a \(b \) lze získat pomocí převedení reverzního modelu na jeho lineární tvar, jehož pomocí se stanoví nezávislé lineární parametry, kterými se poté zpětně vyjádří výchozí parametry Mean – Reversion modelu. Lineární tvar modelu je vyjádřen takto:

\[
dP = \ddot{\alpha} + \dddot{\beta} \cdot P + \sigma \cdot d\ddot{z},
\]

kde \(\ddot{\alpha} \) a \(\dddot{\beta} \) jsou nezávislými parametry a jsou stanoveny pomocí metody nejmenších čtverců, která byla vysvětlena v podkapitole 2.2.3.1. Modelované spojité výnosy pro tento model se definují následujícím způsobem:

\[
\text{Modelované spojité výnosy} = \ddot{\alpha} + \dddot{\beta} \cdot P,
\]

poté lze získat následující vztah pro vyjádření metody nejmenších čtverců:

\[
\sum_{t=1}^{T} \left[L_t - (\ddot{\alpha} + \dddot{\beta} \cdot P_t) \right]^2 = \sum_{t=1}^{T} \varepsilon_t^2 \rightarrow \min,
\]

kde \(\varepsilon_t \) je reziduum v čase \(t \), které udává rozdíl mezi skutečným spojitým a modelovaným spojitým výnosem.

S využitím nezávislých lineárních parametrů \(\ddot{\alpha} \) a \(\dddot{\beta} \) se dopočítají i výstupní parametry Mean – Reversion modelu a to níže uvedenými způsoby:

\[
a = -\dddot{\beta} / dt, \tag{32}
\]
\[
b = \ddot{\alpha} / a / dt, \tag{33}
\]

kde všechny použitá proměnná jsou vysvětleny výše.

Směrodatná odchylka Mean – Reversion modelu pro zvolený časový interval se spočítá takto:

\[
\sigma = \dot{\sigma} / dt, \tag{34}
\]

kde \(\dot{\sigma} = \sqrt{\frac{1}{N} \cdot \sum_{t=1}^{T} \left[L_t - (\ddot{\alpha} + \dddot{\beta} \cdot P_t) \right]^2} = \sqrt{\frac{1}{N} \cdot \sum_{t=1}^{T} \varepsilon_t^2}, \tag{35}
\]

kde všechny použité parametry a veličiny jsou vysvětleny již ve vztahu (30).\(^7\)

\(^7\) ZMEŠKAL, Z. (2004)
2.2.5 Statistická verifikace modelu

Významnou součástí celého procesu finančního modelování jsou statistické testy nebo statistická verifikace odhadnutého modelu. Tato verifikace slouží ke stanovení statistické významnosti modelu jako celku (F–test) nebo ke zjištění statistické významnosti jednotlivých odhadnutých a vypočtených parametrů daného modelu (t–test). Obecně lze říci, že pokud většina parametrů modelu vyjde jako statisticky nevýznamná podle t-testu, je velmi pravděpodobné, že model jako celek bude taktéž statisticky nevýznamný a tedy nevhodný pro další použití v rámci finančního modelování.

Následující dvě podkapitoly se zabývají charakteristikou a podstatou výše zmíněných statistických testů.

2.2.5.1 Test statistické významnosti parametrů modelu (t - test)

T – test slouží k určení statistické významnosti jednotlivých parametrů modelu. Je založen na přijetí či zamítnutí dvou stanovených hypotéz, nulové hypotézy H_0 a alternativní hypotézy H_a.

Základní hypotézou je nulová hypotéza H_0, která je na základě výsledků t–statistiky, která je obsažena v regresní analýze modelu, buďto zamítnuta nebo přijata. Pokud je H_0 zamítnuta, přijímá se alternativní hypotéza H_a.

Nulová hypotéza je založena na tvrzení, že všechny parametry modelu jsou rovny nule a jsou tedy statisticky nevýznamné. Neměly by být zařazeny do modelu. Nulová hypotéza se dá vyjádřit takto:

$$H_0 : \tilde{\alpha}, \tilde{\beta} = 0,$$

(36)

kde $\tilde{\alpha}$ i $\tilde{\beta}$ jsou testované odhadnuté parametry daného modelu.

Alternativní hypotéza je tedy založena na tvrzení, že alespoň jeden z testovaných parametrů modelu je statisticky významný. Alternativní hypotéza se dá vyjádřit následovně:

$$H_a : \tilde{\alpha} \neq 0; \tilde{\beta} \neq 0,$$

(37)

kde obě použité proměnné jsou vysvětleny výše.

T – test je prováděn pomocí t – statistiky a je předpokládáno, že zminěná statistika má Studentovo rozdělení pravděpodobnosti s df – stupni volnosti.

$$t_{df} = \frac{\tilde{\alpha}, \tilde{\beta} - 0}{SE_{\tilde{\alpha}, \tilde{\beta}}},$$

(38)

kde $SE_{\tilde{\alpha}, \tilde{\beta}}$ je odhad směrodatné odchylky koeficientů $\tilde{\alpha}, \tilde{\beta}$.
Vyhodnocovací pravidlo je založeno na porovnávání dvou parametrů, $t^{\text{vyp}} (t - \text{statistika}) \Rightarrow t$ - vypočtené a $t^{\text{krit}} (t - \text{kritické})$ určující percentil $t - \text{statistiky na dané úrovni významnosti } \lambda$,

$$t^{\text{vyp}} = \frac{\hat{\alpha} - \hat{\beta}}{SE_{\hat{\alpha}, \hat{\beta}}} ,$$

$$t^{\text{krit}} = \frac{\lambda}{2} ,$$

kde ST je distribuční funkce Studentova rozdělení pravděpodobnosti a $ST^{-1}_{\lambda/2} df$ je tedy inverzní funkce na hladině pravděpodobnosti $\frac{\lambda}{2}$ a stupňů volnosti df.

Rozhodovacím pravidlem pro t–test je zamítnutí nebo přijetí nulové hypotézy H_0. Zamítnutí nulové hypotézy a tedy přijeté alternativní hypotézy lze znázornit dvěma způsoby:

pokud je $|t^{\text{vyp}} df| > t^{\text{krit}}_{\lambda/2} df$, pak se H_0 zamítá anebo

jestliže je $\text{Hodnota } P_{df} < \lambda$, pak se H_0 zamítá.

Zamítnutí nulové hypotézy znamená, že vypočítaný koeficient (parametr) leží v kritické oblasti, je statisticky významný a měl by být zařazen do odhadovaného modelu.

V případě přijetí nulové hypotézy a odmítnutí alternativní hypotézy platí stejné rozhodovací pravidlo, ale s opačnými znaménky nerovnosti. Pokud je přijata nulová hypotéza znamenalo by to statistickou nevýznamnost propočtených koeficientů a následně i celého odhadnutého modelu.

2.2.5.2 Test statistické významnosti modelu jako celku (F–test)

Tento test je využíván za účelem zjištění statistické významnosti odhadnutého modelu jako celku, tedy včetně všech propočtených parametrů (koeficientů). Stejně jako u t–testu je základem stanovení nulové hypotézy H_0 a alternativní hypotézy H_a, která je přijata v důsledku odmítnutí nulové hypotézy.

U F–testu je nulová hypotéza interpretována tak, že všechny parametry daného modelu jsou rovny nule a tudíž je následně i celý model statisticky nevýznamný.

$H_0 : \hat{\alpha} = \hat{\beta} = 0 ,$

alternativní hypotéza je potom stanovena tak, že alespoň jeden z testovaných parametrů vybraného modelu je nенulový a daný model je tedy statisticky významný,

$H_a : \hat{\alpha} \neq 0$ nebo $\hat{\beta} \neq 0 .$
K tomuto testu slouží základní analýza ANOVA (analýza celkového rozptylu), která je součástí regresní analýzy, jejíž výsledky jsou podklady pro statistickou verifikaci. Test je konstruován na bázi F – statistiky za předpokladu, že tato statistika má Fisherovo rozdělení pravděpodobnosti,

\[
F = \frac{ESS / df_{ESS}}{RSS / df_{RSS}} = \frac{MS_{ESS}}{MS_{RSS}},
\]

kde ESS je rozptyl vysvětlený regresí, RSS je rozptyl přiřazen reziduálnímu rozptylu nevysvětlenému regresí, \(df \) jsou stupně volnosti, \(MS_{ESS} \) je průměrný vysvětlený rozptyl a \(MS_{RSS} \) je průměrný reziduální rozptyl.

Vyhodnocení statistické významnosti modelu pomocí F – testu je založeno na porovnání hodnoty \(F^{\text{vyp}} \) (F – vypočítané, F – statistika) a \(F^{\text{krit}} \) (F – kritické). Vychází se z předpokladu, že F – statistika má Fisherovo rozdělení pravděpodobnosti,

\[
F^{\text{vyp}}_{df_{ESS}, df_{RSS}} = \frac{MS_{ESS}}{MS_{RSS}}, \quad (45)
\]

\[
F^{\text{krit}}_{\lambda, df_{ESS}, df_{RSS}} = \text{FISH}^{-1}_{\lambda, df_{ESS}, df_{RSS}}(\lambda), \quad (47)
\]

kde \(F^{\text{crit}} \) je distribuční funkce Fisherova rozdělení, \(F^{\text{crit}}_{\lambda, df_{ESS}, df_{RSS}} \) je inverzní funkce na hladině pravděpodobnosti \(\lambda \).

Hodnota \(P_{df_{ESS}, df_{RSS}} = \lambda^{\text{vyp}} = F^{\text{vyp}}_{df_{ESS}, df_{RSS}} \left(F^{\text{crit}}_{\lambda, df_{ESS}, df_{RSS}} \right) \). \quad (48)

Rozhodovací pravidlo pro F – test lze zformulovat buď jako zamítnutí nebo jako přijetí nulové hypotézy což by znamenalo přijetí či zamítnutí alternativní hypotézy. Zamítnutí nulové hypotézy se dá ověřit následujícíma dvěma způsoby.

Jestliže \(F^{\text{vyp}}_{df_{ESS}, df_{RSS}} > F^{\text{krit}}_{\lambda, df_{ESS}, df_{RSS}} \), pak se zamítá \(H_0 \) a přijímá \(H_a \), nebo také pokud \(\lambda \leq \lambda^{\text{vyp}} \).

Hodnota \(P_{df_{ESS}, df_{RSS}} < \lambda^{\text{krit}} \), pak se zamítá nulová hypotéza a přijímá \(H_a \). \quad (50)

Zamítnutím nulové hypotézy je ověřeno, že odhadovaný model je statisticky významný včetně všech svých parametrů a je také ověřena významná závislost mezi náhodnými proměnnými.

V případě přijetí nulové hypotézy a odmítnutí alternativní hypotézy platí stejné rozhodovací pravidlo, ale s opačnými znaménky nerovnosti.
Pokud je přijata nulová hypotéza znamenalo by to, že odhadnutý model je statisticky nevýznamný.\(^8\)

2.3 Value at Risk

Metoda Value at Risk je velmi rozvinutou a v praxi často používanou metodou, sloužící k eliminaci potencionálních velkých ztrát. Velkou předností této metody je, že převádí všechna rizika na společného jmenovatele, kterým je změna hodnoty portfolia aktiv. Samotný pojem Value at Risk (VaR) představuje hodnotu rizika, která je definována jako nejmenší predikovaná ztráta na zadané hladině rizika (pravděpodobnosti) za určitou časovou periodu.\(^9\) Úroveň rizika je zde vyjádřena jako ztráta. Metodu VaR používají již od 80. let 20. století velké americké banky k eliminaci možných rizik plynoucích z jejich podnikání, protože VaR vyčísluje ekonomické ztráty bez ohledu na rizikovou kategorii.

Matematicky je VaR definována jako jednostranný kvantil (například 95%) z rozdělení zisků a ztrát portfolia za určitou dobu držení, stanovený na základě určitého historického období. Ke správnému výpočtu Value at Risk je zapotřebí správného ocenění celého portfolia při různých scenářích. VaR slouží k měření rizika a odstraňuje dva základní nedostatky, které mají standardní metody měření rizika, protože bere v úvahu korelace mezi jednotlivými kategoriemi rizik a také mezi samotnými rizikovými faktory. Na druhou stranu VaR neberou v úvahu užitek z diverzifikace různých rizik ve stejném portfoliu.\(^10\) Základní úvaha při určení VaR vychází z toho, že zisk se dá vyjádřit jako záporná ztráta. Formálně lze předchozí úvahu zapsat takto:

\[
\Pr(\Delta \bar{\Pi} \leq \pm ZISK) = \lambda .
\]

(51)

Protože úroveň rizika je v metodě VaR vyjádřena jako ztráta, představuje Value at Risk hodnotu této ztráty. V případě, že je zisk vyjádřen jako záporná ztráta (ZISK = -VaR), lze předchozí výše uvedenou rovnici upravit následovně:

\[
\Pr(\Delta \bar{\Pi} \leq -ZISK) = \lambda ,
\]

(52)

takto vypadá výchozí rovnice pro odvození hodnoty VaR.\(^11\)

\(^8\) ZMEŠKAL, Z. (2004)
\(^10\) JÍLEK, J. (2000)
2.3.1 Metody výpočtu Value at Risk

Mezi tři nejpoužívanější metody stanovení VaR patří metoda variancí a kovariancí, metoda historické simulace a metoda Monte Carlo, přičemž je nutné vědět, že všechny vyjmenované metody jsou omezeny předpokladem, že budoucí riziko lze předpovědět na základě historického rozdělení výnosů.

2.3.1.1 Metoda variancí a kovariancí

Tato metoda je nazývána také jako tzv. parametrická metoda, která při odhadu potenciálních ztrát portfolia v budoucnosti využívá statistiky o volatilitách hodnot v minulosti a korelací mezi jejich změnami. Volatilita i korelace se stanovují pro zvolenou dobu držení i historické období za pomoci historických údajů. VaR odvozuje změny hodnoty portfolia podle rozdělení pravděpodobnosti rizikových faktorů.

Zpravidla se vychází z nejjednodušší formy parametrické simulace, která předpokládá, že změny rizikových faktorů mají normální rozdělení a korelace změn rizikových faktorů jsou stabilní. Model je ovšem velmi náročný na informační požadavky.

Metoda variancí a kovariancí je přesná pro tradiční aktiva, jako jsou akcie, měny, obligace či komodity a lineární deriváty, jako je FRA nebo měnový swap, ale méně přesná pro nelineární deriváty.

2.3.1.2 Metoda historické simulace

V rámci této metody se počítají potenciální budoucí ztráty na základě údajů o minulých hodnotách, tedy konkrétně na základě ztrát, které by společnost měla v minulosti u vybraného portfolia. V případě metody historické simulace se na rozdíl od parametrické metody simulují potenciální ztráty bez aplikace jakýchkoli předpokladů o rozdělení, tedy pro stanovený historický scénář, ale bez ohledu na jeho pravděpodobnost.
Výhodou této metody oproti předchozí metodě je také to, že nečiní žádné předpoklady ani o explicitní či stabilní korelací mezi rizikovými faktory. Další výhodou metody je, že nemá problém s nelinearitou, jakou jsou například opce.

Nevýhodou je potřeba velkého množství historických simulací a problém plného nevyužívání dostupných informací.

Historická simulace počítá změnu hodnoty portfolia na základě skutečných historických hodnot daných rizikových faktorů a výstupem této simulace je časová řada zisků a ztrát, ke kterým by došlo, pokud by společnost držela portfolio po určité období v minulosti. Extrémní tržní ceny jsou lépe zachyceny historickou simulací než parametrickými VaR.

2.3.1.3 Metoda Monte Carlo

V tomto případě se jedná o tzv. stochastickou simulaci, kdy se k odhadu VaR používá velký počet simulací vývoje hodnoty portfolia. Tento rozsáhlý počet simulací je určen velkým počtem náhodně vygenerovaných rizikových faktorů, u nichž existují známá rozdělení (většinou normované normální rozdělení pravděpodobnosti). Stochastická simulace může generovat vysoce pravděpodobné odhady VaR, přičemž může obsahovat nejnovější informace a historické údaje mít pouze jako vstupní data.

Metoda testuje jednodenní změnu hodnoty portfolia na základě velkého počtu nahodilé zvolených kombinací různých situací rizikových faktorů, pravděpodobnosti jsou založeny na historické zkušenosti. Metoda Monte Carlo modeluje stochastické procesy, které jsou charakteristické tím, že obsahují lidskou volbu nebo pracují s neúplnými informacemi. Tato flexibilní metoda je určena především pro nástroje s nelineárním průběhem hodnot, stejně jako metoda historické simulace.

Metoda Monte Carlo je velmi podobná metodě historické simulace, jediný rozdíl je v tom, jak obě metody generují rizikové faktory. Monte Carlo generuje náhodné scénáře, zatímco historická simulace vychází ze scénářů v minulosti.\(^{12}\)

 Nelze říci, která z uvedených metod je ta nejvhodnější, avšak pro aplikaci světovou ověřovací část práce byla použita poslední uvedení metoda Monte Carlo neboli stochastická simulace, která se skládá ze tří základních kroků:

1. generování scénářů, kde se s využitím volatilit a korelací generuje velký počet scénářů budoucích tržních cen (rizikový faktor),

\(^{12}\) JÍLEK, J. (2000)
2. ocenění rizik, kdy jsou vypočteny konečné hodnoty jednotlivých vygenerovaných scénářů,
3. shrnutí, v němž jsou vyjádřeny výsledky simulací, ať už v podobě rozdělení pravděpodobnosti nebo stanovenou mírou rizika.

Při praktickém využití metody Monte Carlo jsou vypočítané výnosy tržních sazeb velmi často korelovány, přičemž míru těsnosti korelační závislosti mezi dvěma náhodnými proměnnými představuje koeeficient korelace \(\rho_{i,j} \) nebo normovaná kovariance, který se dá vyjádřit následujícím definičním vztahem:

\[
\rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \cdot \sigma_j},
\]

kde \(\sigma_{i,j} \) je kovariance, \(\sigma_i \) je směrodatná odchylka \(i \) – tého aktiva a \(\sigma_j \) je směrodatná odchylka \(j \) – tého aktiva. Korelační hodnoty se nacházejí v intervalu od \(-1\) do \(1\), kde \(-1\) představuje absolutní zápornou statistickou závislost propočitaných veličin a \(1\) je naopak absolutní kladná statistická závislost těchto veličin. Pokud je koeeficient korelace roven \(0\), pak mezi vybranými veličinami neexistuje žádná statistická závislost.

Dalším potřebným koeeficientem pro aplikaci stochastické simulace je kovariance, která se označuje jako \(\sigma_{i,j} \) a vyjadřuje statistickou závislost mezi počítanými proměnnými, vyjádřit se dá se takto:

\[
\sigma_{i,j} = \frac{1}{N} \sum_{t=1}^{N} [(L_{t,i} - \mu_i) \cdot (L_{t,j} - \mu_j)],
\]

kde \(L_{t,i} \) je spojitý výnos aktiva \(i \) a \(\mu_i \) je střední hodnota výnosu \(i \) – tého aktiva. U aktiva \(j \) platí stejné vysvětlení použitých proměnných jako u předešlého aktiva \(i \).

Kovariance může nabývat hodnot od \(-\infty\) až po \(+\infty\), přičemž platí, že čím vyšší hodnota koeeficientu kovariance, tím je statistická závislost mezi danými proměnnými větší.

Nezávislé náhodné proměnné \(\tilde{z}_i \) z normovaného normálního rozdělení pravděpodobnosti, které jsou vygenerovány v rámci prvního kroku metody stochastické simulace, je třeba upravit do takové podoby, aby bylo dosaženo požadovaných korelací mezi rizikovými proměnnými.
V aplikaci - ověřovací části práce se tato úprava provede pomocí vygenerování náhodného vektoru prvotních faktorů \tilde{z}, podle Choleskeho algoritmu následujícím způsobem:

$$\tilde{z}_i^T = \tilde{z}_i \cdot P,$$

(55)

kde \tilde{z}_i představuje vektor nezávislých náhodných proměnných z rozdělení $\Phi(0;1)$, P je horní trojúhelníková matice pro čtyři proměnné odvozená od kovarianční matice C a \tilde{z}_i^T je transponovaný vektor \tilde{z}_i. Vztah mezi maticí P a maticí C je následující:

$$C = P \cdot P^T,$$

(56)

kde P^T je transponovaná matice P. Horní trojúhelníková matice P pro čtyři proměnné má tento obecný tvar:

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ 0 & p_{22} & p_{23} & p_{24} \\ 0 & 0 & p_{33} & p_{34} \\ 0 & 0 & 0 & p_{44} \end{bmatrix},$$

(57)

Jednotlivé prvky horní matice P se počítají podle následujících vzorců:

$$p_{11} = \sqrt{\sigma_{11}} = \sigma_1,$$

(58)

$$p_{12} = \frac{\sigma_{12}}{\sigma_1},$$

(59)

$$p_{13} = \frac{\sigma_{13}}{\sigma_1},$$

(60)

$$p_{14} = \frac{\sigma_{14}}{\sigma_1},$$

(61)

$$p_{22} = \sqrt{\sigma_{22} - p_{12}^2},$$

(62)

$$p_{23} = \frac{1}{p_{22}} \cdot (\sigma_{23} - p_{12} \cdot p_{13}),$$

(63)

$$p_{24} = \frac{1}{p_{22}} \cdot (\sigma_{24} - p_{12} \cdot p_{14}),$$

(64)

$$p_{33} = \sqrt{\sigma_{33} - p_{13}^2 - p_{23}^2},$$

(65)

$$p_{34} = \frac{1}{p_{33}} \cdot (\sigma_{34} - p_{13} \cdot p_{14} \cdot p_{23} \cdot p_{24}),$$

(66)

$$p_{44} = \sqrt{\sigma_{44} - p_{13}^2 - p_{23}^2 - p_{24}^2}.$$

(67)
Vektor náhodných proměnných včetně zohledněné korelace \(\mathbf{z}_t \) je sestaven na základě výše uvedené rovnice (55). Pro lepší srozumitelnost jsou uvedeny rovnice těchto vektorů pro každý rizikový faktor zvláště, a protože v práci jsou simulovány vývoje čtyř proměnných, tak se bude jednat o vektory \(\mathbf{z}_1^T, \mathbf{z}_2^T, \mathbf{z}_3^T \) a \(\mathbf{z}_4^T \), které jsou vyjádřeny pomocí následujících rovnic:

\[
\begin{align*}
\mathbf{z}_1^T & = (\tilde{z}_1 \cdot p_{11}) + (\tilde{z}_2 \cdot p_{12}) + (\tilde{z}_3 \cdot p_{13}) + (\tilde{z}_4 \cdot p_{14}), \\
\mathbf{z}_2^T & = (\tilde{z}_1 \cdot p_{21}) + (\tilde{z}_2 \cdot p_{22}) + (\tilde{z}_3 \cdot p_{23}) + (\tilde{z}_4 \cdot p_{24}), \\
\mathbf{z}_3^T & = (\tilde{z}_1 \cdot p_{31}) + (\tilde{z}_2 \cdot p_{32}) + (\tilde{z}_3 \cdot p_{33}) + (\tilde{z}_4 \cdot p_{34}), \\
\mathbf{z}_4^T & = (\tilde{z}_1 \cdot p_{41}) + (\tilde{z}_2 \cdot p_{42}) + (\tilde{z}_3 \cdot p_{43}) + (\tilde{z}_4 \cdot p_{44}),
\end{align*}
\]

kde \(\tilde{z}_1, \tilde{z}_2, \tilde{z}_3 \) a \(\tilde{z}_4 \) jsou nezávislé normované normálně rozložené hodnoty vektoru \(\mathbf{z}_t \).

Pokud se pracuje s logaritmickými cenovými změnami \(L_t \) a změny náhodných veličin \(P_t \), se chovají podle Geometrického Brownova modelu, potom je možné vyjádřit stochastickou simulaci rizikových faktorů, které vycházejí ze vztahu (25) následovně:

\[
P_t = P_{t-1} \cdot \exp\left(\tilde{\alpha} \cdot dt + \sigma \cdot \mathbf{z}_t^T \cdot \sqrt{dt}\right).
\]

kde všechny použité proměnné jsou vysvětleny v předešlých vztazích.\(^{13}\)

V aplikačně - ověřovací části práce se pracuje pouze na základě Geometrického Brownova modelu s logaritmickými cenami, na základě kterého se simuluje pomocí metody Monte Carlo vývoj jednotlivých rizikových faktorů.

\[^{13}\text{ZMEŠKAL, Z. (2004)}\]
3 CHARAKTERISTIKA PODNIKU A JEHO FINANČNÍCH TOKŮ

V této kapitole je věnována pozornost charakteristice společnosti, jejíž vybraný finanční výsledek je základem výpočtů pro metodologii CorporateMetrics aplikované ve výrobním podniku. Tato část práce se zabývá nejen základními údaji o společnosti a postavením na trhu, ale také charakteristikou provozní činnosti podniku a výsledek hospodaření za provozní činnost společnosti.

3.1 Charakteristika společnosti ABC, s.r.o.

Společnost ABC, s.r.o. je moderní specializovaný závod na výrobu průmyslových ocelových drátů patřící do velké nadnárodní skupiny, která má své hlavní sídlo v Belgii.

Mateřská společnost byla založena v roce 1880 a v současnosti se jedná o globální firmu provozující výrobní závody v mnoha zemích světa včetně České a Slovenské republiky, disponuje rozsáhlou sítí obchodních zastoupení ve více než 120 zemích. Spolu se společnými podniky a partnery dosahuje společnost ročního obratu okolo 3 mld. eur celkem. Společnost zaměstnává kolem 18,5 tisíc zaměstnanců na celém světě. Společnost si udržuje vedoucí postavení nejen na trhu, ale i v oblasti technologie ve vybraných segmentech. Díky svému velkému rozsahu produktů v oblasti technologií, systémů a služeb nabízí celá skupina vysokou přidanou hodnotu pro nejnáročnější klienty po celém světě.

Společnost ABC, s.r.o. byla založena v roce 1996 jako společný podnik s kapitálovým podílem českého partnera ŽDB, a.s. a původně vyráběla jen výztužná vlákna do betonu v pronajatých prostorách. V roce 1998 byl uveden do provozu nový výrobní závod na výrobu pozinkovaných drátů a předchozí výroba byla postupně převedena do jiného výrobního závodu skupiny. V dubnu roku 2001 se belgická mateřská společnost stala výhradním majitelem obou výrobních podniků.

3.1.1 Předmět činnosti společnosti

Společnost ABC, s.r.o. je součástí velké nadnárodní společnosti, která má vedoucí postavení na trhu výroby průmyslových ocelových drátů. Technologické zařízení společnosti je na vysoké technologické úrovni a umožňuje při vysokém výkonu pružně přizpůsobení výrobního programu zvláštním požadavkům zákazníků. V možnostech společnosti ABC je výroba nízko, středně a vysokouhlikových drátů v rozsahu průměrů od 1,4 do 8 mm v různých
pevnostech a s různou tloušťkou žárového protikorozního povlaku. Firma usiluje o neustálou inovaci svých výrobků a technologií a to zejména v oblasti výroby drátů s progresivním povlakem, mezi které se počítají povlaky slitiny zinek a hliník nebo slitiny zinek, hliník a hořčík. Společnost také rozvíjí výrobu plochého žárově pokovovaného drátu, který se používá jako výztužný materiál do podmořských a nadzemních kabelů. Ve vývoji jsou i další modifikace žárových povlaků s lepší korozní odolností a dalšími zlepšenými vlastnostmi, jako je svařitelnost a tvárnost. Vývoj výše zmíněných povlaků probíhá v technologickém centru v Belgii a ve výrobním závodě ABC, s.r.o. pak následně probíhají praktické zkoušky a provádí se aplikační výzkum.

3.2 Provozní činnost a stávající hospodářské postavení společnosti

V souladu s globální strategií mateřské společnosti využívá závod ABC, s.r.o. veškeré příležitosti pro další trvale udržitelný růst, který je spojen s vizí společnosti o plné využitých vybudovaných kapacitách, infrastruktura a lidského potenciálu pro rozvoj trhu. Potenciál růstu je založen na vedoucím postavení skupiny na světovém trhu a na významném know – how v oborech progresivního tváření kovů, pokrokových materiálů a povlaků. Společnost ABC jako součást korporace usiluje o posílení své pozice na trhu v oblasti základních technologií. Díky spolupráci s nejnáročnějšími zákazníky a podpoře vývojového týmu KLP a centrální vývojové základny nabídlo závod ABC, s.r.o. progresivní řešení různých potřeb zákazníků. Na výzkum a vývoj věnuje mateřská společnost značné finanční prostředky.

Společnost usiluje o excelentní výsledky ve všech oblastech, ve kterých působí, jedná se tedy nejen o procesy a operace v oblasti výroby, ale také o oblast dodávání. Kromě uspokojení zákazníka je cílem společnosti také generování dostatečných zdrojů pro plnění očekávání trhů, restrukturalizaci a inovaci. V rámci plnění těchto cílů společnost usiluje o zvyšování produktivity práce a snižování nákladů při zachování vysoké jakosti a užitné hodnoty výrobků a obohacování nabízeného portfolia výrobků. Těchto cílů chce společnost dosáhnout zlepšováním manažerských, výkonných a podpůrných procesů a činností v souladu se strategií totálního řízení jakosti TQM.

Společnost věnuje velkou pozornost vytváření odpovídajících pracovních podmínek zaměstnancům podle specifik jejich pracovního zařazení a obsahu práce.
Společnost ABC, s.r.o. je v letošním roce certifikována podle normy ISO 14001, protože v současnosti má společnost nastaven vlastní systém Environment, Health and Safety, který je velice blízký výše uvedené normě.

3.2.1 Provozní výsledek hospodaření

Objem prodeje společnosti ABC, s.r.o. v roce 2008 činil 80 950 tun při tržbách 2 miliardy Kč. Společnost v roce 2008 vykázala provozní výsledek hospodaření ve výši 136 790 000 Kč a zisk po zdanění byl ve výši 115,5 milionů Kč, což je v porovnání s rokem 2007 zvýšení o 44%. Vývoj hospodaření v roce 2008 byl poznamenán vývojem situace na trhu se vstupní surovinou, tedy ocelovým drátem a poklesem poptávky v druhé polovině roku.

Přes nepříznivý celkový vývoj na trzích v roce 2008 i v roce 2009 společnost plánovala na rok 2009 objem prodejů srovnatelný se skutečností roku 2008 a dosažení kladných hospodářských výsledků, především díky zefektivnění vnitřních procesů a činností, nákladovým úsporám a důrazu na optimalizaci pracovního kapitálu společnosti. Podle interních informací se společnosti ABC, s.r.o. podařilo v roce 2009 dosáhnout přibližně stejné hodnoty provozního výsledku hospodaření jako v roce 2008.

Pro názornost je uvedena tabulka s hodnotami výsledků hospodaření za provozní činnost v letech 2000 až 2008

<table>
<thead>
<tr>
<th>Rok</th>
<th>Provozní výsledek hospodaření (Kč)</th>
<th>Cash flow z provozní činnosti (Kč)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>98 358 000</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>44 935 000</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>66 102 000</td>
<td>126 688 000</td>
</tr>
<tr>
<td>2003</td>
<td>97 241 000</td>
<td>55 499 000</td>
</tr>
<tr>
<td>2004</td>
<td>159 170 000</td>
<td>248 946 000</td>
</tr>
<tr>
<td>2005</td>
<td>127 173 000</td>
<td>-11 359 000</td>
</tr>
<tr>
<td>2006</td>
<td>83 730 000</td>
<td>76 625 000</td>
</tr>
<tr>
<td>2007</td>
<td>115 553 000</td>
<td>130 473 000</td>
</tr>
<tr>
<td>2008</td>
<td>136 790 000</td>
<td>84 438 000</td>
</tr>
</tbody>
</table>

Zdroj: Výroční zprávy společnosti ABC, s.r.o. za rok 2000 – 2008

Grafické znázornění hospodářských výsledků a cash flow za provozní činnost je v grafu 3.1 a 3.2.
V obchodní oblasti je do budoucna kladen důraz na zvyšování podílu náročnějších výrobků s vyšší přidanou hodnotou a na směřování exportních aktivit na trhy v rámci Evropy. Aktivity společnosti jsou financovány převážně z vlastních zdrojů společnosti a v případě přechodného nedostatku peněžních prostředků má společnost možnost využít půjčku v rámci skupiny. V souladu se skupinovou strategií společnost používá k zajištění kurzových rizik měnové forwardy.
4 ODHADY FINANČNÍCH RIZIK SPOLEČNOSTI

V této kapitole bude věnována pozornost kvantifikaci rizika přímo ovlivňujícího provozní výsledek hospodaření. V tomto konkrétním případě se jedná o kurzové riziko plynoucí z aktivního zahraničního obchodu společnosti na straně výstupů.

Na tržbách za vlastní výrobky a služby se nejvíce podílí čtyři zahraniční měny, kterými jsou švýcarský frank (CHF), euro (EUR), britská libra (GBP) a americký dolar (USD). Kurzové riziko spojené s jednotlivými měnami se poté bezprostředně promítá také do hodnoty provozního výsledku hospodaření společnosti, který lze pomocí metodologie CorporateMetrics kvantifikovat za pomoci finančního modelování.

V následujících podkapitolách bude proveden nejen odhad modelů jednotlivých rizikových faktorů, tedy v tomto případě měnových kurzů, ale také na základě těchto odhadnutých modelů bude, po zohlednění korelace mezi jednotlivými měnami, odhadován vývoj těchto jednotlivých rizikových faktorů pro rok 2010 a s jejich zohledněním bude predikován budoucí provozní výsledek hospodaření pro rok 2010 a stanovena hodnota Earnings at Risk vycházející z metodologie Value at Risk, která je dílčím základem metodologie CorporateMetrics.

4.1 Odhad modelů jednotlivých rizikových faktorů

Jak bylo řečeno výše, jednotlivými rizikovými faktory jsou zde míněny devizové kurzy, které vlivem změn svého vývoje přímo ovlivňují tržby a posléze i samotný provozní výsledek hospodaření.

Týdenní klouzavý průměr, Mooving Average (MA), je průměr několika posledních zavíracích cen (denních kurzů), který se pohybuje většinou nad či pod fluktuací posledního obchodního dne.

14 www.cnb.cz

39
Vzorec pro výpočet klouzavého průměrů (MA) je následující:

\[MA_n = \frac{P_1 + P_2 + \ldots + P_n}{n}, \quad (73) \]

kde \(P_1 \) až \(P_n \) jsou uzavírací ceny (v tomto případě uzavírací hodnota měnového kurzu) \(n \) – tého intervalu (obchodního dne) a \(n \) je počet dnů, na jehož základě klouzavý se klouzavý průměr počítá, v této práci je to sedm dní.

Týdenní průměry měnových kurzů se staly vstupními daty pro pozdější výpočet a odhad možných predikčních modelů. V tabulce 4.1 jsou znázorněny vstupní údaje pro odhad modelů a v tabulce 4.2 je jako ukázka zobrazeno prvních dvanáct denních kurzů a z nich odvozených pět klouzavých týdenních průměrů vybraných zahraničních měn. Větší množství dat je obsaženo v příloze č. 1 a 2.

Tabulka 4.1 Vstupní data pro odhad modelů rizikových faktorů
<table>
<thead>
<tr>
<th>Časový horizont pro výběr vstupních dat</th>
<th>2.1. 2004 - 27.11. 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet denních kurzů pro každou měnu</td>
<td>1490</td>
</tr>
<tr>
<td>Počet průměrných týdenních kurzů měn</td>
<td>1484</td>
</tr>
<tr>
<td>Zdroj: Česká národní banka</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 4.2 Ukázka denních kurzů a týdenních klouzavých průměrů denních kurzů jednotlivých měn

<table>
<thead>
<tr>
<th>Kurz CZK/CHF</th>
<th>Kurz CZK/EUR</th>
<th>Kurz CZK/GBP</th>
<th>Kurz CZK/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denní</td>
<td>Týdenní</td>
<td>Denní</td>
<td>Týdenní</td>
</tr>
<tr>
<td>20,749</td>
<td>-</td>
<td>32,4</td>
<td>-</td>
</tr>
<tr>
<td>20,755</td>
<td>-</td>
<td>32,37</td>
<td>-</td>
</tr>
<tr>
<td>20,67</td>
<td>-</td>
<td>32,375</td>
<td>-</td>
</tr>
<tr>
<td>20,647</td>
<td>-</td>
<td>32,36</td>
<td>-</td>
</tr>
<tr>
<td>20,612</td>
<td>-</td>
<td>32,365</td>
<td>-</td>
</tr>
<tr>
<td>20,749</td>
<td>-</td>
<td>32,51</td>
<td>-</td>
</tr>
<tr>
<td>20,818</td>
<td>20,714</td>
<td>32,575</td>
<td>32,422</td>
</tr>
<tr>
<td>20,839</td>
<td>20,727</td>
<td>32,555</td>
<td>32,444</td>
</tr>
<tr>
<td>20,881</td>
<td>20,745</td>
<td>32,575</td>
<td>32,473</td>
</tr>
<tr>
<td>20,848</td>
<td>20,770</td>
<td>32,59</td>
<td>32,504</td>
</tr>
<tr>
<td>20,875</td>
<td>20,803</td>
<td>32,71</td>
<td>32,554</td>
</tr>
</tbody>
</table>

Zdroj: www.cnbc.cz

Týdenní klouzavé průměry denních kurzů jsou vypočítány na základě vztahu (73).

Vývoj jednotlivých rizikových faktorů, tedy vybraných týdenních měnových kurzů, v uvedeném časovém horizontu znázorňuje také následující graf 4.1.
Z grafu 4.1 je zřejmá korelace mezi jednotlivými měnovými páry v menší či větší míře. Velmi podobný vývoj mají měnové kurzy CZK/CHF a CZK/EUR, které reagují na tržní podněty v čase téměř identicky. U všech kurzů lze říci, že v průběhu sledovaného období česká koruna posiluje vůči vybraným měnám až na občasné výkyvy, především ke konci sledovaného období.

V následující podkapitole jsou odhadovány modely pro každou uvedenou měnu zvlášť, přičemž jsou zde uvedeny všechny odhadované modely včetně těch, které nebyly statisticky významné. Veškeré výpočty jsou doloženy tabulkami výsledků, v tomto případě výstupních parametrů, a shrnutím statistické verifikace. U zvoleného modelu je graficky znázorněn vývoj skutečného i modelovaného kurzu, který byl vytvořen pomocí zvoleného modelu.

Při odhadu **Mean – Reversion modelu (M-RM)** se postupuje podle následujících kroků:

1. Převod denních kurzů na týdenní klouzavé průměry (MA) dle vzorce (73). Převoz je proveden z důvodu pozdější predikce týdenních hodnot měnového kurzu.
2. Výpočet skutečných (logaritmických) týdenních výnosů kurzů dle (8).
3. Převod M-R modelu sestaveného dle (28) na jeho lineární tvar podle vztahu (29).
4. Výpočet modelovaného výnosu dle vzorce (30). Hodnotu parametrů α i β lze získat pomocí funkce **Regrese** i funkce **Řešitel** v MS Excelu.
5. Vyjádření hodnoty reziduí \((\varepsilon)\), vyjadřující rozdíl mezi skutečnými a modelovanými hodnotami spojitého výnosu, pomocí metody nejmenších čtverců dle vzorce (31). Provedení metody nejmenších čtverců za pomoci Řešitele s následujícími kritérií, která jsou obsažena v obrázku 4.1,

\[
\begin{align*}
\text{Obrázek 4.1 Parametry Řešitele pro M-R model}
\end{align*}
\]

kde nastavenou buňkou (účelovou funkcí) je suma kvadrátů reziduí, která je minimalizována. Měněnými buňkami jsou parametry \(\hat{\alpha}\) a \(\hat{\beta}\).

6. Zjištění hodnoty parametrů Mean – Reversion modelu na základě vypočtených parametrů \((\hat{\alpha}, \hat{\beta})\). Mezi parametry vypočítané pomocí zminěných dvou parametrů patří \(a\) dle vzorce (32), \(b\) dle vzorce (33), \(dt\) (časový interval), který je v tomto případě týden, \(\hat{\sigma}\) podle vzorce (35) a \(\sigma\) podle vzorce (34).

7. Statistická verifikace odhadovaného modelu (ověření statistické významnosti modelu) jako celku pomocí \(F\) – testu podle (49), dílčích parametrů modelu v rámci \(t\) – testu dle (41), nebo také pomocí Hodnoty \(P\) podle (42) a (50).

8. Výpočet modelovaného kurzu podle vzorce (28).

V případě odhadu Geometrického Brownova modelu (GBM) se postupuje stejným způsobem s výjimkou toho, že GBM se odhaduje pomocí jediného parametru a tím je \(\hat{\alpha}\), z jejíž hodnoty se pomocí vzorců počítají ostatní parametry GBM.

U odhadu Geometrického Brownova modelu (GBM) se postupuje dle těchto kroků:

1. Převod denních kurzů na týdenní klouzavé průměry dle vzorce (73) z důvodu pozdější predikce týdenních hodnot měnového kurzu.
2. Výpočet skutečných (logaritmických) výnosů kurzů dle (8) ze získaných týdenních dat.
3. Vyjádření GBM dle (20) za předpokladu, že proměnná (v tomto případě měnový kurz) se vyvíjí podle procesu uvedeného ve vztahu (15).

4. Výpočet modelovaného výnosu dle vzorce (21), přičemž hodnotu parametru $\hat{\alpha}$ lze získat pomocí funkce Regrese i funkce Řešitel v MS Excelu. V případě GBM je odhadovaným parametrem pouze $\hat{\alpha}$, který vyjadřuje trend vývoje měnového kurzu.

5. Vyjádření hodnoty reziduí (ε), vyjadřující rozdíl mezi skutečnými a modelovanými hodnotami spojitého výnosu, pomocí metody nejmenších čtverců dle vzorce (22). Provedení metody nejmenších čtverců za pomoci Řešitele s následujícími kritérii, která jsou obsažena v obrázku 4.2.

6. Zjištění hodnoty parametrů Geometrického Brownova modelu na základě zjištěné hodnoty parametru $\hat{\alpha}$. Mezi tyto parametry patří dt (časový interval), který je v tomto případě týden, $\hat{\sigma}$ podle vzorce (24) a σ podle vzorce (23).

7. Statistická verifikace odhadovaného modelu (ověření statistické významnosti modelu) jako celku pomocí F – testu podle (49), dílčích parametrů modelu v rámci t – testu dle (41), nebo také pomocí Hodnoty P podle (42),(50).

8. Výpočet modelovaného kurzu podle vzorce (25).

Podle předchozích dvou postupů odhadu modelu se postupuje u všech čtyř následujících devizových kurzů. Ve vytvořených tabulkách jsou zobrazeny výsledné hodnoty jednotlivých odhadů, včetně zhodnocení statistické významnosti modelu a grafického znázornění výsledků. Vybrané tabulky jsou doplněny o komentář k uvedeným hodnotám.
4.1.1 Odhad modelu pro měnový kurz CZK/CHF

Prvním devizovým kurzem, pro který je odhadován predikční model, je kurz CZK/CHF, u kterého byla první vypočítána historická časová řada týdenních klouzavých průměrů kurzu a následně vypočítán skutečný logaritmický výnos. Výsledné hodnoty týdenních průměrů a skutečných logaritmických výnosů jsou obsaženy v grafu 4.2.

Graf 4.2 Vývoj kurzu CZK/CHF a logaritmického kurzového výnosu CZK/CHF

Z grafu 4.2 lze vidět, že kurz CZK/CHF má v čase převážně klesající trend s mírnými výkyvy v posledních týdnech časového horizontu, což poukazuje na dlouhodobě posilující českou měnu vůči švýcarskému franku s přihlédnutím ke zmíněnému zakolíšení ke konci sledovaného období. Kurzový výnos CZK/CHF reaguje se změnou vývoje kurzu.

Prvním odhadovaným modelem pro tento měnový kurz je Mean - Reversion model (M-RM), který je odhadován dle výše uvedeného postupu k tomuto modelu. Výsledky regresní analýzy jsou zobrazeny v následujícím obrázku 4.3.

Obrázek 4.3 Regresní analýza při odhadu M-R modelu pro kurz CZK/CHF

<table>
<thead>
<tr>
<th>Regresní statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Násoh R</td>
</tr>
<tr>
<td>Hodnota spolehlivost R</td>
</tr>
<tr>
<td>Nastavená hodnota spolehlivost R</td>
</tr>
<tr>
<td>Chyba stř. hodnoty</td>
</tr>
<tr>
<td>Pozorování</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozdíl</td>
</tr>
<tr>
<td>Regrese</td>
</tr>
<tr>
<td>Rezidua</td>
</tr>
<tr>
<td>Celkem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hranice</th>
<th></th>
<th></th>
<th>t Stat</th>
<th>Hodnota P</th>
<th>Doleh 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hranice</td>
<td>0.000812602</td>
<td>0.000015486</td>
<td>1,369033505</td>
<td>0,171205025</td>
<td>-0.000364714</td>
</tr>
<tr>
<td>Soubor X 1</td>
<td>-3,37771E-05</td>
<td>3,40084E-05</td>
<td>-1,58128682</td>
<td>0,114025833</td>
<td>-0.000120487</td>
</tr>
</tbody>
</table>
Výše uvedené výsledky regresní analýzy se shodují s výsledkem funkce Řešitel a lze vypočítat výstupní parametry Mean – Reversion modelu, které jsou obsaženy v následující tabulce 4.3.

Tabulka 4.3 Výstupní parametry Mean – Reversion modelu pro kurz CZK/CHF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}$ (týdenní)</td>
<td>0,000842602</td>
</tr>
<tr>
<td>$\hat{\beta}$ (týdenní)</td>
<td>-5,37771E-05</td>
</tr>
<tr>
<td>dt (týdenní)</td>
<td>0,019</td>
</tr>
<tr>
<td>a (týdenní)</td>
<td>0,002796409</td>
</tr>
<tr>
<td>b (týdenní)</td>
<td>15,66842526</td>
</tr>
<tr>
<td>$\hat{\sigma}$ (rok)</td>
<td>0,002202295</td>
</tr>
<tr>
<td>$\hat{\delta}$ (týdenní)</td>
<td>0,11451932</td>
</tr>
</tbody>
</table>

Z tabulky 4.3 vyplývá, že hodnota dlouhodobé rovnováhy kurzu, která se pohybuje kolem 15,67 CZK/CHF, přičemž rychlost přibližování se k této rovnováze, která je přibližně 0,0027, je velmi malá.

Po získání výstupních parametrů modelu je nutné ověřit pomocí údajů v regresní analýze, zda je model statisticky významný a tedy zda může být pro predikci daného kurzu použit. Shrnutí statistické verifikace představuje následující tabulka 4.4.

Tabulka 4.4 Shrnutí výsledků statistické verifikace pro Mean – Reversion model

<table>
<thead>
<tr>
<th>Test</th>
<th>t</th>
<th>F</th>
<th>$\hat{\lambda}$</th>
<th>t kritické</th>
<th>F kritické</th>
<th>$\hat{\lambda}$ kritické</th>
<th>t statistika</th>
<th>F vypočítaná</th>
<th>Hodnota P</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>2,243</td>
<td>3,847</td>
<td>0,05</td>
<td>2,243682581</td>
<td>3,847740957</td>
<td>0,05</td>
<td>1,369004</td>
<td>2,500468</td>
<td>0,171206</td>
</tr>
<tr>
<td>F</td>
<td>></td>
<td>></td>
<td><</td>
<td>></td>
<td>></td>
<td><</td>
<td>></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>

Z poslední tabulky 4.4 je patrné, že kritické hodnoty, které byly vypočítány pomocí funkce TINV (t test) a FINV (F test) v MS Excelu, jsou vyšší než hodnoty vypočítané (získané z regresní analýzy) a tento model je statisticky nevýznamný, proto není vhodný pro predikci vybraného kurzu.

Druhým testovaným modelem je Geometrický Brownův model s logaritmickými cenami (GBM), u jehož odhadu bylo postupováno podle výše zmíněných kroků v kapitole 4.1. Výsledek regresní analýzy modelu je zobrazen v následujícím obrázku 4.4.
Z obrázku 4.4 je možné vypozorovat základní rozdíl mezi oběma odhadovanými modely, který spočívá v tom, že GBM pracuje pouze s jediným parametrem \(\hat{\alpha} \), který představuje trendový koeficient.

I v tomto modelu se \(\hat{\alpha} \) i suma nejmenších čtverců shoduje s výsledkem funkce Řešitel. Parametry Geometrického Brownova modelu jsou obsaženy v následující tabulce 4.5.

Z tabulky 4.5 je zřejmé, že vývojový trend daného kurzu \(\hat{\alpha} \) je záporný, což poukazuje na klesající hodnotu CZK/CHF v čase a tedy na posilující hodnotu české koruny, tato skutečnost potvrzuje vývojový trend měnového kurzu zobrazený v grafu 4.2.

Tabulka 4.6 Shrnutí výsledků statistické verifikace pro GBM

<table>
<thead>
<tr>
<th>t_kritické</th>
<th>2,24368104</th>
<th><</th>
<th>t_statistika</th>
<th>-2,3469979</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_kritické</td>
<td>3,84773672</td>
<td><</td>
<td>F vypočítaná</td>
<td>5,5083994</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0,05</td>
<td>></td>
<td>Hodnota P</td>
<td>0,0190563</td>
</tr>
</tbody>
</table>

Z tabulky 4.6 je zřetelné, že tento model je statisticky významný a proto jej lze použít pro predikci vybraného kurzu.
Z výsledků tedy plyne, že pro predikci kurzu CZK/CHF je vhodnější GBM, na jehož základě bude predikován kurz CZK/CHF, a který má následující tvar:

\[\text{Kurz}_{t}^{\text{CZK}/\text{CHF}} = \text{Kurz}_{t-1}^{\text{CZK}/\text{CHF}} \cdot \exp \left(-7.421 + 0.115 \cdot d\tilde{z} \right). \tag{74} \]

Modelované hodnoty podle (74) a skutečné hodnoty měnového kurzu jsou v grafu 4.3

\[(74) \]

\[(74) \]

4.1.2 Odhad modelu pro měnový kurz CZK/EUR

Následující graf 4.4 zachycuje vývoj týdenních klouzavých průměrů kurzů a odpovídající týdenní logaritmické výnosy u kurzu CZK/EUR.

\[(74) \]

Následující obrázek 4.5 představuje výsledky funkce ANOVA získané pomocí regresní analýzy a statistické verifikace pro odhad Mean – Reversion modelu.

Hodnota \(\hat{\alpha} \) v regresní analýze se zde neshoduje s výsledkem funkce Řešitel, který má hodnotu 0,000705021, a to je prvotní znamení možné chyby odhadu modelu. Hodnota sumy nejmenších čtverců v Regresi se ovšem s výsledkem Řešitele shoduje.

Z výsledků regresní statistiky lze opět vypočítat výstupní parametry Mean – Reversion modelu, které jsou obsaženy v následující tabulce 4.7.

\(\hat{\alpha} (\text{týdenní}) \)	0,000705021
\(\hat{\beta} (\text{týdenní}) \)	-3,03043E-05
\(dt(\text{týdenní}) \)	0,019230769
\(a(\text{týdenní}) \)	0,001575826
\(b(\text{týdenní}) \)	23,26469114
\(\hat{\sigma}(\text{rok}) \)	0,001730231
\(\sigma(\text{týdenní}) \)	0,08997201

Shrnutí statistické verifikace, které je nutné pro ověření statistické významnosti či nevýznamnosti odhadnutého modelu, představuje následující tabulka 4.8.
Tabulka 4.8 Shrnutí výsledků statistické verifikace pro Mean – Reversion model

<table>
<thead>
<tr>
<th></th>
<th>t_kritické 2,2436826</th>
<th>></th>
<th>t_statistika 1,292917</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_kritické</td>
<td>3,847741</td>
<td>></td>
<td>F_vypočítaná 2,477963</td>
</tr>
<tr>
<td>λ</td>
<td>0,05</td>
<td><</td>
<td>Hodnota P 0,196241</td>
</tr>
</tbody>
</table>

Z tabulky 4.8 je jasné, že tento model je statisticky nevýznamný, protože kritické hodnoty jsou vyšší než hodnoty získané z regresní analýzy a proto není vhodné jej použít pro predikci vybraného kurzu.

Výsledek regresní analýzy pro Geometrický Brownův model (GBM) je zobrazen v následujícím obrázku 4.6.

Obrázek 4.6 Regresní analýza při odhadu GBM pro kurz CZK/EUR

<table>
<thead>
<tr>
<th>Regresní statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Násobné R</td>
</tr>
<tr>
<td>Hodnota spolehlivosti R</td>
</tr>
<tr>
<td>Nastavená hodnota spolehlivosti R</td>
</tr>
<tr>
<td>Chyba stř. hodnoty</td>
</tr>
<tr>
<td>Pozorování</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Rezidul</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Významnost F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regrese</td>
<td>1</td>
<td>7,42829E-06</td>
<td>7,43E-06</td>
<td>2,477963</td>
<td>0,115665107</td>
</tr>
<tr>
<td>Rezidua</td>
<td>1482</td>
<td>0,00444265</td>
<td>3E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>1483</td>
<td>0,004450078</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Koeficienty</th>
<th>Chyba stř. hodnoty</th>
<th>t Stat</th>
<th>Hodnota P</th>
<th>Doba 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hranice</td>
<td>0,007070522</td>
<td>0,000545295</td>
<td>1,292917</td>
<td>0,196241</td>
<td>-0,00364611</td>
</tr>
<tr>
<td>Soubor X 1</td>
<td>-3,03125E-05</td>
<td>1,925E-05</td>
<td>-1,57415</td>
<td>0,1155651</td>
<td>-6,80625E-05</td>
</tr>
</tbody>
</table>

Parametr α i hodnota sumy nejmenších čtverců z obrázku 4.6 se shoduje s výsledkem funkce Řešitel.

V následující tabulce 4.9 jsou vyjádřeny hodnoty parametrů GBM pro měnový pár CZK/EUR. Shrnutí statistické verifikace představuje tabulka 4.10.

Tabulka 4.9 Výstupní parametry Geometrického Brownova modelu pro kurz CZK/EUR

<table>
<thead>
<tr>
<th></th>
<th>α(týdenní)</th>
<th>-5,4985E-06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dt(týdenní)</td>
<td>0,019230769</td>
</tr>
<tr>
<td></td>
<td>$\hat{\sigma}$(rok)</td>
<td>0,001731206</td>
</tr>
<tr>
<td></td>
<td>σ(týdenní)</td>
<td>0,090022738</td>
</tr>
</tbody>
</table>

Tabulka 4.10 Shrnutí výsledků statistické verifikace pro GBM

<table>
<thead>
<tr>
<th></th>
<th>t_kritické 2,24368104</th>
<th><</th>
<th>t_statistika -3,46471</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_kritické</td>
<td>3,84773672</td>
<td><</td>
<td>F_vypočítaná 12,00425</td>
</tr>
<tr>
<td>λ</td>
<td>0,05</td>
<td>></td>
<td>Hodnota P 0,000546</td>
</tr>
</tbody>
</table>
Z tabulky 4.10 je zřejmé, že tento model je statisticky významný a proto jej lze použít pro predikci vybraného kurzu. Výsledný tvar modelu pro predikci kurzu CZK/EUR vypadá takto:

\[Kurz_{t}^{\text{CZK/ EUR}} = Kurz_{t-1}^{\text{CZK/ EUR}} \cdot \exp(-5.499 + 0.090 \cdot d_{t}). \]

(75)

Skutečný měnový kurz i modelovaný měnový kurz CZK/EUR je zobrazen v grafu 4.5.

Graf 4.5 Srovnání vývoje skutečného a modelovaného kurzu CZK/EUR

4.1.3 Odhad modelu pro měnový kurz CZK/GBP

Níže uvedený graf 4.6 zachycuje vývoj týdenních klouzavých průměrů kurzů a odpovídající týdenní logaritmické výnosy u kurzu CZK/GBP.

Graf 4.6 Vývoj kurzu CZK/GBP a logaritmického kurzového výnosu CZK/GBP

Z grafu 4.6 je vidět pouze klesající trend kurzu CZK/GBP v čase a kurzový výnos, který kopíruje vývoj kurzových výnosů ostatních měn, nikoli však vývoj samotného kurzu CZK/GBP.

Graf měnového kurzu zobrazuje opět posilující korunu vůči britské libře po celé sledované období. Na rozdíl od předchozích měnových párů dochází v případě kurzu CZK/GBP v druhé polovině sledovaného období k výraznému posílení, které v mírnější formě přetrvává až do konce období. Dlouhodobý pokles ve vybraném časovém horizontu bez výraznější tendence růstu, jako tomu bylo u obou předešlých měnových kurzů, poukazuje na menší korelací mezi kurzem CZK/GBP a předešlými měnovými kurzy.

Regresní analýza včetně funkce ANOVA pro M-RM je zobrazena v následujícím obrázku 4.7, který dokládá statistickou nevýznamnost tohoto modelu.

Obrázek 4.7 Regresní analýza při odhadu M-R modelu pro kurz CZK/GBP

<table>
<thead>
<tr>
<th>Regresní statistika</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Návazné R</td>
<td>0,03874178</td>
</tr>
<tr>
<td>Hodnota spolehlivosti R</td>
<td>0,001500925</td>
</tr>
<tr>
<td>Nastavená hodnota spolehlivosti R</td>
<td>0,000827175</td>
</tr>
<tr>
<td>Chyba stř. hodnoty</td>
<td>0,002542381</td>
</tr>
<tr>
<td>Pozorování</td>
<td>1484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozdíl</td>
<td>SS</td>
</tr>
<tr>
<td>Regrese</td>
<td>1</td>
</tr>
<tr>
<td>Rozdíla</td>
<td>1482</td>
</tr>
<tr>
<td>Celkem</td>
<td>1483</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koeficienty</th>
<th>Chyba stř. hodnoty</th>
<th>t Stat</th>
<th>Hodnota P</th>
<th>Dolní 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hranice</td>
<td>-0,00093037</td>
<td>0,000411763</td>
<td>-2,25948</td>
<td>0,02399803</td>
</tr>
<tr>
<td>Soubor X1</td>
<td>1,54911E-05</td>
<td>1,03789E-05</td>
<td>1,492554</td>
<td>0,13576692</td>
</tr>
</tbody>
</table>

Hodnota $\hat{\alpha}$ v regresní analýze se shoduje s výsledkem funkce Řešitel. Shoda obou metod je i v hodnotě sumy nejmenších čtverců.

Parametry M-RM jsou obsaženy v následující tabulce 4.11.

| Tabulka 4.11 Výstupní parametry Mean – Reversion modelu pro kurz CZK/GBP |
|-----------------------------|----------------------------|
| $\hat{\alpha}$ (týdenní) | -0,00093037 |
| $\hat{\beta}$ (týdenní) | 1,54904E-05 |
| \hat{dt} (týdenní) | 0,019230769 |
| \hat{dt} (týdenní) | 0,000805536 |
| \hat{b} (týdenní) | 60,05856282 |
| $\hat{\sigma}$ (rok) | 0,002540667 |
| $\hat{\sigma}$ (týdenní) | 0,132114688 |
Zhodnocení statistické významnosti modelu pomocí statistické verifikace zachycuje následující tabulka 4.12.

Tabulka 4.12 Shrnutí výsledků statistické verifikace pro Mean – Reversion model

<table>
<thead>
<tr>
<th>Statistika</th>
<th>hodnota</th>
<th>t-statistika</th>
<th>výsledek</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{kritické}$</td>
<td>2,24368258</td>
<td>$>$</td>
<td>1,492554</td>
</tr>
<tr>
<td>$F_{kritické}$</td>
<td>3,84774096</td>
<td>$>$</td>
<td>2,227716</td>
</tr>
<tr>
<td>λ</td>
<td>0,05</td>
<td>$<$</td>
<td>0,135767</td>
</tr>
</tbody>
</table>

Výsledné hodnoty v tabulce 4.12 naznačují, že model je statisticky nevýznamný.

Výsledné hodnoty regresní analýzy GBM jsou obsaženy v obrázku 4.8.

Obrázek 4.8 Regresní analýza při odhadu GBM pro kurz CZK/GBP

Tabulka 4.13 Výstupní parametry Geometrického Brownova modelu pro kurz CZK/GBP

<table>
<thead>
<tr>
<th>Parametr</th>
<th>hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}$ (týdenní)</td>
<td>-7,6567E-06</td>
</tr>
<tr>
<td>\hat{dt} (týdenní)</td>
<td>0,019230769</td>
</tr>
<tr>
<td>$\hat{\sigma}$ (rok)</td>
<td>0,002545039</td>
</tr>
<tr>
<td>$\hat{\sigma}$ (týdenní)</td>
<td>0,13234205</td>
</tr>
</tbody>
</table>

Tabulka 4.14 Shrnutí výsledků statistické verifikace pro GBM

<table>
<thead>
<tr>
<th>Statistika</th>
<th>hodnota</th>
<th>výsledek</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{kritické}$</td>
<td>2,24368104</td>
<td>$<$</td>
</tr>
<tr>
<td>$F_{kritické}$</td>
<td>3,84773672</td>
<td>$<$</td>
</tr>
<tr>
<td>$\hat{\lambda}$</td>
<td>0,05</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Údaje z tabulky 4.14 dokazují, že GBM model je statisticky významný a je vhodný pro predikci vybraného kurzu. Kurz CZK/GBP modelovaný podle GBM lze definovat následujícím způsobem:

$$Kurz_i^{CZK/GBP} = Kurz_{i-1}^{CZK/GBP} \cdot \exp(-7,657 + 0,132 \cdot d\hat{z}).$$

(76)
Modelované hodnoty a skutečné hodnoty kurzu CZK/GBP jsou v grafu 4.7.

Graf 4.7 Srovnání vývoje skutečného a modelovaného kurzu CZK/GBP

Graf 4.8 Vývoj kurzu CZK/USD a logaritrického kurzového výnosu CZK/USD

Z grafu 4.8 je viditelný klesající trend měnového kurzu CZK/USD, který je dán posilující českou měnu ve sledovaném časovém intervalu. Stejně jako tomu bylo u prvních dvou analyzovaných měnových párů se i v případě tohoto kurzu na konci sledovaného období objevuje výrazné posílení amerického dolaru, které způsobilo viditelný nárůst hodnoty měnového kurzu. Celkově lze říci, že vývoj toho měnového páru je velmi podobný vývoji kurzů CZK/CHF a CZK/EUR, je tedy tedy znatelná korelace v čase.

4.1.4 Odhad modelu pro měnový kurz CZK/USD

Následující graf 4.8 zobrazuje časový vývoj týdenních klouzavých průměrů kurzů CZK/USD a vývoj týdenního kurzového výnosu.
Obrázek 4.9 obsahuje výsledky funkce ANOVA a statistické verifikace získané pomocí regresní analýzy pro M – R model odhadovaný pro měnový pár CZK/USD.

Obrázek 4.9 Regresní analýza při odhadu R-M modelu pro kurz CZK/USD

<table>
<thead>
<tr>
<th>Regresní statistika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasobná R</td>
</tr>
<tr>
<td>Hodnota spolehlivosti R</td>
</tr>
<tr>
<td>Nastavená hodnota spolehlivosti R</td>
</tr>
<tr>
<td>Chyba stř. hodnoty</td>
</tr>
<tr>
<td>Pozorování</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Rezídil</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Významnost F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regrese</td>
<td>1</td>
<td>8,90424E-08</td>
<td>8,9E-08</td>
<td>0,00826822</td>
<td>0,927560717</td>
</tr>
<tr>
<td>Rezidua</td>
<td>1482</td>
<td>0,01596017</td>
<td>1,08E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>1483</td>
<td>0,015960106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Výstupní parametry M-RM jsou obsaženy v následující tabulce 4.15.

Tabulka 4.15 Výstupní parametry Mean – Reversion modelu pro kurz CZK/USD

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-a(týdenní)</td>
<td>-0,000208472</td>
</tr>
<tr>
<td>-β(týdenní)</td>
<td>-2,43412E-06</td>
</tr>
<tr>
<td>dr(týdenní)</td>
<td>0,019230769</td>
</tr>
<tr>
<td>a(týdenní)</td>
<td>0,00126574</td>
</tr>
<tr>
<td>b(týdenní)</td>
<td>85,64588013</td>
</tr>
<tr>
<td>-σ(rok)</td>
<td>0,00327944</td>
</tr>
<tr>
<td>σ(týdenní)</td>
<td>0,170530894</td>
</tr>
</tbody>
</table>

Ověření statistické významnosti modelu zachycuje následující tabulka 4.16.

Tabulka 4.16 Shrnutí výsledků statistické verifikace pro Mean – Reversion model

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_kritické</td>
<td>2,24368258</td>
</tr>
<tr>
<td>F_kritické</td>
<td>3,84774096</td>
</tr>
<tr>
<td>λ</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Statistické výsledky poslední tabulky 4.16 potvrzují, že M-R model je statisticky nevýznamný a proto je nevhodný pro predikci vybraného kurzu.

Hodnoty regresní statistiky včetně funkce ANOVA Geometrického Brownova modelu s logaritnickými cenami jsou zobrazeny v obrázku 4.10.

Tabulka 4.17 Výstupní parametry Geometrického Brownova modelu pro kurz CZK/USD

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Aktuální hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>tří denní α</td>
<td>-1,19192E-05</td>
</tr>
<tr>
<td>tří denní dt</td>
<td>0,019230769</td>
</tr>
<tr>
<td>šestiměsíční σ</td>
<td>0,003279582</td>
</tr>
<tr>
<td>tří denní σ</td>
<td>0,170538283</td>
</tr>
</tbody>
</table>

Tabulka 4.18 Shrnutí výsledků statistické verifikace pro GBP

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_kritické</td>
<td>2,243681</td>
</tr>
<tr>
<td>F_kritické</td>
<td>3,8477367</td>
</tr>
<tr>
<td>λ</td>
<td>0,05</td>
</tr>
<tr>
<td>t_statistika</td>
<td>-3,04265</td>
</tr>
<tr>
<td>F_vypočítaná</td>
<td>9,257694</td>
</tr>
<tr>
<td>Hodnota P</td>
<td>0,002386</td>
</tr>
</tbody>
</table>

Z tabulky 4.18 vyplývá, že model je statisticky významný a bude použit pro predikci kurzu CZK/USD. Výsledný tvar modelu pro predikci kurzu CZK/USD lze zapsat takto:

\[
Kurz_{t,\text{CZEK/USD}}^{t,\text{USD}} = Kurz_{t-1,\text{CZEK/USD}}^{t,\text{USD}} \cdot \exp \left(-1,192 + 0,171 \cdot dt \right).
\]

(77)

Graf 4.9 zachycuje skutečný a modelovaný kurz CZK/USD ve sledovaném období.

Graf 4.9 Srovnání vývoje skutečného a modelovaného kurzu CZK/USD
Lze konstatovat, že vývoj všech vybraných měnových kurzů je totožný, což může znamenat, že mezi jednotlivými měnami je silná korelace. Navíc všechny provedené odhady modelů ukázaly, že dané měnové kurzy se chovají podle Geometrického Brownova procesu, na jehož základě se budou predikovat tyto rizikové faktory do budoucna.

4.2 Predikce jednotlivých rizikových faktorů

V této kapitole je odhadován vývoj jednotlivých rizikových faktorů, kterými jsou vybrané měnové kurzy a to na základě modelu, který byl odhadnut v kapitole 4.1.

Z výsledků kapitoly 4.1 je známo, že všechny měnové kurzy se vyvíjejí podle Geometrického Brownova procesu a byly odhadnuty parametry modelu, které budou použity pro predikci budoucího vývoje jednotlivých měnových páří.

Pro přesný odhad vývoje každého vybraného měnového kurzu i samotného provozního výsledku hospodaření je nutné zjistit vzájemnou korelací mezi jednotlivými měnovými páry a to pomocí sestavení tzv. Choleskeho matice (Matice P).

Postup při predikci jednotlivých měnových kurzů na je následující:

1. Vytvoření korelační matice podle (53) pomocí funkce CORREL v MS Excelu na základě hodnot týdenních klouzavých průměrů denních kurzů.
2. Vytvoření kovarianční matice podle vzorce (54) pomocí funkce COVAR v MS Excelu opět vycházející z týdenních klouzavých průměrů denních kurzů.
3. Odvození Choleskeho matice (Matice P) z výsledných hodnot kovarianční matice dle vzorců (57) až (67).
4. Vygenerování nezávislých náhodných veličin z normovaného normálního rozdělení \(\Phi(0;1) \) pro 1000 scénářů na období 52 týdnů roku 2010 pomocí funkce Generátor pseudonáhodných čísel v MS Excelu.
5. Zohlednění korelace mezi jednotlivými měnovými kurzy pro každý pokus pomocí Choleskeho algoritmu (Matice P) podle vzorce (55).
6. Predikce kurzu dle Geometrického Brownova modelu podle vzorce (72), tedy se zohledněním korelace mezi jednotlivými měnovými kurzy, pro 1000 scénářů na 52 týdnů roku 2010.
Následující tabulky 4.19, 4.20 a 4.21 zobrazují všechny výše zmínované matice, potřebné pro predikci jednotlivým devizových kurzů na rok 2010.

Tabulka 4.19 Korelační matice

<table>
<thead>
<tr>
<th></th>
<th>CZK/CHF</th>
<th>CZK/EUR</th>
<th>CZK/GBP</th>
<th>CZK/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZK/CHF</td>
<td>1</td>
<td>0,832616</td>
<td>0,498815</td>
<td>0,640632</td>
</tr>
<tr>
<td>CZK/EUR</td>
<td>0,832616</td>
<td>1</td>
<td>0,605837</td>
<td>0,678401</td>
</tr>
<tr>
<td>CZK/GBP</td>
<td>0,498815</td>
<td>0,605837</td>
<td>1</td>
<td>0,612198</td>
</tr>
<tr>
<td>CZK/USD</td>
<td>0,640632</td>
<td>0,678401</td>
<td>0,612198</td>
<td>1</td>
</tr>
</tbody>
</table>

Z korelační matice v tabulce 4.19 je viditelná poměrně silná pozitivní korelace mezi měnovým párem CZK/CHF a CZK/EUR znamenající téměř identický vývoj obou měnových kurzů. Statistická závislost v čase je nadprůměrná i u ostatních kurzů, přičemž nejmenší korelace je mezi CZK/CHF a CZK/GBP.

Následující tabulka 4.20 obsahuje kovarianční matici, která vychází ze stejných vstupních dat jako předchozí korelační matice, tedy z hodnou týdenních klouzavých průměrů denních kurzů.

Tabulka 4.20 Kovarianční matice

<table>
<thead>
<tr>
<th></th>
<th>CZK/CHF</th>
<th>CZK/EUR</th>
<th>CZK/GBP</th>
<th>CZK/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZK/CHF</td>
<td>0,000005</td>
<td>0,000003</td>
<td>0,000003</td>
<td>0,000005</td>
</tr>
<tr>
<td>CZK/EUR</td>
<td>0,000003</td>
<td>0,000003</td>
<td>0,000003</td>
<td>0,000004</td>
</tr>
<tr>
<td>CZK/GBP</td>
<td>0,000003</td>
<td>0,000003</td>
<td>0,000006</td>
<td>0,000005</td>
</tr>
<tr>
<td>CZK/USD</td>
<td>0,000005</td>
<td>0,000004</td>
<td>0,000005</td>
<td>0,000011</td>
</tr>
</tbody>
</table>

Následující tabulka 4.21 zobrazuje výslednou Choleskeho matici, která je odvozena z výsledných hodnot předchozí kovarianční matice, jejíž hodnoty obsahuje tabulka 4.20.

Tabulka 4.21 Choleskeho matice (Matice P)

<table>
<thead>
<tr>
<th></th>
<th>CZK/CHF</th>
<th>CZK/EUR</th>
<th>CZK/GBP</th>
<th>CZK/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZK/CHF</td>
<td>0,002204</td>
<td>0,001441</td>
<td>0,001269</td>
<td>0,002101</td>
</tr>
<tr>
<td>CZK/EUR</td>
<td>0,000000</td>
<td>0,000959</td>
<td>0,000875</td>
<td>0,000859</td>
</tr>
<tr>
<td>CZK/GBP</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,002025</td>
<td>0,002524</td>
</tr>
<tr>
<td>CZK/USD</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,002764</td>
</tr>
</tbody>
</table>
4.2.1 Odhad vývoje měnového kurzu CZK/CHF

![Obrázek 4.11 Generátor pseudonáhodných čísel](image)

V následující tabulce 4.22, je zobrazeno (z důvodu rozsáhlosti výpočtů) pouze prvních pět scénářů vygenerovaných nezávislých náhodných hodnot z normovaného normálního rozdělení pro kurz CZK/CHF na prvních sedm týdnů roku 2010.

Tabulka 4.22 Vygenerované nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/CHF

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,126639</td>
<td>0,479204</td>
<td>-0,49947</td>
<td>-1,55504</td>
<td>1,683447</td>
<td>-0,6415</td>
<td>0,206201</td>
</tr>
<tr>
<td>2</td>
<td>1,103842</td>
<td>0,4342</td>
<td>-0,10188</td>
<td>-0,60591</td>
<td>-0,22311</td>
<td>-0,41545</td>
<td>0,779194</td>
</tr>
<tr>
<td>3</td>
<td>-0,95929</td>
<td>-0,28642</td>
<td>0,19496</td>
<td>0,234418</td>
<td>1,422814</td>
<td>1,327351</td>
<td>-0,77826</td>
</tr>
<tr>
<td>4</td>
<td>0,531093</td>
<td>0,261476</td>
<td>-0,5188</td>
<td>0,975535</td>
<td>-0,39874</td>
<td>2,245743</td>
<td>0,10165</td>
</tr>
<tr>
<td>5</td>
<td>-1,33889</td>
<td>0,338309</td>
<td>0,286177</td>
<td>0,745538</td>
<td>0,629988</td>
<td>0,820808</td>
<td>-0,1357</td>
</tr>
</tbody>
</table>

Takto vytvořené nezávislé náhodné hodnoty pro kurz CZK/CHF však nezohledňují vzájemnou korelací mezi jednotlivými měnovými páry, kterou zobrazuje Matice P obsažená v tabulce 4.21.

Po zohlednění vzájemné korelace za pomocí Choleskeho algoritmu jsou přepočteny náhodné hodnoty z normovaného normálního rozdělení pro kurz CZK/CHF, viz. následující tabulka 4.23.
Tabulka 4.23 Vytvořené nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/CHF po zohlednění korelace.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,002483</td>
<td>0,001056</td>
<td>-0,0011</td>
<td>-0,00343</td>
<td>0,00371</td>
<td>-0,00141</td>
<td>0,000454</td>
</tr>
<tr>
<td>2</td>
<td>0,002433</td>
<td>0,000957</td>
<td>-0,0022</td>
<td>-0,00134</td>
<td>-0,0049</td>
<td>-0,00092</td>
<td>0,001717</td>
</tr>
<tr>
<td>3</td>
<td>-0,00211</td>
<td>-0,00063</td>
<td>0,00043</td>
<td>0,000517</td>
<td>0,003135</td>
<td>0,002925</td>
<td>-0,00172</td>
</tr>
<tr>
<td>4</td>
<td>0,00117</td>
<td>0,000576</td>
<td>-0,00114</td>
<td>0,00215</td>
<td>-0,00088</td>
<td>0,004949</td>
<td>0,000224</td>
</tr>
<tr>
<td>5</td>
<td>-0,00295</td>
<td>0,000746</td>
<td>0,000631</td>
<td>0,001643</td>
<td>0,001388</td>
<td>0,001809</td>
<td>-0,0003</td>
</tr>
</tbody>
</table>

Po zohlednění vzájemné statistické závislosti kurzu CZK/CHF s ostatními měnami lze přejít k samotné predikci vývoje toho kurzu pro rok 2010 podle vzorce, který vychází z Geometrického Brownova modelu.

Tabulka 4.24 zobrazuje potřebné údaje, odvozené v kapitole 4.1, k dosazení do predikčního modelu.

Tabulka 4.24 Vstupní parametry pro predikci kurzu CZK/CHF na rok 2010

<table>
<thead>
<tr>
<th>Kurz CZK/CHF k 4.1.2010</th>
<th>17,6820</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) (týdenní)</td>
<td>-0,000007421</td>
</tr>
<tr>
<td>(\sigma) (týdenní)</td>
<td>0,114591709</td>
</tr>
</tbody>
</table>

Kurz dané měny ke 4.1.2010\(^{15}\) je výchozí kurz predikce a je v predikční matici umístěn jako výchozí hodnota v nultém týdnu, ze které jsou odvozeny všechny ostatní hodnoty na následujících 52 týdnech pro 1000 scénářů. Tabulka 4.25 obsahuje pro názornost prvních pět scénářů predikovaných hodnot vybraného kurzu pro prvních sedm týdnů roku 2010.

Tabulka 4.25 Predikce měnového kurzu CZK/CHF pro pět scénářů na sedm týdnů roku 2010

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17,682</td>
<td>17,6869</td>
<td>17,6889</td>
<td>17,6865</td>
<td>17,6794</td>
<td>17,6868</td>
<td>17,6838</td>
<td>17,6846</td>
</tr>
<tr>
<td>2</td>
<td>17,682</td>
<td>17,6867</td>
<td>17,6886</td>
<td>17,6880</td>
<td>17,6851</td>
<td>17,6840</td>
<td>17,6820</td>
<td>17,6854</td>
</tr>
<tr>
<td>3</td>
<td>17,682</td>
<td>17,6775</td>
<td>17,6761</td>
<td>17,6769</td>
<td>17,6778</td>
<td>17,6840</td>
<td>17,6898</td>
<td>17,6862</td>
</tr>
<tr>
<td>4</td>
<td>17,682</td>
<td>17,6842</td>
<td>17,6852</td>
<td>17,6828</td>
<td>17,6870</td>
<td>17,6814</td>
<td>17,6950</td>
<td>17,6953</td>
</tr>
<tr>
<td>5</td>
<td>17,682</td>
<td>17,6758</td>
<td>17,6772</td>
<td>17,6834</td>
<td>17,6816</td>
<td>17,6843</td>
<td>17,6878</td>
<td>17,6870</td>
</tr>
</tbody>
</table>

\(^{15}\) Zdroj: www.cnb.cz
Graf 4.10 Predikce vývoje kurzu CZK/CHF pro deset scénářů na 52 týdnů roku 2010

Z grafu 4.10 je viditelný rozdílný vývoj jednotlivých scénářů ve stanoveném časovém horizontu i přes očekávaný klesající trend vývoje kurzu, který je udáván vstupním parametrem α.

4.2.2 Odhad vývoje měnového kurzu CZK/EUR

U tohoto měnového páru se při predikci vývoje na rok 2010 bude postupovat podle kroků v kapitole 4.2. Budou zde uváděny pouze stěžejní údaje, tabulky a grafy, které mají významnou vypovídací schopnost pro pochopení další fáze práce.

V následující tabulce 4.26 je zobrazeno pět scénářů vygenerovaných nezávislých náhodných hodnot z normovaného normálního rozdělení pro kurz CZK/EUR na prvních sedm týdnů roku 2010.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0,20292</td>
<td>-0,08421</td>
<td>1,786002</td>
<td>0,55494</td>
<td>0,887806</td>
<td>0,852176</td>
</tr>
<tr>
<td>2</td>
<td>0,94401</td>
<td>0,080755</td>
<td>-0,33434</td>
<td>-0,61273</td>
<td>-1,79016</td>
<td>0,565051</td>
</tr>
<tr>
<td>3</td>
<td>-0,02345</td>
<td>0,666994</td>
<td>-1,23115</td>
<td>1,19835</td>
<td>0,542312</td>
<td>-1,20797</td>
</tr>
<tr>
<td>4</td>
<td>-1,07654</td>
<td>0,569814</td>
<td>-0,0435</td>
<td>0,962445</td>
<td>1,733479</td>
<td>-0,93178</td>
</tr>
<tr>
<td>5</td>
<td>-1,84733</td>
<td>-0,05453</td>
<td>-0,13161</td>
<td>-0,03799</td>
<td>-0,15867</td>
<td>-0,87843</td>
</tr>
</tbody>
</table>

Náhodné složky z rozdělení $\Phi(0;1)$ pro kurz CZK/EUR po zohlednění korelace jsou zobrazeny v následující tabulce 4.27.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,001429</td>
<td>0,00061</td>
<td>0,000993</td>
<td>-0,00171</td>
<td>0,003278</td>
<td>-0,00011</td>
</tr>
<tr>
<td>2</td>
<td>0,002496</td>
<td>0,000703</td>
<td>-0,00047</td>
<td>-0,00146</td>
<td>-0,00204</td>
<td>-5,7E-05</td>
</tr>
<tr>
<td>3</td>
<td>-0,00141</td>
<td>0,000227</td>
<td>-0,0009</td>
<td>0,001487</td>
<td>0,002571</td>
<td>0,000755</td>
</tr>
<tr>
<td>4</td>
<td>-0,00027</td>
<td>0,000923</td>
<td>-0,00079</td>
<td>0,002329</td>
<td>0,001087</td>
<td>0,002344</td>
</tr>
<tr>
<td>5</td>
<td>-0,0037</td>
<td>0,000435</td>
<td>0,000286</td>
<td>0,001038</td>
<td>0,000756</td>
<td>0,000341</td>
</tr>
</tbody>
</table>
Tabulka 4.28 zobrazuje vstupní údaje, získané při odhadu modelu v kapitole 4.1 pro kurz CZK/EUR, pro předpověď budoucího vývoje kurzu.

Tabulka 4.28 Vstupní parametry pro predikci kurzu CZK/EUR na rok 2010

<table>
<thead>
<tr>
<th>Kurz CZK/EUR k 4.1.2010</th>
<th>26,3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\alpha}(\text{týdenní}))</td>
<td>-0,000005498</td>
</tr>
<tr>
<td>(\sigma(\text{týdenní}))</td>
<td>0,090022738</td>
</tr>
</tbody>
</table>

Výchozí kurz dané měny ke 4.1.2010 je 26,30 CZK/EUR a podle hodnoty parametru \(\hat{\alpha} \), která je -0,000005498, se očekává klesající trend toho měnového páru, tedy posilování české koruny. Tabulka 4.29 obsahuje výsledné hodnoty predikce kurzu pro prvních pět scénářů na prvních sedm týdnů roku 2010.

Tabulka 4.29 Predikce měnového kurzu CZK/EUR pro pět scénářů na sedm týdnů roku 2010

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26,3000</td>
<td>26,3032</td>
<td>26,3045</td>
<td>26,3067</td>
<td>26,3025</td>
<td>26,3101</td>
<td>26,3097</td>
<td>26,3100</td>
</tr>
<tr>
<td>2</td>
<td>26,3000</td>
<td>26,3057</td>
<td>26,3072</td>
<td>26,3060</td>
<td>26,3024</td>
<td>26,2974</td>
<td>26,2971</td>
<td>26,2966</td>
</tr>
<tr>
<td>3</td>
<td>26,3000</td>
<td>26,2965</td>
<td>26,2969</td>
<td>26,2946</td>
<td>26,2980</td>
<td>26,3039</td>
<td>26,3056</td>
<td>26,3049</td>
</tr>
<tr>
<td>4</td>
<td>26,3000</td>
<td>26,2992</td>
<td>26,3012</td>
<td>26,2992</td>
<td>26,3046</td>
<td>26,3070</td>
<td>26,3124</td>
<td>26,3152</td>
</tr>
<tr>
<td>5</td>
<td>26,3000</td>
<td>26,2910</td>
<td>26,2919</td>
<td>26,2925</td>
<td>26,2948</td>
<td>26,2964</td>
<td>26,2971</td>
<td>26,2946</td>
</tr>
</tbody>
</table>

Zřetelněji je predikce kurzu CZK/EUR znázorněna v grafu 4.11.

Graf 4.11 Predikce vývoje kurzu CZK/EUR pro deset scénářů na 52 týdny roku 2010

Z grafu 4.11 je opět viditelný rozdílný vývoj jednotlivých scénářů ve stanoveném časovém horizontu.
4.2.3 Odhad vývoje měnového kurzu CZK/GBP

Tabulka 4.30 zobrazuje prvních pět scénářů vygenerovaných náhodných hodnot $\Phi(0;1)$ pro kurz CZK/GBP pro prvních sedm týdnů roku 2010.

Tabulka 4.30 Vygenerované nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/GBP

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0,0109</td>
<td>-0,40737</td>
<td>1,438566</td>
<td>1,095161</td>
<td>-0,44178</td>
<td>0,14451</td>
</tr>
<tr>
<td>2</td>
<td>-0,73427</td>
<td>-0,54196</td>
<td>0,508587</td>
<td>-0,34115</td>
<td>-0,48255</td>
<td>-0,46535</td>
</tr>
<tr>
<td>3</td>
<td>-0,00968</td>
<td>-1,85114</td>
<td>0,364921</td>
<td>0,693994</td>
<td>-0,57306</td>
<td>-0,02796</td>
</tr>
<tr>
<td>4</td>
<td>-0,45065</td>
<td>-1,16438</td>
<td>0,121433</td>
<td>0,713002</td>
<td>-0,41536</td>
<td>-0,33337</td>
</tr>
<tr>
<td>5</td>
<td>-1,99575</td>
<td>-0,32554</td>
<td>-0,39254</td>
<td>3,147288</td>
<td>1,153301</td>
<td>0,162313</td>
</tr>
</tbody>
</table>

Náhodné složky po zohlednění korelace mezi měnami pomocí Choleskeho algoritmu pro prvních pět scénářů a prvních sedm týdnů jsou v tabulce 4.31.

Tabulka 4.31 Vytvořené nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/GBP po zohlednění korelace

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,001231</td>
<td>-0,00029</td>
<td>0,003842</td>
<td>0,000729</td>
<td>0,00202</td>
<td>0,000224</td>
</tr>
<tr>
<td>2</td>
<td>0,000741</td>
<td>-0,00048</td>
<td>0,000608</td>
<td>-0,0002</td>
<td>-0,00283</td>
<td>-0,00097</td>
</tr>
<tr>
<td>3</td>
<td>-0,00126</td>
<td>-0,00353</td>
<td>-0,915E-05</td>
<td>0,002752</td>
<td>0,001121</td>
<td>0,000571</td>
</tr>
<tr>
<td>4</td>
<td>-0,00118</td>
<td>-0,00153</td>
<td>-0,00045</td>
<td>0,003524</td>
<td>0,00017</td>
<td>0,00136</td>
</tr>
<tr>
<td>5</td>
<td>-0,00736</td>
<td>-0,00028</td>
<td>-0,0055</td>
<td>0,007285</td>
<td>0,002996</td>
<td>0,000602</td>
</tr>
</tbody>
</table>

Tabulka 4.32 zobrazuje vybrané údaje z podkapitoly 4.1.3 k dosazení do predikčního modelu kurzu CZK/GBP.

Tabulka 4.32 Vstupní parametry pro predikci kurzu CZK/GBP na rok 2010

<table>
<thead>
<tr>
<th>Kurz CZK/GBP k 4.1.2010</th>
<th>29,5080</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}$(týdenní)</td>
<td>-0,00007657</td>
</tr>
<tr>
<td>$\hat{\sigma}$(týdenní)</td>
<td>0,13234205</td>
</tr>
</tbody>
</table>

Kurz dané měny ke 4.1.2010 je opět výchozí kurz predikce, jehož hodnota je zhruba 29,51 CZK/GBP a trend budoucího vývoje je záporný, očekává se opětovné posilování koruny vůči britské libře i do budoucna.

Tabulka 4.33 obsahuje výsledné hodnoty predikce kurzu CZK/GBP pro prvních pět scénářů na prvních sedm týdnů roku 2010.

Tabulka 4.33 Predikce měnového kurzu CZK/GBP pro pět scénářů na sedm týdnů roku 2010

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29,5080</td>
<td>29,5125</td>
<td>29,5112</td>
<td>29,5260</td>
<td>29,5286</td>
<td>29,5362</td>
<td>29,5369</td>
</tr>
<tr>
<td>2</td>
<td>29,5080</td>
<td>29,5106</td>
<td>29,5085</td>
<td>29,5107</td>
<td>29,5027</td>
<td>29,4914</td>
<td>29,4874</td>
</tr>
<tr>
<td>3</td>
<td>29,5080</td>
<td>29,5028</td>
<td>29,4888</td>
<td>29,4882</td>
<td>29,4987</td>
<td>29,5029</td>
<td>29,5049</td>
</tr>
<tr>
<td>4</td>
<td>29,5080</td>
<td>29,5031</td>
<td>29,4969</td>
<td>29,4949</td>
<td>29,5085</td>
<td>29,5089</td>
<td>29,51406</td>
</tr>
<tr>
<td>5</td>
<td>29,5080</td>
<td>29,4790</td>
<td>29,4777</td>
<td>29,4753</td>
<td>29,5035</td>
<td>29,5150</td>
<td>29,5171</td>
</tr>
</tbody>
</table>

Graf 4.12 Predikce vývoje kurzu CZK/GBP pro deset scénářů na 52 týdnů roku 2010

Graf 4.12 zobrazuje, stejně jako tomu bylo u předchozích měnových kurzů, rostoucí i klesající trend kurzu CZK/GBP, tedy je možné očekávat posilující i oslabující vývoj české měny vůči britské libře.

4.2.4 Odhad vývoje měnového kurzu CZK/USD

Tabulka 4.34 zobrazuje prvních pět scénářů vygenerovaných náhodných hodnot pro kurz CZK/GBP z rozdělení Φ(0;1) pro prvních sedm týdnů roku 2010.

Tabulka 4.34 Vygenerované nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/USD

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28514</td>
<td>-0.51871</td>
<td>-1.07272</td>
<td>-0.4112</td>
<td>0.693799</td>
<td>-0.05783</td>
<td>1.286385</td>
</tr>
<tr>
<td>2</td>
<td>0.370978</td>
<td>-0.69458</td>
<td>-0.04243</td>
<td>1.847329</td>
<td>-0.07638</td>
<td>1.310375</td>
<td>1.041033</td>
</tr>
<tr>
<td>3</td>
<td>0.929419</td>
<td>0.896575</td>
<td>-0.64772</td>
<td>0.610239</td>
<td>-0.6713</td>
<td>-0.32481</td>
<td>2.106535</td>
</tr>
<tr>
<td>4</td>
<td>-0.13609</td>
<td>1.157775</td>
<td>-1.10202</td>
<td>-0.30969</td>
<td>-1.42767</td>
<td>0.646021</td>
<td>1.010608</td>
</tr>
<tr>
<td>5</td>
<td>0.093119</td>
<td>-0.36067</td>
<td>0.824994</td>
<td>1.583599</td>
<td>-1.08477</td>
<td>-1.25433</td>
<td>0.337986</td>
</tr>
</tbody>
</table>

Tabulka 4.35 obsahuje hodnoty náhodné složky z tabulky 4.34 po zohlednění korelace mezi měnovými páry.

Tabulka 4.35 Vytvořené nezávislé náhodné hodnoty z normovaného normálního rozdělení pro CZK/USD po zohlednění korelace

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.002954</td>
<td>-0.00153</td>
<td>0.00115</td>
<td>-0.00116</td>
<td>0.005102</td>
<td>-0.00041</td>
<td>0.000387</td>
</tr>
<tr>
<td>2</td>
<td>0.002302</td>
<td>-0.00231</td>
<td>0.000665</td>
<td>0.002446</td>
<td>-0.00343</td>
<td>0.00206</td>
<td>-0.00186</td>
</tr>
<tr>
<td>3</td>
<td>0.000509</td>
<td>-0.00222</td>
<td>-0.00152</td>
<td>0.00496</td>
<td>0.000153</td>
<td>0.000783</td>
<td>0.007457</td>
</tr>
<tr>
<td>4</td>
<td>-0.00132</td>
<td>0.0013</td>
<td>-0.00387</td>
<td>0.003819</td>
<td>-0.00434</td>
<td>0.004863</td>
<td>0.002267</td>
</tr>
<tr>
<td>5</td>
<td>-0.00918</td>
<td>-0.00115</td>
<td>0.001778</td>
<td>0.013854</td>
<td>0.0011</td>
<td>-0.00209</td>
<td>0.000582</td>
</tr>
</tbody>
</table>

63
Tabulka 4.36 zobrazuje vstupní parametry spočítané při odhadu modelu pro kurz CZK/USD potřebné pro predikci toho kurzu na rok 2010.

Tabulka 4.36 Vstupní parametry pro predikci kurzu CZK/USD na rok 2010

<table>
<thead>
<tr>
<th>Kurz CZK/USD k 4.1.2010</th>
<th>18,2750</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\alpha}) (týdenní)</td>
<td>-0,000011919</td>
</tr>
<tr>
<td>(\sigma) (týdenní)</td>
<td>0,170538283</td>
</tr>
</tbody>
</table>

Výchozí kurz pro predikci má hodnotu 18,28 CZK/USD k počátku roku 2010 a stejně jako u předchozích měn je parametr \(\hat{\alpha} \) záporný, tedy předpovídá do budoucna záporný trend vývoje daného kurzu a posilující českou korunu v budoucím období.

Tabulka 4.37 Predikce měnového kurzu CZK/USD pro pět scénářů na sedm týdnů roku 2010

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18,2750</td>
<td>18,2839</td>
<td>18,2790</td>
<td>18,2823</td>
<td>18,2785</td>
<td>18,2942</td>
<td>18,2927</td>
</tr>
<tr>
<td>2</td>
<td>18,2750</td>
<td>18,2819</td>
<td>18,2745</td>
<td>18,2764</td>
<td>18,2838</td>
<td>18,2728</td>
<td>18,2790</td>
</tr>
<tr>
<td>3</td>
<td>18,2750</td>
<td>18,2763</td>
<td>18,2692</td>
<td>18,2642</td>
<td>18,2795</td>
<td>18,2797</td>
<td>18,2820</td>
</tr>
<tr>
<td>4</td>
<td>18,2750</td>
<td>18,2706</td>
<td>18,2744</td>
<td>18,2622</td>
<td>18,2739</td>
<td>18,2601</td>
<td>18,2750</td>
</tr>
<tr>
<td>5</td>
<td>18,2750</td>
<td>18,2462</td>
<td>18,2423</td>
<td>18,2477</td>
<td>18,2906</td>
<td>18,2938</td>
<td>18,2871</td>
</tr>
</tbody>
</table>

Predikce kurzu z tabulky 4.37 je znázorněna v grafu 4.13, kde je znázorněn časový vývoj deseti scénářů na rok 2010.

Graf 4.13 Predikce vývoje kurzu CZK/USD pro deset scénářů na 52 týdny roku 2010

Z grafu 4.14 je zřetelný velmi podobný vývoj hodnoty kurzu CZK/USD jako v grafech ostatních měnových párů. Očekává se tedy na rok 2010 posilující i oslabující česká koruna vůči americkému dolaru, tedy různorodý vývojový trend měnového kurzu CZK/USD.
4.3 Odhad provozního výsledku hospodaření na rok 2010

V této kapitole bude odhadován vývoj provozního výsledku hospodaření na rok 2010, protože právě tento finanční výsledek byl vybrán pro danou společnost a je tedy základem tzv. rizikového měřítku, na jehož hodnotě je postavena celá metodologie CorporateMetrics. V tomto konkrétním případě je tímto měřítkem Earnings at Risk.

Postup výpočtů při odhadu provozního výsledku hospodaření společnosti je shrnut v následujících krocích:

1. Predikce tržeb za vlastní výrobky a služby na rok 2010 za jednotlivé měny přepočtené na českou korunu, které lze definovat takto:

\[T_{t,i}^C = \phi_{2010}^C \cdot k_{t}^{CZK} \cdot w_{2010}^C \cdot Q_i , \]

(78)

kde \(T_{t,i}^C \) jsou tržby inkasované ve vybrané zahraniční měně \(C \) přepočtené na českou korunu pro \(i \) – tý scénář v čase \(t \), \(\phi_{2010}^C \) je průměrná tržní cena za jednotku produkce v dané cizí měně na rok 2010, \(k_{t}^{CZK} \) je měnový kurz pro \(i\)-tý scénář v čase \(t \), \(w_{2010}^C \) je podíl tržeb v dané měně \(C \) na celkových tržbách na rok 2010 a \(Q_i \) je množství produkce za zvolený časový interval. Celkové tržby přepočtené na českou měnu pro \(i \) – tý scénář v čase \(t \) lze potom zapsat následovně:

\[SUM \left(T_{t,i}^{CZK} \right) = \sum_{i=1}^{T} T_{t,i}^C . \]

(79)

3. Výpočet provozního výsledku hospodaření za jednotlivé kvartály roku 2010 i pro celý rok 2010 pro jednotlivé scénáře podle následujícího vztahu:

\[VH_{t,i}^{PC} = C_{elk}.T_{t,i}^{CZK} + OV_{t}^{CZK} - \sum_{i=1}^{T} PN_i , \]

(80)

kde \(VH_{t,i}^{PC} \) je provozní výsledek hospodaření pro \(i \) – tý scénář v čase \(t \), \(OV_{t}^{CZK} \) jsou ostatní výnosy v CZK v čase \(t \) a \(\sum_{i=1}^{T} PN_i \) je suma provozních nákladů v CZK v čase \(t \).

4. Zjištění nejmenší na největší hodnoty odhadnutých kvartálních výsledků hospodaření za provozní činnost pomocí funkce \(MIN \) a \(MAX \) v MS Excelu, výpočet intervalů výsledných hodnot.

6. Výpočet pravděpodobnosti výskytu daných hodnot provozního výsledku hospodaření ve stanovených intervalech.

4.3.1 Odhad tržeb za vlastní výrobky a služby na rok 2010

Po dokončení odhadu samotného měnového kurzu je možné predikovat tržby za vlastní výrobky a služby, které jsou nedílnou součástí výpočtu provozního výsledku hospodaření pro danou společnost. Pro odhad velikostí tržeb za jednotlivé měnové kurzy i celkově se vychází vycházet z následující tabulky vstupních údajů 4.38 pro predikci týdenních i čtvrtletních hodnot tržeb za vlastní výrobky a služby na rok 2010.

Tabulka 4.38 Souhrnné údaje pro výpočet tržeb za vlastní výrobky a služby na rok 2010

| Průměrné podíly tržeb v příslušných měnách na celkových tržbách v roce 2009 |
|-----------------------------|------------------|
| CHF | 1,20% |
| CZK | 5,40% |
| EUR | 85,08%|
| GBP | 4,52% |
| USD | 3,80% |
| Celkem | 100,00%|

<table>
<thead>
<tr>
<th>Průměrná tržní cena produkce za tunu v jednotlivých měnách</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
</tr>
<tr>
<td>CZK</td>
</tr>
<tr>
<td>EUR</td>
</tr>
<tr>
<td>GBP</td>
</tr>
<tr>
<td>USD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Produkce za rok 2009 (tuny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkce za jeden týden roku 2009 (tuny)</td>
</tr>
<tr>
<td>Produkce za jeden kvartál roku 2009 (tuny)</td>
</tr>
<tr>
<td>Produkce za jeden rok 2009 (tuny)</td>
</tr>
</tbody>
</table>

Údaje z tabulky 4.38 byly vypočítány z údajů ve výkazech o prodejích a produkci vybrané společnosti, které jsou součástí přílohy 3 a 4.

Při odhadu tržeb za vlastní výrobky a služby na rok 2010 se postupuje podle následujících kroků:

1. Predikce týdenních tržeb za vlastní výrobky a služby na rok 2010 podle vzorce (78) pro jednotlivé měnové kurzy včetně odhadu tržeb za vlastní výrobky a služby inkasované v CZK.

3. Zjištění potřebných statistických údajů (viz. postup u odhadu provozního VH) a sestrojení funkce hustoty kvartálních tržeb.

4.3.1.1 Odhad tržeb za vlastní výrobky a služby inkasovaných v CHF

Po odhadu modelu a predikci vývoje kurzu CZK/CHF jsou odhadovány týdenní tržby za vlastní výrobky a tržby jako dílčí tržby celkových predikovaných tržeb na rok 2010. Následující tabulka 4.39 obsahuje vybrané vstupní údaje pro predikci týdenních tržeb za vlastní výrobky a služby inkasovaných v CHF a přepracovených na CZK.

Tabulka 4.39 Vstupní údaje pro predikci tržeb za výrobky a služby v CHF a přepracovených na CZK

Podíl tržeb v CHF na celkových tržbách 2009	1,20%
Průměrná tržní cena produkce za tunu v CHF	1106,47
Produkce za jeden týden roku 2009 (tuny)	1663,46

Na základě údajů v tabulce 4.39 a předchozí predikce kurzu CZK/CHF lze predikovat tržby za vlastní výrobky a služby v CHF přepracovené na CZK dle (78), což vypadá takto:

\[T_{\text{výdlen}}^{\text{CHF\rightarrow CZK}} = 1106,47 \cdot \text{kurz}_{\text{částka týden}}^{\text{CHF\rightarrow CZK}} \cdot 1,2\% \cdot 1663,46, \quad (81) \]

výsledky zachycuje tabulka 4.40.

Tabulka 4.40 Predikce tržeb za vlastní výrobky a služby inkasovaných v CHF a přepracovených na CZK (Kč)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>390539</td>
<td>390647</td>
<td>390692</td>
<td>390639</td>
<td>390483</td>
<td>390646</td>
<td>390580</td>
<td>390598</td>
</tr>
<tr>
<td>2</td>
<td>390539</td>
<td>390645</td>
<td>390685</td>
<td>390672</td>
<td>390690</td>
<td>390585</td>
<td>390541</td>
<td>390615</td>
</tr>
<tr>
<td>3</td>
<td>390539</td>
<td>390442</td>
<td>390410</td>
<td>390427</td>
<td>390447</td>
<td>390584</td>
<td>390712</td>
<td>390633</td>
</tr>
<tr>
<td>4</td>
<td>390539</td>
<td>390589</td>
<td>390611</td>
<td>390557</td>
<td>390651</td>
<td>390609</td>
<td>390827</td>
<td>390834</td>
</tr>
<tr>
<td>5</td>
<td>390539</td>
<td>390404</td>
<td>390435</td>
<td>390460</td>
<td>390531</td>
<td>390590</td>
<td>390668</td>
<td>390652</td>
</tr>
</tbody>
</table>

Predikované hodnoty tržeb inkasované v CHF a přepracovené na CZK se pohybují okolo částky 391 tisíc Kč ve všech zobrazených scénářích. Vývoj tržeb je lépe zachycen v následujícím grafu 4.14, kde je zobrazeno deset scénářů vývoje pro 52 týdnů roku 2010.

Graf 4.14 Predikce tržeb za vlastní výrobky a služby pro deset scénářů na rok 2010
4.3.1.2 Odhad tržeb za vlastní výrobky a služby inkasovaných v EUR

Tabulka 4.41 obsahuje vybrané vstupní údaje pro odhad týdenních tržeb za vlastní výrobky a služby inkasované v EUR a přepočítané na CZK.

Tabulka 4.41 Vstupní údaje pro predikci tržeb za výrobky a služby v EUR a převedených na CZK

Podíl tržeb v EUR na celkových tržbách 2009	85,08%
Průměrná tržní cena produkce za tunu v EUR	742,78
Produkce za jeden týden roku 2009 (tuny)	1663,46

Přepočet tržeb z EUR na CZK lze podle vyjádřit následovně:

\[T_{EUR\rightarrow CZK}^{\text{týden}} = 742,78 \cdot \text{kurz}_{\text{CZK/EUR}}^{\text{týden}} \cdot 85,08\% \cdot 1663,46 \] \hspace{1cm} (82)

Výsledné hodnoty týdenních tržeb za vlastní výrobky a služby inkasované v EUR a převedené na CZK zachycuje tabulka 4.42.

Tabulka 4.42 Predikce tržeb za vlastní výrobky a služby inkasovaných v EUR a převedených na CZK (Kč)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27647521</td>
<td>27650927</td>
<td>27652293</td>
<td>27654612</td>
<td>27650205</td>
<td>27658212</td>
<td>27657792</td>
<td>27658066</td>
</tr>
<tr>
<td>2</td>
<td>27647521</td>
<td>27653582</td>
<td>27655181</td>
<td>27653866</td>
<td>27650077</td>
<td>27644558</td>
<td>27644027</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>27647521</td>
<td>27643872</td>
<td>27644284</td>
<td>27641894</td>
<td>27645442</td>
<td>27651688</td>
<td>27653416</td>
<td>27652724</td>
</tr>
<tr>
<td>4</td>
<td>27647521</td>
<td>27646705</td>
<td>27648851</td>
<td>27646734</td>
<td>27652379</td>
<td>27654933</td>
<td>27660617</td>
<td>27663551</td>
</tr>
<tr>
<td>5</td>
<td>27647521</td>
<td>27638159</td>
<td>27639090</td>
<td>27639650</td>
<td>27642082</td>
<td>27643810</td>
<td>27644507</td>
<td>27641882</td>
</tr>
</tbody>
</table>

Hodnoty týdenních tržeb v EUR převedených na CZK jsou přibližně 28 milionů Kč, a protože podíl EUR na celkových tržbách je 85% (viz. tabulka 4.41), je predikce tržeb za tuto měnu určující pro celkovou hodnotu tržeb za vlastní výrobky a služby v CZK. Jednotlivé hodnoty týdenních tržeb jsou zachyceny v následujícím grafu 4.15.

Graf 4.15 Predikce tržeb za vlastní výrobky a služby pro deset scénářů na rok 2010
4.3.1.3 Odhad tržeb za vlastní výrobky a služby inkasovaných v GBP

Při odhadu velikosti tržeb za GBP převedených na CZK se opět vychází z následující tabulky vstupních údajů vybraných pro predikci hodnoty týdenních tržeb.

Tabulka 4.43 Vstupní údaje pro predikci tržeb za výrobky a služby v GBP a přečtených na CZK

Podíl tržeb v GBP na celkových tržbách 2009	4,52%
Průměrná tržní cena produkce za tunu v GBP	564,45
Produkce za jeden týden roku 2009 (tuny)	1663,46

Tabulka 4.44 zobrazuje výsledné hodnoty predikce týdenních tržeb za vlastní výrobky a služby inkasovaných v GBP přečtených na CZK, jehož podíl na celkových tržbách je pouhých 4,52% tržní cena zboží za tunu je 564,45 Kč. Přepočet tržeb z GBP na CZK lze tedy vyjádřit takto:

\[T_{\text{GBP}\rightarrow \text{ČK}}^{\text{GBP/týden}} = 564,45 \cdot k_{\text{čK/GBP}}^{\text{GBP/týden}} \cdot 4,52% \cdot 1663,46, \]

Tabulka 4.44 Predikce tržeb za vlastní výrobky a služby inkasovaných v GBP a přečtených na CZK (Kč)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1252323</td>
<td>1252518</td>
<td>1252460</td>
<td>1253087</td>
<td>1253198</td>
<td>1253524</td>
<td>1253551</td>
<td>1253102</td>
</tr>
<tr>
<td>2</td>
<td>1252323</td>
<td>1252437</td>
<td>1252348</td>
<td>1252439</td>
<td>1252098</td>
<td>1251620</td>
<td>1251449</td>
<td>1250716</td>
</tr>
<tr>
<td>3</td>
<td>1252323</td>
<td>1252105</td>
<td>1251511</td>
<td>1251487</td>
<td>1251932</td>
<td>1252108</td>
<td>1252193</td>
<td>1252484</td>
</tr>
<tr>
<td>4</td>
<td>1252323</td>
<td>1252118</td>
<td>1251856</td>
<td>1251771</td>
<td>1252345</td>
<td>1252364</td>
<td>1252580</td>
<td>1252528</td>
</tr>
<tr>
<td>5</td>
<td>1252323</td>
<td>1251095</td>
<td>1251039</td>
<td>1250939</td>
<td>1252136</td>
<td>1252623</td>
<td>1252713</td>
<td>1252640</td>
</tr>
</tbody>
</table>

Hodnoty týdenních tržeb v hodnotě zhruba 1,2 milionu korun po přepočtení v GBP jsou také zachyceny v následujícím grafu 4.16.

Graf 4.16 Predikce tržeb za vlastní výrobky a služby pro deset scénářů na rok 2010
4.3.1.4 Odhad tržeb za vlastní výrobky a služby inkasovaných v USD

Tabulka 4.45 obsahuje vybrané vstupní údaje pro odhad týdenních tržeb za vlastní výrobky a služby inkasovaných v USD a přepočítaných na CZK.

Tabulka 4.45 Vstupní údaje pro predikci tržeb za výrobky a služby v USD a převedených na CZK

Podíl tržeb v USD na celkových tržbách 2009	3,80%
Průměrná tržní cena produkce za tunu v USD	1249,77
Produkce za jeden týden roku 2009 (tuny)	1663,46

Z výše uvedené tabulky 4.45 lze vyčíst, že se kurz CZK/USD podílí na celkových prodejích dané společnosti pouhými 3,80%, jeho váha při odhadu celkových tržeb je tedy velmi malá, na rozdíl od měnového páru CZK/EUR. Tržby inkasované v USD a přepočítané na CZK vypadají následovně:

\[T_{USD\rightarrow CZK}^{týden} = 1249,77 \cdot \text{kurz}_{USD\rightarrow CZK}^{týden} \cdot 3,8\% \cdot 1663,46, \]

Výsledky predikce týdenních tržeb v USD převedených na CZK zachycuje tabulka 4.46.

Tabulka 4.46 Predikce tržeb za vlastní výrobky a služby inkasovaných v USD a převedených na CZK (Kč)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1443723</td>
<td>1444433</td>
<td>1444040</td>
<td>1444306</td>
<td>1444001</td>
<td>1445241</td>
<td>1445123</td>
<td>1445201</td>
</tr>
<tr>
<td>2</td>
<td>1443723</td>
<td>1444273</td>
<td>1443687</td>
<td>1443834</td>
<td>1444419</td>
<td>1443556</td>
<td>1444046</td>
<td>1443572</td>
</tr>
<tr>
<td>3</td>
<td>1443723</td>
<td>1443831</td>
<td>1443267</td>
<td>1442876</td>
<td>1444079</td>
<td>1444100</td>
<td>1444276</td>
<td>1446097</td>
</tr>
<tr>
<td>4</td>
<td>1443723</td>
<td>1443380</td>
<td>1443683</td>
<td>1442714</td>
<td>1443636</td>
<td>1442550</td>
<td>1443730</td>
<td>1444271</td>
</tr>
<tr>
<td>5</td>
<td>1443723</td>
<td>1441448</td>
<td>1441147</td>
<td>1441566</td>
<td>1444959</td>
<td>1445213</td>
<td>1444681</td>
<td>1444808</td>
</tr>
</tbody>
</table>

Hodnoty týdenních tržeb ve výši okolo 1,4 milionu Kč, které jsou převedeny z hodnoty v USD, zobrazuje následující graf 4.17, kde je zobrazeno deset scénářů pro 52 týdnů roku 2010.

Graf 4.17 Predikce tržeb za vlastní výrobky a služby pro deset scénářů na rok 2010
4.3.1.5 Odhad tržeb za vlastní výrobky a služby v CZK

V případě české měny se nepostupuje jako u ostatních zahraničních měn, protože v rámci české koruny společnost nepodstupuje žádné kurzové riziko, jako je tomu u ostatních měn, a proto se velmi jednoduše spočítávají tržby za vlastní výrobky na základě údajů z tabulky 4.47, která obsahuje i výslednou hodnotu tržeb v české měně.

Tabulka 4.47 Predikce tržeb za vlastní výrobky a služby v CZK na rok 2010(Kč)

Průměrná tržní cena produkce za tunu v CZK (Kč)	16815,49
Podíl tržeb v CZK na celkových tržbách 2009	5,40%
Produkce za kvartál (tuny)	21625
Predikované tržby v CZK na rok 2010 (Kč)	19636288

Vzorec, podle kterého se tržby v CZK počítají lze zapsat tímto způsobem:

\[T_{\text{čtvrtletí}}^{\text{CZK}} = 16815,49 \cdot 5,4\% \cdot 21625 \]

Z tabulky 4.47 je možné vyčíst hodnotu predikovaných tržeb za vlastní výrobky a služby v CZK a to ve výši 19 636 288 Kč. Tato hodnota je čtvrtletní, na rozdíl od předešlých týdenních hodností tržeb za jednotlivé cizí měny, protože tato hodnota se připočítává až ke kvartálním hodnotám tržeb, které jsou odvozeny od získaných týdenních hodnot.

4.3.1.6 Odhad celkových tržeb za vlastní výrobky a služby na rok 2010

Celková hodnota tržeb za všechny měny přepočtená na CZK v jednotlivých týdnech roku 2010 se získá součtem jednotlivých týdenních hodnot tržeb u jednotlivých měn podle (79). Tvar výpočtu celkové hodnoty tržeb je možné formulovat takto:

\[
\sum_{i=1}^{T} T_{i,j}^{\text{CZK}} = T_{i,j}^{\text{CHF\rightarrow CZK}} + T_{i,j}^{\text{EUR\rightarrow CZK}} + T_{i,j}^{\text{GBP\rightarrow CZK}} + T_{i,j}^{\text{USD\rightarrow CZK}},
\]

Týdenní hodnoty celkových tržeb jsou rozděleny do kvartálů po třinácti týdnech, aby byla zachována rovnoměrnost hodnot jednotlivých kvartálů. Jinými slovy, tržby za příslušný kvartál a příslušný i – tý scénář jsou součtem týdenních tržeb za příslušný kvartál a příslušný i – tý scénář. K takto vypočítaným celkovým tržbám se připočítávají čtvrtletní tržby v CZK \(T_{\text{čtvrtletí}}^{\text{CZK}}\) vypočítané dle (85).

V tabulce 4.48 jsou zobrazeny celkové predikované tržby pro deset scénářů v jednotlivých kvartálech roku 2010.
Tabulka 4.48 Celkově predikované tržby v jednotlivých kvartálech roku 2010 (Kč)

<table>
<thead>
<tr>
<th></th>
<th>I kvartál</th>
<th>II kvartál</th>
<th>III kvartál</th>
<th>IV kvartál</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>419 300 573</td>
<td>419 151 125</td>
<td>419 259 022</td>
<td>418 164 531</td>
<td>1 675 875 251</td>
</tr>
<tr>
<td>2</td>
<td>419 077 222</td>
<td>419 032 774</td>
<td>419 221 372</td>
<td>419 219 652</td>
<td>1 676 874 269</td>
</tr>
<tr>
<td>3</td>
<td>419 212 981</td>
<td>419 220 265</td>
<td>419 331 122</td>
<td>419 340 993</td>
<td>1 677 316 089</td>
</tr>
<tr>
<td>4</td>
<td>419 316 774</td>
<td>419 327 200</td>
<td>419 212 116</td>
<td>419 215 573</td>
<td>1 676 038 001</td>
</tr>
<tr>
<td>5</td>
<td>419 075 110</td>
<td>419 083 195</td>
<td>419 093 691</td>
<td>419 098 596</td>
<td>1 676 350 593</td>
</tr>
<tr>
<td>6</td>
<td>419 230 050</td>
<td>419 224 528</td>
<td>419 221 372</td>
<td>419 229 603</td>
<td>1 676 882 268</td>
</tr>
<tr>
<td>7</td>
<td>419 274 699</td>
<td>419 261 372</td>
<td>419 266 159</td>
<td>419 267 930</td>
<td>1 677 070 160</td>
</tr>
<tr>
<td>8</td>
<td>419 039 383</td>
<td>419 031 183</td>
<td>419 027 712</td>
<td>419 017 606</td>
<td>1 676 115 885</td>
</tr>
<tr>
<td>9</td>
<td>419 237 104</td>
<td>419 253 111</td>
<td>419 274 801</td>
<td>419 293 260</td>
<td>1 677 058 277</td>
</tr>
</tbody>
</table>

Z tabulky 4.48 je možné vyčíst, že tržby v jednotlivých kvartálech mohou dosahovat v průměru hodnoty kolem 419 milionů Kč a hodnota celkových predikovaných tržeb za celý rok 2010 se pohybuje kolem 1,6 miliardy Kč. Podle interních informací společnosti, firma plánuje dosahovat přibližně stejných výsledků, jaké jsou uvedeny v tabulce 4.48, tudíž lze říci, že zvolený model dokáže predikovat hodnoty tržeb srovnatelně se skutečnými tržbami vybrané společnosti.

Nejmenší a největší hodnota celkových tržeb v jednotlivých kvartálech je obsažena v tabulce 4.49.

Tabulka 4.49 Nejmenší a největší hodnota celkových tržeb v jednotlivých kvartálech roku 2010 (Kč)

<table>
<thead>
<tr>
<th></th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>418 676 770</td>
<td>418 640 103</td>
<td>418 594 213</td>
<td>418 164 531</td>
</tr>
<tr>
<td>MAX</td>
<td>419 679 920</td>
<td>419 733 765</td>
<td>419 790 037</td>
<td>419 836 781</td>
</tr>
</tbody>
</table>

Intervaly výsledných hodnot tržeb na rok 2010 jsou obsaženy v tabulce 4.50.

Tabulka 4.50 Intervaly predikovaných hodnot celkových tržeb v roce 2010 (Kč)

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>418 676 770</td>
<td>418 640 103</td>
<td>418 594 213</td>
<td>418 164 531</td>
</tr>
<tr>
<td>2</td>
<td>418 777 085</td>
<td>418 749 469</td>
<td>418 713 795</td>
<td>418 331 756</td>
</tr>
<tr>
<td>3</td>
<td>418 877 400</td>
<td>418 858 836</td>
<td>418 833 378</td>
<td>418 498 891</td>
</tr>
<tr>
<td>4</td>
<td>418 977 715</td>
<td>418 968 202</td>
<td>418 952 960</td>
<td>418 666 206</td>
</tr>
<tr>
<td>5</td>
<td>419 078 030</td>
<td>419 077 568</td>
<td>419 072 543</td>
<td>418 833 431</td>
</tr>
<tr>
<td>6</td>
<td>419 178 345</td>
<td>419 186 934</td>
<td>419 192 125</td>
<td>419 000 656</td>
</tr>
<tr>
<td>7</td>
<td>419 278 660</td>
<td>419 296 300</td>
<td>419 311 708</td>
<td>419 167 881</td>
</tr>
<tr>
<td>8</td>
<td>419 378 975</td>
<td>419 405 667</td>
<td>419 431 290</td>
<td>419 335 106</td>
</tr>
<tr>
<td>9</td>
<td>419 479 290</td>
<td>419 515 033</td>
<td>419 550 872</td>
<td>419 502 331</td>
</tr>
<tr>
<td>10</td>
<td>419 579 605</td>
<td>419 624 399</td>
<td>419 670 455</td>
<td>419 669 556</td>
</tr>
<tr>
<td>MAX</td>
<td>419 680 920</td>
<td>419 734 765</td>
<td>419 790 037</td>
<td>419 837 781</td>
</tr>
</tbody>
</table>

Po vytvoření subjektivně stanovených intervalů je vhodné spočítat také četnosti výskytu daných hodnot. Výsledné četnosti jsou zachyceny v tabulce 4.51.
Tabulka 4.51 Četnosti výskytu predikovaných hodnot tržeb v roce 2010

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>99</td>
<td>102</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>189</td>
<td>190</td>
<td>192</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>235</td>
<td>239</td>
<td>255</td>
<td>169</td>
</tr>
<tr>
<td>7</td>
<td>241</td>
<td>233</td>
<td>217</td>
<td>309</td>
</tr>
<tr>
<td>8</td>
<td>137</td>
<td>126</td>
<td>135</td>
<td>294</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>61</td>
<td>46</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SUMA</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Vypočítanou pravděpodobnost výskytu odhadovaných hodnot tržeb za vlastní výrobky a služby obsahuje tabulka 4.52.

Tabulka 4.52 Pravděpodobnost výskytu výsledných hodnot celkových tržeb na rok 2010

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>2</td>
<td>0,7%</td>
<td>0,7%</td>
<td>0,8%</td>
<td>0,0%</td>
</tr>
<tr>
<td>3</td>
<td>2,1%</td>
<td>2,7%</td>
<td>2,7%</td>
<td>0,0%</td>
</tr>
<tr>
<td>4</td>
<td>8,7%</td>
<td>9,9%</td>
<td>10,2%</td>
<td>0,8%</td>
</tr>
<tr>
<td>5</td>
<td>18,9%</td>
<td>19,0%</td>
<td>19,2%</td>
<td>4,3%</td>
</tr>
<tr>
<td>6</td>
<td>23,5%</td>
<td>23,9%</td>
<td>25,5%</td>
<td>16,9%</td>
</tr>
<tr>
<td>7</td>
<td>24,1%</td>
<td>23,3%</td>
<td>21,7%</td>
<td>30,9%</td>
</tr>
<tr>
<td>8</td>
<td>13,7%</td>
<td>12,6%</td>
<td>13,5%</td>
<td>29,4%</td>
</tr>
<tr>
<td>9</td>
<td>6,3%</td>
<td>6,1%</td>
<td>4,6%</td>
<td>13,3%</td>
</tr>
<tr>
<td>10</td>
<td>1,5%</td>
<td>1,4%</td>
<td>1,6%</td>
<td>4,0%</td>
</tr>
<tr>
<td>11</td>
<td>0,4%</td>
<td>0,3%</td>
<td>0,1%</td>
<td>0,3%</td>
</tr>
<tr>
<td>SUMA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Funkci hustoty celkových tržeb v jednotlivých kvartálech znázorňuje graf 4.18

Graf 4.18 Funkce hustoty celkových tržeb v jednotlivých kvartálech roku 2010
Z grafu 4.18 je vidět, že funkce hustoty je u prvních tří kvartálů velmi podobná. Nejvíce hodnot v případě prvního kvartálu se vyskytuje v intervalu od 419 186 934 Kč do 419 296 300 Kč, a to s pravděpodobností přibližně 25%. Odlišnou funkci hustoty má poslední čtvrtletí roku 2010, kde se většina hodnot vyskytuje v intervalech s vyšší hodnotou tržeb než tomu je u hodnot ostatních tří kvartálů.

4.3.2 Odhad provozních nákladů na rok 2010

Aby bylo možné ze získaných hodnot celkových tržeb za vlastní výrobky a služby vypočítat hodnotu provozního výsledku hospodaření, je potřeba odhadnout nejen hodnotu ostatních výnosů společnosti, ale především výši provozních nákladů, které se v základě dělí na variabilní, jejichž výše se odvíjí od množství produkce a fixní náklady, které jsou konstantní a nezávislé na množství vyrobených jednotek. Protože údaje o provozních nákladech při výpočtu nejsou ještě oficiálně k dispozici za rok 2009, byla hodnota fixních i variabilních nákladů stanovena na základě všech dostupných informací o společnosti.

Tabulka 4.53 obsahuje stanovené údaje o provozních nákladech na rok 2009, ze kterých byly odvozeny náklady na rok 2010.

<table>
<thead>
<tr>
<th>Celkové provozní náklady a ostatní výnosy na rok 2009 a 2010 (Kč)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provozní náklady - variabilní složka (Kč)</td>
</tr>
<tr>
<td>Provozních náklady – fixní složka (Kč)</td>
</tr>
<tr>
<td>Produkce za rok 2009 (tuny)</td>
</tr>
<tr>
<td>Produkce za jeden týden roku 2009 (tuny)</td>
</tr>
<tr>
<td>Produkce za jeden kvartál roku 2009 (tuny)</td>
</tr>
<tr>
<td>Odhad celkových provozních nákladů a ostatních výnosů na rok 2010 (Kč)</td>
</tr>
<tr>
<td>Odhad provozních nákladů na jednotku produkce (Kč)</td>
</tr>
<tr>
<td>Odhad provozních nákladů za kvartál – variabilní složka (Kč)</td>
</tr>
<tr>
<td>Odhad provozních nákladů za kvartál – fixní složka (Kč)</td>
</tr>
<tr>
<td>Odhad ostatních výnosů za kvartál (Kč)</td>
</tr>
</tbody>
</table>

Provozní náklady na rok 2009 obsažené v tabulce 4.53 jsou stanoveny na základě skutečných údajů o množství produkce podniku za rok 2009 a údajů o provozních nákladech na základě hodnot z minulých let. Hodnoty provozních nákladů na rok 2010 jsou odvozeny na základě hodnot z roku 2009.
4.3.3 Odhad provozního výsledku hospodaření na rok 2010

Hodnotu celkových tržeb za vlastní výrobky a služby v CZK se již podařilo predikovat a rozdělit do jednotlivých kvartálů roku 2010, také byly odhadnuty provozní náklady společnosti na rok 2010.

Zbývá již predikovat samotný provozní výsledek hospodaření na čtvrtletí a celý rok 2010, který se bude počítat podle postupu v podkapitole 4.3 na základě vztahu (80).

Predikce vychází z hodnoty celkových predikovaných tržeb za vlastní výrobky a služby pro jednotlivé kvartály roku 2010. Vybrané údaje o provozních nákladech a ostatních výnosech společnosti na rok 2010 obsahuje tabulka 4.54.

Tabulka 4.54 Vybrané údaje pro výpočet provozního výsledku hospodaření v jednotlivých kvartálech 2010 (Kč)

Odhad provozních nákladů za kvartál – variabilní složka (Kč)	331750000
Odhad provozních nákladů za kvartál – fixní složka (Kč)	49500000
Odhad ostatních výnosů za kvartál (Kč)	9255500

Data z tabulky 4.54 vycházejí z údajů roku 2009, ale pro simulaci vývoje budoucího provozního výsledku hospodaření na rok 2010 se nechávají stejná po konzultaci s vedením společnosti, která plánuje na tento rok přibližně stejné náklady i výnosy jako v roce 2009.

Tabulka 4.55 zobrazuje předpovídané hodnoty hospodářského výsledku z provozní činnosti na rok 2010 podle vztahu (80).

Tabulka 4.55 Predikce provozního výsledku hospodaření v jednotlivých kvartálech roku 2010 (Kč)

<table>
<thead>
<tr>
<th>I kvartál</th>
<th>II kvartál</th>
<th>III kvartál</th>
<th>IV kvartál</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47 306 073</td>
<td>47 156 625</td>
<td>47 264 522</td>
<td>46 170 031</td>
</tr>
<tr>
<td>2</td>
<td>47 082 722</td>
<td>47 038 274</td>
<td>46 990 212</td>
<td>46 948 793</td>
</tr>
<tr>
<td>3</td>
<td>47 218 481</td>
<td>47 225 765</td>
<td>47 226 872</td>
<td>47 225 152</td>
</tr>
<tr>
<td>4</td>
<td>47 322 274</td>
<td>47 332 700</td>
<td>47 336 622</td>
<td>47 346 493</td>
</tr>
<tr>
<td>5</td>
<td>47 080 610</td>
<td>47 088 695</td>
<td>47 099 191</td>
<td>47 104 096</td>
</tr>
<tr>
<td>6</td>
<td>47 235 550</td>
<td>47 230 028</td>
<td>47 217 616</td>
<td>47 221 073</td>
</tr>
<tr>
<td>7</td>
<td>47 280 199</td>
<td>47 266 872</td>
<td>47 271 659</td>
<td>47 273 430</td>
</tr>
<tr>
<td>8</td>
<td>47 044 883</td>
<td>47 036 683</td>
<td>47 033 212</td>
<td>47 023 106</td>
</tr>
<tr>
<td>9</td>
<td>47 242 604</td>
<td>47 258 611</td>
<td>47 280 301</td>
<td>47 298 760</td>
</tr>
</tbody>
</table>

Z tabulky 4.55 je vidět, že provozní výsledek hospodaření v jednotlivých kvartálech nabývá hodnot v průměru kolem 47 milionů Kč a predikovaná hodnota hospodářského výsledku za provozní činnost za celý rok 2010 se pohybuje v průměru kolem 188 milionů Kč. Podle interních informací společnosti, má firma v plánu na rok 2010 dosahovat přibližně stejných hodnot v oblasti provozního výsledku hospodaření, zvolený model tedy dokáže predikovat hodnotu provozního výsledku hospodaření srovnatelnou s plánem skutečnosti.
Tabulka 4.56 obsahuje nejmenší a největší hodnoty provozního výsledku hospodaření na rok 2010 a tabulka 4.57 zobrazuje hranice intervalů odpovídající hodnotám provozního výsledku hospodaření v roce 2010.

Tabulka 4.56 Nejmenší a největší hodnota provozního VH na rok 2010 v jednotlivých kvartálech (Kč)

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>46682270</td>
<td>46645603</td>
<td>46599713</td>
<td>46170031</td>
</tr>
<tr>
<td>MAX</td>
<td>47685420</td>
<td>47739265</td>
<td>47795537</td>
<td>47842281</td>
</tr>
</tbody>
</table>

Tabulka 4.57 Hranice intervalů predikovaných hodnot provozního výsledku hospodaření (Kč)

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>46682270</td>
<td>46645603</td>
<td>46599713</td>
<td>46170031</td>
</tr>
<tr>
<td>2</td>
<td>46782585</td>
<td>46754969</td>
<td>46719295</td>
<td>46337256</td>
</tr>
<tr>
<td>3</td>
<td>46882900</td>
<td>46864336</td>
<td>46838878</td>
<td>46504481</td>
</tr>
<tr>
<td>4</td>
<td>46983215</td>
<td>46973702</td>
<td>46958460</td>
<td>46671706</td>
</tr>
<tr>
<td>5</td>
<td>47083530</td>
<td>47083068</td>
<td>47078043</td>
<td>46838931</td>
</tr>
<tr>
<td>6</td>
<td>47183845</td>
<td>47192434</td>
<td>47197625</td>
<td>47006156</td>
</tr>
<tr>
<td>7</td>
<td>47284160</td>
<td>47301800</td>
<td>47317208</td>
<td>47173381</td>
</tr>
<tr>
<td>8</td>
<td>47384475</td>
<td>47411167</td>
<td>47436790</td>
<td>47340606</td>
</tr>
<tr>
<td>9</td>
<td>47484790</td>
<td>47520533</td>
<td>47556372</td>
<td>47507831</td>
</tr>
<tr>
<td>10</td>
<td>47585105</td>
<td>47629899</td>
<td>47675955</td>
<td>47675056</td>
</tr>
<tr>
<td>MAX</td>
<td>47686420</td>
<td>47740265</td>
<td>47795537</td>
<td>47843281</td>
</tr>
</tbody>
</table>

Výsledné četnosti výskytu jednotlivých čtvrtletních hodnot provozního výsledku hospodaření jsou zachyceny v tabulce 4.58.

Tabulka 4.58 Četnosti výskytu predikovaných hodnot provozního výsledku hospodaření v roce 2010

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>99</td>
<td>102</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>189</td>
<td>190</td>
<td>192</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>235</td>
<td>239</td>
<td>255</td>
<td>169</td>
</tr>
<tr>
<td>7</td>
<td>241</td>
<td>233</td>
<td>217</td>
<td>309</td>
</tr>
<tr>
<td>8</td>
<td>137</td>
<td>126</td>
<td>135</td>
<td>294</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
<td>61</td>
<td>46</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SUMA</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Četnosti pro jednotlivé kvartály jsou zobrazeny také v grafech 4.19, 4.20, 4.21 a 4.22.
Pravděpodobnost výskytu odhadovaných hodnot výsledku hospodaření za provozní činnost v roce 2010 v jednotlivých intervalech obsahuje tabulka 4.59.

Tabulka 4.59 Pravděpodobnost výskytu výsledných hodnot provozního VH ve stanovených intervalech

<table>
<thead>
<tr>
<th>Interval</th>
<th>I kvartál 2010</th>
<th>II kvartál 2010</th>
<th>III kvartál 2010</th>
<th>IV kvartál 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>2</td>
<td>0,7%</td>
<td>0,7%</td>
<td>0,8%</td>
<td>0,0%</td>
</tr>
<tr>
<td>3</td>
<td>2,1%</td>
<td>2,7%</td>
<td>2,7%</td>
<td>0,0%</td>
</tr>
<tr>
<td>4</td>
<td>8,7%</td>
<td>9,9%</td>
<td>10,2%</td>
<td>0,8%</td>
</tr>
<tr>
<td>5</td>
<td>18,9%</td>
<td>19,0%</td>
<td>19,2%</td>
<td>4,3%</td>
</tr>
<tr>
<td>6</td>
<td>23,5%</td>
<td>23,9%</td>
<td>25,5%</td>
<td>16,9%</td>
</tr>
<tr>
<td>7</td>
<td>24,1%</td>
<td>23,3%</td>
<td>21,7%</td>
<td>30,9%</td>
</tr>
<tr>
<td>8</td>
<td>13,7%</td>
<td>12,6%</td>
<td>13,5%</td>
<td>29,4%</td>
</tr>
<tr>
<td>9</td>
<td>6,3%</td>
<td>6,1%</td>
<td>4,6%</td>
<td>13,3%</td>
</tr>
<tr>
<td>10</td>
<td>1,5%</td>
<td>1,4%</td>
<td>1,6%</td>
<td>4,0%</td>
</tr>
<tr>
<td>11</td>
<td>0,4%</td>
<td>0,3%</td>
<td>0,1%</td>
<td>0,3%</td>
</tr>
<tr>
<td>SUMA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Funkci hustoty provozního výsledku hospodaření za jednotlivé kvartály roku 2010 znázorňuje graf 4.23.

Graf 4.23 Funkce hustoty provozního výsledku hospodaření za jednotlivé kvartály roku 2010

4.4 Odhad Earnings at Risk na rok 2010

Možností, jak predikovat výši ztráty na dané hladině spolehlivosti, je použití metody VaR, kde hladina významnosti například 1% odděluje 1% nejhorších a 99% nejlepších výsledků. V práci je použito konkrétní měřítko VaR, kterým je Earnings at Risk.

Výsledná hodnota provozního výsledku hospodaření, která byla vypočítána v předešlé podkapitole 4.3, bude nyní převedena na rizikové měřítko metodologie CorporateMetrics, tedy na hodnotu ukazatele Earnings at Risk (EaR), která vyjadřuje na dané hladině významnosti maximální možnou ztrátu hodnoty provozního výsledku od její predikované cílové hodnoty na rok 2010.

Postup při určování Earnings at Risk na vybraných hladinách významnosti je následující:

1. Výběr predikované hodnoty provozního výsledku hospodaření v roce 2010 na hladině významnosti 1%, 5% a 10%. Jedná se tedy o 10., 50. a 100. nejhorší výsledek simulace z možných 1000 pro každý kvartál zvláště. Stejné hodnoty jsou vybrány i z celkové hodnoty výsledku hospodaření za provozní činnost pro rok 2010.
2. Převod vybraných hodnot provozního výsledku hospodaření na hodnoty Earnings at Risk.

Následující tabulka 4.60 obsahuje hodnoty provozního výsledku hospodaření na rok 2010 na vybraných hladinách významnosti.

<table>
<thead>
<tr>
<th>V roce 2010</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Kwartál</td>
<td>46 914 506</td>
<td>47 117 288</td>
<td>47 247 280</td>
</tr>
<tr>
<td>II Kwartál</td>
<td>46 885 479</td>
<td>47 124 310</td>
<td>47 250 541</td>
</tr>
<tr>
<td>III Kwartál</td>
<td>46 857 926</td>
<td>47 128 645</td>
<td>47 244 259</td>
</tr>
<tr>
<td>IV Kwartál</td>
<td>46 826 363</td>
<td>47 131 200</td>
<td>47 235 310</td>
</tr>
<tr>
<td>Celkem</td>
<td>187 484 274</td>
<td>188 501 443</td>
<td>188 977 390</td>
</tr>
</tbody>
</table>

Všechny hodnoty v tabulce 4.60 jsou v oblasti zisku a z těchto hodnot je odvozena tabulka 4.61, která obsahuje hodnoty EaR na vybrané hladině významnosti.

<table>
<thead>
<tr>
<th>V roce 2010</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Kwartál</td>
<td>-46 914 506</td>
<td>-47 117 288</td>
<td>-47 247 280</td>
</tr>
<tr>
<td>II Kwartál</td>
<td>-46 885 479</td>
<td>-47 124 310</td>
<td>-47 250 541</td>
</tr>
<tr>
<td>III Kwartál</td>
<td>-46 857 926</td>
<td>-47 128 645</td>
<td>-47 244 259</td>
</tr>
<tr>
<td>IV Kwartál</td>
<td>-46 826 363</td>
<td>-47 131 200</td>
<td>-47 235 310</td>
</tr>
<tr>
<td>Celkem</td>
<td>-187 484 274</td>
<td>-188 501 443</td>
<td>-188 977 390</td>
</tr>
</tbody>
</table>
V případě tabulky 4.60 je hodnota hospodářského výsledku za provozní činnost v prvním kvartále odpovídající pátému percentilu rovna hodnotě 47 117 288 Kč. Tato kladná hodnota odpovídá záporné hodnotě EaR (protože EaR a ostatní měřítka typu Value at Risk jsou definována jako ztráta) a říká, že provozní výsledek hospodaření na této hladině významnosti je ve výši 47 117 288 Kč. Lze tedy konstatovat, že s pravděpodobností 95% provozní výsledek hospodaření nebude nižší než tato hodnota (resp. s pravděpodobností 5% bude nižší než tato hodnota), viz obr. 4.12.

Stejně se dá interpretovat hodnota Earnings at Risk pro všechny hladiny významnosti ve všech kvartálech i hodnota EaR na všech hladinách významnosti za celý rok 2010.

Obrázek 4.12 Zobrazuje grafické vyjádření EaR na hladině významnosti 5 % pro I. kvartál provozního VH (Kč)

Následující grafy 4.24 a 4.25 znázorňují citlivost hodnoty EaR na výše zvolené hladině významnosti.

Graf 4.24 Hodnota EaR na hladině významnosti 1%, 5% a 10% pro celý rok 2010
Graf 4.25 Hodnota EaR na hladině významnosti 1%, 5% a 10% pro jednotlivé kvartály roku 2010

![Graph showing the value of EaR at significance levels 1%, 5%, and 10% for individual quarters of 2010.](image)
Cílem diplomové práce byla aplikace metodologie CorporateMetrics za účelem kvantifikace tržního rizika na úrovni provozního výsledku hospodaření firmy, pomocí ukazatele Earnings at Risk, která má exportně zaměřenou obchodní politiku.

Tržní riziko je v tomto případě měnové riziko, které se odvíjí od exportní politiky společnosti, která obchoduje s více než sedmdesáti státy světa a je tedy vystavena riziku změny kurzů měn, se kterými společnost nejčastěji obchoduje. Těmito měnovými páry jsou zejména CZK/CHF, CZK/EUR, CZK/GBP a CZK/USD. Tržby v těchto měnách tvoří přibližně 95% celkových tržeb převedených na českou měnu.

Práce je rozdělena na dvě části, na teoretickou (kapitola 2) a na praktickou (kapitola 3 a 4).

V teoretické části práce byla popsána podstata použité metodologie CorporateMetrics, její hlavní rysy, pět základních kroků při aplikaci této metodologie na vybraný finanční výsledek společnosti a charakteristika těchto kroků. Dále zde bylo popsáno tržní riziko, jeho čtyři základní typy a podrobně zde byl popsán proces finančního modelování, které bylo použito při aplikaci CorporateMetrics na provozní výsledek hospodaření společnosti.

V třetí kapitole byla popsána charakteristika výrobního podniku, na jehož provozní výsledek hospodaření byla metodologie aplikována. V rámci popisu společnosti byla uvedena stručná charakteristika společnosti, historie, předmět činnosti, provozní činnost společnosti a její stávající hospodářské postavení na trhu včetně stručného popisu hospodářského výsledku za provozní činnost a výčtu cash flow.

V čtvrté aplikačně – ověřovací části práce byly odhadnuty modely pro predikci vývoje jednotlivých rizikových faktorů, dále byl predikován vývoj těchto faktorů podle odhadnutého modelu a na základě těchto odhadnutých hodnot byly predikovány tržby plynoucí v příslušných měnách, z nichž byl pomocí odhadnutých provozních nákladů spočítán provozní výsledek hospodaření pro jednotlivá čtvrtletí a na celý rok 2010. Ukazatel EaR byl aplikován na úrovni provozního výsledku hospodaření na vybraných hladinách významnosti. Z výsledků uvedených v tabulce 4.60 a 4.61 vyplývá, že hodnoty hospodářského výsledku za příslušný percentil se pro všechny vybrané hladiny významnosti nachází ve sledovaném období vždy v oblasti zisku a tedy příslušné hodnoty ukazatele EaR byly záporné. V závěru byla provedena citlivostní analýza ukazatele EaR na vybrané hladiny spolehlivosti, výsledky byly graficky znázorněny a okomentovány.
Z propočtů vyplývá, že největší podíl na tržním riziku mají tržby plynoucí v EUR, jež se na celkových tržbách podílejí přibližně z 85%. V případě přijetí EURa jako měny by došlo k úspore nákladů v souvislosti se zajištěním kurzového rizika.
Seznam použité literatury

a) Knihy, příspěvky ze sborníku

b) Elektronické publikace a ostatní internetové zdroje

Seznam zkratek

a rychlost přibližování se aktiva k dlouhodobé rovnováze u M – R modelu,
\(\hat{\alpha} \) alfa, trendový koeficient vývoje rizikových aktiv, odhadnutý parametr,
b dlouhodobá rovnováha u Mean – Reversion modelu,
\(\hat{\beta} \) odhadnutý nezávislý parametr u Mean – Reversion modelu,
CFaR Cash Flow at Risk,
ČNB Česká národní banka,
\(D_t \) absolutní cenová změna v čase,
\(dt \) časový interval,
\(d\tilde{\varepsilon} \) Wienerův proces,
\(\varepsilon \) epsilon, reziduum vyjadřující rozdíl mezi skutečným a modelovaným výnosem,
EaR Earnings at Risk, rizikový ukazatel metodologie CorporateMetrics,
EPSaR Earnings per Share at Risk,
E(S) střední hodnota kurzu podle odhadnutého modelu,
FRA Forward Rate Agreement,
GBM Geometrický Brownův model,
\(\lambda \) lambda neboli pravděpodobnost (hladina významnosti),
\(L_t \) logaritmická změna ceny v čase neboli spojitý výnos,
MA Mooving Avarage neboli týdenní klouzavý průměr denních měnových kurzů,
\(\mu \) mí neboli střední hodnota,
M-RM Mean – Reversion model,
např. například,
\(P_t \) cena v čase,
\(R_t \) relativní cenová změna v čase,
\(\sigma \) sigma neboli směrodatná odchylka,
\(\sigma^2 \) sigma na druhou neboli rozptyl,
\(t^{\text{typ}}, F^{\text{typ}} \) hodnota t – testu (tStat) a F – testu, která je vygenerována regresní analýzou,
\(t^{\text{kri}}, F^{\text{kri}} \) kritická hodnota t – testu a F - testu, která vymezuje kritickou oblast,
VaR Value at Risk,
\(\tilde{z}_t \) náhodná veličina v čase.
Prohlášení o využití výsledků diplomové práce

Prohlašuji, že

- jsem byl(a) seznámen(a) s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo;
- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou práci užít (§ 35 odst. 3);
- souhlasím s tím, že diplomová práce bude v elektronické podobě archivována v Ústřední knihovně VŠB-TUO a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že bibliografické údaje o diplomové práci budou zveřejněny v informačním systému VŠB-TUO;
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona;
- bylo sjednáno, že užit své dílo, diplomovou práci, nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne ……………

……………………………………

………………….

Zuzana Rutková
jméno a příjmení

Adresa trvalého pobytu studenta:

……………………………………………………….
Seznam příloh

Příloha č. 1 Ukázka denních kurzů a týdenních klouzavých průměrů kurzů CZK/USD a CZK/GBP (období od 2.1.2004 do 2.3.2004).

Příloha č. 2 Ukázka denních kurzů a týdenních klouzavých průměrů kurzů CZK/EUR a CZK/CHF (období od 2.1.2004 do 2.3.2004).

Příloha č. 3 Prodeje společnosti ABC, s.r.o. za prvních devět měsíců roku 2009 (podíly jednotlivých zahraničních měn na těchto prodejích).

Příloha č. 4 Produkce společnosti ABC, s.r.o. v letech 2006 až 2009 a její export do uvedených států.

Příloha č. 5 Výkaz zisku a ztráty společnosti ABC, s.r.o. v roce 2008.