Datová základna úhrad zdravotní péče
Data base of health care settlements

Student: Veronika Račková

Vedoucí bakalářské práce: Ing. Pavel Vlček, Ph.D

Ostrava 2010
Čestné prohlášení:

Místopřísežně prohlašuji, že jsem celou práci včetně všech příloh vypracovala samostatně.
V Ostravě dne 6. května 2010

Veronika Račková
Chtěla bych poděkovat panu Ing. Pavlu Vlčkovi, Ph.D. za vedení mé bakalářské práce a také zaměstnancům Revírní bratrství pokladny, zdravotní pojišťovny za poskytnuté konzultace.

Veronika Račková
<table>
<thead>
<tr>
<th>OBSAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Úvod .. 2</td>
</tr>
<tr>
<td>2. Teoretická východiska pro navrhovaný informační systém ... 6</td>
</tr>
<tr>
<td>2.1 Základní pojmy .. 6</td>
</tr>
<tr>
<td>2.2 Principy metod analýzy a návrhu IS .. 7</td>
</tr>
<tr>
<td>2.2.1 Princip abstrakce .. 8</td>
</tr>
<tr>
<td>2.2.2 Princip modelování ... 12</td>
</tr>
<tr>
<td>2.3 Vývoj informačního systému ... 13</td>
</tr>
<tr>
<td>2.3.1 Etapy vývoje informačního systému ... 13</td>
</tr>
<tr>
<td>2.4 Funkční model .. 16</td>
</tr>
<tr>
<td>2.4.1 Diagram datových toků .. 16</td>
</tr>
<tr>
<td>2.4.2 Datový model ... 18</td>
</tr>
<tr>
<td>3. Analýza současného stavu ... 22</td>
</tr>
<tr>
<td>4. Návrh struktury funkčního modelu a datové základny ... 27</td>
</tr>
<tr>
<td>4.1 Diagram funkční struktury .. 27</td>
</tr>
<tr>
<td>4.2 Kontextový diagram .. 30</td>
</tr>
<tr>
<td>4.3 Diagram datových toků IS RBP .. 31</td>
</tr>
<tr>
<td>4.4 Informační popis ... 34</td>
</tr>
<tr>
<td>4.4.1 Popis datových toků ... 34</td>
</tr>
<tr>
<td>4.4.2 Datový model ... 36</td>
</tr>
<tr>
<td>4.4.3 Logické modelování ... 38</td>
</tr>
<tr>
<td>4.5 Výstupní sestavy ... 40</td>
</tr>
<tr>
<td>5. Závěr .. 41</td>
</tr>
<tr>
<td>Seznam použité literatury ... 43</td>
</tr>
<tr>
<td>Seznam zkratek ... 44</td>
</tr>
</tbody>
</table>
1. Úvod

Celosvětový rozvoj informačních technologií na konci 20. století a jejich masivní nasazení do všech oblastí lidského konání vede k aplikování nových činností do hospodářského a společenského života, ke změnám dílčích pracovních postupů a využívání nových metod v samotné organizaci práce. Tento trend pokračuje i na začátku nového tisíciletí a zároveň klade na člověka další nároky a požadavky. V době, kdy informace jsou základem rozhodování organizace, je důkladná znalost dat strategickou výhodou v konkurenčním boji.

V současnosti je dostupná široká nabídka informačních systémů pro řízení organizací. Existují systémy, které poskytují ucelené informace o stavu dané společnosti a zahrnují celé široké spektrum její pracovní náplně. Některé IS nám dávají výstupní data pouze za určitou izolovanou dílčí oblast činnosti firmy.

V souvislosti s velkou, ale i ustálenou nabídka informačních systémů může být i dosti obtížné vybrat ten správný. Uživatele můžeme rozdělit na dvě samostatné skupiny. Do první patří společnosti, které upřednostňují systémy s pevně danou strukturou, kde neexistuje příliš velká možnost úprav. V tomto případě se musí zákazník plně přizpůsobit informačnímu systému. Do druhé, větší skupiny, patří organizace, které požadují určitý stupeň volnosti při úpravách IS. Jedná se často o kompromis, kdy se uživatel částečně přizpůsobuje pořizovanému produktu a daný informační systém se zároveň musí přizpůsobit požadavkům, struktuře firmy, firemnímu stylu a zvykům zákazníka.

S moderními technologiemi – a platí to i v případě informačních systémů – často souvisí obava a neochota některých lidí přizpůsobit se novým dovednostem. Někteří nutně překonávají nedůvěru zaměstnanců v nový systém i obavy z jeho používání. Často jsou rozhodujícím faktorem pro výběr IS náklady na pořízení a jeho průběžnou inovaci. V každém případě je však nutno mít na zřeteli, že zavedený systém bude všem zaměstnancům sloužit jako zdroj informací, a tudíž by měl umožnit jejich snadné získávání pro rozhodování a řízení společnosti na všech úrovních managementu. Dobře nastavený informační systém a jeho správné využití povede k usnadnění a urychlení práce a tím k zefektivnění pracovní činnosti zaměstnanců. Umožní dříve pracné a nákladné postupy nahradit úkony s vyšší produktivitou, která se tak následně stává předpokladem pro samotné snížení celkových nákladů společnosti.
Ve své práci se zabývám návrhem datové základny úhrad zdravotní péče v podmínkách konkrétního subjektu, kterým je Revírní bratrská pokladna, zaměstnanec zdravotní pojišťovna.

Z toho, co jsem uvedla vyplývá, že ve sladění poněkud odlišných zájmů základních subjektů systému zdravotního pojištění tkví hlavní problém dlouhodobě složité situace v úhradách zdravotní péče. Existuje samozřejmě celá řada dalších faktorů, které to ovlivňují, např. demografický vývoj, nárůst civilizačních a chronických onemocnění, zavádění nákladných medicínských technologií a přístrojů apod. Aby systém úhrad zdravotní péče byl funkční, musí být příjmy a výdaje dlouhodobě v dynamické rovnováze. Klíčovou roli v tomto úkolu má stát, který vytváří legislativní základnu.

Na tu musí pružně reagovat i informační systém zdravotní pojišťovny jako celek, ale zejména datová základna úhrad zdravotní péče. Komplikovanost systému vynikne, jestliže se uvědomíme, že výkony pro Revírní bratrskou pokladnu vykazuje několik tisíc zdravotnických zařízení různého odborného zaměření za řádově 400 tisíc pojišťenců. Proto na tvorbě takového systému a jeho inovaci se podílí celá řada specialistů, jejichž úkolem je nastavit optimálně kontrolní mechanismy. Výsledkem pak je automatizované vyřazování neoprávněných nebo nesprávně vykazovaných výkonů, což pozitivně ovlivňuje ekonomiku pojišťovny.
Hlavním cílem mé bakalářské práce je stávající systém analyzovat a pokusit se najít náměty na zkvalitnění jeho funkcí. V její první části formulují teoretická východiska pro navrhnutý informační systém. Další část je pak věnována analýze současného stavu včetně charakteristiky zkoumaného subjektu.

Z teoretické základny a provedené analýzy současného stavu vychází můj návrh struktury datové základny. Závěrem pak shrnuji i v širším kontextu získaných poznatků možné náměty na zkvalitnění současného stavu.

Pro analýzu datové základny jsem si vybrala Revírní bratrskou pokladnu, zdravotní pojišťovnu, se sídlem v Ostravě. K tomuto rozhodnutí mě vedl fakt, že jsem sama jejím dlouholetým pojišťencem a absolvovala jsem svou letní studentskou praxi na oddělení smluvních vztahů RBP, kde mě problematika kontroly vykázáně zdravotní péče od SZZ zaujala.

Revírní bratrská pokladna, zdravotní pojišťovna je jednou z největších zaměstnavateckých zdravotních pojišťoven v ČR. V současné době registruje více než 406 tisíc pojištěnců převážně na severní a střední Moravě a ve Slezsku. Dostupnost služeb a přímý styk s klienty zabezpečuje síť expozitum a jednatelství. RBP je členem Svazu zdravotních pojišťoven ČR.

Revírní bratrská pokladna zahájila svou činnost 1. července 1993 jako jednu z nejmladších zaměstnavateckých zdravotních pojišťoven na území ČR, ale zároveň jako pojišťovna s tradicí sahající až do 19. století. Zajišťuje zdravotní péči především v oblastech severní a střední Moravy, Slezska a Hodonínska.

Provádění zdravotního pojištění v ČR je podle současné platné právní úpravy svěřeno zdravotním pojišťovnám, které jsou pojaty jako veřejnoprávní instituce. Tomuto pojetí odpovídá složení samosprávných orgánů pojišťoven, tedy jejich správních a dozorčích rad, v nichž jsou zastoupeni pojištěnci, zaměstnavatelé pojištěnců a stát.

Zdravotní péči poskytují ve zdravotnických zařízeních zdravotníci pracovníci, popřípadě další odborní pracovníci ve zdravotnictví, a to v rozsahu své odborné způsobilosti. Jiní zdravotníci pracovníci než lékaři poskytují hrazenou péči na základě ordinace ošetřujícího lékaře.

Z veřejného zdravotního pojištění se hradí zdravotní péče poskytnutá pojištěnci na území České republiky s cílem zachovat nebo zlepšit jeho zdravotní stav. Ze zdravotního pojištění se pojištěncům rovněž uhradí částka, kterou vynaložili na nutné a neodkladné léčení v cizině, a to do výše stanovené pro úhradu takové péče na území České republiky.
Vztahy mezi poskytovateli zdravotní péče, pojišťenci a pojišťovnami vyjadřuje následující grafické znázornění:

Obr. 1.1 Zobrazení vztahů RBP

Z obecného hlediska se Revírní bratrská pokladna řídí platnými právními předpisy z oblasti zdravotního pojištění. Rozsah její činnosti, zaměření zdravotní politiky a zásady hospodaření upravuje Statut zdravotní pojišťovny. Základními hospodářskými dokumenty jsou:

- zdravotně pojistný plán
- účetní závěrka
- výroční zpráva
2. Teoretická východiska pro navrhovaný informační systém

Pro pochopení teoretických východisek navrhovaného informačního systému postupně formulují:

- základní pojmy
- principy metod analýzy a návrhu IS
- zásady vývoje IS
- funkční model

2.1 Základní pojmy

Metodika – doporučený souhrn přístupů, zásad, etap, postupů, pravidel, dokumentů, řízení, technik a nástrojů pro tvůrce informačních systémů, který pokrývá celý životní cyklus informačního systému. Metodika tedy určuje kdy, kdo a co má dělat během vývoje a provozu informačních systémů.

Metoda – určuje, co je třeba dělat v určité fázi postupu projektu. Metoda je vždy zatížená určitým přístupem, jako je funkční přístup nebo přístup datového modelování analýzy, anebo objektový přístup. S přihlédnutím k této charakteristice řeší každá metoda postup činností v určité uzavřené části procesu vývoje systému.

Technika – určuje, jak se dobrať požadovaného výsledku. Zpravidla určuje přesný postup jednotlivých činností, způsob použití nástrojů, varianty rozhodnutí v určitých situacích a co z nich vyplývá, vymezuje obor své působnosti. Na rozdíl od metody je mnohem přesnější v závěrech a omezení okruhu použití.

Konceptuální úroveň – vyjadřuje pohled na systém v pojmech uživatele (jaké funkce musí systém provádět a jaká data musí systém uchovat) nezávisle na prostředí, ve kterém bude systém realizován, vyjadřuje podstatu systému. Modely systému na konceptuální úrovni musí být objektivně pravdivé.
Technologická úroveň – vyjadřuje pohled na systém z hlediska technologického prostředí, ve kterém bude systém realizován. Technologické modely musí obsahově vyplývat z konceptuálních modelů.

Implementační úroveň – systém vyjádřený ve zvoleném implementačním prostředí. Modely na implementační úrovni musí obsahově vyplývat z technologických modelů.

Organizace – podnik, státní instituce, společnost apod., ale také část takových jednotek (divize, oddělení, pobočka apod.), pro kterou se informační systém vyvíjí.

Informační systém – systém v organizaci, který poskytuje informace nutné pro plnění cílů a zájmů organizace. Jedna organizace může mít víc informačních systémů z důvodu standardů v organizaci, právních omezení, logických vztahů.

Subsystém – část systému, kterou lze realizovat jako celek. Systém je příliš rozsáhlý a jeho vývoj by trval příliš dlouho nebo je moc drahý, aby mohl být vytvořen a realizován najednou. [4]

2.2 Principy metod analýzy a návrhu IS

Tyto principy se promítají do všech částí návrhu informačního systému, jak v metodách strukturované analýzy, tak také v metodách objektových. I přesto, že dochází ke změnám či zdokonalování jednotlivých technik, nástrojů, ale také metod a postupů návrhu informačního systému, základní principy zůstávají stejné.

Základní principy metod analýzy jsou:

- různé formy principu abstrakce:
 - Top-Down hierarchie funkcí
 - generalizace a specializace v datovém modelu
 - princip tří architektur
 - princip různých pohledů na model systému
- princip modelování
2.2.1 Princip abstrakce

Informační systémy v dnešní době vykazují značnou rozsáhlost a složitost. Pojmout informační systém jako jeden velký celek je tudíž velmi náročné. Princip abstrakce nabízí možnost rozdělit systém na menší části, které jsou již zvládnutelné.

Existuje několik druhů pojetí abstrakcí:

Top-Down hierarchie funkcí – cílem této formy abstrakce využívané u strukturovaných metod analýzy, je rozdělit zkoumaný informační systém do několika pohledů, uspořádaných ve stromové struktuře, kdy nejvyšší pohled je složen z prvků jemu podřízených. Takto je ve vzájemně závislosti uspořádán celý model. Nejvyšší pohled díky tomu může být ještě do značné míry obecný, zato ale pojímá celý informační systém jako celek. Nižší, jemu podřízené pohledy, se potom zaměřují na jednotlivé úseky tohoto celku a podrobně je charakterizují. Tento postup probíhá až do chvíle, kdy není již možné dále strukturu dělit.

Smyslem tohoto principu tedy je umožnit zkoumání a návrh systému po částech, aby bylo možné zabývat se v určitém čase pouze návrhem jedné úrovně jedné větve takto rozvržené struktury. Díky tomu je mimo jiné usnadněno přidělování úkolů jednotlivým vývojovým týmům, kdy se každý může zaměřit na jeden jemu přidělený úsek. Pro úspěšný návrh systému touto metodou je třeba, aby každý prvek struktury (s výjimkou kořene) měl právě jeden nadřazený prvek, což zabraňuje redundanci vztahů. Z toho vyplývá, že v návrhu mají význam jen horizontální vazby, vyjadřující vzájemnou interakci prvků a vylučující použití vertikálních vazeb mezi větvemi.

Každý prvek může být buď prvkem:

- abstraktním (skládá se z podřízených prvků) nebo
- konkrétním (nelze ho již dále dělit).

Jedině konkrétním prvkům jsou přiřazovány a definovány skutečné vlastnosti. Všechny abstraktní prvky slouží pouze k popisu struktury systému.

Pomocí principu Top-Down jsou ve strukturovaných metodách analýzy informačního systému vymezeny základní nástroje, struktura elementárních procesů a datových struktur pro potřebu funkcí (diagram datových toků, strukturní diagram, pseudokódy procesu a jazyk slovníku).
Generalizace/Specializace – ve strukturovaných metodách se používají dva základní typy hierarchické abstrakce:

- abstrakce část – celek (kolektivizace, agregace), která se běžně používá například ve funkčním modelu systému, kde se dělí systém na subsystémy, části subsystému, apod.
- abstrakce specifický typ – obecný nadtyp (generalizace), která je naopak typickou hierarchickou abstrakcí v datovém modelu, kde umožňuje jednotlivé entity sdružovat podle své příbuznosti do vyšších celků – nadtypů.

Agregace vychází z principu, že nadřazený celek sám o sobě nemá žádný význam a je zcela definován souborem svých částí, v případě generalizace je na rozdíl od agregace nadřazený prvek definován jako nositel společných vlastností jemu podřízených prvků. Obecný nadtyp definuje vlastnosti všech jemu podřízených prvků, kdy takto podřízený prvek převezme vlastnost svého nadtypu a navíc má další své vlastní vlastnosti, které ho více konkretizují.
Tyto dva základní typy abstrakce, ať jsou si na první pohled jakkoliv podobné, jsou navzájem neslučitelné.

![Diagram](image)

Obr. 2.2.1-2 Generalizace [4]

Princip tří architektur – chápe abstrakci informačního systému jako rozdělení do jednotlivých vrstev. Tyto vrstvy se zaměřují na tři základní aspekty vyvíjení systému: obsah, technologii a implementační/realizační specifika. Pomocí těchto tří základních prvků se vytvoří přirozená posloupnost. Návrh takovéhoto informačního systému poté probíhá ve třech po sobě jdoucích architekturách:

- **konceptuální** – pomocí vytvoření zcela obecného, čistě obsahového modelu systému se určí, co je vlastně obsahem systému,
- **technologické** – zde je vytvořen model systému, zohledňující technologickou koncepci řešení. Tento model stále nesmí být zatížen implementačními specifiky řešení. Technologický návrh určuje, jak je obsah systému v dané technologii realizován.
- **implementační** – zde je vytvořen model systému, zohledňující implementační specifika použitého vývojového prostředí. Implementační návrh se týká jen implementačně specifických rysů systému, vše ostatní je již definováno v nadřazených architekturách. Implementační návrh tedy určuje čím, za pomoci jakých konkrétních prostředků je technologické řešení realizováno.
Cílem tohoto konceptu je pomocí tří úrovní odstínit nepatřičná hlediska při tvorbě systému. Každá architektura má svou specifickou logiku a specifický přehled zájmu.

Obr. 2.2.1-3 Princip tří architektur [4]

Různé pohledy na vyvíjený systém – tento princip je typický především pro strukturované metody analýzy. Navrhovaný systém má z hlediska strukturované analýzy a konceptuálního návrhu tyto podstatné dimenze:

- **funkční dimenzi**, která určuje popis chování systému,
- **datovou dimenzi**, určující popis uložených dat systému,
- **řídicí dimenzi**, určující popis časových souvislostí systémových akcí,
- **technologickou dimenzi**, určující strukturu technologické realizace systémových funkcí, jejich časových návazností a datových struktur.
2.2.2. Princip modelování

Pojmout při tvorbě informačního systému rozsah celé reality je velmi obtížné, proto se vytvářejí modely jako zjednodušené abstraktní obrazy reality. Na této obecné úrovni se shoduje pohled na model jak z datového, tak i funkčního přístupu. Teprve při ujasnění si, co přesně má být obsahem takového modelu, se rozcházejí. Z pohledu modelování ve funkčním pojetí je smyslem:

- použití abstrakce, pomocí které se dá odhlédnout od nepodstatných náležitostí a činností, které se netýkají přímo informačního systému, a tím tento systém zjednodušit,
- jasně definovat význam jednotlivých pojmů, aby se vytvořilo komunikační rozhraní mezi analytikem systémů a odborníky z jiných oborů, kteří na vývoji spolupracují, nad modelem je možnost bez následků provádět změny, které by v reálném prostředí byly příliš náročné nebo přímo neuskutečnitelné.

Smyslem modelování podle datového přístupu je navrhnout model mající uspořádání dat v informačním systému co nejvíce podobné skutečné realitě. Tato data jsou shlukována do skupin podle objektů, jímž atributy náleží.

Datové modelování musí splňovat:

- jednoznačnost datových položek, musí být zřejmý přesný význam každé položky,
• zajistit konzistencí dat v systému tím, že omezuje redundanci dat na technologické minimum. [4]

2.3 Vývoj informačního systému

2.3.1 Etapy vývoje informačního systému

Z důvodu složitosti navrhnutí a implementace informačního systému byl tento postup rozdělen do několika základních etap. Tyto etapy pomáhají vývojářům řídit a lépe koordinovat postup při jeho vývoji. Rozdělení do etap představuje rozdělení do menších celků, kde každý z těchto celků má vlastní náležitosti a potřeby, na které je nutno se zaměřit. Teprve ve chvíli, kdy je vyřešena a dokončena jedna etapa, přechází se na druhou. Díky tomu je možné lépe zvládnout krizové situace, které jsou s vývojem informačních systémů neodvratitelně spojeny a tím zefektivnit práci.

Etapy vývoje informačních systémů jsou následující:

1. informační strategie organizace,
2. úvodní studie systému,
3. globální analýza a návrh,
4. detailní analýza a návrh,
5. implementace,
6. zavedení,
7. provoz, údržba a rozvoj.

2.3.1.1 Informační strategie organizace

Cílem této etapy životního cyklu je vytvořit úvodní studii, ve které je zmapován současný stav společnosti, její strategické cíle, vytvořen plán vývoje nových a úprav stávajících informačních systémů společnosti.

Pomocí této studie jsou nalezeny problémové oblasti v činnosti společnosti a definovány potřebné změny, které jsou potřeba u informačních systémů provést. Stanoví se zde záměry a cíle nezbytné pro další vývoj informačního systému, provede se odhad časové náročnosti takového vývoje, zdrojů, přínosu a stanoví se strategie postupu vývoje informačního systému.

Předpokladem pro úspěšné splnění této etapy je zaangažování vedení společnosti, její plná podpora a kvalitně zpracované zadání.
2.3.1.2 Úvodní studie systému

V této etapě se posoudí již vypracovaná úvodní studie. Zváží se, zda lze dosáhnout požadovaného výsledku bez nevhodných vedlejších účinků a zda má vůbec smysl ve vývoji takovéhoto informačního systému pokračovat. Cílem je stanovit za pomocí vedení zadavatelské společnosti základní koncept systémů, navrhnout alternativy jeho řešení a z těchto alternativ vybrat tu pro společnost nejvhodnější.

V případě úspěšného výběru jedné z alternativ se stanoví přístup k návrhu systému, provede se podrobná diagnóza stavu sledovaného systému v organizaci. Zohlední se cíle, hranice systému, výkonnost, problémy, přání uživatelů, požadavky na změny, priority požadovaných změn, omezení, kritické faktory úspěšnosti. Na závěr se vytvoří plán dalšího vývoje systému včetně odhadů nákladů a přínosů.

Obr. 2.3.1.2-1 Vývoj v etapě Úvodní studie systému [4]

2.3.1.3 Globální analýza a návrh

V etapě globální analýzy proběhne další zpřesnění základních požadavků na systém. Díky tomuto zpřesnění je již možné systém rozdělit na jednotlivé subsystémy (v případě, že to velký rozsah systému vyžaduje). Toto rozdělení usnadní realizaci systému. Jsou zde
navrhnuty funkční modely jednotlivých subsystémů a model rozhraní jak mezi subsystémy vzájemně, tak mezi systémem a vnějším prostředím.

Cílem je specifikace všech hlavních funkčních, datových, prováděcích a dalších požadavků, stanovení priorit a struktur subsystémů, které jsou nezbytné pro zahájení jejich vývoje, stanovení požadavků na systém jako celek, navrhnout hrubý model funkcí systému a hrubý model dat, podrobnější model společných funkcí a dat na rozhraní subsystémů a návrh řešení tohoto rozhraní.

2.3.1.4 Detailní analýza a návrh

Tato etapa definuje činnosti, které jsou stejné pro všechny subsystémy i pro celý systém. Analyzuje se v ní systém, definují se požadavky až na úroven, kdy je možné daný systém implementovat.

2.3.1.5. Implementace

V rámci této etapy je vytvořen fungující systém. Pomocí vybraného nástroje se provede jeho realizace v souladu se zadáním. U takto zrealizovaného systému se otestuje jeho bezproblémová funkčnost a otestuje se, zda vyhovuje požadavkům uživatelů.

Pokud systém vyhověl, provede se školení uživatelů, vytvoří se programová dokumentace k systému a zahájí se příprava na konverzi dat do nového systému.

U této části je velmi obtížné odhadnout její časovou náročnost a tento odhad i dodržet, zohlednit všechna požadovaná specifika a omezení v programech a fyzickém tvaru databáze, provedení důkladného a úplného odladění systému a dodržení správné metodiky vývoje.

2.3.1.6 Zavedení

V této etapě se systém zavádí do provozu. Instaluje se technické a programové vybavení, provádí se konverze současného informačního systému a zajišťuje počáteční podpora. Přechod na nový systém by měl být pokud možno hladký, neměl by omezovat
běžnou práci organizace a uživatelům by měla být poskytnuta dostatečně dlouhá doba si na systém zvyknout a připravit se na jeho používání.

Zavádění je problematická etapa, protože vyžaduje od pracovníků, aby kromě svých běžných povinností ještě věnovali čas zvládnutí nového systému a přitom po dobu zavádění pracovali jak ve starém, doposud běžícím systému, tak i v nově zaváděném.

Účinnou metodou, jak zavádění nového systému pracovníkům zjednodušit, je vyškolit několik z nich. Tito vyškolení pracovníci znají jak starý, tak i nový systém, a mohou tak ostatním poradit v případě problémů.

2.3.1.7 Provoz, údržba a rozvoj

Tato závěrečná etapa začíná ve chvíli, kdy byl úspěšně ukončen zkušební provoz a systém je schválen a zaveden místo bývalého nedostačujícího informačního systému.

V této fázi se dodavatel informačního systému už jen stará o jeho bezproblémový chod, zajišťuje organizační, materiální, technické i personální zajištění vlastního provozu systému, nabízí možnost zaškolení pracovníků, aktualizuje tento systém vzhledem k dalším potřebám uživatele nebo vzhledem ke změnám ovlivňujícím systém (např. legislativní změny), aktualizuje dokumentaci a vede záznam o požadavcích, které není možné vyřešit okamžitě na běžícím systému. [4]

2.4 Funkční model

Nezbytnou podmínkou funkčního modelování je znalost datových toků, které se zpravidla vyjadřují datovým diagramem. Na to navazuje tvorba datového modelu.

2.4.1 Diagram datových toků

Diagram datových toků (dále jen DFD) slouží jako grafický prostředek návrhu a zobrazení funkčního modelu systému. Je ve formě síť, pomocí níž se vyjadřují funkce informačního systému a některé jejich vztahy. DFD vyjadřují toky dat a jejich transformace, ale nevyjadřují časové uspořádání procesů.

Proces

Provádí transformaci dat, která vede k vyprodukování výstupu. Rozlišujeme datové a řídící funkce, značí se čtvercem nebo obdélníkem. Datová funkce může vyjadřovat následující procesy:

- fyzickou transformaci dat, tj. změnu prezentace dat,
- změnu stavu určité části dat, tj. změnu hodnot údajů, vznik nových údajů.

Každý proces musí mít název, aby bylo jasné co vyjadřuje. Každý proces má kromě názvu ještě jednoznačné číslo. Toto číslo se skládá z čísla nadřízené funkce a přiděleného čísla v rámci úrovně.

Datový tok

Vyjadřuje přesun informací z jedné části systému do jiné nebo z okolí systému do systému nebo ze systému do okolí. Znázorňuje se šípkou. Datový tok musí mít známý obsah a musí být pojmenován názvem, který reprezentuje data a jasně vyjadřuje jejich obsah.

Úložiště dat

V úložišti dat se uchovávají data, která se později použijí. Používá se všude tam, kde mezi procesy existuje časově zpožděné předávání dat. Důvody, proč si dva procesy nemohou data předat jsou tyto:

- oba procesy neběží současně
- nebo každý proces běží na jiném hardwaru.

Název úložiště dat je většinou v množném čísle. Pro každé úložiště musí existovat datový tok dovnitř i ven z úložiště.

Terminátor

2.4.2 Datový model

Můžeme vymezen dvě úrovně konstrukce datového modelu:

- logický datový model - je konverzi konceptuálního modelu v prostředí konkrétní databázové koncepce a navazuje na tvorbu E-R diagramu.

2.4.2.1 E-R diagram

Pro vytvoření konceptuálního datového modelu použijí metodu E-R, která se jeví jako optimální řešení kontroly zdravotních výkonů. Hlavní výhodou této metody je grafické vyjádření datové struktury, což má nesmírný význam z hlediska komunikace projektanta a uživatele. Následně uvádím základní prvky E-R diagramu (dle odborné literatury):

Entita

Reprezentuje třídu objektů reálného světa, například ZAMĚSTNANEC. Graficky je entita vyjádřena obdélníkem s uvedením svého názvu. Starší literatura hovoří o typu entity či množině entit, čímž podtrhuje nutnost oddělit třídu od jednotlivých objektů, tedy v prezentovaném pojetí entitu od výskytů entity.

Vztah

Vztah mezi entitami vyjadřuje ve skutečnosti množinu vztahů mezi objekty. Každý výskyt vztahu je podmíněn spojením mezi žádným, jedním nebo více výskytu jedné entity s žádným, jedním nebo více výskytu jiné entity. Vztah vyjadřuje informaci, která může být vypočtena nebo odvozena z informací jiných, proto si ji musí systém pamatovat. [4]

Stupeň

Stupněm vztahu se rozumí počet entit asociovaných v jednom vztahu. Nejnižší je stupeň jedna, kdy vztah se váže pouze k jedné entitě, jde o unární nebo také rekurtizní vztah. Analogicky vztah druhého stupně, tedy mezi dvěma entitami je binární, mezi třemi entitami ternární apod. [3]
Kardinalita

Kardinalita vztahu vyjadřuje obecně počet výskytů obou entit účastnících se jednoho výskytu vztahu, nabývá hodnot "jedna" nebo "mnoho", značených l či n nebo m. Tak prakticky nastávají tři možnosti "jeden k jednomu", "jeden k mnoha" a "mnoho k mnoha", značené 1:1, 1:n, m:n a graficky vyznačené zdvojenou šipkou na straně "mnoho".

Volitelnost

Volitelnost vyjadřuje, zda účast entity ve vztahu je povinná nebo volitelná, tedy každému výskytu vztahu musí nebo může odpovídat jeden (na straně "jeden") nebo několik (na straně "mnoho") výskytů příslušné entity. Graficky se volitelná účast vyznačí přerušovanou čarou, povinná plnou.

Atribut

Atribut reprezentuje elementární vlastnost entity nebo vztahu, např. jméno, číslo_pracovníka, adresa apod. Každý atribut nabývá určitých konkrétních hodnot.

Složený atribut

Složený atribut představuje skupinu atributů, které mají společný význam nebo použití. Například atribut adresa je složen z jednoduchých atributů psč, město, ulice, číslo_domu.

Doména

Množina přípustných hodnot přiřazená jednomu nebo více atributům. Např. množina všech hodnot číslo_pracovníka.

Klíč

Skupina atributů identifikující výskyty dané entity.

Kandidátní klíč

Klíč jednoznačně identifikující výskyty dané entity.

Primární klíč

Kandidátní klíč zvolený k jednoznačné identifikaci výskytů entity. Graficky se primární klíč vyznačí symbolem # doplňujícím jméno atributu.
Alternativní klíč
Kandidátní klíč, který není primárním klíčem.

Cizí klíč
Klíč entity, který je současně primárním klíčem jiné entity. Graficky se cizí klíč označí symbolem * doplňujícím jméno atributu.

Slabá entita
Entita, jejíž primární klíč obsahuje cizí klíč. To znamená, že neexistuje žádný vlastní atribut (jednoduchý či složený), který by výskyty dané entity jednoznačně identifikoval.
Graficky se slabá entita vyznačuje zdvojeným obdélníkem.

Obr. 2.4.2.1-1 Konstruktory E-R diagramu

2.4.2.2 Relační modelování

Relace
Relace je dvourozměrná datová struktura tvořená záhlavím a tělem relace.
Záhlaví relace je množina dvojic (Ai, Di), kde atribut Ai je přiřazen právě jedné doméně Di, pro i = 1, 2, ..., n; všechna Ai musí být vzájemně odlišná.
Tělo relace je tvořeno množinou n-tic, které jsou množinami dvojic (Ai,vri), kde Ai je i-tý atribut a dále vri je r-tá hodnota z domény Di pro r = 1, 2, ..., m, kde m je počet n-tic v množině; m je pak kardinalitou a n stupněm relace (pro n = 1 se hovoří o unární relaci, pro n = 2 o binární, atd. až po n-ární relaci). [3]

Relace R v procesu modelování bude reprezentována svým záhlavím ve tvaru: R (A1#, A2#, ..., Am#, Am+1, ..., An), kde Ai je i-tý atribut relace R, která je stupně n, a dále atributy A1#, A2#, ..., Am# tvoří primární klíč relace o m složkách. Tak například relace ODDĚLENÍ bude vyjádřena takto: ODDĚLENÍ (ČIS_ODD#, NÁZEV, ADRESA). [3]

Tělo relace se dále symbolicky vyznačí r (R). Pokud identifikace atributů v různých relacích je stejná, pak pro odlišení je možné uplatnit kvalifikaci jménem příslušné relace, např. atribut NÁZEV může být kvalifikován jménem relace ODDĚLENÍ: ODDĚLENÍ.NÁZEV. [3]

Základní vlastnosti relace

- pořadí řádků je nevýznamné
- pořadí sloupců je nevýznamné
- nejsou povoleny duplikáty řádků
- nejsou povoleny vícehodnotové atributy
- množina atributů je jedinečná.

Dále je třeba zdůraznit dvě výchozí podmínky, které musí být při sestavení relačního databázového modelu dodrženy:

- žádná hodnota primárního klíče nesmí být prázdná (tzv. null hodnota)
- každá n-tice z dané relace odkazující se na jinou relaci, se musí odkazovat na existující n-tici. [3]
3. Analýza současného stavu

Stávající informační systém zahrnuje všechny činnosti, které jsou spojeny se sběrem dat výkonů od smluvních partnerů včetně kontroly těchto dat revizními lékaři, s následným vyúčtováním výkonů a jejich proplacením.

Pojišťovna přijímá od smluvního zdravotnického zařízení doklady seskupené do dávek. Kromě dávek dokladů přebírá pojišťovna od zdravotnického zařízení také fakturu. Na základě kontroly dokladů, jejich ohodnocení a podle smluvně dohodnuté formy financování SZZ proveďe pojišťovna vyúčtování vykázané zdravotní péče.

Pojišťovna přebírá od smluvních zdravotnických zařízení tážky dokladů, vyplněné podle platné metodiky. Při převzetí dávek dokladů je prováděna kontrola, která závisí na skutečnosti, zda jsou přebírané vyplněné papírové formuláře nebo datový nosič. Po úspěšném výsledku vstupní kontroly je dávka dokladů přijata.

Po přijetí dávek dokladů jsou data navedena do IS, kde je provedena kontrola na duplicitu dávek a ohodnocení dokladů. IS však neprovádí kontrolu frekvenčních omezení výkonů, která by upozorňovala na překročení limitu. Omezení frekvencí upravuje počet výkonů, které může SZZ vykázat na jednoho pojištěnce za určité období. Jednotlivá období omezení frekvencí jsou definovala následovně:

- **Týden** – souvislá doba trvající 7 dní.
- **Měsíc** – souvislá doba trvající 4 týdny tj. 28 dní.
- **Tři měsíce, čtvrtletí** – souvislá doba trvající 89 dní. Tolerovaná odchylka od uvedené doby je maximálně 5 dní.
- **Rok** – souvislá doba trvající 365 dní. Tolerovaná odchylka od uvedené doby je maximálně 15 dní.

Faktura

Pro zadání do IS může faktura obsahovat tyto údaje:

- **Účetní měsíc** – faktura je účtována za měsíc, který je na ní uveden.
- **Smluvní partner** - po vyplnění je provedena kontrola na existenci dodatku ke smlouvě smluvního partnera s hlášením stavu.
- **Kód banky** – banka, u které má SZZ účet.
- **Číslo účtu** smluvního partnera.
- **Variabilní symbol** - číslo faktury smluvního partnera.
- **Specifický symbol** – další číselný údaj pro bližší specifikaci.
• **Datum vystavení** – datum, kdy byla faktura u smluvního partnera vystavena.
• **Zdroj** – zdrojem se rozumí podklad, podle kterého byla faktura pořízena (papírové doklady, diskety).
• **Požadovaná částka** – částka, jejíž uhrazení smluvní partner požaduje.
• **Přijata dne** - datum přijetí faktury k vyúčtování.
• **Splatnost** – datum splatnosti faktury.

Povinnými položkami, které faktura musí bezpodmínečně obsahovat jsou:

• **Účetní měsíc**
• **Smluvní partner**
• **Variabilní symbol**
• **Požadovaná částka**

Informační systém si následně sám dosadí položky:

• **Účetní rok**
• **Počet dávek**

Kromě ručního vkládání výkonů je možné přebírat doklady v dávkách na disketách přímo od smluvních partnerů a přebírat žádosti v elektronické podobě.

Zpracování dávek výkonů

Přenesení souboru do počítače probíhá ve dvou fázích:

- Načtení souboru do pracovních tabulek, při němž se také provádí kontrola formátu souboru.
- Převod dat z pracovních tabulek do tabulek pro definitivní uložení dokladů v systému. Proběhne vyhodnocení dokladů a jejich kontrola.

Kontrola

Během procesu kontroly se analyzuje vykázaná dávka z různých hledisek:
- Kontrola výkonů podmíněných určitou diagnózou
 Konkrétní výkon je vykázán s diagnózou, která pro tento výkon není uvedena v tabulce diagnóz.

- Kontrola výkonů podmíněných navzájem - bez ohledu na SZZ
 Pro konkrétní výkon není v určitém časovém období pro stejné RČ vykázán výkon se stejnou skupinou, jakou má testovaný výkon.

- Kontrola výkonů podmíněných navzájem - pro určité SZZ
 Pro konkrétní výkon není v určitém časovém období pro stejné RČ a stejné IČO vykázán výkon se stejnou skupinou, jakou má testovaný výkon.

- Kontrola vylučujících se výkonů - bez ohledu na SZZ
 K aktuálnímu testovanému výkonu je v určitém časovém období pro stejné RČ vykázán výkon se stejnou skupinou, jakou má testovaný výkon.

- Kontrola vylučujících se výkonů - pro určité SZZ
 K aktuálnímu testovanému výkonu je v určitém časovém období pro stejné RČ a stejné IČO vykázán výkon se stejnou skupinou, jakou má testovaný výkon.

- Kontrola příplatků za soboty, neděle a svátky
 Kód je vykázán jindy než v sobotu nebo v neděli a tento den není uveden mezi svátky.

- Formální kontrola duplicity
 Výskyt dokladu se stejnými hodnotami rodného čísla, čísla dokladu, pořadového čísla, druhu dokladu v rámci roku.

- Kontroly podmiňujících se výkonů - bez ohledu na SZZ
 K testovanému výkonu není pro dané období vykázán výkon.

- Kontroly podmiňujících se výkonů - pro konkrétní SZZ
 K testovanému výkonu není pro dané období vykázán výkon.
• **Kontrola výkonů podmíněných specializací SZZ**
 Pro výkon není požadovaná specializace uvedena ve smlouvě.

• **Vylučující se výkony - bez ohledu na SZZ**
 Pokud pro uvedený majoritní výkon je vykázán výkon, resp. výkon v rámci skupiny výkonů pro zadané období a případně stejné IČO.

• **Vylučující se výkony - pro konkrétní SZZ**
 Pokud pro uvedený majoritní výkon je vykázán výkon, resp. výkon v rámci skupiny výkonů pro zadané období a případně stejné IČO.

• **Kontrola podmiňujících se výkonů s lokalizací - bez ohledu na SZZ**
 K testovanému výkonu není pro dané období vykázán výkon. Kontrola je doplněná o podmínku lokalizace.

• **Kontrola podmiňujících se výkonů s lokalizací - pro konkrétní SZZ**
 K testovanému výkonu není pro dané období vykázán výkon. Kontrola je doplněná o podmínku lokalizace.

• **Kontrola výkonů povolených na počátku a konci hospitalizace**
 Pro hospitalizaci je vykázán jiný kód, než-li je kód výkonu uvedený v tabulce.

• **Kontrola nepovolených výkonů podmíněných diagnózou a odborností**
 Vylučují se výkony, které SZZ nemůže podle své odbornosti provádět.

• **Vylučující se výkony s lokalizací - bez ohledu na SZZ**
 Pokud pro uvedený majoritní výkon je vykázán výkon, resp. výkon v rámci skupiny výkonů pro zadané období a případně stejné IČO - navíc se musí shodovat lokalizace.
• **Vylučující se výkony s lokalizací - pro konkrétní SZZ**

Pokud pro uvedený majoritní výkon je vykázán výkon, resp. výkon v rámci skupiny výkonů pro zadané období a případně stejné IČO - navíc se musí shodovat lokalizace.

• **Kontrola vylučujících se výkonů s lokalizací - bez ohledu na SZZ**

K aktuálnímu testovanému výkonu je v určitém časovém období pro stejné RČ vykázán výkon se stejnou skupinou jakou má testovaný výkon - navíc se musí shodovat lokalizace.

• **Kontrola vylučujících se výkonů s lokalizací - pro určité SZZ**

K aktuálnímu testovanému výkonu je v určitém časovém období pro stejné RČ a stejné IČO vykázán výkon se stejnou skupinou jakou má testovaný výkon - navíc se musí shodovat lokalizace.

• **Kontrola duplicity výkonů - omezení**

V dostupné historii dokladů již byl konkrétní výkon pro stejné RČ ve stejný den vykázán na jiném dokladu.

• **Kontrola druhu pojištění**

Druh pojištění ve faktuře se nerovná druhu pojištění pro okruh osob pojištěnce.

• **Kontrola nepovolených výkonů a palet pro SZZ**

Výkon není zahrnut v tabulce povolených výkonů.

Z uvedeného vyplývá velký rozsah používaných typů kontrol a náročnost zpracovaných dat s ohledem na jejich objem a strukturu.

V etapě kontroly dávek dojde k vyloučení výkonů, které neprošly nastavenými automatizovanými kontrolními mechanizmy. Teprve po „očištění“ dávek se provede vyúčtování a následně úhrada vykázané zdravotní péče.
4. Návrh struktury funkčního modelu a datové základny

Předmětem této kapitoly je funkční popis IS, který jsem zpracovala do formy diagramu funkční struktury a diagramu datových toků.

4.1 Diagram funkční struktury

Informační systém RBP je rozdělen do pěti subsystémů uvedených v obr. 4.1-1.

Funkční dekompozice IS RBP

Obr. 4.1-1 Diagram funkční struktury Revírní bratrské pokladny

Popis jednotlivých subsystémů je obsahem následující tabulky:

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Popis funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Správa dávek</td>
<td>Funkce zabezpečující dávky. Funkce je dekomponována na dílčí upřesňující funkce.</td>
</tr>
<tr>
<td>1.2</td>
<td>Správa číselníků</td>
<td>Zabezpečuje správu bodového ohodnocení jednotlivých zdravotních výkonů.</td>
</tr>
<tr>
<td>1.3</td>
<td>Správa zaměstnanců</td>
<td>Jedná se o funkci zabezpečující správu detailních údajů o zaměstnancích vedených v systému.</td>
</tr>
<tr>
<td>1.4</td>
<td>Správa odborností</td>
<td>Zabezpečuje správu kódů jednotlivých zdravotnických odborností.</td>
</tr>
<tr>
<td>1.5</td>
<td>Pokladna</td>
<td>Funkce zajišťující proplácení dávek SZZ.</td>
</tr>
<tr>
<td>1.6</td>
<td>Výstupy</td>
<td>Funkce zabezpečující vygenerování výstupů.</td>
</tr>
</tbody>
</table>
Vzhledem k zaměření bakalářské práce se budu v další části podrobněji zabývat pouze subsystémem 1.1 Správa dávek.

Po provedené analýze jsem sestavila funkční dekompozici subsystému Správa dávek, která je členěna na:

- Vstup dávky
- Kontrola dávky
- Potvrzení/Zamítnutí dávky
- Výpočet částky

Funkční dekompozice subsystému 1.1 Správa dávek

![Diagram](image)

Číslo	**Název**	**Popis funkce**
1.1.1 | Vstup dávky | Subfunkce zabezpečující zadání jednotlivých položek dávky. |
1.1.2 | Kontrola dávky | Subfunkce ověřující správnost zadané dávky. Je komponovaná na dílčí upřesňující subfunkce. |
1.1.3 | Potvrzení/Zamítnutí dávky| Subfunkce zabezpečující potvrzení nebo zamítnutí uhrazení dávky. |
1.1.4 | Výpočet částky | Subfunkce zabezpečující výpočet částky k úhradě. |

V rámci subsystému Správa dávek se jeví jako nejdůležitější Kontrola dávek. Proto v následujícím schématu uvádím funkční dekompozici tohoto dílčího subsystému.
Funkční dekompozice subsystému 1.1.2 Kontrola dávky

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Popis funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.1</td>
<td>Kontrola duplicit</td>
<td>Subfunkce kontrolující, zda v dávce nejsou stejné výkony výkazovány víkrát.</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>Kontrola frekvenčních omezení</td>
<td>Subfunkce kontrolující, zda nebyl překročen povolený počet výkonů.</td>
</tr>
<tr>
<td>1.1.2.3</td>
<td>Ostatní kontroly</td>
<td>Subfunkce kontrolující, zda je daný výkon povolený, zda se nevylučuje s jiným výkonem apod.</td>
</tr>
</tbody>
</table>

Pro ilustraci celkové dekompozice systému jsem zpracovala v následujících subkapitolách:

- kontextový diagram
- diagram datových toků, jak celého informačního systému RBP, tak jeho dílčích subsystémů Správa dávek a Kontrola dávky.
4.2 Kontextový diagram

Smluvní zdravotnické zařízení

Zdravotní pojišťovna

Administrátor

faktura

platba

správa systému
4.3 Diagram datových toků IS RBP
DFD subsystému Správa dávek
DFD subsystému Kontrola dávky

1.1.1 IS1_1
Vstup dávky

1.1.2 IS1_2
Kontrola dávky

1.1.2.1 IS1_2.1
Kontrola duplicit

1.1.2.2 IS1_2.2
Kontrola frekvenčních omezení

3_3 údaje o frekvenčních omezeních

3_6 překročení frekvenčního omezení

3_2 schválení frekvence

3_7 vykázání chyb

3_8 údaje o odbornostech

3_4 údaje o výkonech

2_3 dávka k přijetí

3_5 zápis duplicitní dávky

2_1 zadání dávky

1.5 IS5
Výstupy

1.1.3 IS1_3
Potvrzení/Zamítnutí dávky

1.2 IS2
Správa číselníků

1.4 IS4
Správa odbornosti
4.4 Informační popis

Tato podkapitola navazuje na předchozí analýzu datových toků a uvádí jednak jejich popis a také vyjádření pomocí datového modelu.

4.4.1 Popis datových toků

Následující tabulky obsahují seznam datových toků a jejich popis. Jsou rozčleněny do tří rozdílných úrovní. Úroveň 1 představuje datové toky celého IS RBP. Úroveň 2 pak představuje datové toky Správy dávek a úroveň 3 představuje datové toky Kontroly dávek.

Datové toky – úroveň 1

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_1</td>
<td>předání dávek</td>
<td>Předání dávek ZP.</td>
</tr>
<tr>
<td>1_2</td>
<td>navenední dávek</td>
<td>Navenední dávek do IS ZP.</td>
</tr>
<tr>
<td>1_3</td>
<td>aktualizace údajů o zaměstnanci</td>
<td>Aktualizace údajů o zaměstnanci.</td>
</tr>
<tr>
<td>1_4</td>
<td>získání údajů o zaměstnanci</td>
<td>Poskytnutí údajů o zaměstnanci.</td>
</tr>
<tr>
<td>1_5</td>
<td>zápis dávky</td>
<td>Zaevidování dávky do IS.</td>
</tr>
<tr>
<td>1_6</td>
<td>aktualizace evidence číselníků</td>
<td>Aktualizace číselníků.</td>
</tr>
<tr>
<td>1_7</td>
<td>zápis údajů</td>
<td>Zápis údajů o číselnících do evidence.</td>
</tr>
<tr>
<td>1_8</td>
<td>pokyn k proplacení</td>
<td>Pokyn k proplacení schválené dávky.</td>
</tr>
<tr>
<td>1_9</td>
<td>uhrazení dávky</td>
<td>Uhrazení částky SZZ.</td>
</tr>
<tr>
<td>1_10</td>
<td>zápis údajů</td>
<td>Zápis údajů o odbornostech do evidence.</td>
</tr>
<tr>
<td>1_11</td>
<td>aktualizace evidence odborností</td>
<td>Aktualizace odborností.</td>
</tr>
</tbody>
</table>

Datové toky – úroveň 2

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2_1</td>
<td>zadaná dávka</td>
<td>Dávka navedena do IS ZP.</td>
</tr>
<tr>
<td>2_2</td>
<td>údaje o číselnících ke kontrole</td>
<td>Údaje o číselnících nutné ke kontrole dávky.</td>
</tr>
<tr>
<td>2_3</td>
<td>dávka k přijetí</td>
<td>Dávka odeslána ke schválení.</td>
</tr>
<tr>
<td>2_4</td>
<td>údaje o číselnících ke zpracování</td>
<td>Údaje o bodovém hodnocení výkonů.</td>
</tr>
<tr>
<td>2_5</td>
<td>vyčíslení dávky k úhradě</td>
<td>Ohodnocení výkonů vykázaných v dávce.</td>
</tr>
<tr>
<td>2_6</td>
<td>údaje o odbornostech ke kontrole</td>
<td>Údaje o odbornostech nutné ke kontrole dávky.</td>
</tr>
</tbody>
</table>
Datové toky – úroveň 3

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Název</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3_1</td>
<td>postoupení správné dávky</td>
<td>Předání duplicitně ověřené dávky k další kontrole.</td>
</tr>
<tr>
<td>3_2</td>
<td>schválení frekvence</td>
<td>Frekvenční omezení u dávky jsou v pořádku.</td>
</tr>
<tr>
<td>3_3</td>
<td>údaje o frekvenčních omezeních</td>
<td>Poskytnutí údajů o frekvenčních omezeních.</td>
</tr>
<tr>
<td>3_4</td>
<td>údaje o výkonech</td>
<td>Poskytnutí údajů o výkonech.</td>
</tr>
<tr>
<td>3_5</td>
<td>zápis duplicitní dávky</td>
<td>Zjištění duplicity dávky.</td>
</tr>
<tr>
<td>3_6</td>
<td>překročení frekvenčního omezení</td>
<td>Odmítnutí dávky, kvůli překročení omezení.</td>
</tr>
<tr>
<td>3_7</td>
<td>vykázání chyby</td>
<td>Dávka neprošla některou z dalších kontrol.</td>
</tr>
<tr>
<td>3_8</td>
<td>údaje o odbornostech</td>
<td>Poskytnutí údajů o odbornostech.</td>
</tr>
</tbody>
</table>
4.4.2 Datový model

LEGENDA

- 1: n
- povinná účast
- volitelná účast
- entita
- slabá entita

Entity a jejich atributy:

Zaměstnanec – ZAMESTNANEC

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_Z#</td>
<td>Identifikační číslo zaměstnance</td>
</tr>
<tr>
<td>JMENO_Z</td>
<td>Jméno zaměstnance</td>
</tr>
<tr>
<td>PRIJIMENI_Z</td>
<td>Příjmení zaměstnance</td>
</tr>
<tr>
<td>RC_Z</td>
<td>Rodné číslo zaměstnance</td>
</tr>
<tr>
<td>MESTO</td>
<td>Město</td>
</tr>
<tr>
<td>ULICE</td>
<td>Ulice</td>
</tr>
<tr>
<td>CIS_POPIS</td>
<td>Číslo popisné</td>
</tr>
<tr>
<td>PSC</td>
<td>PSČ</td>
</tr>
<tr>
<td>TELEFON</td>
<td>Telefon</td>
</tr>
</tbody>
</table>

Smluvní zdravotnické zařízení – SZZ

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICZ_SZZ#</td>
<td>Identifikační číslo zařízení</td>
</tr>
<tr>
<td>NAZEV_SZZ</td>
<td>Název SZZ</td>
</tr>
</tbody>
</table>

Dávky – DAVKY

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_D#</td>
<td>Identifikační číslo dávky</td>
</tr>
<tr>
<td>DAT_VYS</td>
<td>Datum vystavení</td>
</tr>
</tbody>
</table>
Položka dávky – POL_DAVKY
CPOL_D# Číslo položky dávky
NAZEV_P Název položky
POCET Počet provedených výkonů

Číselníky - CISELNIKY
KOD_V# Kod výkonu
NAZEV_V Název výkonu
CENA_V Cenové ohodnocení výkonu
FO_V Frekvenční omezení

Odbornost – ODBORNOST
KOD_ODB# Kód odborného pracoviště
NAZEV_ODB Název odborného pracoviště

4.4.3 Logické modelování
Pro logické modelování byl vytvořený E-R model převeden do soustavy relací. Nejdříve byla vytvořena soustava předběžných relací a následně soustava relací úplných.

Soustava předběžných relací
SZZ (ICZ_SZZ#,…)
ZAMESTNANEC (ID_Z#,…)
DAVKY (ID_D#, ICZ_SZZ*, ID_Z*,…)
POL_DAVKY (CPOL_D#,ID_D*, KOD_V*, KOD_ODB*,…)
CISELNIKY (KOD_V#,…)
ODBORNOST (KOD_ODB#,…)

38
Soustava úplných relací
SZZ (ICZ_SZZ#, NAZEV_SZZ)
ZAMESTNANEC (ID_Z#, JMENO_Z, PRIJmeni_Z, RC_Z, MESTO, ULICE, CIS_POPIS, PSC, TELEFON)
DAVKY (ID_D#, ICZ_SZZ*, ID_Z*, DAT_VYS)
POL_DAVKY (CPOL_D#, ID_D*, KOD_V*, KOD_ODB*, NAZEV_P, POCET)
CISELNIKY (KOD_V#, NAZEV_V, CENA_V, FO_V)
ODBORNOST (KOD_ODB#, NAZEV_ODB)

Po provedené analýze jsem dospěla k závěru, že v případě dílčího subsystému Kontrola dávky neprobíhá automatizované posouzení frekvenčních omezení. Jde o případy, kdy uskutečnění výkonů je vázáno na jejich časové vymezení, např. časová posloupnost preventivních prohlídek, komplexních prohlídek apod. Proto jsem navrhla, aby dílčí subsystém kontroly dávek obsahoval samostatný proces kontroly frekvenčních omezení (viz str. 29 obr. 4.1-3, bod 1.1.2.2). Toto je nutné vymezit u každého výkonu, případně skupiny výkonů.
4.5 Výstupní sestavy

V závěru subkapitoly 4.4 jsem zmínila potřebu samostatné kontroly frekvenčních omezení. Na to musí navazovat výstupní sestavy, které budou generovat přehled výkonů, u nichž toto bylo překročeno. Tato sestava bude obsahovat následující atributy:

<table>
<thead>
<tr>
<th>Název</th>
<th>Typ</th>
<th>Délka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizace</td>
<td>alfanumerický</td>
<td>30</td>
<td>Název smluvního zdravotnického zařízení</td>
</tr>
<tr>
<td>IČZ / IČO</td>
<td>alfanumerický</td>
<td>8</td>
<td>Identifikační číslo SZZ</td>
</tr>
<tr>
<td>Kód</td>
<td>číslo</td>
<td>5</td>
<td>Kód výkonu</td>
</tr>
<tr>
<td>Název</td>
<td>alfanumerický</td>
<td>50</td>
<td>Název výkonu</td>
</tr>
<tr>
<td>Odbornost</td>
<td>číslo</td>
<td>3</td>
<td>Oddělení vykazující daný výkon</td>
</tr>
<tr>
<td>Frekvenční omezení</td>
<td>číslo</td>
<td>5</td>
<td>Stanovený množstevní limit</td>
</tr>
<tr>
<td>Vykázané množství</td>
<td>číslo</td>
<td>5</td>
<td>Počet výkonů vykázaných SZZ</td>
</tr>
<tr>
<td>Rozdíl</td>
<td>číslo</td>
<td>5</td>
<td>Rozdíl mezi smluvně schválenými a vykázanými výkony</td>
</tr>
</tbody>
</table>

Tvorba této sestavy by měla být věcí odborných pracovníků příslušné ZP.
5. Závěr

Ve své bakalářské práci jsem provedla analýzu a zhodnocení současného stavu datové základny zejména v oblasti kontroly úhrad zdravotní péče.

Cílem bylo navrhnout IS, který by v procesu zadávání dávek výkonů do systému kontroloval frekvenční omezení jednotlivých výkonů a následně pak generoval souhrnné výstupy všech výkonů, u kterých nebylo smluvním zdravotnickým zařízením toto omezení dodrženo.

Nedalo se jistě předpokládat, že má zjištění budou mít převratný nebo dokonce objevitelský charakter. Vždy tvorba informačních systémů i používaných kontrolních mechanismů je záležitostí týmové práce odborně erudovaných specialistů. Jedno doporučení však z analýzy vyplývá, a tím je zavedení komplexních frekvenčních omezení u všech vykazovaných dávek. Nadbytečný rozsah frekvence výkonů a jejich úhrady znamenají pochopitelně neefektivní vynaláždání mnohdy značných finančních prostředků.

Zamýšlela jsem se ale také nad zaváděním nových léčebných postupů i zdravotních technologií a přístrojového vybavení. Tyto nesmírně pozitivně ovlivňují kvalitu poskytované zdravotní péče. Domnívám se, že při jejich zavádění do praxe by měly být okamžité přijaty určité regulační prvky a kontrolní mechanismy k vykazování nových výkonů, které s tím souvisí. Obdobně to platí i pro aplikaci úpravy právních předpisů, které jsou spojeny se změnami úhrad zdravotní péče. Každá prodleva v této oblasti může znamenat ekonomické ztráty.

Určitou možnost zlepšení efektivnosti kontrolního systému jako celku vidím ve zvýšení úlohy osobních účtů pojišťenců. Jen sporadicky se vyskytují případy, že si pojišťenci vyžádá svůj osobní účet ke kontrole spotřebované zdravotní péče, navíc má možnost tuto službu vyhledat i na internetových stránkách RBP. Pojišťovny by se měly zamyslet nad tím, proč tomu tak je a přijmout opatření ke zlepšení. Jednou z cest by byla nabídka této kontroly při každém osobním jednání klienta na pojišťovně.

Při zpracování zadaného tématu jsem také zjistila úzkou ekonomickou souvislost systému zdravotního pojištění se systémem nemocenského pojištění. Absence ekonomicky aktivních pojišťenců z důvodu nemoci má duálně zasílující negativní vliv na disproporci příjmové a výdajové stránky systému zdravotního pojištění. V období nemoci osoby výdělečně činné čerpají náklady zdravotní péče, přičemž na jejich krytí vlastně nepřispívají, protože z nemocenských dávek se zdravotní pojištění neplatí. Kontrolní systém nemocenského pojištění je prakticky zcela nezávislý a není nicím propojen se
systémem veřejného zdravotního pojištění. V souvislosti s nedostatkem financí v obou systémech (nadměrné čerpání zdravotní péče, zneužívání nemocenských dávek apod.) se logicky nabízí otázka jejich vzájemného propojení. Efektivnost realizace tohoto sloučení je možné spatřovat především ve zhospodárnění výběru prostředků na nemocenské a zdravotní pojištění, zjednodušení podobného informačního systému a účinnější kontrole vynakládaných financí. Proto se domnívám, že výhledovým řešením musí být nová koncepční provázaná legislativní úprava reagující na celospoolečenské potřeby a naznačené problémy.

Na úplný závěr chci konstatovat, že získané znalosti ze studia mi napomohly při zpracování této práce. Samotná problematika řešení tak rozsáhlého a komplikovaného informačního systému je velmi složitý proces. Dospěla jsem však k jednoznačnému přesvědčení, že jen dynamicky aplikovaný systém úhrad zdravotní péče s optimalizací kontrolních mechanizmů je zárukou efektivního vynakládání finančních prostředků.
Seznam použité literatury

Seznam zkratek

SZZ Smluvní zdravotnické zařízení
RBP Revírní bratřská pokladna
ZP Zdravotní pojišťovna
IČZ Identifikační číslo zařízení
IS Informační systém
DFD Data flow diagram
DS Data store
Prohlášení o využití výsledků bakalářské práce

Prohlašuji, že

- jsem byla seznámena s tím, že na mou bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo;
- beru na vědomí, že Vysoká škola báňská, Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, bakalářskou práci užít (§ 35 odst. 3);
- souhlasím s tím, že bakalářská práce bude v elektronické podobě archivována v Ústřední knihovně VŠB-TUO a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že bibliografické údaje o bakalářské práci budou zveřejněny v informačním systému VŠB-TUO;
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona;
- bylo sjednáno, že užít své dílo, bakalářskou práci, nebo poskytnutou licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne 6. května 2010

Veronika Račková

Adresa trvalého pobytu studenta:
Jugoslávská 18A, 700 30 Ostrava - Zábřeh