BODOVÉ ZDROJE ZNEČIŠTĚNÍ
POVRCHOVÝCH VOD V ÚZEMÍ PR ZÁBŘEŽSKÉ
A KOUTSKÉ LOUKY

bakalářská práce

Autor: Jiří Augustin
Vedoucí bakalářské práce: RNDr. Jana Nováková, PhD.

Ostrava 2010
Prohlášení

- Celou bakalářskou práci včetně příloh, jsem vypracoval(a) samostatně a uvedl(a) jsem všechny použité podklady a literaturu.

- Byl jsem seznámen s tím, že na moji bakalářskou práci se plně vztahuje zákon č.121/2000 Sb. - autorský zákon, zejména § 35 – využití díla v rámci občanských a náboženských obřadů, v rámci školních představení a využití díla školního a § 60 – školní dílo.

- Beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, bakalářskou práci užít (§ 35 odst. 3).

- Souhlasím s tím, že jeden výtisk bakalářské práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího bakalářské práce. Souhlasím s tím, že údaje o bakalářské práci, obsažené v Záznamu o závěrečné práci, umístěném v příloze mé bakalářské práce, budou zveřejněny v informačním systému VŠB-TUO.

- Bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona.

- Bylo sjednáno, že užít své dílo – bakalářskou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě

..

Jiří AUGUSTIN
Poděkování

Rád bych poděkoval hlavně vedoucí mé bakalářské práce RNDr. Janě Novákové PhD. za její pevné nervy, obětovaný čas, cenné rady a materiály k psaní této práce. Rád bych také poděkoval Radku Svrčinovi, se kterým jsem odběry vzorků a následné analýzy v laboratoři absolvoval. Velké dík také patří mé rodině za podporu během mého studia.
Anotace

Tato práce je zaměřena na proces samočištění, který probíhá ve vodních ekosystémech. Ve své teoretické části mapuje fyzikální, chemické a biologické procesy využívané při udržení ekologické stability.

Klíčová slova: samočištění, vodní tok, přírodní rezervace Koutské a Zábřežské louky, bodový zdroj znečištění

Anotation

This thesis is focused on the process of self-purification, which occurs in aquatic ecosystems. In its theoretical part are described physical, chemical, and biological processes used in maintaining ecological stability.

To confirm the efficiency of this process, samples of water from natural preservation Koutské and Zábřežské meadows were taken. A significant point source of wastewater from production of meat products can be found here. Those analyses follow the data of Filip Šálek from years 2007-2009. Conclusions based on my own and the previously stated analyses are summarized in last chapter of this thesis.

Key words: self-purification, water stream, natural preservation Koutské a Zábřežské meadows, point source of pollution
Seznam zkratek
BSK₅ – biochemická spotřeba kyslíku za pět dní
CHSK₉Cr – chemická spotřeba kyslíku dichromanem
ČHMÚ – Český hydrometeorologický ústav
ČSN – československá státní norma
ES – emisní standard
NL – nerozpuštěné látky
NV – nařízení vlády
OV – odpadní voda
IS – imisní standard
P₉celk – celkový fosfor
pH – reakce vody
PR – přírodní rezervace
PR ZaKl – přírodní rezervace Zábřežské a Koutské louky
ZÚ – zájmové území
1 Úvod

Lidstvo od samého počátku využívá vodní zdroje a použitou vodu vrací zpět do přírodního oběhu. Doba, kdy příroda byla schopná sama odbourat veškeré antropogenní znečištění v rámci přirozených pochodů, je však dávno pryč. Každý růst lidské populace a její pokrok vždy šel na úkor přírodního prostředí. Můžeme zde mluvit o kácení původních lesů a vysazování rychle rostoucích smrkových monokultur, rozorání mezí a remízků mezi poli za účelem většího výnosu plodin nebo také o výstavbě nových sídlišť pro neustále rozrůstající se populaci. Každý tento lidský zásah nenávratně ukrojil část původní krajiny, až z ní zbylo tak málo, že se dnes musí chránit v podobě národních parků, přírodních rezervací či chráněných krajiných oblastí.

Také vodní zdroje jsou využívány s takovou intenzitou, že přirozené zdroje čisté vody nemohou pokrýtí celou poptávku nebo jsou lidskými zásahy přišli o ovlněné. Proto je nutné vodu upravovat a po jejím použití ji také čistit. V dnešní době se našetří kvalitě vody věnuje stejná pozornost jako jejímu množství. Byly stanoveny přísné emisní i imisní standardy a kontrolou její kvality byly státem pověřeny různé instituce. Přesto i dnes se najdou v této republice místa, kde dochází k několikanásobnému překročení těchto limitů. O to víc je to tristní, pokud se to týká právě jednoho z těchto zbylých míst, které se snažíme chránit. I protentokrát musela příroda ustoupit lidskému rozmachu.

2 Cíl práce

Tato práce se zabývá hodnocením kvality povrchové vody v lokalitě přírodní rezervace Zábřežské a Koutské louky na Hlučínsku. Jako hlavní bodový zdroj znečištění zde byla identifikována výpusť odpadních vod z výroby masných výrobků. Bodový zdroj znečištění se nachází na severní hranici přírodní rezervace a znečištění dále postupuje systémem melioračních kanálů až do vodního toku Štěpánka.

Cílem této práce je navázat na měření z předchozích let, jež byly prováděny studenty VŠB v rámci jejich diplomových prací. Oproti minulým pracím, které se bodovému zdroji znečištění v přírodní rezervaci Zábřežské a Koutské louky věnují, je tato práce psána se zaměřením na eliminaci znečištění přírodním procesem samočištění. Tomuto procesu je věnována samostatná kapitola.
3 Charakteristika zájmového území přírodní rezervace Koutské a Zábřežské louky

3.1 Lokalizace a základní údaje

Přírodní rezervace Koutské a Zábřežské louky se nachází mezi levým břehem řeky Opavy a silnicí I/56, která spojuje obce Dolní Benešov-Zábřeh a Kravaře-Kouty, v jejichž katastrálních území se rozkládá (viz Obr. č. 1). Nadmořská výška zájmového území se pohybuje mezi 225-234 m.n.m.

Cíle ochrany v PR Koutské a Zábřežské louky

Předmětem ochrany přírodní rezervace jsou ucelené komplexy mokřadních luk, rozptýlené zeleně a luhů se zbytky mrtvých ramen a periodicky zaplavených tůní v nivě řeky Opavy, mokrádní ekosystémy s výskytem zvláště chráněných druhů živočichů a rostlin a hnízdiště ptačích druhů. Součástí je také ochrana území před aktivitami, jež znamenají její narušování, případně negativní ovlivnění (Plán péče PR Koutské a Zábřežské louky 2008).

Evidenční kód ZCHÚ, kategorie, název a kategorie IUCN

evidenční kód ZCHÚ: 586
kategorie: přírodní rezervace
název: Koutské a Zábřežské louky
kategorie IUCN: IV – řízená rezervace
3.2 Geologické poměry

V oblasti Zábřežských a Koutských luk, jež jsou součástí geomorfologického celku Poopavské nížiny, tvoří geologický podklad horniny moravskoslezského kulmu. Ty jsou tvořeny komplexem paleozoických klastických sedimentárních hornin. Na skalní podloží navazuje souvrství terciérních sedimentů miocenního, bádenského stáří, které je reprezentováno monotónními jíly.

Celá Poopavská nížina je v prostoru Kravaře - Zábřeh u Hlučína tvořena kvartérními sedimenty (viz Obr. č. 2). Současný reliéf vznikl na sedimentech kontinentálních zalednění v době po ústupu posledního ledovce z období sálského zalednění. Povrch údolní nivy je erozní a vznikl jako terasa až po sálském zalednění. Je tvořen především mladowurmskými štěrkopísky o mocnosti kolem 6 metrů (rozsah mocnosti je od 1,0 do 10,6m). Sprašové hlíny dosahují mocnosti do 5 metrů a jsou rovněž wurmského stáří. Z holocenních sedimentů jsou nejvíce rozšířené povodňové sedimenty (hnědé a šedé písčité jíly a jemné jilovité písky), které dosahují na řece Opavě mocnosti okolo 3 metrů a slatinné zeminy mezi Kravařemi - Kouty a Zábřehem u Hlučína (Štěrba 1990).
3.3 Geomorfologické poměry

Podle regionálního členění ČR patří území k celku Opavské pahorkatiny. Je součástí geomorfologického podcelku Poopavské nížiny (VIIA-1B) a geomorfologického okrsku Opavsko-moravická niva (VIIA-1B-2). Ze severu je území lemováno Hlučínskou pahorkatinou (VIIA-1C), na jihu sousedí území s Komárovkou nížinou (VIIA-1-B-d),
nejvýchodnějšími výběžky Nízkého Jeseníku (IVC-8) a Vítkovskou vrchovinou (IV-C-8-F) (Štěrba 1990).

Území je součástí nivy řeky Opavy (viz Obr. č. 3). V plochém terénu se často vyskytují lokální sníženiny mělkých pramenných míst, náznaků vodních toků (relikty mrtvých toků) a místy i hlubší terénní deprese (Sedláčková 1994).

Celé území má mírný sklon od severozápadu k jihovýchodu. Nejnižším místem v zájmovém území je tok Štěpánky.

Demkovo geografické členění (Demek 1986) a legenda k Obr. č. 3
(zdroj: http://geoportal.cenia.cz)

- **SYSTÉM**: Hercynský
- **PROVINCIE**: Středoevropská nížina
- **SUBPROVINCIE**: VII Středopolská nížina
- **OBLASTI**: VIIA Slezská nížina
- **CELKY**: VIIA-1 Opavská pahorkatina
- **PODCELKY**: VIIA-1B Poopavská nížina
- **OKRSKY**: VIIA-1B-2 Opavsko-moravická niva
3.4 Hydrogeologické poměry

Hydrogeologický rajon PR je 152 Fluviální a glacigenní sedimenty v povodí řeky Opavy.

Kořínek prováděl hydrogeologický průzkum dané lokality pro zjištění režimu podzemních vod. Výsledky z kopané sondy (viz. Obr. č. 4), která byla umístěna 50 metrů jižně od odběrového profilu jedna, jsou následující: Od povrchu terénu do hloubky 80 cm je profil tvořen černými nivními, jílovitými hlínami s vysokým obsahem organické složky v podobě silně rozložených částí kořenů rostlin. V rámci této polohy je možné rozlišit nejsvrchnější část silně prorostlou kořeny rostlin a světlý horizont pískito-jílovitého charakteru s četným zastoupením valounů a křemence. Hladina podzemní vody se ustálila 30 cm p. p. t. (Kořínek 2008).
3.5 Pedologické poměry

Půdní poměry (viz Obr. č. 5) jsou spojeny se silným zamokřením říční nivy, jež dalo vzniknout organozemním půdám ve vrstvě několik desítek centimetrů. Část území zaujímají půdní typy glej fluvický a fluvizem glejová. Balátová-Tuláčková a Zapletal provedli v rámci hodnocení společenstev PR roku 1959 pedologický průzkum. Území bylo vyhodnoceno jako inundační se čtyřmi základními typy půdních rajónů, které se od sebe liší hydrologickými poměry.

Obr. č. 5: Mapa hlavních půdních typů dle TKSP (zdroj: http://geoportal.cenia.cz)

<table>
<thead>
<tr>
<th></th>
<th>Lům</th>
<th>Luvizemě</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fl.q</td>
<td>Fluvizemě</td>
</tr>
<tr>
<td>CR</td>
<td>Organozemě</td>
<td></td>
</tr>
<tr>
<td>PGI</td>
<td>Pseudogleje</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vodní plochy</td>
<td></td>
</tr>
</tbody>
</table>
3.6 Klimatologické poměry

Území náleží do klimatické oblasti MT 10 (Quitt 1971) (viz Tab. č. 1), která je charakterizována dlouhým teplým létem, mírně suchým, kratkým přechodným obdobím, s mírně teplým jarem a mírně teplým podzimem, kratkou zimou, mírně teplou a velmi suchou. S kratkým období trvání sněhové pokrývky. V porovnání s okolními oblastmi Těšínska, Moravy, Opavska a polského Slezska se území PR a jeho okolí vyznačuje vyššími teplotami a nižšími srážkami (Balátová-Tuláčková, Zapletal 1959).

Průměrné roční teploty se pohybují v rozmezí 8,0 – 8,6°C. Průměrný roční úhrn srážek ve stanici Kravaře činí 648 mm. Výpar ve stanici činí cca 488 mm, tj. 75 % srážek. V četnosti větrů jednoznačně převládá směr od JZ a od S (Tišnovská et al. 1997).

<table>
<thead>
<tr>
<th>Počet letních dnů</th>
<th>40 – 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet dnů s průměrnou teplotou 10°C a více</td>
<td>140 – 160</td>
</tr>
<tr>
<td>Počet mrazových dnů</td>
<td>110 – 130</td>
</tr>
<tr>
<td>Počet ledových dnů</td>
<td>30 – 40</td>
</tr>
<tr>
<td>Průměrná teplota v lednu (°C)</td>
<td>-2 - -3</td>
</tr>
<tr>
<td>Průměrná teplota v červenci (°C)</td>
<td>17 – 18</td>
</tr>
<tr>
<td>Průměrná teplota v dubnu (°C)</td>
<td>6 – 7</td>
</tr>
<tr>
<td>Průměrná teplota v říjnu (°C)</td>
<td>7 – 8</td>
</tr>
<tr>
<td>Průměrný počet dnů se srážkami 1 mm a více</td>
<td>100 – 120</td>
</tr>
<tr>
<td>Srážkový úhrn ve vegetačním období (mm)</td>
<td>400 – 450</td>
</tr>
<tr>
<td>Srážkový úhrn v zimním období (mm)</td>
<td>200 – 250</td>
</tr>
<tr>
<td>Počet dnů se sněhovou pokrývkou</td>
<td>50 – 60</td>
</tr>
<tr>
<td>Počet dnů zamračených</td>
<td>120 – 150</td>
</tr>
<tr>
<td>Počet dnů jasných</td>
<td>40 – 50</td>
</tr>
</tbody>
</table>

Tab. č. 1: Základní charakteristiky klimatické oblasti MT 10 (Quitt 1971)

Arktický den – den s max. teploty vzduchu ≤ -10 °C

Ledový den – den s max. teploty vzduchu ≤ -0,1 °C

Mrazový den – den s min. teploty vzduchu ≤ -0,1 °C

Letní den – den s max. teploty vzduchu ≥ 25 °C

Vegetační období – měsíce IV – IX

Zimní období – měsíce X – III

Jasný den – Nd . 2/10

Zamračený den – Nd . 8/10
3.7 Hydrologické poměry

Celé území PR Koutských a Zábřežských luk je ovlivněno systémem melioračních kanálů, jež odvádí srážkovou, ale i podzemní vodu z území PR. Kanály nejsou udržované, proto zcela neplní svou funkci. Jeden z těchto kanálů odvádí odpadní vody z MK Klemens do přírodní rezervace.

Délka tohoto kanálu je 146 metrů. Poté se vlévá do 432 metrů dlouhého melioračního kanálu, který přitéká ze západního směru a ředi odpadní vody. Ze severu se na stejném místě napojuje další umělá vodoteč, která slouží jako drenáž dešťové vody z místní komunikace (viz Obr. č. 6). Současné zakreslení melioračních kanálů se v mapách liší (např. Plán péče PR KaZL; http://heis.vuv.cz; základní vodohospodářská mapa 1:50 000).

Důležitou součástí hydrologického režimu zájmového území jsou mokřady. Plán péče o Koutské a Zábřežské louky předpokládá přehrazení melioračních kanálů hrázkami a tím obnovení původní výšky hladiny podzemní vody.

Hrázy musí být řešeny tak, aby bylo možno zvyšovat vodu téměř až na samotnou úroveň okolního terénu. Hrázky by měly splňovat nenáročnou obslužnost. V první fázi by hrázy měly udržovat příslušnou výšku hladiny vody, která je obvyklá pro tuto lokalitu na jaře a počátkem léta (Plán péče PR Koutské a Zábřežské louky 2008).

Obr. č. 6: Mapa vodotečí v zájmovém území PR (zdroj: http://heis.vuv.cz, upraveno dle terénního mapování)
Všechny vody z melioračních kanálů jsou odváděny do vodního toku Štěpánka (viz Tab. č. 2). Štěpánka je pravobřežní přítok vodního toku Opusta (viz Obr. č. 7). Soutok se nachází nedaleko levého břehu řeky Opavy mezi obcemi Dolní Benešov a Háj ve Slezsku.

Celé území bylo pravidelně zaplavováno vodami z jarního tání sněhu až do výstavby přehrady Kružberk, která přehradila Moravici a pozměnila tak vodní režim Opavy. Přesto hranice zátopového území Q_{100} řeky Opavy se nachází v PR.

<table>
<thead>
<tr>
<th>Vodní tok</th>
<th>Štěpánka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Povodí</td>
<td>2 – 02 – 03 – 017/0</td>
</tr>
<tr>
<td>Správce toku</td>
<td>Zemědělská vodohospodářská správa Ostrava</td>
</tr>
<tr>
<td>Kraj</td>
<td>Moravskoslezský</td>
</tr>
<tr>
<td>Katastrální území</td>
<td>Kravaře ve Slezsku, Zábřeh u Hlučína</td>
</tr>
<tr>
<td>Plocha povodí</td>
<td>20,35 km²</td>
</tr>
<tr>
<td>Plocha povodí v zájmovém území</td>
<td>0,4580 km²</td>
</tr>
<tr>
<td>Dlouhodobý průměrný průtok</td>
<td>Q_{ar}=0,093 m³/s Q_{100}=14,4 m³/s</td>
</tr>
<tr>
<td>Dlouhodobá průměrná roční výška srážek</td>
<td>592,5 mm (648 mm Kravaře)</td>
</tr>
<tr>
<td>Celková délka toku</td>
<td>8,387 km</td>
</tr>
<tr>
<td>Délka toku v zájmovém území</td>
<td>1,7283 km</td>
</tr>
<tr>
<td>Úsek dotčený ochranou (říční km od – do)</td>
<td>4,5 – 5,3</td>
</tr>
</tbody>
</table>

Tab. č. 2: Základní hydrologické údaje toku Štěpánka (zdroj: ČHMÚ Ostrava – Poruba)
4 Samočištící procesy

4.1 Úvod

Podstatou každého biologického čištění odpadních vod je využití, napodobení, usměrňení a urychlení přirozených rozkladních procesů ústrojních látek, jak v přírodě probíhají ve vodě i v půdě (Sládeček 1956).

Zdroje energie pro činnost ekologických mechanismů při samočištění jsou: fotosyntéza, oxidace autochtonní organické hmoty a další redoxní reakce (Ostroumov 2006, 2008).
4.2 Biologické mechanismy

Biologické pochody představují největší podíl z celého výčtu procesů. V závislosti na kvalitě vody je v ní přítomno určité společenstvo organismů, které svým výskytem mění výsledné vlastnosti povrchové vody. Vytváří se biologická rovnováha, při jejímž porušení se systém snaží o samovolný proces navrácení se do původního stavu. Vliv organismů vodního prostředí na charakter vod byl pozorován v 70. letech 19. století a popsán jako samočisticí proces (Ambrožová 2003).

Do samočištění nebo regulace procesů vodního ekosystému jsou zapojeny všechny skupiny organismů (mikroorganismy, fytoplankton, vyšší rostliny, bezobratlé a ryby), a to přímo nebo skrze vylučování kyslíku, organických metabolitů, produkci suspendovaných částic, ovlivnění zákalu, teploty vody či jiných parametrů ekosystému (Ostroumov 2004). Každý z nich je zapojen ve více než dvou procesech, přičemž všechny jsou stejně důležité.
pro správný průběh samočištění. Narušení těchto regulačních mechanismů se projeví nejjasněji po invazi nových druhů do ekosystému (Ostroumov 2008).

Hlavní čisticí účinek má určitě enzymatická činnost bakterií, které štěpí a mineralizují ústojné látky z odpadních vod, ať již jde o bílkoviny, cukry a tuky ve fázi dispergované, koloidní nebo rozpuštěné. O prvocích a vyšších živočišných se soudí, že jednak požírají bakterie i jiné čisticí organismy, jednak přímo odčerpávají organické látky, čímž opět vydatně napomáhají čisticím procesům, protože odčerpávají organické látky ve stavu rozkladu a přeměňují je v organické látky svého těla (Sládeček 1956). Konečné produkty jsou využity při tvorbě biomasy organismů, některé zůstávají rozpuštěné ve vodě, jiné se stávají součástí sedimentů nebo jako plynné produkty unikají do vzduchu (Lellák, Kubíček 1992). Výsledkem aerobní dekompozice je úplná mineralizace (konečnými produkty rozkladu je oxid uhličitý, voda, dusičnany, atd.) a výsledkem anaerobní dekompozice jsou metabolity (mastné kyseliny, metan a látky neodbouratelné v anaerobním prostředí) (Ambrožová 2003).

Na bázi trofické pyramidy se uplatňují již rozpuštěné i nerozpuštěné organické látky, které jsou potravou vodních organismů. Tím se organické látky zabudovávají do organické hmoty a naopak procesem mineralizace za působení destruentů se převádějí na látky minerální a anorganické soli. Minerálie jsou spolu s energií využívány metabolismem fotosyntetizujících organismů pro tvorbu biomasy. Mezi procesy rozkladu a tvorby biomasy existuje rovnováha, která se ustává za aerobních i anaerobních podmínek (Ambrožová 2003). Pro organismy platí, že čím výše je organismus v potravním řetězci, tím je menší podíl spotřebované energie (Stehfest 1975). Jinak řečeno, organismy nacházející se výše v potravním řetězci hrají důležitou roli v regulaci počtu organismů na nižších úrovních, kteří se přímo podílejí na samočištění vody (Ostroumov 2006).

Živočichové

Hlavní význam živočichů spočívá ve filtraci vody a enzymatickém rozkladu látek mikroorganismy.

Enzymatický rozklad znečišťujících látek, další část samočištění, je souběžně prováděn sinicemi, bakteriemi, houbami, fytoplanktonem i vyššími rostlinami (Ostroumov 2006). Enzymy, označované také jako biokatalyzátory, jsou bílkoviny, které mají vlastnosti společné všem proteinům. V podstatě se jedná o látky, které snižují aktivační energii, nemění sice rovnovážný stav reakce, ale urychlují jeho dosažení a na průběhu reakce se
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Rozklad sacharidů za přítomnosti bakterií probíhá v aerobním prostředí za vzniku oxidu uhlíčitého a vody, v anaerobním prostředí vznikají alkoholy a kyseliny. Anaerobní proces rozkladu je výlučně bakteriální. Probíhá ve dvou fázích - kyselinové fermentace a metanového kvašení. Na fermentační fázi se podílejí *Escherichia coli* a *Clostridium*, rozkládající monomery a hydrolyzující polymery (škrob, pektiny, celulóza) na monomery.
Konečným produktem jsou mastné kyseliny, alkoholy, ketony, vodík a oxid uhličitý (Ambrožová 2003).

Uhlovodíky a jejich deriváty dokáží rozkládat různé druhy mikroorganismů. Nejčastěji jde o bakterie, avšak patří sem i kvasinky a vláknnité houby. Polycyklické aromatické uhlovodíky dokáží štěpit vedle bakterií i dřevokazné houby způsobující bílou hnilobu dřeva. Doposud bylo zjištěno, že cca 21 rodů bakterií, 10 rodů hub a 5 rodů kvasinek má schopnost degradovat uhlovodíky. Rozklad uhlovodíků a jejich derivátů probíhá za aerobních i anaerobních podmínek (Rulík 2007).

Transport molekul živin skrz buněčnou stěnu a cytoplasmatickou membránu je dosažen také pomocí enzymů, zvaných permeázy (Stehfest 1975).

Mikroorganismy se tedy podílejí na rozkladu dusíkatých organických látek, rozkladu celulózy, tuků, škrobů, cukrů a organických a anorganických sloučenin fosforu. Rozhodující je činnost mikroorganismů, porůstajících povrch filtrační náplně a kořeny rostlin. Tyto organismy zajišťují především destrukci organického znečištění (Mlejnská, Wanner 2008).
Proces filtrace vody je součástí systému vedoucího k čištění vody (Ostroumov 2002). Nejsilnější filtrační aktivitu vodních organismů provádí dvě široké skupiny: plankton a bentičtí bezobratlí (Ostroumov 2006). Můžeme zde zahrnout také mikroorganismy a makrofytta, jež se filtrací podílí na odstraňování nutrientů (dusíku a fosforu) z vody a splachů z okolí (Ostroumov 2006). Bentické organismy přispívají nejen k filtraci dolní části vodního sloupce, ale také mohou jejich larvy jsou součástí planktonu. V planktonu jsou do filtrace zapojeny dvě skupiny bezobratlých mnohobuněčných – korýši a vířníci. Také další široká skupina organismů s rozdílným typem výživy, prvoci, filtruje vodu (Ostroumov 2006).

Důležité je, že filtrační aktivita je tak vysoká, že celkový objem mnoha vodních těles je přefiltrován za dobu jednoho až několika desítek dní. I kdybychom vzali v potaz pouze bentičké organismy, tato doba by byla jen o něco málo delší (Ostroumov 2005).

Proces filtrace je inhibován subletálními koncentracemi některých znečišťujících látek. Činnost škeblí a vířníků je utlumena přítomností detergentů (např. dodecylsulfátu sodného nebo tetradecyltrimethylammonium bromidu). Soli kovů (např. olova, kobalu a mědí) inhibují filtraci měkkýšů (Ostroumov 2008).

Vegetace

Procesy samočištění spojené s vegetací mají úzkou návaznost na funkci kořenových čistíren a mokřadních biotopů. Kořenové čistírny fungují právě na principu mokřadů. Tyto přírodní systémy jsou založeny na mechanických, fyzikálně-chemických a biologických procesech, které probíhají ve filtrační vrstvě za spolupůsobení rostlin. Jsou to procesy, jež svým charakterem a rychlostí odpovídají procesům, které můžeme pozorovat v přirozených mokřadních a vodních biotechech a v půdách zatížených antropogenním znečištěním (Váňa et al. 2009).

Vegetace plní tyto funkce: využívání živin a stopových prvků obsažené v čištěné vodě k tvorbě biomasy, vytváření přizivních podmínek pro rozvoj mikroorganismů; produkce kyslíku fotosyntézou a vyrovnávání kyslíkové bilance; transpirační převod části vody do ovzduší; tvorba tepelné izolace filtračního lože v zimních měsících; snížení hloubky promrzání (Šálek, Tlapák 2006; Ambrožová 2003). Plovoucí biomasa (např. okřeky) zamezují pronikání slunečního záření a vytváří poměrně tenkou aerobní zónu. Pod touto zónou se nachází přechodná zóna anoxicická, v níž dochází k redukci řas a uvolňování živin (Šálek, Tlapák 2006).
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Důležitá je také vegetace stromového a keřového patra. Kořeny stromů, jako jsou například vrby či olše, často zasahují do vodního toku a poskytují substrát pro biofilmová společenstva a zároveň refugium pro mnohé bezobratlé a ryby. Představují rovněž retenční struktury, které přispívají k zachytávání unášených suspendovaných a rozpuštěných látek a podílí se tak významnou měrou na samočisticích schopnostech toku (Closs et al. 2004).

Důležitá je také vegetace stromového a keřového patra. Kořeny stromů, jako jsou například vrby či olše, často zasahují do vodního toku a poskytují substrát pro biofilmová společenstva a zároveň refugium pro mnohé bezobratlé a ryby. Představují rovněž retenční struktury, které přispívají k zachytávání unášených suspendovaných a rozpuštěných látek a podílí se tak významnou měrou na samočisticích schopnostech toku (Closs et al. 2004).

Velmi častou otázkou je eliminace těžkých kovů a jejich kumulace v rostlinách a sedimentech filtracních polí. Výsledky ze zahraničí i z České republiky jasně ukazují, že eliminace těžkých kovů a dalších rizikových prvků v kořenové čistírně je vysoká. Rozbory nadzemní biomasy prokázaly, že kumulace v nadzemních orgánech rostlin je minimální a většina zadržených stopových prvků je uložena v sedimentech (Vymazal 2009). Těžké kovy sice preferují vazbu na pevné částice (dnový sediment či suspendované látky), ale při změně fyzikálně-chemických vlastností prostředí (např. pH, redoxní potenciál, kyslíkové poměry) může dojít k jejich uvolnění do kapalné fáze, čímž se stávají snadno přístupné organismům žijícím ve vodě a potravním řetězcem se dostávají i do vyšších trofických úrovní (Nábělková, Komínková 2009).

4.3 Fyzikální mechanismy

Ředění je důležitou součástí samočištění, protože umožňuje dosažení vhodné koncentrace pro biologickou asimilaci (Vismara 1998).

Adsorpce a výměna iontů probíhající na povrchu tuhých fází se mohou významně podílet na těchto dějích: distribuce mezi kapalnou a tuhou fází různých druhů vod, kumulace látek v živých organismech, agregace a transport suspendovaných látek ve vodě, odstraňování anorganických i organických toxických látek z vody. Zejména pro těžké kovy a organické látky s vysokým rozdělovacím koeficientem oktanol-voda nevystihuje jejich koncentrace v povrchové nebo podzemní vodě skutečné znečištění recipientu, protože

Sedimentace je jedním z nejdůležitějších mechanismů, zvláště ve stojatých vodách. Tímto prostředkem jsou částice odstraněny společně se všemi naadsorbovanými ionty a molekulami. Znečišťující látky většinou zůstávají na dně, ale mohou být znova uvolněny během období zvýšeného průtoku, turbulence, iontové výměny či desorpcí (Vismara 1998).

Fotochemickým přeměnám mohou podléhat především látky, které samy absorbují záření a uvádějí se tak do excitovaného stavu. V takovém případě se hovoří o přímé fotolýze. V přírodních vodách obvykle převažuje nepřímá fotolýza. V takovém případě dochází k přenosu energie z elektronově excitované částice (fotosenzibilátoru) na molekuly látek, které samy záření neabsorbují a podle své struktury nemají předpoklady pro fotochemický rozklad. V přírodních vodách patří mezi fotosenzibiláory běžně přítomné huminové látky. Fotochemický rozklad probíhá proto v povrchových vodách u daleko širšího spektra organických látek, než by se na první pohled zdalo (Pitter 2009).

Mělká a turbulentní povaha vodních toků může být považována za proces přirodní flotace. V čistírenských technologiích je flotační proces pro odstranění organické hmoty dobře znám. Pro tvorbu flotace jsou nezbytné dvě základní věci: bublinky vzduchu a jejich srážka s částicí znečištění. Mělký proud tok je dobrým příklastem pro splnění těchto požadavků. Částice znečištění by měla mít hydrofóbní vlastnosti. To znamená, že ve vodě by měly být přítomny tenzidy. Všechny molekuly tenzidů mají polární část, která je
přitahována k molekulám vody (hydrofilní část) a nepolární část, která je vodou odpuzována (hydrofóbní část). Organické molekuly jako huminové kyseliny se skládají z širokých molekul, které mohou mít několik hydrofóbních a hydrofilních částí. Tudíž se mohou chovat jako přírodní tenzidy. Tenzidy se koncentrují v místě, kde se stýká vzduch s hladinou, se svou hydrofóbní částí otočenou ke vzduchu. Znečišťující látky jsou odstraňovány z vodního tělesa bublinkami vzduchu a koncentrují se v pěně na povrchu. Při výzkumu v Etobicoke Creek pěna na povrchu obsahovala vysokou úroveň znečištění v porovnání s vrchní vrstvou povrchové vody (Fisenko 1998).

4.4 Chemické mechanismy

Srážecí reakce, které záleží na rozpustnosti složeného produktu jsou velmi důležité pro odstraňování z kapalné fáze. Mnoho srážecích reakcí, například jako tvorba fosfátových nebo uhličitanových solí zahrnuje odstranění kationů z roztoku. Při odstranění fosforu převládá srážení s vápenatými ionty, adsorpce a sedimentace (Vagnetti et al. 2003).

Hodnota pH je spojená s koncentračními změnami CO₂. U vod s malou tlumivou kapacitou a při nadměrném rozvoji fotosyntetizujících organismů může hodnota pH vzrůst i nad 9,5. Tyto změny mohou vést k vylučování kalcitu (CaCO₃) eventuálně i ke spolusrážení sloučenin fosforu (Pitter 2009).
Nitrifikace a denitrifikace

Komplex dusíkatých látek na jednoduší sloučeniny rozkládají ve vodních systémech bakterie za aerobních i anaerobních podmínek. Skupina bakterií *Proteus* a *Micrococcus* rozkládají tyto sloučeniny na amoniak za aerobních podmínek, za anaerobních podmínek působí rozklad *Clostridium* (Ambrožová 2003).

Nitrifikace je oxidace amoniaku na dusitany (nitritace) bakteriemi rodu *Nitrosomonas* a dusitanů na dusičnan (nitratace) bakteriemi rodu *Nitrobacter* (Ambrožová 2007). Nitrifikace je způsobena především chemolitotrofními organismy a výjimečně i organismy organotrofními. Akceptorem elektronů v oxidačním procesu nitrifikace je molekulární kyslík. Ve vodě jsou často nahromaděny ve dnových sedimentech a nerozpuštěných látkách. Proto, pokud jsou pro to předpoklady, probíhá v oxických podmínkách nitrifikace velmi snadno (Pitter 2009).

Nitrifikační proces probíhá ve dvou stupních (Šálek, Tlapák 2006):

\[
2 \text{NH}_4^+ + 3 \text{O}_2 = 2 \text{NO}_2^- + 4 \text{H}^+ + 2 \text{H}_2\text{O} \\
2 \text{NO}_2^- + \text{O}_2 = 2 \text{NO}_3^-
\]

V anoxických podmínkách může dojít k redukci dusičnanů a dusitanů na elementární dusík, nebo oxidy dusíku. Tento proces se nazývá denitrifikace. Stejně jako nitrifikace probíhá i denitrifikace ve vodách poměrně snadno, pokud jsou dodrženy anoxic ké podmínky (Pitter 2009). Volný molekulární NH₃ je navíc těkavý a z vody se odstraňuje provzdušňováním (Pitter 2009).

Denitrifikaci lze schématicky popsat těmito rovnicemi (Pitter 2009):

\[
5 \text{CH}_3\text{OH} + 6 \text{NO}_3^- = 5 \text{CO}_2 + 3 \text{N}_2 + 7 \text{H}_2\text{O} + 6 \text{OH}^- \\
5 \text{C}_6\text{H}_{12}\text{O}_6 + 24 \text{NO}_3^- = 12 \text{N}_2 + 18 \text{H}_2\text{O} + 30 \text{CO}_2 + 24 \text{OH}^-
\]

4.5 Vlivy na samočistící procesy

Vlivy na samočistící procesy má mnoho faktorů. Nejvýznamnějším z nich je obsah rozpuštěného kyslíku ve vodě. Dále to může být hodnota pH, koncentrace těžkých kovů nebo jiných inhibujících látek.

Teplota

Sezónní změny jsou důležitým faktorem v samočištění řek. Je jasné, že díky zvýšené míře oxidace organické hmoty bakteriální aktivitou a odstraňováním amoniaku rostlinami, proces samočištění bude probíhat mnohem rychleji než teplejších měsíců. Na druhou stranu pokud bude řeka splaška přesycena, výsledné ekologické zatížení může být větší v letních měsících než v zimě, neboť zvýšená míra oxidace může vést k úplnému vyčerpání kyslíku z vody (Cooper 1914). Nejstálejší čistící účinek, měřený podle CHSK$_{Mfn}$ vykazovaly teploty vody od 7 do 13°C. Pod touto hranicí a zejména nad ní byly zaznamenány velké výkyvy v čistícím účinku, hlavně směrem k horšímu (Sládeček 1956).

Vliv pH

Optimum pH 7 platí pro všechny mikroorganismy. Pro houby je pH rozmezí 1,5 až 9,2 (optimum 3 až 7); pro bakterie 4 až 10 (rod Nitrobacter až 13, denitrifikáční bakterie 10 až 11, nitrifikáční 6,8 až 7,9, hnilobné bakterie 6,5 až 7,5). Účinek pH na enzymatický systém je velmi významný, většina enzymů má optimum mezi pH 5 až 8 (někdy i 2 až 10). Vliv pH se významně uplatňuje v závislosti na povaze prostředí (Ambrožová 2008).

Těžké kovy

Těžké kovy jsou toxické pro směsnou kulturu mikroorganismů odpovědných za rozklad organických složek v povrchových vodách. Aerobní biologické procesy jsou
Jiří Augustín: Bodové zdroje znečištění povrchových vod v území PR ZaKl

nezbytnou součástí samočisticího procesu v povrchových vodách, těžké kovy tuto schopnost povrchových vod zeslabují. V případě některých kovů, po překročení určité koncentrace, byl proces rozkladu organické hmoty úplně zastaven. Porovnáním těchto hodnot s hodnotami v přírodních vodách, které nejsou extrémně zatíženy, můžeme říct, že těžké kovy na procesy samočištění nemají žádný vliv (Malý, Malá 2009).

Kovy, které prokázaly wysokou toxicitu (nad 50% inhibice v koncentraci pod 1 mg/l) po jednom dni inkubace jsou stříbro, berylium, kadmium, měď, rtuť a olovo. Za tímto nikl, kobalt a zinek působily při této koncentraci inhibici mezi 40-50% (Malý, Malá 2009).

Kyslík

Samočisticí proces v průběhu zatížení prochází několika fáziemi, polysaprobní, mezosaprobní a oligosaprobní. V polysaprobní fázi převažuje bakteriální činnost a redukční pochody. V mezosaprobní fázi se pochody redukční vyrovnávají s oxidačními a v oligosaprobní fázi dochází k dokončení samočištění a převažují zde oxidační procesy. U mezosaprobní fáze se rozlišují dva mezistupně, horší fáze alfa-mezosaprobita s vyrovnáváním se redukčními a oxidačními procesů a lepší beta-mezosaprobita s
převládajícími oxidačními procesy (Ambrožová 2003). Změny saprobity jsou dány změnami ve složení biocenóz, ty se střídají a jeví určitou posloupnost. Saprobní sukcese je progresivní a regresivní, jedná se o protichůdné procesy. Při progresivní sukcese se voda obohacuje o živiny (eutrofizuje) do klimaxového stádia (vrcholové stádium jakosti vody, do kterého se snaží každý ekosystém samovolně při samočištění dostat), při jeho překročení dochází již ke znečištění. Opačným procesem je fáze regresivní, kterou v anaerobním prostředí probíhá rozklad a v aerobním prostředí samočištění, které se zastavuje v klimaxovém stádiu (Ambrožová 2003). Předpokládaný průběh změn hlavních ukazatelů kvality vody v samočisticím procesu lze vyjádřit obecným schématem (viz Obr. č. 8) od něhož se skutečnost liší jen křivkou nebo fázovým posunem křivek (Lelák, Kubíček 1992).

Obr. č. 8: Grafické znázornění průběhu změn základních ukazatelů kvality vody v podélném profilu toku před vyústěním OV (Lelák, Kubíček 1992)

S obsahem kyslíku v prostředí významně souvisí oxidoredukční potenciál. Při studiu anaerobiózy si jeho významu všiml Pasteur (1861), který zavedl do mikrobiologie termíny pro aerobní a anaerobní mikroorganismus. Kyslík je velmi důležitým faktorem, který ovlivňuje aktivitu enzymů i v aerobním prostředí, kde záleží na jeho dostupném množství.

Při zatížení pod 40 mg BSK₅/l si říční voda udržuje asi 2,0 mg/l a samočišťující procesy probíhají ještě aerobně. Při BSK₅ vyšším než 40 mg/l množství kyslíku klesá na nulo a voda působí částečně toxicky i na organismy, které nezískávají potřebný kyslík přímo z vody. Pokud je kyslík možno doplňovat, může být BSK₅ i mnohem vyšší a nevznikají na vodních organismech závady. Pokud se kyslík spotřebovaný na mineralizaci organických látek dostatečně nedoplňuje, je i dvojmiligramové BSK₅ vysoké (Boško 1956). Množství kyslíku ve vodě se tak může dostat pod úroveň, kterou vyžadují vyšší organismy. Takto nastává v částech vodního toku pod zdrojem znečištění kyslíkový deficit (Just et al. 2005).

Aerobní procesy přes jejich nesporné přednosti jakými jsou vysoká čistící účinnost, vysoká rychlost odstraňování znečištění mají řadu nevýhod ve srovnání s anaerobními: dochází k vysoké produkci biomasy, některé látky jako např. fenoly a další aromatické sloučeniny v aerobních podmínkách mohou vytvářet polymerní produkty, které jsou rezistentní k dalšímu rozkladu. Některé látky jsou aerobních podmínkách těžko rozložitelné (např. chlorované organické látky) (Dohányos 1996). Obecně platí, že aerobní procesy hrají v samočištění významnější úlohu, probíhají rychleji a zapojuje se do nich mnohem větší spektrum organismů včetně ryb. O anaerobních procesech dosud víme velmi málo, některé studie z poslední doby však naznačují, že jejich úloha v samočištění je často podhodnocená (Nováková, Melčáková 2007)

Aerobní bakteriální reakce lze shrnout těmito rovnicemi (Lellák, Kubíček 1992):
\[
\begin{align*}
CH₃CH₂OH + O₂ &= CH₃COOH + H₂O \\
CH₃COOH + 2 O₂ &= 2 CO₂ + 2 H₂O \\
2 CH₃CHO + O₂ &= 2 CH₃COOH \\
2 CH₃CHOHCH₅ + O₂ &= 2 CH₃COCH₃ + H₂O
\end{align*}
\]
CH₄ + 2 O₂ = CO₂ + H₂O

Anaerobní rozklad je soubor dílčích, na sebe navazujících biologických procesů (hydrolýza, acidogenese, acetogenese, metanogenese), na kterých se podílí několik základních funkcí skupin anaerobních mikroorganismů. Rozklad organických látek až na konečné produkty vyžaduje jejich koordinovanou metabolickou součinnost. Produkt jedné skupiny mikroorganismů se stává substrátem skupiny druhé. Takto probíhá anaerobní rozklad za mesofilních i termofilních podmínek (Dohányos 2000). Za anaerobních podmínek, bakterie využívají jako akceptor elektronu jinou látku než kyslík (Ostroumov 2006).

Hlavní výhody anaerobních procesů čištění odpadních vod ve srovnání s aerobními jsou: nižší spotřeba energie, (dokonce produkce energie navíc), menší množství přebytečné biomasy, umožňuje vysoké zatížení nezávisle na koncentraci substrátu. Nevýhodou jsou nižší růstové rychlosti anaerobních mikroorganismů a z toho vyplývající vlastnosti, vyšší citlivost některých anaerobních mikroorganismů na negativní vlivy a pod. (Dohányos 1996). Při anaerobních procesech je přibližně 60 % energie spotřebováno na syntézu nové biomasy a 40% se ztrácí ve formě reakčního tepla. Při anaerobních procesech je téměř 90% energie původně obsažené v substrátu zachováno ve vzniklém bioplýnu 5 až 7 % je spotřebováno na růst nové biomasy a 3 až 5 % se ztrácí ve formě reakčního tepla (Dohányos 1996). K nejdůležitějším anaerobním mikrobiálním, převážně anaerobním
procesům samočištění patří: převod močoviny na amoníkové sloučeniny, rozklad bílkovin na jednoduché štěpné produkty, štěpení mastných kyselin, štěpení cellulózy a sacharidů, redukce síranů na sirovodík, dusičnanů na dusitany (Štěpánek et al. 1979).

Rozklad bílkovin se označuje jako hniloba či hnutí, probíhá převážně v anaerobním alkalickém prostředí a vyznačuje se uvolňováním převážně pachnoucích meziproduktů rozkladu. K rozkladu může docházet i za aerobních podmínek, produkty rozkladu nejsou hnilobné a pachnoucí látky. Štěpení bílkovin umožňují proteázy, vylučované jako exoenzymy hnilobními bakteriemi. Bílkoviny jsou hydrolyzovány na aminokyseliny, procesem deaminace je štěpená aminová skupina, dekarboxylací se zkracuje uhlíkatý řetězec, amonizací (hydrolyzou močoviny) vzniká amoniak (Ambrožová 2003).

Limitujícím faktorem rychlosti anaerobního procesu není pouze metanogenní fáze, jak se donedávna soudilo, ale také odstraňování propionové a máselné kyseliny a tvorba přímých metanogenních substrátů. Oba děje jsou silně závislé na množství vodíku v systému (Dohányos 2003). Důležité je, aby při anaerobním odbourávání organické

Typické reakce samočištění probíhající ve vodních ekosystémech (Lelák, Kubíček 1992):

Redukce síranů: \[2 \text{CH}_3\text{CHOHCOOH} + \text{SO}_4^{2-} = 2 \text{CH}_3\text{COOH} + \text{H}_2\text{S} + 2 \text{OH}^-\]
\[4 \text{H}_2 + \text{SO}_4^{2-} = 2 \text{H}_2\text{O} + \text{H}_2\text{S} + 2 \text{OH}^-\]

Fermentace: \[\text{C}_6\text{H}_{12}\text{O}_6 = 3 \text{CH}_3\text{COOH}\]
\[\text{CH}_3\text{COOH} = \text{CH}_4 + \text{CO}_2\]

Redukce \text{CO}_2: \[2 \text{CH}_3\text{CH}_2\text{OH} + \text{CO}_2 = 2 \text{CH}_3\text{COOH} + \text{CH}_4\]
\[4 \text{H}_2 + \text{CO}_2 = \text{CH}_4 + 2 \text{H}_2\text{O}\]

4.6 Shrnutí

V současné době se k čištění odpadních vod používá hlavně technologie aktivační. Přírodním vzorem aktivace je právě samočištění vody v některých úsecích znečištěných řek. Turbulentní proud řeky unáší s sebou za neustálého pohybu různé částice kalu, v nichž jsou bakterie, prvoci i jiné organismy mikroskopické velikosti, které odpovídají alfa-mesosaprobárnímu stupni znečištění vody. Samočištící pochod trvá v řece pro nedokonalé provzdušňování podstatně déle než v aktivační čistírně. Životní společenstvo aktivovaného kalu je tedy obdobně pasivně unášenému benthosu středních a dolních toků znečištěných řek, kde probíhají aerobní samočištící pochody (Sládeček 1956).

Samočištící systém je důležitý pro analýzu rolí a osudu většiny důležitých znečišťujících látek včetně radionuklidů, těžkých kovů a dalších (Ostroumov 2008). Samočištící úseky potoků a řek a efekty v nich dosahované lze vzhledem ke složitější závislosti na soustavě proměnlivých parametrů popsát jenom s výrazně menší přesností a spolehlivostí. Věrohodné jsou v podstatě jen obecné odhady efektů na úrovni řádů.
Můžeme například předpokládat, že na několika stokách metrů menšího potoka pod obcí, znečišťovaném splašky, dojde k redukci nerozpuštěných látek a organického znečištění v řádu desítek procent (Just et al. 2005). Odstraňování tenzidů z odpadních vod přírodními způsoby probíhá s úspěšností 75 až 99%. Anionové tenzidy jsou jednak poutány adsorpcí a jednak biologicky odbourávány (Pištěková, Šálek 2004).

Ze strany hydrotechnicky orientovaných hospodářů byla problematika zjednodušována v tezí, kterou lze popsat „Čím více kyslíku, tím intenzivnější samočištění“. Z toho byly odvíněny nesprávné závěry pro praxi – jako hlavní opatření k posílení samočištění v tocích bylo doporučováno budování stupňů. Přepadem přes tyto objekty se voda silně provzdušňuje (Just et al. 2005). Nepotvrzuje se, že by soustředování spádu výrazněji napomáhalo provzdušňování vody po délce toku – o čem více se voda provzdušní v místě stupně, o to méně intenzivní pak je přestup kyslíku hladinou v málo proudném úseku nad tímto objektem (Just et al. 2005). Z toho lze vyvodit obecný závěr, že zásahy do přirozeného ekosystému, tedy kanalizace vodních toků a meliorace, napomáhají zpomalování procesu samočištění (Ambrožová 2003).

Po konečném úplném odstranění znečištění z říční vody, proces samočištění nemůže být považován za ukončený, protože velké množství energie vyprodukované rozkladem bylo použito k tvorbě nové bakteriální biomasy; část znečištění dokonce byla přímo začleněná do biomasy (Stehfest 1975). O dočišťování hovoříme v případech, kdy je samočištění záměrně využíváno v tocích pod čistírnami odpadních vod ke zlepšování výsledného stavu vodního prostředí (Just et al. 2005).
5 Metodika hodnocení kvality povrchových vod

V rámci bakalářské práce, která se věnuje bodovému zdroji znečištění v přírodní rezervaci Koutských a Zábřežských luk se sledoval a hodnotil proces samočištění probíhající od výpusti odpadní vody z MK Klemens s.r.o. až po její smíchání s povrchovými vodami v melioračních kanálech.

Odběry a rozbory navazovaly na mé předchůdců (Vochyánová 2009, Šálek 2009, Pulchart 2008), kteří se zájmovému území v rámci svých diplomových prací věnovali. Bylo také nutno zohlednit možnosti laboratoře oddělení Technologie a hospodaření s vodou, kde byly rozbory prováděny. Odběry jsem prováděl společně s Radkem Svrčinou, který se v zájmovém území věnoval vlivu zemědělské činnosti na kvalitu povrchových vod.

5.1 Metodika odběrů vzorků

Pro způsob odběru vzorků je dána norma ČSN 75 7051 Jakost vod – Odběr vzorků. Vzorek se odebrá v horní třetině vodoteče ve střednici koryta, kde je největší rychlost proudění. To se může lišit v případě, že je vzorek odebírán pro jiný účel analýzy. Zvolený způsob odběru proto musí vždy odpovídat účelu, pro který je vzorek odebírán.

Vzorkovnice pro normální odběry jsou obvykle vyrobeny ze skla, polyethylenu případně borosilikátového skla. Musí zaručovat těsnost, aby nedošlo ke styku s okolním prostředím. Před plněním je nutno vzorkovnici důkladně vypláchnout odebíraným vzorkem a naplnit ji až po hrdlo, aby se omezil styk s plynnou fází při další manipulaci.

Vzorky je pak nutno co nejdříve dopravit do laboratoře. Při transportu by měly být uchovány v chladu a temnu, aby se co nejvíce vyloučily chemické či biologické pochody a změny jakosti z toho plynoucí. V případě nemožnosti rychlého transportu je nutno vzorek zakonzervovat, jak vyplývá z ČSN ISO 5667-3 (Jakost vod-Odběr vzorků-Pokyny pro konzervaci vzorků a manipulace s nimi).

5.2 Způsob prováděných odběrů

Pro účely odběru v PR Koutské a Zábřežské louky byly použity polyethylenové láhve o objemu 1,5l. Z předem určených profilů byly v dopoledních hodinách odebrány 2-hodinové směšné vzorky sléváním dílčích vzorků. Vzorky pak byly neprodlouženě přepraveny do laboratoře oddělení Technologie a hospodaření s vodou, kde proběhla následná analýza.
5.3 Charakteristika sledovaných jakostních ukazatelů

Po dohodě s vedoucí prací RNDr. Janou Novákovou PhD. byly vybrány tyto ukazatele: reakce vody (pH), elektrolytická konduktivita, rozpuštěný kyslík (O$_2$), teplota (t), oxidačně-redukční potenciál (ORP), chemická spotřeba kyslíku dichromanem draselným (CHSK$_{Cr}$), biologická spotřeba kyslíku (BSK$_5$), celkový fosfor (P$_{cel}$), amoniakální dusík (N-NH$_4^+$), nerozpuštěné látky (NL). Po domluvě byl vypuštěn ukazatel dusičnanový dusík (N-NO$_3^-$), jehož hodnoty byly v předchozích letech nízké a neměly kolísavou tendenci. Naopak byl přidan ukazatel rozpuštěného kyslíku, jež je úzce spojen s průběhem samočistících procesů v toku a redoxní potenciál. Přihlédnuto bylo k parametrům odpadní vody, kde se předpokládalo vysoké zatížení organickými látkami a nutrienty.

Následné stanovení jednotlivých jakostních ukazatelů se řídilo těmito normami:

ČSN ISO 10523 Jakost vod – Stanovení reakce vody
ČSN EN 27888 (75 7344) Jakost vod – Stanovení elektrické konduktivity
ČSN EN 1899 Jakost vod – Stanovení biochemické spotřeby kyslíku
ČSN ISO 15715 (75 7521) Jakost vod – Stanovení chemické spotřeby dichromanem
ČSN ISO 7890-3 (75 7453) Jakost vod – Stanovení dusičnanů
ČSN EN 1189 Jakost vod – Stanovení celkového fosforu
ČSN EN 872 (757349) Jakost vod - Stanovení nerozpuštěných látek

Reakce vody – pH

Stanovení hodnoty pH je nezbytnou součástí každého chemického rozboru vody. Umožňuje rozlišit jednotlivé formy výskytu některých prvků, je jedním z hledisek posuzování agresivity vody a ovlivňuje účinnost většiny chemických, fyzikálních a biologických procesů používaných při úpravě a čištění vod (Pitter 2009).

Rozpětí hodnot se pohybuje v rozmezí 1-14, přičemž čím je hodnota nižší, tím je voda kyselejší a vodíkové ionty H$^+$ převažují nad hydroxidovými ionty (OH$^-$).

Hodnota pH prostředí má úzký vztah s probíhající fotosyntézou. Při intenzivní fotosyntéze se odčerpává oxid uhličitý, dochází k narušení uhličitano-vápennaté rovnováhy a hodnota pH se posouvá do alkalické oblasti (až na pH 11) (Ambrožová 2007)

Reakce vody byla měřena přímo v terénu pomocí pH metru z laboratoře oboru Technologie a hospodaření v soud vodou WTW pH 330i/SET-1.
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Oxidačně-redukční potenciál (ORP)

Redox potenciál charakterizuje probíhající oxidačně redukční procesy ve vodách, závisí na hodnotě pH prostředí a obsahu kyslíku (Ambrožová 2007).

U biologických procesů má sice ORP značný význam, avšak jeho aplikace se vyznačuje určitými zvláštnostmi. Poměry jsou komplikované, protože současně probíhá řada enzymových reakcí, které jsou většinou ireverzibilní (Pitter 2009).

Výsledek měření závisí značně na čistotě platinové elektrody a na době měření, protože potenciál platinové elektrody se může ustalovat jednu hodinu i více. Absolutní potenciál elektrody nejde měřit, měří se proto napětí článku sestaveného z měřící elektrody a vhodné referenční elektrody. Za standart byla zvolena standardní vodíková elektroda (Pitter 2009).

Rozpuštěný kyslík

Kyslík se do vody dostává difúzí z atmosféry a při fotosyntetické asimilaci vodních rostlin, řas a sinic (Pitter 2009).

Deficit kyslíku může být způsoben dýcháním rostlin a živočichů, rozkladem organické hmoty a vlivem ostatních plynů. Na snížení celkové koncentrace kyslíku se podílí i zvýšení teploty, průsak a přítok podzemní vody, zvýšený obsah železa (Ambrožová 2007).

K opačnému jevu - přesycení vody kyslíkem může docházet například v turbulentních tocích nebo vlivem fotosyntézy. Při aerobním čištění odpadních vod by koncentrace kyslíku v aktivační nádrži neměla poklesnout pod 2 mg/l (Pitter 2009).

Obsah kyslíku rozpuštěného ve vodě je důležitým ukazatelem nejen pro samočišťovací procesy, ale také pro stav vody samotné. Množství rozpuštěného kyslíku bylo měřeno přímo na místě, aby se vyloučil vliv transportu a to sondou OxyGuard Handy Gamma.

Teplota

Zdrojem tepelné energie ve vodách je sluneční radiace (infračervená oblast), geotermální zdroj a antropický faktor. S teplotou a teplotním rozvrstvením vody souvisí hustota a viskozita vody. U hlubokých nádrží probíhá tzv. stratifikace (Ambrožová 2007).

Teplota je další významný ukazatel pro hodnocení vlastností vody. Významně ovlivňuje chemickou i biochemickou reaktivitu i v poměrně úzkém teplotním rozmezí přírodních vod a to od 0°C asi do 30°C. Údaj teploty je nezbytný při hodnocení samočištění.
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

toku (Pitter 2009). Na teplotě je závislá rozpustnost látek. Teplota vody ovlivňuje také asimilační činnost rostlin a výpar, jež se podílí na samočištění vody. Její hodnota byla měřena přímým ponořením sondy pH metru a odečtením z displeje.

Chemická spotřeba kyslíku dichromanem draselným (CHSK_{Cr})

Chemická spotřeba kyslíku dichromanem draselným je normovaná metoda používaná k stanovení zatížení vody organickými látkami. Dichroman draselný je silnější oxidací činidlo než jeho ekvivalent manganistan draselný a používá se proto při analýze odpadních vod.

Princip stanovení CHSK_{Cr} spočívá v oxidaci organických látek dichromanem draselným v prostředí 50%ní kyseliny sirové při teplotě 150ºC po dobu 2 hodin za katalytického působení síranu stříbrného. Nezreagovaný dichroman se stanovuje spektrofotometricky (Pitter 2009).

Výsledek se pak převádí na rovnocenné množství kyslíku v mg/l.

Biochemická spotřeba kyslíku (BSK₅)

Biochemická spotřeba kyslíku je podobně jako CHSK ukazatelem organického znečištění vod. Oxidace látek obsažených ve vodě se však děje bez přídavku oxidačních činidel, výlučně biologickou cestou. Poměr mezi CHSK a BSK tak udává poměr biologicky odbouratelných látek.

Biochemická spotřeba kyslíku je definována jako hmotnostní koncentrace rozpouštěného kyslíku spotřebovaného za stanovených podmínek v oxickém prostředí biochemickou oxidací organických látek ve vodě (Pitter 2009).

Doba inkubace byla určena na pět dní. Tato doba byla jednotně dohodnuta, stejně jako podmínky. Ty činí teplota 20ºC a tma, aby nedocházelo k rozvoji fotosyntetických řas. Výsledek se stejně jako u CHSK převádí na množství kyslíku v mg/l.

Celkový fosfor (P_{celk})

Přírodním zdrojem fosforu ve vodách je rozpouštění a vylučování některých půd, minerálů a zvětralých hornin. Antropogenním zdrojem anorganického fosforu mohou být některé prací, čistící a odmašťovací prostředky. Dalším zdrojem anorganického fosforu je aplikace fosforečných hnojiv. Zdrojem anorganického i organickeho fosforu je fosfor.

2010 33
obsažený v živočišných odpadech. Člověk vylučuje denně asi 1,5 g až 2 g fosforu, který přechází do splaškových vod (Pitter 2009).

Celkový fosfor ve vodách se dělí na rozpuštěný a nerozpuštěný. Ty se dále dělí na fosfor anorganicky vázaný a organicky vázaný. Rozpuštěný anorganický fosfor se dále dělí na orthofosforečnanový a polyfosforečnanový (Pitter 2009).

Fosforečnany se významně sorbují na dnových sedimentech, avšak za určitých podmínek může naopak dojít k uvolnění sloučenin fosforu zpět do kapalné fáze (Pitter 2009). Fosfor je důležitým biogenním prvkem, vyskytujícím se na biotopech v minimálních koncentracích a limitujícím procesy produkce ve vodách (Ambrožová 2007).

Pro účely stanovení celkového fosforu se veškerý převede do formy orthofosforečnanů, přičemž se následně stanovuje spektrofotometricky. Princip stanovení je v reakci orthofosforečnanů za katalýzy antimonitými ionty s molybděnovým amoným. Další redukci ascorbovou kyselinou přechází žlutý komplex kyseliny na roztok fosfomolybdenové modří.

Amoniakální dusík (N-NH₃)

Sloučeniny dusíku mohou být anorganické i organické, přičemž přirozeným způsobem se do vod dostávají především rozkladem biologického materiálu. Antropogenním zdrojem jsou převážně splaškové vody a dusíkatá hnojiva. Specifická produkce na jednoho obyvatele se obvykle uvádí 12 g na den. Dalším významným zdrojem dusíku jsou odpady z živočišné výroby a splachy ze zemědělské půdy hnojené dusíkatými hnojivy (Pitter 2009).

Amoniakální dusík se vyskytuje ve vodách jako kation NH₄⁺ a v neiontové formě jako NH₃. Ve vodách za oxických podmínek je nestálý a snadno podléhá nitrifikaci (Pitter 2009).

Sloučeniny dusíku jsou spolu s fosforem důležité biogenní prvky ovlivňující míru eutrofizace vod. Jedná se o nutrient důležitý k rozvoji mikroorganismů. Jako takový bývá amoniakální dusík důležitým indikátorem fekálního znečištění.

Toxické účinky amoniaku se projevují hlavně u jeho nedisociované formy NH₃ a to jak na zooplankton tak na vyšší organismy. Letální koncentrace u kaprových ryb se pro nedisociovaný amoniak pohybuje v rozmezí 1,0 až 1,5 mg/l a u lososových ryb v rozmezí 0,5 až 0,8 mg/l (Pitter 2009).
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Stanovení amoniakálního dusíku absorpční spektrofotometrií pomocí Nesslerova činidla je založeno na reakci amoniaku, hydroxidu alkalických kovů a tetrajodortuťnatanu sodného za vzniku oxidimerkuriaminjodidu - Millonovy báze. Stanovuje jak kationtová tak neiontová forma současně.

Nerozpuštěné látky (NL)

Pod pojmem nerozpuštěné látky rozumíme tuhé látky, odstranitelné filtrací nebo odstředěním, které jsou přítomné v nerozpuštěné fázi ve vodách. Většinou se jedná o kal, jíl, řasy, plankton, mikroby, organickou hmotu a další jemné nerozpuštěné částice. Nerozpuštěné látky ovlivňují barvu a zákal vody. Na jednoho ekvivalentního obyvatele se počítá 55 g NL na den.

Množství NL se měří gravimetricky. Filtrací daného množství analyzovaného vzorku přes membránový filtr a následné vysušení při teplotě 105°C do konstantní hmotnosti.
5.4 Charakteristika sledovaných profilů

Pochůzkou v terénu byly zvoleny tři profily ve vhodných vzdálenostech (viz Obr. č. 9) a to tak, aby se docílilo co nejpřesnějšího zmapování znečištění a také účinnosti samočistících procesů probíhajících v melioračních kanálech. Odběry probíhaly v rámci diplomových prací již v předchozích dvou letech, tudíž zde byla možnost srovnávat a navázat na tato měření.

Profil č. 1

Odběrový profil č. 1 se nachází v místě vyústění odpadní vody z masokombinátu firmy Klemens do melioračního kanálu ležícího na severní hranici přírodní rezervace (viz. Obr. č. 10). Kanál v místě vyústění odpadní roury má šířku 2,2. Tato výpusť odpadní vody tvoří bodový zdroj znečištění v PR. Kanál v místě vyústění odpadní roury má šířku 2,2.

Chod firmy je zajištěn ve třísměnném provozu, během kterého dochází k vypouštění odpadních vod z provozu o objemu 40 m³ za den. Firma není napojena na městskou

V současné době je profil silně zasedimentován organickými usazeninami. Problém se sedimenty, které obsahovaly nerozložené organické částečky byl tak značný, že bylo nutno posunout odběrové místo, aby výsledky nebyly těmito sedimenty zkreslovány.

Několik metrů za výpustí byl kanál rozšířen do šířky asi 10 metrů a byl zde uměle vytvořen biologický rybníček, který svými kyslíkovými poměry slouží jako vyhývací nádrž. Na jaře v roce 2008 došlo k vykácení části břehových porostů u vyústění odpadní trubky a kolem biologického rybníčku, za účelem snadného přístupu techniky a možnosti odštězení sedimentu v celé délce až k profilu číslo 2, který byl uložen částečně podél břehů, ale z větši části došlo k rozměně na nejbližší pole (Šálek 2009). Hladina v rybníčku je uměle vzdutá dřevěným příčným objektem v korytě.
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Po celé trase až k třetímu profilu je patrný silný zápas a bakteriální nánosy nejen na dně, ale také na hladině a povrchu okolní vegetace. Sedimenty tvoří většinou černé usazeniny se zbytky organického původu a bakteriálním povlakem.

Profil č. 2

Druhý odběrový profil byl zvolen na konci odpadního kanálu, aby bylo možno posoudit míru přirozeného procesu eliminace znečištění a živin. Koryto se zde postupně rozšířuje z 0,5 metru až 2,5 metru, kde dochází k mísení s přítokem dešťové vody z jiného melioračního kanálu (viz obr. č. 11).

Obr. č. 11: Profil č. 2, březen 2010, foto: autor

Profil č. 3

Voda v tomto profilu vlivem ředění a samočistících procesů ztrácí postupně charakter odpadní vody. Nachází se přibližně 300 metrů od druhého profilu přímo v areálu přírodní rezervace. Díky dvěma přítokům vody z melioračních kanálů se zvětšuje průtok až na 2 l.s⁻¹. Šírka kanálů je 2,1 metru (viz Obr. č. 12). Hloubka sedimentu odpovídá toku silně znečištěnému toku nerozpuštěnými látkami a jeho mocnost je přibližně 40 cm. Stále jsou patrné bakteriální nánosy na dně a zápach. Na hladině se zde již objevuje okřehek menší (Lemna Minor).

Obr. č. 12: Profil č. 3, březen 2010, foto: autor
5.5 Metodika hodnocení povrchových vod

Nejzávaznějším legislativním předpisem je vodní zákon č.254/2001 Sb. ve znění pozdějších předpisů, kterým se zavádí příruční principy ochrany a hodnocení toků ve snaze přiblížit se legislativě a požadavkům Evropského společenství. Na základě Směrnic rady č. 91/272/EHS respektive 91/676/EHS se v zákoně objevují pojmy „citlivá oblast“ a „zranitelná oblast“.

„Citlivé oblasti“ jsou oblasti, kde povrchové vody jsou již eutrofní nebo potenciálně eutrofní. Znamená to, že obsahují větší koncentrace biogenních prvků dusíku a fosforu, způsobujících eutrofizaci vod. Označením oblasti za citlivou plyne řada požadavků na likvidaci odpadních vod. V současné době je celé území republiky označeno jako „citlivá oblast“.

Druhá směrnice nazvaná „nitrátová“ zavádí pojem „zranitelná oblast“. Jejím cílem je především snižování koncentrace dusičnanů vlivem zemědělské činnosti. Území, jež jsou označeny za „zranitelnou oblast“ jsou přezkoumávána v čtyřletých intervalech.

Nejnovějším legislativním předpisem, kterým se hodnotí jakost povrchových vod je nařízení vlády 229/2007 Sb. o ukazatelích a hodnotách přípustného znečištění povrchových vod a odpadních vod, náležitostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací a o citlivých oblastech. Vedle něj je zde stále často používaná ČSN 75 7221 Jakost vod – Klasifikace povrchových vod, z října 1998.

Hodnocení kvality vody podle nařízení vlády 229/2007 Sb.

Nařízení vlády stanoví kromě jiných ukazatelů také emisní a imisní standardy pro odpadní vody a také ukazatele vyjadřující stav vody ve vodním toku.

Emisními standardy se rozumí nejvyšší přípustné hodnoty ukazatelů znečištění odpadních vod, které jsou uvedené v příloze č. 1 k tomuto nařízení.

Emisní limity jsou nejvyšší přípustné hodnoty ukazatelů znečištění odpadních vod, které stanoví vodoprávní úřad v povolení k vypouštění odpadních vod do vod povrchových.

Imisními standardy jsou dle NV nejvyšší přípustné hodnoty ukazatelů přípustného znečištění povrchových vod v jednotkách hmotnosti, radioaktivity nebo bakteriálního znečištění na jednotku objemu, které jsou stanoveny v příloze č. 3 k tomuto nařízení.
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

Profil č. 1 bude vzhledem ke své povaze (viz kapitola 5.4.1.), kdy ještě můžeme hovořit čistě o vodách odpadních, hodnocen dle emisních standardů NV. Ty jsou nařízením vlády specifikovány přímo pro průmysl vyrábějící masné výrobky (viz Tab. č. 4).

Profily č. 2 a 3 (viz kapitoly 5.4.2, respektive 5.4.3), kdy vlivem přírodních procesů samočištění dochází k pozitivnímu ovlivnění jakosti vod, budou hodnoceny dle imisních standardů (viz Tab. č. 5). Důležitý pro tuto volbu je také faktor vzdálenosti od bodového zdroje znečištění a charakter vod, kdy dochází k michání s vodou povrchovou.

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Přípustná hodnota – C_{90} [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHSK$_{Cr}$</td>
<td>200</td>
</tr>
<tr>
<td>BSK$_5$</td>
<td>50</td>
</tr>
<tr>
<td>NL</td>
<td>80</td>
</tr>
<tr>
<td>N-NH$_4^+$</td>
<td>20</td>
</tr>
<tr>
<td>P_{celk}</td>
<td>10</td>
</tr>
</tbody>
</table>

Tab. č. 4 Výběr z emisních standardů pro průmysl vyrábějící masné výrobky. (zdroj: příloha č. 1B k nařízení vlády č. 229/2007 Sb., podle OKEČ 151 000)

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Přípustná hodnota – C_{90} [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHSK$_{Cr}$</td>
<td>35</td>
</tr>
<tr>
<td>BSK$_5$</td>
<td>6</td>
</tr>
<tr>
<td>NL</td>
<td>25</td>
</tr>
<tr>
<td>N-NH$_4^+$</td>
<td>0,5</td>
</tr>
<tr>
<td>P_{celk}</td>
<td>0,15</td>
</tr>
<tr>
<td>O_2</td>
<td>>6</td>
</tr>
</tbody>
</table>

Tab. č. 5 Vybrané imisní standardy ukazatelů přípustného znečištění povrchových vod (zdroj: příloha č. 3 k nařízení vlády č. 229/2007)

Hodnocení kvality vody podle ČSN 75 7221

Dosud často používaná norma klasifikuje povrchovou vodu dle její jakosti do pěti tříd. Vodní tok je pak označen barvou příslušející k dané třídě jakosti (viz Tab. č. 6).

<table>
<thead>
<tr>
<th>Třída</th>
<th>Barva</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. třída - neznečištěná voda</td>
<td>světle modrá</td>
</tr>
<tr>
<td>II. třída - mírně znečištěná voda</td>
<td>modrá</td>
</tr>
<tr>
<td>III. třída - znečištěná voda</td>
<td>zelená</td>
</tr>
<tr>
<td>IV. třída - silně znečištěná voda</td>
<td>žlutá</td>
</tr>
<tr>
<td>V. třída – velmi silně znečištěná</td>
<td>Červená</td>
</tr>
</tbody>
</table>

Tab. č. 6: Třídy klasifikace čistoty vody dle ČSN 75 7221
I. třída – Neznečištěná voda: Stav povrchové vody, který nebyl významně ovlivněn lidskou činností, při kterém ukazatele jakosti vody nepřesahují hodnoty odpovídající běžnému přirozenému pozadí v tocích.

II. třída - Mírně znečištěná voda: Stav povrchové vody, který byl ovlivněn lidskou činností tak, že ukazatele jakosti vody dosahují hodnot, které umožňují existenci bohatého, vyváženého a udržitelného ekosystému.

III. třída - Znečištěná voda: Stav povrchové vody, který byl ovlivněn lidskou činností tak, že ukazatele jakosti vody dosahují hodnot, které nemusí vytvořit podmínky pro existenci bohatého, vyváženého a udržitelného ekosystému.

IV. třída – Silně znečištěná voda: Stav povrchové vody, který byl ovlivněn lidskou činností tak, že ukazatele jakosti vody dosahují hodnot, které vytvářejí podmínky, umožňující existenci pouze nevyváženého ekosystému.

V. třída – Velmi silně znečištěná voda: Stav povrchové vody, který byl ovlivněn lidskou činností tak, že ukazatele jakosti vody dosahují hodnot, které vytvářejí podmínky, umožňující existenci pouze silně nevyváženého ekosystému.

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Měrná jednotka</th>
<th>Třída</th>
</tr>
</thead>
<tbody>
<tr>
<td>biochemická spotřeba kyslíku pětidenní</td>
<td>mg/l</td>
<td>I < 2</td>
</tr>
<tr>
<td>chemická spotřeba kyslíku dichromanem</td>
<td>mg/l</td>
<td>I < 15</td>
</tr>
<tr>
<td>amoniakální dusík</td>
<td>mg/l</td>
<td>I < 0,3</td>
</tr>
<tr>
<td>celkový fosfor</td>
<td>mg/l</td>
<td>I < 0,05</td>
</tr>
</tbody>
</table>

Tab. č. 7: Mezní hodnoty tříd jakosti vody dle ČSN 75 7221 (zdroj: ČSN 75 7221)

Charakteristickou hodnotou ukazatele jakosti vody je hodnota s pravděpodobností nepřekročení 90% (C_{90}). Jakost vody se klasifikuje na základě výsledků kontroly z delšího uceleného období. Pro výpočet charakteristické hodnoty se doporučuje mít k dispozici alespoň 24 hodnot. Je-li k dispozici méně než 11 hodnot nelze jakost vody klasifikovat podle normy ČSN 75 7221. Při četnosti 24 a více hodnot za období se doporučuje charakteristickou hodnotou počítat dle postupu uvedeného v příloze této normy (ČSN 75 7221). Hodnota C_{90} se pak srovnává s mezní hodnotou a určí se třída jakosti podle tabulky (viz Tab. č. 7).
6 Analýzy a měření

6.1 Profil č. 1.

<table>
<thead>
<tr>
<th>Ukazatel / Datum</th>
<th>Rozp. kyslík [mg/l]</th>
<th>BSK₅ [mg/l]</th>
<th>CHSK₅ [mg/l]</th>
<th>N-NH₄ [mg/l]</th>
<th>P_{celk} [mg/l]</th>
<th>ORP [mV]</th>
<th>t [°C]</th>
<th>pH</th>
<th>NL [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.10.09</td>
<td>0,6</td>
<td>12200</td>
<td>18180</td>
<td>1,2</td>
<td>44,6</td>
<td>13</td>
<td>8,7</td>
<td>6,71</td>
<td>15680</td>
</tr>
<tr>
<td>18.11.09</td>
<td>1,3</td>
<td>4299</td>
<td>12460</td>
<td>10,8</td>
<td>16,3</td>
<td>14,15</td>
<td>8,4</td>
<td>6,79</td>
<td>9678</td>
</tr>
<tr>
<td>9.12.09</td>
<td>0,8</td>
<td>38903</td>
<td>58000</td>
<td>39,9</td>
<td>86,5</td>
<td>13,1</td>
<td>6,7</td>
<td>6,85</td>
<td>43492</td>
</tr>
<tr>
<td>21.1.10</td>
<td>2,8</td>
<td>591</td>
<td>1276</td>
<td>10,6</td>
<td>26,0</td>
<td>13</td>
<td>12,8</td>
<td>6,87</td>
<td>286</td>
</tr>
<tr>
<td>3.3.10</td>
<td>2</td>
<td>435</td>
<td>773</td>
<td>18,7</td>
<td>30,8</td>
<td>20</td>
<td>12,3</td>
<td>6,90</td>
<td>145</td>
</tr>
<tr>
<td>19.3.10</td>
<td>4,9</td>
<td>419</td>
<td>839</td>
<td>12,2</td>
<td>20,0</td>
<td>18,3</td>
<td>13,2</td>
<td>6,86</td>
<td>187</td>
</tr>
<tr>
<td>1.4.10</td>
<td>2,4</td>
<td>499</td>
<td>837</td>
<td>19,8</td>
<td>22,5</td>
<td>22,6</td>
<td>15,9</td>
<td>6,59</td>
<td>102</td>
</tr>
<tr>
<td>Přípustné hodnoty 1)</td>
<td>-</td>
<td>50</td>
<td>200</td>
<td>20</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Průměr. přesah ES</td>
<td>-</td>
<td>163x</td>
<td>66x</td>
<td>-</td>
<td>3,52x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. č. 8: Výsledky jakostních ukazatelů v profilu č. 1

První tři hodnoty, jež jsou v tabulce č. 8 uvedeny pod zelenou barvou, jsou silně ovlivněny sedimenty, které byly při odběru vzorků vždy odebrány společně s vodou. V místě odběru si kanál zachovával spíše charakter stojaté vody. Místo odběru bylo původně zvoleno s ohledem na zachování kontinuity odběrů s předchozími pracemi. Poté, co hodnoty CHSK₅ a BSK₅ dosáhly dne 9.12.2009 extrémních hodnot (viz Tab. č. 8) na horní hranici měřitelnosti, bylo nutné přistoupit ke změně odběrového místa. To bylo přemístěno na levý břeh kanálu, kde si voda již zachovala charakter vypouštěné odpadní vody. Také následné odebrané vzorky se více blížily hodnotám z let 2007-2009 (viz Tab. č. 9).
Z rozdílů výsledků analýz z těchto odběrů je možno vysledovat několik důležitých prvků. První rozdíl, jež byl naznačen v předchozím odstavci jsou nerozpuštěné látky (NL), které při odběru vždy silně ovlivňovaly vzorek. Další rozdíl je teplota. Ta se při prvních třech odběrech blížila teplotě okolního prostředí, zatímco při dalších měřeních se teplota zachovala poměrně konstantní hodnotu i při teplotě vzduchu kolem -10 ºC, která byla dosažena při odběru v lednu. Můžeme tak hovořit i o tepelném znečištění. Nejdůležitějším důvodem pro změnu bylo znečištění organickými látkami, jež se v původním místě odběru hromadily společně s usazeninami. Při následné analýze v laboratoři se musel ředit vzorek v takové míře, že docházelo ke zkreslení přesnosti výsledných hodnot. Vyšší hodnoty rozpuštěného kyslíku a oxidačně-redukčního potenciálu souvisí s přepadem odpadní vody z výpustní trubky, kde se voda pod přepadem provzdušňuje.

6.2 Profil. č. 2
Druhý a třetí profil jsou hodnoceny dle imisních standardů, které jsou uvedeny v NV 229/2007 a také pomocí ČSN 75 7221. Pro toto vyhodnocení je nutný širší statistický soubor dat, proto byla využity některá data, jež v předchozích letech naměřil v rámci své diplomové práce Filip Šálek (2009).

V druhém profilu překračují imisní hodnoty přípustného znečištění povrchových vod
nařízení vlády všechny sledované jakostní ukazatele kromě reakce vody (pH) a to
mnohonásobně. Dle ČSN 75 7221 byly vyhodnoceny ukazatele s dostatečným počtem
měření z minulých let. Voda v tomto profilu byla ve všech ukazatelech, které byly
vyhodnoceny charakteristickou hodnotou C_{90}, zařazena do V. jakostní třídy

1) Dle 3. přílohy k NV 229/2007 - Imisní standardy ukazatelů přípustného znečištění povrchových vod

2) Dle ČSN 75 7221

<table>
<thead>
<tr>
<th>Ukazatel / Datum</th>
<th>Rozp. kyslík [mg/l]</th>
<th>BSK₅ [mg/l]</th>
<th>CHSK₅ [mg/l]</th>
<th>N-NH₄ [mg/l]</th>
<th>P_{celk} [mg/l]</th>
<th>ORP [mV]</th>
<th>t [°C]</th>
<th>pH</th>
<th>NL [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8.07</td>
<td>-</td>
<td>52</td>
<td>106</td>
<td>8,9</td>
<td>5,5</td>
<td>-</td>
<td>-</td>
<td>7,64</td>
<td>-</td>
</tr>
<tr>
<td>19.9.07</td>
<td>-</td>
<td>34</td>
<td>39</td>
<td>1,0</td>
<td>1,8</td>
<td>-</td>
<td>-</td>
<td>7,32</td>
<td>-</td>
</tr>
<tr>
<td>24.10.07</td>
<td>-</td>
<td>59</td>
<td>109</td>
<td>0,3</td>
<td>4,1</td>
<td>-</td>
<td>-</td>
<td>6,85</td>
<td>-</td>
</tr>
<tr>
<td>21.11.07</td>
<td>-</td>
<td>49</td>
<td>115</td>
<td>6,8</td>
<td>9,2</td>
<td>-</td>
<td>-</td>
<td>7,10</td>
<td>-</td>
</tr>
<tr>
<td>13.12.07</td>
<td>-</td>
<td>70</td>
<td>144</td>
<td>2,3</td>
<td>6,3</td>
<td>-</td>
<td>-</td>
<td>7,10</td>
<td>-</td>
</tr>
<tr>
<td>16.1.08</td>
<td>-</td>
<td>73</td>
<td>115</td>
<td>1,6</td>
<td>4,9</td>
<td>-</td>
<td>-</td>
<td>6,80</td>
<td>-</td>
</tr>
<tr>
<td>20.2.08</td>
<td>-</td>
<td>9</td>
<td>64</td>
<td>1,1</td>
<td>6,1</td>
<td>-</td>
<td>-</td>
<td>6,90</td>
<td>-</td>
</tr>
<tr>
<td>20.3.08</td>
<td>-</td>
<td>35</td>
<td>75</td>
<td>0,9</td>
<td>7,4</td>
<td>-</td>
<td>-</td>
<td>6,70</td>
<td>-</td>
</tr>
<tr>
<td>24.4.08</td>
<td>-</td>
<td>58</td>
<td>83</td>
<td>1,4</td>
<td>8,6</td>
<td>-</td>
<td>-</td>
<td>6,90</td>
<td>-</td>
</tr>
<tr>
<td>29.5.08</td>
<td>-</td>
<td>49</td>
<td>72</td>
<td>2,3</td>
<td>6,7</td>
<td>-</td>
<td>-</td>
<td>7,01</td>
<td>-</td>
</tr>
<tr>
<td>25.6.08</td>
<td>-</td>
<td>68</td>
<td>97</td>
<td>1,2</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
<td>6,87</td>
<td>-</td>
</tr>
<tr>
<td>30.7.08</td>
<td>-</td>
<td>36</td>
<td>82</td>
<td>0,9</td>
<td>4,3</td>
<td>-</td>
<td>-</td>
<td>7,05</td>
<td>-</td>
</tr>
<tr>
<td>27.8.08</td>
<td>-</td>
<td>128</td>
<td>249</td>
<td>8,5</td>
<td>13,7</td>
<td>-</td>
<td>-</td>
<td>7,27</td>
<td>-</td>
</tr>
<tr>
<td>25.9.08</td>
<td>-</td>
<td>104</td>
<td>108</td>
<td>8,9</td>
<td>9,7</td>
<td>-</td>
<td>-</td>
<td>6,80</td>
<td>-</td>
</tr>
<tr>
<td>30.10.08</td>
<td>-</td>
<td>127</td>
<td>279</td>
<td>4,7</td>
<td>10,5</td>
<td>-</td>
<td>-</td>
<td>7,15</td>
<td>-</td>
</tr>
<tr>
<td>27.11.08</td>
<td>-</td>
<td>142</td>
<td>228</td>
<td>13,3</td>
<td>12,7</td>
<td>-</td>
<td>-</td>
<td>7,02</td>
<td>-</td>
</tr>
<tr>
<td>29.1.09</td>
<td>-</td>
<td>118</td>
<td>231</td>
<td>4,4</td>
<td>11,2</td>
<td>-</td>
<td>-</td>
<td>7,09</td>
<td>-</td>
</tr>
<tr>
<td>26.2.09</td>
<td>-</td>
<td>147</td>
<td>336</td>
<td>4,9</td>
<td>9,9</td>
<td>-</td>
<td>-</td>
<td>6,58</td>
<td>-</td>
</tr>
<tr>
<td>21.10.09</td>
<td>0,8</td>
<td>124</td>
<td>243</td>
<td>13,6</td>
<td>14,6</td>
<td>11,3</td>
<td>9,9</td>
<td>6,70</td>
<td>90</td>
</tr>
<tr>
<td>18.11.09</td>
<td>0,7</td>
<td>46</td>
<td>82</td>
<td>8,0</td>
<td>5,5</td>
<td>13,5</td>
<td>9,1</td>
<td>7,05</td>
<td>50</td>
</tr>
<tr>
<td>9.12.09</td>
<td>1,4</td>
<td>402</td>
<td>422</td>
<td>17,2</td>
<td>17,0</td>
<td>14</td>
<td>8,7</td>
<td>6,79</td>
<td>524</td>
</tr>
<tr>
<td>21.1.10</td>
<td>2,1</td>
<td>746</td>
<td>803</td>
<td>6,3</td>
<td>29,6</td>
<td>-13,5</td>
<td>0,1</td>
<td>7,28</td>
<td>2022</td>
</tr>
<tr>
<td>3.3.10</td>
<td>1,6</td>
<td>24</td>
<td>99</td>
<td>17,2</td>
<td>28,5</td>
<td>-2,9</td>
<td>4,8</td>
<td>7,09</td>
<td>309</td>
</tr>
<tr>
<td>19.3.10</td>
<td>1,7</td>
<td>142</td>
<td>271</td>
<td>20,2</td>
<td>12,7</td>
<td>8,3</td>
<td>8,3</td>
<td>6,80</td>
<td>29</td>
</tr>
<tr>
<td>1.4.10</td>
<td>0,8</td>
<td>381</td>
<td>813</td>
<td>25,4</td>
<td>22,0</td>
<td>6,5</td>
<td>10,5</td>
<td>6,86</td>
<td>400</td>
</tr>
</tbody>
</table>

C^{90}\]

<table>
<thead>
<tr>
<th>Imisní standardy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I)</td>
</tr>
<tr>
<td>>6</td>
</tr>
</tbody>
</table>

| Průměr. přesah IS | -4,7 | 21,5x | 6x | 14,5x | 72x | - | - | - | 19,6x |

<table>
<thead>
<tr>
<th>Jakostní třída 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.</td>
</tr>
</tbody>
</table>

6.3 Profil č. 3

<table>
<thead>
<tr>
<th>Ukazatel / Datum</th>
<th>Rozp. kyslík [mg/l]</th>
<th>BSK₅ [mg/l]</th>
<th>CHSK₅ [mg/l]</th>
<th>N-NH₄ [mg/l]</th>
<th>P celk [mg/l]</th>
<th>ORP [mV]</th>
<th>t [°C]</th>
<th>pH</th>
<th>NL [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8.07</td>
<td>-</td>
<td>15,6</td>
<td>84,5</td>
<td>3,1</td>
<td>5,1</td>
<td>-</td>
<td>-</td>
<td>7,61</td>
<td>-</td>
</tr>
<tr>
<td>19.9.07</td>
<td>-</td>
<td>2,2</td>
<td>10,1</td>
<td>4,3</td>
<td>2,3</td>
<td>-</td>
<td>-</td>
<td>7,10</td>
<td>-</td>
</tr>
<tr>
<td>24.10.07</td>
<td>-</td>
<td>2,0</td>
<td>39,9</td>
<td>0,6</td>
<td>3,8</td>
<td>-</td>
<td>-</td>
<td>6,98</td>
<td>-</td>
</tr>
<tr>
<td>21.11.07</td>
<td>-</td>
<td>3,6</td>
<td>54,3</td>
<td>3,1</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>7,31</td>
<td>-</td>
</tr>
<tr>
<td>13.12.07</td>
<td>-</td>
<td>12,6</td>
<td>64,0</td>
<td>0,9</td>
<td>5,3</td>
<td>-</td>
<td>-</td>
<td>7,31</td>
<td>-</td>
</tr>
<tr>
<td>16.1.08</td>
<td>-</td>
<td>4,1</td>
<td>69,4</td>
<td>0,9</td>
<td>3,8</td>
<td>-</td>
<td>-</td>
<td>7,12</td>
<td>-</td>
</tr>
<tr>
<td>20.2.08</td>
<td>-</td>
<td>0</td>
<td>106,1</td>
<td>0,1</td>
<td>5,3</td>
<td>-</td>
<td>-</td>
<td>6,90</td>
<td>-</td>
</tr>
<tr>
<td>20.3.08</td>
<td>-</td>
<td>46,8</td>
<td>101,3</td>
<td>0,6</td>
<td>8,0</td>
<td>-</td>
<td>-</td>
<td>6,54</td>
<td>-</td>
</tr>
<tr>
<td>24.4.08</td>
<td>-</td>
<td>17,2</td>
<td>43,7</td>
<td>0,7</td>
<td>5,3</td>
<td>-</td>
<td>-</td>
<td>6,97</td>
<td>-</td>
</tr>
<tr>
<td>29.5.08</td>
<td>-</td>
<td>13,6</td>
<td>28,9</td>
<td>0,9</td>
<td>4,1</td>
<td>-</td>
<td>-</td>
<td>7,10</td>
<td>-</td>
</tr>
<tr>
<td>25.6.08</td>
<td>-</td>
<td>35,4</td>
<td>67,9</td>
<td>1,5</td>
<td>6,6</td>
<td>-</td>
<td>-</td>
<td>7,08</td>
<td>-</td>
</tr>
<tr>
<td>30.7.08</td>
<td>-</td>
<td>9,8</td>
<td>23,3</td>
<td>0,0</td>
<td>4,9</td>
<td>-</td>
<td>-</td>
<td>7,11</td>
<td>-</td>
</tr>
<tr>
<td>27.8.08</td>
<td>-</td>
<td>18,4</td>
<td>52,3</td>
<td>0,0</td>
<td>8,1</td>
<td>-</td>
<td>-</td>
<td>7,16</td>
<td>-</td>
</tr>
<tr>
<td>25.9.08</td>
<td>-</td>
<td>6,7</td>
<td>31,8</td>
<td>0,8</td>
<td>7,5</td>
<td>-</td>
<td>-</td>
<td>6,92</td>
<td>-</td>
</tr>
<tr>
<td>30.10.08</td>
<td>-</td>
<td>5,9</td>
<td>26,4</td>
<td>1,1</td>
<td>7,5</td>
<td>-</td>
<td>-</td>
<td>7,30</td>
<td>-</td>
</tr>
<tr>
<td>27.11.08</td>
<td>-</td>
<td>13,6</td>
<td>56,4</td>
<td>1,3</td>
<td>7,5</td>
<td>-</td>
<td>-</td>
<td>7,20</td>
<td>-</td>
</tr>
<tr>
<td>29.1.09</td>
<td>-</td>
<td>9,4</td>
<td>20,8</td>
<td>0,4</td>
<td>7,8</td>
<td>-</td>
<td>-</td>
<td>7,27</td>
<td>-</td>
</tr>
<tr>
<td>26.2.09</td>
<td>-</td>
<td>11,6</td>
<td>63,6</td>
<td>0,4</td>
<td>5,0</td>
<td>-</td>
<td>-</td>
<td>7,11</td>
<td>-</td>
</tr>
<tr>
<td>21.10.09</td>
<td>2,2</td>
<td>8,3</td>
<td>39,7</td>
<td>0,4</td>
<td>28,0</td>
<td>-10,4</td>
<td>6,8</td>
<td>7,10</td>
<td>30</td>
</tr>
<tr>
<td>18.11.09</td>
<td>4,5</td>
<td>14,8</td>
<td>22,8</td>
<td>0,2</td>
<td>10,4</td>
<td>-1,5</td>
<td>8,8</td>
<td>7,07</td>
<td>19</td>
</tr>
<tr>
<td>9.12.09</td>
<td>2,7</td>
<td>10,2</td>
<td>40,5</td>
<td>0,9</td>
<td>6,2</td>
<td>0,6</td>
<td>7</td>
<td>7,03</td>
<td>3</td>
</tr>
<tr>
<td>21.1.10</td>
<td>1,6</td>
<td>9,0</td>
<td>13,8</td>
<td>0,4</td>
<td>10,9</td>
<td>-35,7</td>
<td>0,2</td>
<td>7,58</td>
<td>37</td>
</tr>
<tr>
<td>3.3.10</td>
<td>8,6</td>
<td>5,0</td>
<td>35,7</td>
<td>0,4</td>
<td>15,1</td>
<td>-8,3</td>
<td>4,1</td>
<td>7,19</td>
<td>3</td>
</tr>
<tr>
<td>19.3.10</td>
<td>7,9</td>
<td>7,6</td>
<td>24,5</td>
<td>0,4</td>
<td>5,7</td>
<td>12,2</td>
<td>6,4</td>
<td>6,78</td>
<td>4</td>
</tr>
<tr>
<td>1.4.10</td>
<td>7,6</td>
<td>18,4</td>
<td>41,6</td>
<td>4,6</td>
<td>7,7</td>
<td>10,5</td>
<td>7,6</td>
<td>7,18</td>
<td>3</td>
</tr>
<tr>
<td>C₉₀₀</td>
<td>-</td>
<td>18,4</td>
<td>84,5</td>
<td>3,1</td>
<td>10,9</td>
<td>-</td>
<td>-</td>
<td>7,31</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imisní standardy 1)</th>
<th>>6</th>
<th>6</th>
<th>35</th>
<th>0,5</th>
<th>0,15</th>
<th>-</th>
<th>25</th>
<th>6-8</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměr. přesah IS</td>
<td>-0,98</td>
<td>2x</td>
<td>1,3x</td>
<td>2,2x</td>
<td>50,6x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jakostní třída 2)</th>
<th>V.</th>
<th>V.</th>
<th>IV.</th>
<th>V.</th>
</tr>
</thead>
</table>

Vlivem ředění a eliminace organického znečištění mezi prvními dvěmi profily, se v melioračním kanále začínají prosazovat aerobní pochody. Začíná odbourávání látek, které nejsou mikroorganismy v anaerobních podmínkách schopny rozložit. Začínají se zde objevovat také bezobratlé živočichové, kteří přispívají filtraci vody. Kanál lemují vrby a

1) Dle 3. přílohy k NV 229/2007 - Imisní standardy ukazatelů přípustného znečištění povrchových vod

2) Dle ČSN 75 7221
olše, jež z vody kořenovým systémem odebírají živiny. Kořenový systém dále slouží jako podklad pro bakteriální filmy. Dochází k další sedimentaci již mineralizovaných látek vlivem změny proudu za profilem č. 2. Neposledním faktorem je infiltrace do podzemní vody, při níž dochází k zachycování nečistot, mikroorganismů a dalších částí v půdním profilu. V těchto místech je tok také více oslněn, tudíž zde může docházet k fotochemickému rozkladu.

U třetího profilu je zajímavé sledovat poměr mezi CHSK\textsubscript{Cr} a BSK\textsubscript{5}. U předchozích dvou profilů se tento poměr pohyboval mezi 0,5 - 1, což znamená velký podíl biologicky odbouratelných organických látek. Ve třetím profilu je většina organických látek perzistentní k biologickému odbourání a poměr mezi těmito dvěma ukazateli se snižuje (viz Tab. č. 12).

<table>
<thead>
<tr>
<th>Datum</th>
<th>BSK\textsubscript{5}</th>
<th>CHSK\textsubscript{Cr}</th>
<th>Poměr</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.10.2009</td>
<td>8,3</td>
<td>39,7</td>
<td>0,2</td>
</tr>
<tr>
<td>18.11.2009</td>
<td>14,8</td>
<td>22,8</td>
<td>0,65</td>
</tr>
<tr>
<td>9.12.2009</td>
<td>10,2</td>
<td>40,5</td>
<td>0,25</td>
</tr>
<tr>
<td>21.1.2010</td>
<td>9,0</td>
<td>13,8</td>
<td>0,65</td>
</tr>
<tr>
<td>3.3.2010</td>
<td>5,0</td>
<td>35,7</td>
<td>0,14</td>
</tr>
<tr>
<td>19.3.2010</td>
<td>7,6</td>
<td>24,5</td>
<td>0,31</td>
</tr>
<tr>
<td>1.4.2010</td>
<td>18,5</td>
<td>41,6</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Tab. č. 12: Poměry mezi CHSK\textsubscript{Cr} a BSK\textsubscript{5} u profilu č. 3

6.4 Eliminace znečištění

K výpočtu eliminace znečištění a číselného vyjádření účinnosti samočisticích procesů byla použita vlastní naměřená data.

Procentuální zhodnocení eliminace znečišťujících prvků mezi prvními dvěma profily je uvedeno v následující tabulce. Záporných hodnot dosahují nerozpuštěné látky a
Jiří Augustin: Bodové zdroje znečištění povrchových vod v území PR ZaKl

amoniakální dusík. To můžeme přičítat biologickým a chemickým pochodům, které mezi profily probíhají. Například se jedná o srážení nebo bakteriální rozklad a bioflokulaci. Amoniakální dusík je v anaerobním prostředí stabilní a neprobíhá zde tudíž nitrifikace na stabilnější dusičnany. Procentuální hodnoty eliminace u ukazatele organického znečištění – BSK₅ a CHSKₖr se pohybují okolo 60% a to především kvůli vysokým hodnotám u prvních třech měření v prvním profilu.

Graf č. 1: Eliminace znečištění mezi profily 1 a 2

Jak je patrné z dalšího grafu (viz Graf č. 2) se míra eliminace blíží 90% u všech ukazatelů kromě celkového fosforu. Přes takto vysokou míru eliminace je tok zařazen u většiny ukazatelů i v posledním profilu do třídy velmi znečištěné vody.

Graf č. 2: Eliminace znečištění mezi profily 2 a 3
6.5 Kyslíkové poměry

Kyslíkové poměry mezi profily 1 a 2 znázorňuje toto schéma (viz Obr. č. 13). Měření bylo provedeno dne 29.3.2010 v dopoledních hodinách a k měření byly vybrány 4 odběrové body.

Obr. č. 13: Kyslíkové poměry v melioračním kanálu odvádějící odpadní vody z firmy Klemens

Koncentrace rozpuštěného kyslíku jsou vyjádřeny číselně v rámečku u každého měřeného bodu (viz Obr. č. 13). Voda u prvního měřeného bodu je provzdušňována přepadem z výpustní roury. Zde byla naměřená koncentrace kyslíku nejvyšší. Vzhledem k vysokému zatížení vody odpadními látkami se koncentrace kyslíku snižuje, jelikož je spotřebováván na mikrobiologické rozkladné reakce. V bodu II je to 1,5 mg/l a v bodu III je to jen 0,4 mg/l. V posledním měřeném bodě se obsah kyslíku postupně začíná opět navyšovat, jelikož velká část organického znečištění již byla odbourána anaerobními pochody.
Závěr

Cílem bakalářské práce bylo zhodnotit zatížení povrchových vod bodovými zdroji znečištění povrchových vod v přírodní rezervaci Koutské a Zábřežské louky. Firma MK Klemens s.r.o., která odpadní vody na hranici přírodní rezervace vypouští, má udělenou výjimku k nakládání s odpadními vodami až do konce roku 2010. Ta byla udělena bývalým okresním úřadem v Opavě. Do tohoto termínu by mělo dojít k vylepšení stávající čistěnské technologie v areálu masny a tudíž také ke zlepšení jakostních poměrů vody ve vodotečích přírodní rezervace ZaKl. Současný stav, kdy povrch hladiny pokrývá silná několikacentimetrová vrstva tuků, na dně jsou bakteriální nánosy a okolím se šíří hnilobný zápach, kontrastuje se snahou chránit vzácná mokřadní společenstva.

V rámci této práce bylo nutno se seznámit s poměry v PR a to nejen skrze odbornou literaturu, ale hlavně pochůzkami v terénu, například při odběru vzorků. Na vlastní oči jsem se tak přesvědčil o účinnosti anaerobních i aerobních mechanismů samočištění, které probíhají mezi sledovanými profily. Tyto mechanismy byly obecně popsány ve čtvrté kapitole, která obecně popsaly v tématické i zahraniční literatuře.

Z páchnoucí odpadní vody se pomalu stává nezakalená, nepáchnoucí voda. Ačkoli je ve třetím profilu u většiny sledovaných parametrů odstraněno více než 90% znečišťujících látek, voda je neustále klasifikována jako silně znečištěná a to hodnocením jak podle nařízení vlády 229/2007 Sb. (o ukazatelích a hodnotách přípustného znečištění povrchových vod a odpadních vod), tak pomocí ČSN 75 7221 (Jakost vod – Klasifikace povrchových vod).

Emisní standardy dle NV byly u profilu č. 1 překračovány u všech parametrů s výjimkou pH. Emisní standardy u dalších dvou profilů byly splněny například u nerozpustených látek a koncentrace kyslíku ve třetím profilu. Parametry BSK₅, CHSK₅, Pₐ₅ vždy překračovaly imisní standardy a zařazovaly vodu do V. - nejhorší - třídy jakosti. Jako redukční parametr, který klesl o jakostní třídu byl amoniakální dusík.

Problematic e přirozeného čištění odpadních vod v zájmovém území PR ZaKl bych se chtěl věnovat i nadále v rámci své diplomové práce. Zde bych nejen navázal na měření, která v dané lokalitě již třetím rokem probíhají, ale také přidal analýzy dalších parametrů, které proces samočištění ovlivňují. K celkovému zhodnocení bych se zaměřil nejen na kvalitu povrchové vody, ale i na sediment vybraných profilů.
8 Seznam použité literatury

BAUDIŠOVÁ, D. Redukce mikrobiálního znečištění alternativními způsoby čištění odpadních vod, Vodní hospodářství 2, 2008, str. 4-7

BOŠKO, K., Samočistiace procesy na tokoch znečištených odpadovými vodami z výroby sulfítové celolózy, Péče o čistotu vod V., 1956, str. 86 – 98

CIRNE, D. G., Anaerobic digestion of lipid-rich waste—Effects of lipid concentration, Renewable energy, 32, 2007

COOPER, A. E., On the selfpurification of rivers and streams, Biochem. J. 12, 1919, pp275

DOHÁNYOS, M., Anaerobní čištění odpadních vod, Vodní hospodářství, 5, 1996, str. 172-176

DOHÁNYOS, M., Anaerobní čistírenské technologie, NOEL 2000, 1998, 343s

FILIPCOVÁ, M. Digitální zpracování mapových a naměřených terénních dat za účelem zhodnocení krajinných prvků v přírodní rezervaci Koutské a Zábřežské louky (Diplomová práce) Ostrava: VŠB-TUO, 2008

JUST, T. et al., Vodohospodářské revitalizace a jejich uplatnění v ochraně před povodněmi. ZO ČSOP Hořovicko, Praha, 2003

KNYBEL, F., GLATZOVÁ, A. Hodnocení jakosti a trendů znečištění odpadních vod PZ Martinov za rok 1993, VÚV TGM, Ostrava, 1994, 27 stran

2010 51

KRIŠKA M. et al., Živinná bilance umělých mokřadů, Říční krajiná sborník přispěvků z konference, 3, Univerzita Palackého v Olomouci, 2005

LELLÁK, J., KUBÍČEK, F. Hydrobiologie, 1. vyd. Karolinum, 1992

MACOUN, J. Geologická mapa 1:50 000, Lišť 15-41 Hlučin. Český geologický ústav, Praha, 2002

MACOUN, J. Geologická mapa 1:50 000, Lišť 15-41 Hlučin. Český geologický ústav, Praha, 2002

MALÁ, J., MALÝ, J. Effect of heavy metals on self-purification processes in rivers, Applied ecology and enviromental research, 7, 2009

MELČÁKOVÁ, L., WANNEN, F. Porovnání čisticího účinku zemního filtru a kořenové čistírny, Vodní hospodářství, 1, 2008, str. III-IV

MELČÁKOVÁ, L., WANNEN, F. Porovnání čisticího účinku zemního filtru a kořenové čistírny, Vodní hospodářství, 1, 2008, str. III-IV

MLEJNSKÁ, E., WANNER, F. Porovnání čisticího účinku zemního filtru a kořenové čistírny, Vodní hospodářství, 1, 2008, str. III-IV

MÖNCH, O., BÖTZ, G. Hydrogeologische Untersuchungen in der Sulm-Talerei, Badegewässer und wasserrechtliche Probleme, Berichte der DGGG, 44, 1995

2010
OSTROUMOV, S. A. Aquatic ecosystem: a large-scale, diversified bioreactor with the function of water self-purification. Doklady Biological Sciences, 374, 2000, pp. 427-429

PIŠTĚKOVÁ, M., BLAŽKOVÁ, H., Čistící procesy v půdním prostředí aluviální nivy při odstraňování tenzidů, Říční krajina sborník příspěvků z konference, 3, Univerzita Palackého v Olomouci, 2005

PROKEŠOVÁ, L., Čistící procesy v řízených umělých mokřadech při čištění znečištěných povrchových a odpadních vod, Říční krajina sborník příspěvků z konference, 1, Univerzita Palackého v Olomouci, 2003

PULCHART, V. Řešení problematiky odpadních vod ze zpracovny masa v území přírodní rezervace Koutské a Zábřežské louky (Diplomová práce) Ostrava: VŠB-TUO, 2008

QUITT, E. Klimatické oblasti Československa. Geografický ústav ČSAV, Brno, 1971

RULÍK M., BURIÁNKOVÁ I., Příspěvek k poznání významu zaplavených kořenů vrb a olší v ekosystému říčního toku, Říční krajina sborník příspěvků z konference, 3, Univerzita Palackého v Olomouci, 2005

SHAOYONG et al., Nitrogen removal from agricultural runoff by full-scale constructed wetland in China, Hydrobiologia, 621, 2009, pp. 115–126

SLÁDEČEK, V., Biologie aktivačního procesu, Péče o čistotu vod V., 1956, str. 212-220

ŠÁLEK, F. Funkce břehových porostů v přírodní rezervaci Koutské a Zábřežské louky (Diplomová práce) Ostrava.: VŠB-TUO, 2009, 76s
ŠÁLEK, J., TLAPÁK, V., Přírodní způsoby čištění znečištěných povrchových a odpadních vod, IC ČKAIT, 2006

ŠÁLEK J., Netradiční způsoby řešení vodního hospodářství v horních částech povodí, Říční krajina sborník přispěvků z konference, Univerzita Palackého v Olomouci, 2003

VAGNETTI, R. et al., Self-purification ability of a resurgence stream, Chemosphere, 52, 2003

VÁŇA, M., HAMZA, M., KUČERA, J., MLEJNSKÁ, E. Průběh samočištění anaerobních odpadních vod po vypuštění do recipientu, Vodní hospodářství, 7, 2009, str. 4-6

VOCHYÁNOVÁ, P. Zdroje znečištění povrchových vod v území PR Koutské a Zábřežské louky (Diplomová práce) Ostrava: VŠB-TUO, 2009, 92s

VYMAZAL, J., Kořenové čistírny odpadních vod: Dvacet let zkušeností v České republice. Vodní hospodářství, 4, 2009, str. 5-9

Legislativa a normy

Zákon č. 254/2001 Sb., o vodách a o změně některých zákonů (vodní zákon), novelizován čl. II zákona č. 20/2004 Sb.

Nařízení Moravskoslezského kraje č. 3/2007 ze dne 5. 12. 2007 o zřízení přírodní rezervace Koutské a Zábřežské louky a stanovení jejich bližších ochranných podmínek

9 Seznam obrázků, tabulek a grafů

Obr. č. 1: Mapa zájmového území ... 3
Obr. č. 2: Výřez z geologické mapy ... 4
Obr. č. 3: Mapa geomorfologického členění ... 5
Obr. č. 4: Profil kopanou sondou ... 6
Obr. č. 5: Mapa hlavních půdních typů dle TKSP .. 7
Tab. č. 1: Základní charakteristiky klimatické oblasti MT 10 8
Obr. č. 6: Mapa vodotečí v zájmovém území PR 9
Obr. č. 7: Mapa hydrologického pořadí ... 10
Obr. č. 8: Znázornění průběhu změn ukazatelů kvality vody 24
Obr. č. 9: Mapa s vyznačenými odběrovými profily 36
Obr. č. 10: Profil č. 1 v březnu 2010 ... 37
Obr. č. 11: Profil č. 2, březen 2010 ... 38
Obr. č. 12: Profil č. 3, březen 2010 ... 39
Obr. č. 13: Kyslíkové poměry v melioračním kanálu 49
Tab. č. 1: Základní charakteristiky klimatické oblasti MT 10 8
Tab. č. 2: Základní hydrologické údaje toku Štěpánka 10
Tab. č. 3: Procesy a faktory hrající roli v samočištění 12
Tab. č. 4 Výběr z emisních standardů pro masný průmysl 41
Tab. č. 5 Vybrané imisní standardy znečištění povrchových vod 41
Tab. č. 6: Třídy klasifikace čistoty vody dle ČSN 75 7221 41
Tab. č. 7: Mezní hodnoty tříd jakosti vody dle ČSN 75 7221 42
Tab. č. 8: Výsledky jakostních ukazatelů v profilu č. 1 43
Tab. č. 10: Výsledky jakostních ukazatelů v profilu č. 2 45
Tab. č. 11: Výsledky jakostních ukazatelů v profilu č. 3 46
Tab. č. 12: Poměry mezi CHSK$_{Cr}$ a BSK$_{S}$ u profilu č. 3 47
Graf č. 1: Eliminace znečištění mezi profily 1 a 2 48
Graf č. 2: Eliminace znečištění mezi profily 2 a 3 48
10 Seznam příloh

Příloha č. 1: Vývoj ukazatelů celkového fosforu a amoniakálního dusíku u prvního profilu
Příloha č. 2: Vývoj ukazatelů BSK$_5$ a CHSK$_{Cr}$ u prvního profilu
Příloha č. 3: Vývoj ukazatelů celkového fosforu a amoniakálního dusíku u druhého profilu
Příloha č. 4: Vývoj ukazatelů BSK$_5$ a CHSK$_{Cr}$ u druhého profilu
Příloha č. 5: Závislost rozpuštěného kyslíku na teplotě u druhého profilu
Příloha č. 6: Tabulka naměřených hodnot na přítoku za profilem č. 2
Příloha č. 7: Vývoj ukazatelů BSK$_5$ a CHSK$_{Cr}$ u třetího profilu
Příloha č. 8: Vývoj ukazatelů celkového fosforu a amoniakálního dusíku u třetího profilu
Příloha č. 9: Odstranění amoniakálního dusíku mezi profily 1-3
Příloha č. 10: Odstranění celkového fosforu mezi profily 1-3
Příloha č. 11: Foto odebraných vzorků
Příloha č. 12: Detail výpusti odpadní vody u profilu č. 1
Příloha č. 13: Foto vyhnivacího rybníčku mezi profily 1 a 2
Příloha č. 14: Povrchový filtr z mastnoty mezi profily 1 a 2