Disertační práce

Ověření suchých metod odsiřování

Studijní program: 2301 V Strojní inženýrství
Studijní obor: 2302V006 Energetické stroje a zařízení
Doktorand: Ing. Oto Pumprla

Ostrava 2010
Obsah

SEZNAM TABULEK .. 3
SEZNAM GRAFŮ .. 4
SEZNAM OBRÁZKŮ ... 5
SEZNAM POUŽITÉHO ZNAČENÍ ... 7
SEZNAM POUŽITÝCH ZKRATEK ... 8

1. ÚVOD .. 11
 1.1. Emise SO₂ v České republice ... 15
 1.2. Situace v Moravskoslezském kraji (MSK) .. 18
 1.3. Emisní limity pro oxid sířičitý ... 20

2. ROZBOR PROBLEMATIKY ... 22
 2.1. Současný stav řešení problematiky .. 22
 2.2. Síra v uhli .. 23
 2.3. Těžba uhli v ČR .. 24
 2.4. Možnosti snížování emisí SO₂ ... 24
 2.4.1. Odstraňování síry z paliva .. 25
 2.4.2. Odstraňování SO₂ ze spalin ... 25
 2.5. Mokrá vápencová metoda odsíňování ... 27
 2.6. Polosuchá vápenná metoda odsíňování .. 28
 2.7. Suché metody odsíňování ... 31
 2.7.1. Odsíňování vápencem .. 31
 2.7.1.1. Použití vápence při odsíňení spalin z práškových kotlů 31
 2.7.1.2. Použití vápence při odsíňení spalin ve fluidních kotlích 31
 2.7.2. Požadavky na sorbent použitý k odsíňení ... 32
 2.7.3. Odsíňování pomocí hydrogenuhličitanu sodného .. 33
 2.8. Cíle disertační práce .. 34

3. EXPERIMENTÁLNÍ ČÁST ... 35
 3.1. Použité sorbety pro odsíňení ... 35
 3.1.1. BICAR ... 35
 3.1.2. SORBACAL ... 36
 3.2. Popis energetických jednotek kde byl proveden výzkum ... 37
 3.2.1. Popis zařízení č.1 ... 37
 3.2.2. Popis zařízení č.2 ... 39
 3.2.3. Popis zařízení č.3 ... 40
 3.3. Provedené experimenty ... 41
 3.3.1. Testy na zařízení č.1 .. 41
 3.3.2. Testy na zařízení č.2 .. 46
3.3.3. Testy na zařízení č.3 ... 49
3.3.4. Metodika měření plynných emisí ... 51

3.4. Vyhodnocení provedených testů .. 53
3.4.1. Vyhodnocení provedených zkoušek na zařízení č.1 53
3.4.2. Vyhodnocení provedených zkoušek na zařízení č.2 64
3.4.3. Vyhodnocení provedených zkoušek na zařízení č.3 68

3.5. Analýza popílků ... 69
3.5.1. Vyhodnocení popílků ze zkoušek na zařízení č.1 69
 3.5.1.1. Geochemie popílků .. 70
 3.5.1.2. Vyluhovatelnost popílků .. 76
 3.5.1.3. Elementární analýza popílků ... 81
 3.5.1.4. Nedopal v popílku .. 84
 3.5.1.5. Ekotoxicita .. 85
 3.5.1.6. Obsah škodlivin v sušině dle vyhlášky 294/2005 Sb. 86
3.5.2. Vyhodnocení popílků ze zkoušek na zařízení č.2 86
 3.5.2.1. Geochemie popílků .. 86
 3.5.2.2. Mineralogická analýza .. 88
 3.5.2.3. Ekotoxicita .. 89
3.5.3. Vyhodnocení popílků ze zkoušek na zařízení č.3 91
 3.5.3.1. Geochemie popílků .. 91
 3.5.3.2. Mineralogická analýza .. 92
 3.5.3.3. Ekotoxicita .. 93

3.6. Závěr experimentální části ... 94

4. ZÁVĚR ... 97

5. POUŽITÁ LITERATURA ... 98

6. PUBLIKACE AUTORA ... 99
Seznam tabulek

<table>
<thead>
<tr>
<th>Tab.č.</th>
<th>Tabulka název</th>
<th>Stránka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab.č. 1</td>
<td>Skladba výroby elektřiny v ČR v roce 2007</td>
<td>13</td>
</tr>
<tr>
<td>Tab.č. 2</td>
<td>Struktura výroby elektrické energie z obnovitelných zdrojů v ČR v roce 2007</td>
<td>15</td>
</tr>
<tr>
<td>Tab.č. 3</td>
<td>Emise SO2 v České republice</td>
<td>16</td>
</tr>
<tr>
<td>Tab.č. 4</td>
<td>Vývoj emisí SO2 podle jednotlivých kategorií v Moravskoslezském kraji v letech 2002-2007</td>
<td>19</td>
</tr>
<tr>
<td>Tab.č. 5</td>
<td>Největší producenti SO2 v Moravskoslezském kraji</td>
<td>20</td>
</tr>
<tr>
<td>Tab.č. 6</td>
<td>Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 7 zákona</td>
<td>21</td>
</tr>
<tr>
<td>Tab.č. 7</td>
<td>Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 8 zákona</td>
<td>21</td>
</tr>
<tr>
<td>Tab.č. 8</td>
<td>Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 6 zákona</td>
<td>22</td>
</tr>
<tr>
<td>Tab.č. 9</td>
<td>Elektrárny ČEZ, a.s. odsíjící spaliny metodou mokré vápencové vypírky</td>
<td>27</td>
</tr>
<tr>
<td>Tab.č. 10</td>
<td>Obvyklé složení produktu polosuché vápenné metody odsílení spalin</td>
<td>30</td>
</tr>
<tr>
<td>Tab.č. 11</td>
<td>Složení přípravku SORBACAL</td>
<td>36</td>
</tr>
<tr>
<td>Tab.č. 12</td>
<td>Parametry zařízení č.1</td>
<td>39</td>
</tr>
<tr>
<td>Tab.č. 13</td>
<td>Parametry zařízení č.2</td>
<td>40</td>
</tr>
<tr>
<td>Tab.č. 14</td>
<td>Základní parametry zařízení č.3</td>
<td>41</td>
</tr>
<tr>
<td>Tab.č. 15</td>
<td>Složení černého uhlí</td>
<td>45</td>
</tr>
<tr>
<td>Tab.č. 16</td>
<td>Složení proplastku</td>
<td>45</td>
</tr>
<tr>
<td>Tab.č. 17</td>
<td>Přehled provedených testů na zařízení č.2</td>
<td>46</td>
</tr>
<tr>
<td>Tab.č. 18</td>
<td>Přehled testů provedených na zařízení č.3</td>
<td>49</td>
</tr>
<tr>
<td>Tab.č. 19</td>
<td>Naměřené a vypočtené hodnoty pro množství páry 110 t/h a palivo prášek</td>
<td>54</td>
</tr>
<tr>
<td>Tab.č. 20</td>
<td>Naměřené a vypočtené hodnoty pro množství páry 110 t/h a palivo prášek+proplastek</td>
<td>55</td>
</tr>
<tr>
<td>Tab.č. 21</td>
<td>Naměřené a vypočtené hodnoty pro množství páry 180 t/h a palivo prášek+proplastek</td>
<td>56</td>
</tr>
<tr>
<td>Tab.č. 22</td>
<td>Vypočtené hodnoty poměru Na/S pro množství páry 110 t/h a palivo prášek</td>
<td>59</td>
</tr>
<tr>
<td>Tab.č. 23</td>
<td>Vypočtené hodnoty poměru Na/S pro množství páry 110 t/h a palivo prášek+proplastek</td>
<td>59</td>
</tr>
<tr>
<td>Tab.č. 24</td>
<td>Vypočtené hodnoty poměru Na/S pro množství páry 180 t/h a palivo prášek+proplastek</td>
<td>60</td>
</tr>
<tr>
<td>Tab.č. 25</td>
<td>Odstranění HCl při parním výkonu 110 t/h</td>
<td>61</td>
</tr>
<tr>
<td>Tab.č. 26</td>
<td>Odstranění HCl při parním výkonu 180 t/h</td>
<td>62</td>
</tr>
<tr>
<td>Tab.č. 27</td>
<td>Rozbory paliva požitého při testech na zařízení č.1</td>
<td>63</td>
</tr>
<tr>
<td>Tab.č. 28</td>
<td>Emise SO2 na zařízení č.2</td>
<td>65</td>
</tr>
<tr>
<td>Tab.č. 29</td>
<td>Emise SO2 na zařízení č.2 – opaková testy</td>
<td>66</td>
</tr>
<tr>
<td>Tab.č. 30</td>
<td>Vypočtené hodnoty poměru Na/S pro testy na zařízení č.2</td>
<td>66</td>
</tr>
<tr>
<td>Tab.č. 31</td>
<td>Rozbor paliva pojednotlivé zkoušky na zařízení č.2</td>
<td>67</td>
</tr>
<tr>
<td>Tab.č. 32</td>
<td>Emise SO2 na zařízení č.3</td>
<td>68</td>
</tr>
<tr>
<td>Tab.č. 33</td>
<td>Vypočtené hodnoty poměru Na/S pro testy na zařízení č.3</td>
<td>68</td>
</tr>
<tr>
<td>Tab.č. 34</td>
<td>Rozbor paliva pojednotlivé zkoušky na zařízení č.3</td>
<td>68</td>
</tr>
<tr>
<td>Tab.č. 35</td>
<td>Označení vzorků odebraných popílků</td>
<td>69</td>
</tr>
<tr>
<td>Tab.č. 36</td>
<td>Porovnání metod – silikátová analýza a RTG –fluorescence - obsah Na2O v popílků</td>
<td>71</td>
</tr>
<tr>
<td>Tab.č. 37</td>
<td>Výsledky RTG-fluorescenční analýzy – majoritní komponenty</td>
<td>73</td>
</tr>
<tr>
<td>Tab.č. 38</td>
<td>Vyluňovatelnost popílků</td>
<td>77</td>
</tr>
<tr>
<td>Tab.č. 39</td>
<td>Vodný vyluh z popílků</td>
<td>78</td>
</tr>
</tbody>
</table>
Seznam grafů

Graf č. 1 Zdroje prvotní energie v ČR v roce 2008 ... 11
Graf č. 2 Zdroje prvotní energie v ČR v letech 1998-2008.. 12
Graf č. 3 Vývoj výroby a spotřeby elektrické energie v ČR v letech 1988-2008 12
Graf č. 4 Podíl jednotlivých zdrojů na výrobě elektriny v ČR v roce 2007 13
Graf č. 5 Instalovaný výkon fotovoltaických elektráren v ČR ... 14
Graf č. 6 Vývoj emisí SO₂ v ČR v letech 1994-2007 .. 16
Graf č. 7 Emise SO₂ v ČR v roce 2007 .. 17
Graf č. 8 Emise SO₂ v roce 2008 u vybraných tepláren a elektráren.................................. 18
Graf č. 9 Emise SO₂ v Moravskoslezském kraji za rok 2007 .. 19
Graf č. 10 Vývoj těžby uhlí v ČR v letech 1990-2005.. 24
Graf č. 11 Závislost účinnosti odsílení na množství NaHCO₃ při parním výkonu 110 t/h, palivo prášek .. 57
Graf č. 12 Závislost účinnosti odsílení na množství NaHCO₃ při parním výkonu 110 t/h, palivo prášek + propláštěk .. 57
Graf č. 13 Závislost účinnosti odsílení na množství NaHCO₃ při parním výkonu 180 t/h, palivo prášek + propláštěk .. 58
Graf č. 14 Snížení emisí SO₂ v závislosti na množství přípravku BICAR při výkonu 110 t/h........... 58
Graf č. 15 Snížení emisí SO₂ v závislosti na množství přípravku BICAR při výkonu 180t/h/.......................... 59
Graf č. 16 Závislost účinnosti odsílení na molárním poměru Na/S .. 60
Graf č. 17 Závislost koncentrace SO₂ na molárním poměru Na/S ... 61
Graf č. 18 Redukce HCl v závislosti na množství NaHCO₃ při parním výkonu 110 t/h 62
Graf č. 19 Redukce HCl v závislosti na množství NaHCO₃ při parním výkonu 180 t/h 63
Seznam obrázků

Obr.č. 1 Rozprašovací absorpce s předodloučením popílku ... 29
Obr.č. 2 Rozprašovací absorpce bez předodloučení popílku ... 29
Obr.č. 3 Tampella – Lifac .. 30
Obr.č. 4 Přípravka BICAR .. 35
Obr.č. 5 Mikroskopický snímek termicky aktivovaného hydrogenuhličitanu sodného 36
Obr.č. 6 Fotodokumentace Sorbacalu v konfokálním mikroskopu ... 37
Obr.č. 7 Řez kotlem K13 (Zařízení č.1) .. 38
Obr.č. 8 Schéma uspořádání .. 42
Obr.č. 9 Půdorysný nákres ... 43
Obr.č. 10 Zjednodušené schéma mlýnu MG 40 typ GTS ... 44
Obr.č. 11 Pracoviště pro mletí a dávkování přípravku BICAR ... 44
Obr.č. 12 Schéma umístění trysek pro vstřikování sorbentu do spalinovou ... 45
Obr. č. 13 Dávkovací zařízení a zásobník přípravku SORBACAL... 47
Obr. č. 14 Místa dávkování sorbentu BICAR na zařízení č.2... 47
Obr. č. 15 Místo dávkování přípravku Bicar při opakovaných testech... 48
Obr. č. 16 Tryska pro dávkování sorbentu BICAR... 48
Obr. č. 17 Místo dávkování sorbentu SORBACAL na zařízení č.2... 49
Obr. č. 18 Místa pro dávkování sorbentu BICAR na zařízení č.3 ... 50
Obr. č. 19 Místa pro dávkování sorbentu SORBACAL na zařízení č.3... 50
Obr. č. 20 Odběrová hlavice s vyhřívaným keramickým filtrem... 51
Obr. č. 21 Schéma zapojení aparatury pro měření plynných složek spalin... 52
Obr. č. 22 Fotodokumentace charakteru popílku – v konfokálním mikroskopu Olympus....................... 70
Seznam použitého značení

<table>
<thead>
<tr>
<th>Značka</th>
<th>Jednotka</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sup>d</sup></td>
<td>%</td>
<td>Obsah popela v bezvodém vzorku</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>-</td>
<td>Oxid hlinitý</td>
</tr>
<tr>
<td>A<sup>'</sup></td>
<td>%</td>
<td>Obsah popela v surovém vzorku</td>
</tr>
<tr>
<td>CaCO<sub>3</sub></td>
<td>-</td>
<td>Uhličitan vápenatý</td>
</tr>
<tr>
<td>CaO</td>
<td>-</td>
<td>Oxid vápenatý</td>
</tr>
<tr>
<td>Ca(OH)<sub>2</sub></td>
<td>-</td>
<td>Hydroxid vápenatý</td>
</tr>
<tr>
<td>C<sup>daf</sup></td>
<td>%</td>
<td>Obsah uhliku v hořlavině</td>
</tr>
<tr>
<td>CaSO<sub>3</sub></td>
<td>-</td>
<td>Siříčitan vápenatý</td>
</tr>
<tr>
<td>CaSO<sub>4</sub></td>
<td>-</td>
<td>Síran vápenatý</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>-</td>
<td>Oxid železitý</td>
</tr>
<tr>
<td>FeS</td>
<td>-</td>
<td>Sulfid železnatý</td>
</tr>
<tr>
<td>HCl</td>
<td>-</td>
<td>Chlorovodík</td>
</tr>
<tr>
<td>H<sup>daf</sup></td>
<td>%</td>
<td>Obsah vodíku v hořlavině</td>
</tr>
<tr>
<td>HF</td>
<td>-</td>
<td>Fluorovodík</td>
</tr>
<tr>
<td>H<sub>2</sub>S</td>
<td>-</td>
<td>Sirovodík</td>
</tr>
<tr>
<td>H<sub>2</sub>SO<sub>3</sub></td>
<td>-</td>
<td>Kyselina siříčitá</td>
</tr>
<tr>
<td>H<sub>2</sub>SO<sub>4</sub></td>
<td>-</td>
<td>Kyselina sírová</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>-</td>
<td>Oxid draselný</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>Oxid hořčnatý</td>
</tr>
<tr>
<td>MnO</td>
<td>-</td>
<td>Oxid manganatý</td>
</tr>
<tr>
<td>Na<sup>+</sup></td>
<td>mg/l</td>
<td>Koncentrace iontů sodíku</td>
</tr>
<tr>
<td>NaHCO<sub>3</sub></td>
<td>-</td>
<td>Hydrogenuhličitan sodný</td>
</tr>
<tr>
<td>Na<sub>2</sub>CO<sub>3</sub></td>
<td>-</td>
<td>Uhličitan sodný</td>
</tr>
<tr>
<td>NaNO<sub>3</sub></td>
<td>-</td>
<td>Dusičnan sodný</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>-</td>
<td>Oxid sodný</td>
</tr>
<tr>
<td>Na<sub>2</sub>SO<sub>3</sub></td>
<td>-</td>
<td>Siříčitan sodný</td>
</tr>
<tr>
<td>NaOH</td>
<td>-</td>
<td>Hydroxid sodný</td>
</tr>
<tr>
<td>N<sup>raf</sup></td>
<td>%</td>
<td>Obsah dusíku v hořlavině</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>-</td>
<td>Oxid dusičitý</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>-</td>
<td>Oxidy dusíku</td>
</tr>
<tr>
<td>(NO<sub>3</sub>)<sup>+</sup></td>
<td>mg/l</td>
<td>Koncentrace iontů dusičnanů</td>
</tr>
<tr>
<td>O<sup>raf</sup></td>
<td>%</td>
<td>Obsah kyslíku v hořlavině</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>-</td>
<td>Oxid fosforečný</td>
</tr>
<tr>
<td>Q<sup>f</sup></td>
<td>MJ.kg<sup>-1</sup></td>
<td>Výhřevnost surového vzorku paliva</td>
</tr>
<tr>
<td>Q<sub>4</sub><sup>f</sup></td>
<td>MJ.kg<sup>-1</sup></td>
<td>Spalné teplo surového vzorku paliva</td>
</tr>
<tr>
<td>S<sup>raf</sup></td>
<td>%</td>
<td>Obsah síry v hořlavině</td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>-</td>
<td>Oxid křemičitý</td>
</tr>
</tbody>
</table>
Disertační práce

Ověření suchých metod odsiřování

SO₂ \(\text{mg.m}^{-3} \) Oxid sířičitý
SO₃ - Oxid sírový
TiO₂ - Oxid titaničitý
\(V_{\text{daf}} \) % Prchavá hořlavina
\(W' \) % Obsah vody v surovém vzorku

Seznam použitých zkratek

EDĚ Elektrárna Dětmarovice
EHO Elektrárna Hodonín
EO elektrostatický odlučovač
EPR Elektrárna Prunéřov
ETB Elektrárna Třebovice
ETI Elektrárna Tisová
ETU Elektrárna Tušimice
JE jaderná elektrárna
OZE obnovitelné zdroje energie
MO mlýnský okruh
MSK Moravskoslezský kraj
PAU polycyklické aromatické uhlovodíky
PCB polychlorované bífenyly
PVE přečerpávací vodní elektrárny
REZZO registr emisí a zdrojů znečišťování ovzduší
TO tkaninový odlučovač
VDS veřejná distribuční síť
VE vodní elektrárny
VTE větrné elektrárny
ANOTACE

Dizertační práce je zaměřena na ověření vybraných suchých metod odsiřování s ohledem na splnění emisních limitů oxidu sířičitého 200 mg/m³. Hlavní pozornost je zaměřena odsiřování pomocí hydrogenuhličitanu sodného a sorbentu na bázi hydroxidu vápenatého.

Úvodní část je věnována energetické situaci v České republice, využívání energetických zdrojů a jejich skladeb. Protože se u nás nacházejí ložiska uhlí, jsou v energetickém mixu dominantními zdroji uhelné elektrárny, které se na hrubé výrobu elektrické energie podílejí více než 60%. To však přináší problém v podobě emisí SO₂ na kterých se v podstatné míře podílejí zdroje kategorie REZZO1. Přestože došlo od roku 1990 k podstatnému snížení emisí SO₂, stále je ho každoročně vypouštěno do ovzduší přes 200 tis. tun.

V teoretické části jsou uvedeny nejčastěji používané metody eliminace oxidu sířičitého. A to jak odstraňování síry z paliva, tak i metodám odstraňování SO₂ ze spalin. Jsou zde popsány nejčastěji používané metody. Velká pozornost je věnována mokré vápencové vypírce, jako nejčastěji používané metodě v České republice a suchým metodám odsiřování.

V závěru práce je provedeno vyhodnocení provedených testů a to nejen s ohledem na snížení emisí oxidu sířičitého, ale velká pozornost je rovněž věnována rozborům popílků z jednotlivých zkoušek a jejich vyhodnocení. Což je důležité pro další nakládání s tuhými zbytky po spalování. Rovněž je provedeno vzájemné porovnání testů na různých zařízeních.

ANNOTATION

PUMPRLA, O. Verification of dry desulphurization methods. VŠB-TU Ostrava, Faculty of Mechanical Engineering, Department of Power Engineering, 2010, number of pages 100.

Dissertation thesis is aimed to verify dry desulphurization methods with regards to meet the emission limit of sulfur dioxide 200 mg/m³. The main attention is paid particularly on utilization of sodium bicarbonate and sorbent on basis of calcium hydroxide.

The introduction is focused on situation of power industry in Czech Republic. Because there are deposits of coal in Czech Republic, coal fired power plants are the dominant source of energy, which participate on total power generation by 60%. However, this brings a problem in the form of SO₂ emissions in which sources from category REZZO1 essentially participate. Although SO₂ emissions were significantly reduced since 1990, over 200 thousand tons of SO₂ is still emitted to atmosphere each year.

In theoretical part are given the most frequently used methods of sulfur dioxide elimination, both the removal of sulfur from fuel and methods for SO₂ reduction from flue gas. There are described the most commonly used methods. Much attention is paid to the wet desulphurization method as the most commonly used method in the Czech Republic and dry methods of desulphurization.

The experimental section is devoted to tests, which took place in Power plant Trštebovice and Power plant Kolín. Tests were performed on three units. It was boiler with wet bottom furnace, boiler with dry bottom furnace and boiler with stoker fired furnace. Tests only with sodium bicarbonate were performed on one unit. Tests both with sodium bicarbonate and with sorbent on the basis of calcium hydroxide were performed on the remaining units. Sorbent was fed to the flue gas tract downstream the last heat exchanging surface.

Preformed tests are evaluated in conclusion, not only with regard to reduction of sulfur dioxide, but attention is also paid to analysis of ash from each test and their evaluation. This is important for further treatment of solid refuses from combustion. Also tests on different devices are compared.
1. Úvod

Stále se zvyšující životní úroveň a počet obyvatel způsobuje narůstající spotřebu energie a to i přesto, že jsou do provozu zaváděny různé úsporné technologie. To způsobuje nárůst spotřeby fosilních paliv a s tím spojenou tvorbu skleníkových plynů. Proto je v úvodu práce popsána energetická situace v České republice.

Česká republika je při využívání prvotních energetických zdrojů v podstatné míře závislá na tuhých fosilních palivech (47 %) v podobě černého a hnědého uhlí, což je dánou nutnou orientací tuzemské energetiky na uhelné elektrárny. Dále následují kapalná paliva (23 %) a plynná paliva (16 %), jak je patrné z Graf č. 1. Jak se vyvíjela spotřeba prvotních energetických zdrojů od roku 1998, je uvedeno v Graf č. 2.

Graf č. 1 Zdroje prvotní energie v ČR v roce 2008

Vývoj výroby a spotřeby elektrické energie v České republice je zobrazen v Graf č. 3. Z grafu je patrné, že dochází v dlouhodobém horizontu k nárůstu spotřeby elektrické energie. Protože jsme a v nejbližších letech budeme v podstatné míře závislí na energii vyrobené spalováním uhlí, musíme se zaměřit na zvyšování účinnosti zařízení využívajících uhlí k výrobě energie a omezování emisí škodlivin z těchto energetických jednotek. Například v roce 2007 činil podíl vyrobené elektrické energie v ČR ze spalování uhlí 61,4 % [2] jak je uvedeno v Tab.č. 1 a v Graf č. 4.
Jak se jednotlivé zdroje energie podílely na hrubé výrobě elektřiny v roce 2007 je patrné z Tab.č. 1. Za uhelnými elektrárnami byly v produkci elektrické energie jaderné elektrárny, které se na celkově hrubé výrobě elektřiny podílely cca 30 %. Podíl dalších zdrojů byl maximálně v řádu jednotek procent.
Tab. č. 1 Skladba výroby elektřiny v ČR v roce 2007

<table>
<thead>
<tr>
<th>Zdroj energie</th>
<th>Výroba elektřiny brutto [GWh]</th>
<th>Podíl</th>
</tr>
</thead>
<tbody>
<tr>
<td>spalováním uhlí</td>
<td>54 047,10</td>
<td>61,36%</td>
</tr>
<tr>
<td>spalováním biomasy</td>
<td>993,4</td>
<td>1,13%</td>
</tr>
<tr>
<td>spalováním olejů</td>
<td>175,3</td>
<td>0,20%</td>
</tr>
<tr>
<td>spalováním zemního plynu</td>
<td>950,9</td>
<td>1,08%</td>
</tr>
<tr>
<td>spalováním bioplynu a skládkového plynu</td>
<td>198,2</td>
<td>0,23%</td>
</tr>
<tr>
<td>spalováním ostatních plynů</td>
<td>2 890,00</td>
<td>3,28%</td>
</tr>
<tr>
<td>VE</td>
<td>2 089,60</td>
<td>2,37%</td>
</tr>
<tr>
<td>PVE</td>
<td>434,1</td>
<td>0,49%</td>
</tr>
<tr>
<td>JE</td>
<td>26 172,10</td>
<td>29,72%</td>
</tr>
<tr>
<td>VTE</td>
<td>125,1</td>
<td>0,14%</td>
</tr>
<tr>
<td>Čelkem</td>
<td>88 075,80</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Graf č. 4 Podíl jednotlivých zdrojů na výrobě elektřiny v ČR v roce 2007

VE- vodní elektrárny, PVE – přečerpávací vodní elektrárny, JE – jaderné elektrárny, VTE – větrné elektrárny

Graf č. 5 Instalovaný výkon fotovoltaických elektráren v ČR
Tab. č. 2 Struktura výroby elektrické energie z obnovitelných zdrojů v ČR v roce 2007

<table>
<thead>
<tr>
<th>Výrobní skupina</th>
<th>Hrubá výroba elektřiny (MWh)</th>
<th>Dodávka do sítě/netto výroba (MWh)</th>
<th>Podíl na zelené elektřině (%)</th>
<th>Podíl na hrubé výrobu elektřiny (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vodní elektrárny</td>
<td>2 080 600,0</td>
<td>2 080 800,0</td>
<td>61,24%</td>
<td>2,90%</td>
</tr>
<tr>
<td>Malé vodní elektrárny do 1 MW</td>
<td>520 500,0</td>
<td>b.d.</td>
<td>15,25%</td>
<td>0,72%</td>
</tr>
<tr>
<td>Malé vodní elektrárny od 1 do 10 MW</td>
<td>491 500,0</td>
<td>b.d.</td>
<td>14,41%</td>
<td>0,68%</td>
</tr>
<tr>
<td>Velké vodní elektrárny nad 10 MW</td>
<td>1 077 500,0</td>
<td>b.d.</td>
<td>31,58%</td>
<td>1,50%</td>
</tr>
<tr>
<td>Biomasa celkem</td>
<td>968 062,9</td>
<td>403 706,1</td>
<td>28,37%</td>
<td>1,34%</td>
</tr>
<tr>
<td>Stáčka apod.</td>
<td>427 531,2</td>
<td>326 239,7</td>
<td>12,53%</td>
<td>0,58%</td>
</tr>
<tr>
<td>Celulózové výbytky</td>
<td>474 571,1</td>
<td>20 931,7</td>
<td>13,91%</td>
<td>0,66%</td>
</tr>
<tr>
<td>Roštnaté materiály</td>
<td>26 418,3</td>
<td>24 158,7</td>
<td>0,77%</td>
<td>0,04%</td>
</tr>
<tr>
<td>Pelety</td>
<td>39 211,3</td>
<td>32 042,0</td>
<td>1,15%</td>
<td>0,05%</td>
</tr>
<tr>
<td>Ostatní biomasa</td>
<td>334,0</td>
<td>334,0</td>
<td>0,01%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Bioplyn celkem</td>
<td>215 223,0</td>
<td>136 485,0</td>
<td>6,31%</td>
<td>0,30%</td>
</tr>
<tr>
<td>Komunální COV</td>
<td>70 865,4</td>
<td>14 496,6</td>
<td>2,08%</td>
<td>0,10%</td>
</tr>
<tr>
<td>Průmyslové COV</td>
<td>3 291,6</td>
<td>818,0</td>
<td>0,10%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Bioplynové stanice</td>
<td>43 248,2</td>
<td>30 881,4</td>
<td>1,27%</td>
<td>0,05%</td>
</tr>
<tr>
<td>Skládový plyn</td>
<td>97 817,8</td>
<td>92 289,0</td>
<td>2,87%</td>
<td>0,14%</td>
</tr>
<tr>
<td>Tuhé komunální odpady (BRKO)</td>
<td>11 975,1</td>
<td>5 074,0</td>
<td>0,35%</td>
<td>0,02%</td>
</tr>
<tr>
<td>Větrné elektrárny (nad 100 kW)</td>
<td>125 100,0</td>
<td>124 700,0</td>
<td>3,67%</td>
<td>0,17%</td>
</tr>
<tr>
<td>Fotovoltaické systémy (odhad)</td>
<td>2 127,0</td>
<td>1 800,0</td>
<td>0,06%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Kapalina biopaliva</td>
<td>9,0</td>
<td>8,2</td>
<td>0,00%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Celkem</td>
<td>3 412 097,0</td>
<td>2 754 573,3</td>
<td>100,00%</td>
<td>4,74%</td>
</tr>
</tbody>
</table>

Zdroj: Ministerstvo průmyslu, Energetický regulační úřad

1.1. Emise SO₂ v České republice

Emise zdrojů znečištěvání jsou rozděleny dle zákona č. 86/2002 sb. Do čtyř skupin a to na REZZO 1 až REZZO 4 (REZZO –Registr emisí a zdrojů znečištění ovzduší).

- REZZO 1 – Zvláště velké a velké zdroje znečištěvání – stacionární zařízení ke spalování paliv o tepelném výkonu vyšším než 5 MW a zařízení zvlášť závažných technologických procesů
- REZZO 2 – Střední zdroje znečištěvání - stacionární zařízení ke spalování paliv o tepelném výkonu od 0,2 do 5 MW, zařízení závažných technologických procesů
- REZZO 3 – Malé zdroje znečištěvání - stacionární zařízení ke spalování paliv o tepelném výkonu nižším než 0,2 MW
- REZZO 4 – Mobilní zdroje znečištěvání

V letech 1994-1999 došlo k razantnímu snížení emisí SO₂ z 1030 tis.tun/rok na 193 tis.tun/rok (Graf č. 6), které bylo dán postupným zaváděním technologií odsíření na teplárenské a elektrárenské bloky. Jak bylo zaváděno odsíření spalin v elektrárnách společnosti ČEZ a.s. je uvedeno v Tab.č. 9.
Od roku 1999 se množství vypouštěného SO₂ pohybuje v rozmezí 180 – 190 tis.tun za rok. V produkci emisi SO₂ jsou dominantní zvláště velké a velké zdroje (REZZO 1).

Tab. č. 3 Emise SO₂ v České republice

<table>
<thead>
<tr>
<th>Rok</th>
<th>REZZO 1 [t.rok⁻¹]</th>
<th>% z celkových emisí</th>
<th>REZZO 2 [t.rok⁻¹]</th>
<th>% z celkových emisí</th>
<th>REZZO 3 [t.rok⁻¹]</th>
<th>% z celkových emisí</th>
<th>REZZO 4 [t.rok⁻¹]</th>
<th>% z celkových emisí</th>
<th>Celkem [t.rok⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>1030558,5</td>
<td>81,14</td>
<td>60705,0</td>
<td>4,78</td>
<td>178862,3</td>
<td>14,08</td>
<td>1270126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>956299,1</td>
<td>88,25</td>
<td>55080,7</td>
<td>5,08</td>
<td>72198,4</td>
<td>6,66</td>
<td>1083578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>821087,0</td>
<td>87,56</td>
<td>32492,4</td>
<td>3,46</td>
<td>84178,8</td>
<td>8,98</td>
<td>937758,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>598013,7</td>
<td>86,65</td>
<td>20668,8</td>
<td>3,02</td>
<td>72038,3</td>
<td>10,43</td>
<td>690920,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>362605,2</td>
<td>83,93</td>
<td>14549,0</td>
<td>3,37</td>
<td>54884,1</td>
<td>12,70</td>
<td>432038,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>193052,5</td>
<td>73,77</td>
<td>10537,1</td>
<td>4,03</td>
<td>58093,7</td>
<td>22,20</td>
<td>261683,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>191660,0</td>
<td>85,39</td>
<td>7668,2</td>
<td>3,42</td>
<td>22965,7</td>
<td>10,23</td>
<td>2150,8</td>
<td>0,04</td>
<td>224444,7</td>
</tr>
<tr>
<td>2001</td>
<td>193175,9</td>
<td>85,06</td>
<td>7376,6</td>
<td>3,25</td>
<td>24199,0</td>
<td>10,66</td>
<td>2351,4</td>
<td>1,04</td>
<td>227104,9</td>
</tr>
<tr>
<td>2002</td>
<td>192665,4</td>
<td>84,41</td>
<td>6344,2</td>
<td>2,78</td>
<td>26834,0</td>
<td>11,76</td>
<td>2394,0</td>
<td>1,05</td>
<td>228237,6</td>
</tr>
<tr>
<td>2003</td>
<td>186126,1</td>
<td>83,68</td>
<td>5721,7</td>
<td>2,57</td>
<td>28011,2</td>
<td>12,59</td>
<td>2556,1</td>
<td>1,15</td>
<td>222415,1</td>
</tr>
<tr>
<td>2004</td>
<td>184365,0</td>
<td>84,12</td>
<td>5123,6</td>
<td>2,34</td>
<td>26904,9</td>
<td>12,28</td>
<td>2769,1</td>
<td>1,28</td>
<td>219162,6</td>
</tr>
<tr>
<td>2005</td>
<td>184996,8</td>
<td>84,62</td>
<td>4853,8</td>
<td>2,23</td>
<td>27537,2</td>
<td>12,67</td>
<td>598,7</td>
<td>0,28</td>
<td>217386,5</td>
</tr>
<tr>
<td>2006</td>
<td>181040,0</td>
<td>85,88</td>
<td>4182,6</td>
<td>1,98</td>
<td>24978,5</td>
<td>11,85</td>
<td>611,6</td>
<td>0,30</td>
<td>210812,7</td>
</tr>
<tr>
<td>2007</td>
<td>189314,4</td>
<td>87,42</td>
<td>3562,3</td>
<td>1,85</td>
<td>23018,7</td>
<td>10,63</td>
<td>650,7</td>
<td>0,30</td>
<td>216546,1</td>
</tr>
</tbody>
</table>

Zdroj: Informační systém statistiky a reportingu (http://issar.cenia.cz)

Graf č. 6 Vývoj emisí SO₂ v ČR v letech 1994-2007

Jaký měly podíl jednotlivé kategorie zdrojů na celkových emisích SO₂ v roce 2007 je uvedeno v Graf č. 7, z grafu je patrné, že hlavní podíl na emisích SO₂ mají zdroje kategorie REZZO 1.
Emise SO₂ v roce 2007

Graf č. 7 Emise SO₂ v ČR v roce 2007

1.2. Situace v Moravskoslezském kraji (MSK)

Moravskoslezský kraj (MSK) je v porovnání s ostatními kraji hlavním zdrojem oxidu uhelnatého, což je spojeno především s výrobou železa. V emisích oxidu siřičitého je MSK na druhém místě. Přičemž 93 % procent emisi SO₂ připadá na zdroje REZZO 1. V roce 2007 byly emise oxidu siřičitého v MSK 30600 tun, čímž byl překročen strop emisí oxidu siřičitého o 0,9 tis. tun. Zatím co Česká republika splnila národní strop s rezervou 18 %.
Tab. č. 4 Vývoj emisí SO₂ podle jednotlivých kategorií v Moravskoslezském kraji v letech 2002-2007

<table>
<thead>
<tr>
<th>Kategorie zdrojů</th>
<th>Emise oxidu sířičitého [kt]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>REZZO 1</td>
<td>26,7</td>
</tr>
<tr>
<td>REZZO 2</td>
<td>0,5</td>
</tr>
<tr>
<td>REZZO 3</td>
<td>1,4</td>
</tr>
<tr>
<td>REZZO 4</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Zdroj: Český hydrometeorologický ústav

Jak je patrné z porovnání Graf č. 7 a Graf č. 9, mají v Moravskoslezském kraji větší podíl než je v ČR na emisích oxidu sířičitého zdroje REZZO 1, což je dáno velkou koncentrací těžkého průmyslu v kraji.

Graf č. 9 Emise SO₂ v Moravskoslezském kraji za rok 2007

Na 78,2 % celkových emisí v roce 2007 v Moravskoslezském kraji se podílelo 9 zdrojů uvedených v Tab. č. 5. Jedná se o elektrárny, teplárny a podniky zabývající se výrobou železa.
Tab. č. 5 Největší producenti SO2 v Moravskoslezském kraji

<table>
<thead>
<tr>
<th>Název podniku</th>
<th>Emise SO2 [t/rok]</th>
<th>Podíl na celkových emisích v roce 2007 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcelor Mittal Ostrava a.s. -závod 4 - energetika</td>
<td>5396,0</td>
<td>17,6</td>
</tr>
<tr>
<td>Elektrárna Třebovice, Dalkia Česká republika, a.s.</td>
<td>4097,5</td>
<td>13,4</td>
</tr>
<tr>
<td>ČEZ, a.s., Elektrárna Dětmarovice</td>
<td>3597,2</td>
<td>11,8</td>
</tr>
<tr>
<td>Arcelor Mittal Ostrava a.s. -závod 12 (Vysoké pece)</td>
<td>3348,7</td>
<td>10,9</td>
</tr>
<tr>
<td>Třinecké železárny, a.s. - Výroba surového železa</td>
<td>1985,0</td>
<td>6,5</td>
</tr>
<tr>
<td>ČEZ, a.s., Energetika Vítkovice</td>
<td>1850,8</td>
<td>6,0</td>
</tr>
<tr>
<td>Energetika Třinec, a.s. - provozy teplárny</td>
<td>1598,3</td>
<td>5,2</td>
</tr>
<tr>
<td>Teplárna Karviná, Dalkia Česká republika, a.s.</td>
<td>1311,2</td>
<td>4,3</td>
</tr>
<tr>
<td>Teplárna Československé armády, Dalkia Česká republika, a.s.</td>
<td>739,3</td>
<td>2,4</td>
</tr>
<tr>
<td>Celkem</td>
<td>23924,0</td>
<td>78,2</td>
</tr>
</tbody>
</table>

Zdroj: Situacíní zpráva k Programu snížení emisí a imisí znečišťujících látek do ovzduší Moravskoslezského kraje za rok 2007

1.3. Emisní limity pro oxid sířičitý

Emisní limity pro oxid sířičitý byly stanoveny ve Sbírce zákonů č. 146/2007 vydané 30. května 2007 a s účinností od 1. ledna 2008. Pro tuhá paliva jsou emisní limity vztaženy k referenčnímu obsahu kyslíku 6 % a pro kapalná a plynná paliva jsou emisní limity vztaženy k referenčnímu obsahu kyslíku 3 % a platí pro suchý plyn za normálních podmínek (101325 Pa, 0 °C).

Emisní limity pro zvlášť velké spalovací zdroje na které bylo vydáno stavební povolení do 1. července 1987 jsou v Tab. č. 6.
Tab. č. 6 Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 7 zákona

<table>
<thead>
<tr>
<th>Druh paliva a topeniště</th>
<th>Emisní limity SO$_2$ podle jmenovitého výkonu vztažené na normální stavové podmínky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 50 MW</td>
</tr>
<tr>
<td>Tuhé palivo ve fluidním topeništi</td>
<td>800</td>
</tr>
<tr>
<td>Tuhé palivo ve výtavném ohništi</td>
<td>2500</td>
</tr>
<tr>
<td>Tuhé palivo v ostatních topeništích</td>
<td>2500</td>
</tr>
<tr>
<td>Kapalné palivo</td>
<td>1700</td>
</tr>
<tr>
<td>Plynné palivo obecně</td>
<td>35</td>
</tr>
<tr>
<td>Plynné palivo mimo paliv z VDS a koksárenský plyn</td>
<td>900</td>
</tr>
<tr>
<td>Zkapalněný plyn</td>
<td>35</td>
</tr>
</tbody>
</table>

VDS – veřejné distribuční sítě

Hodnoty emisních limitů se pro spalovací zdroje, na něž bylo stavební povolení vydáno od 1.července 1987 do 31.prosince 2002, vztahují k celkovému příkonu zvláště velkého spalovacího zdroje jsou uvedeny v Tab. č. 7.

Tab. č. 7 Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 8 zákona

<table>
<thead>
<tr>
<th>Druh paliva a topeniště</th>
<th>Emisní limity SO$_2$ podle jmenovitého výkonu vztažené na normální stavové podmínky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 - 100 MW</td>
</tr>
<tr>
<td>Tuhé palivo ve fluidním topeništi</td>
<td>500</td>
</tr>
<tr>
<td>Tuhé palivo ve výtavném ohništi</td>
<td>2000</td>
</tr>
<tr>
<td>Tuhé palivo v ostatních topeništích</td>
<td>2000</td>
</tr>
<tr>
<td>Kapalné palivo</td>
<td>1700</td>
</tr>
<tr>
<td>Plynné palivo obecně</td>
<td>35</td>
</tr>
<tr>
<td>Plynné palivo ze zplyňování zbytků po rafinaci</td>
<td>800</td>
</tr>
<tr>
<td>Vysokopecní plyn</td>
<td>800</td>
</tr>
<tr>
<td>Koksárenský plyn a plyny z OP</td>
<td>800</td>
</tr>
<tr>
<td>Zkapalněný plyn</td>
<td>5</td>
</tr>
</tbody>
</table>

Pozn.: OP – plyny vznikající v ocelářském průmyslu, které lze využít jinde

V Tab. č. 8 jsou uvedeny emisní limity pro spalovací zdroje, na něž bylo vydáno stavební povolení od 1.ledna 2003, se vztahují k tepelnému příkonu zvláště velkého spalovacího zdroje.
Tab. č. 8 Emisní limity pro zvláště velké spalovací zdroje podle § 54 odst. 6 zákona

<table>
<thead>
<tr>
<th>Druh paliva a topeníště</th>
<th>Emisní limity SO₂ podle jmenovitého výkonu vztažené na normální stavové podmínky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 - 100 MW</td>
</tr>
<tr>
<td>Biomasa</td>
<td>200</td>
</tr>
<tr>
<td>Tuhé palivo ve fluidním topeníšti</td>
<td>500</td>
</tr>
<tr>
<td>Ostatní tuhá paliva</td>
<td>850</td>
</tr>
<tr>
<td>Kapalné palivo</td>
<td>850</td>
</tr>
<tr>
<td>Plynné palivo obecné</td>
<td>35</td>
</tr>
<tr>
<td>Zemní plyn</td>
<td>35</td>
</tr>
<tr>
<td>Koksárenský plyn a plyny z OP</td>
<td>400</td>
</tr>
<tr>
<td>Vysokopecní plyn</td>
<td>200</td>
</tr>
<tr>
<td>Zkapalněný plyn</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Rozbor problematiky

2.1. Současný stav řešení problematiky

V současnosti se v České republice odstraňují emise SO₂ ze spalin nejčastěji metodou mokré vápencové vypírky nebo suché vápencové metody. Tyto nejčastěji používané metody, ale i další metody snižování emisí SO₂ jsou popsány v následujících kapitolách. Odsiřování pomocí hydrogenuhličitanu sodného zatím u nás není na žádném velkém energetickém zařízení instalováno.

Ve světě je tato metoda odsiřování používána např. v USA, kde tento proces funguje ve 4 uhelných elektrárnách 80 – 575 MWₑ. Ve Velké Británii je tento systém provozován v zařízení o výkonu 120 MW (PoweGen).
2.2. Síra v uhlí

Síra se v uhlí nachází jak v hořlavině, tak v popelovině. Rozlišují se čtyři základní formy síry:

- pyritová (pyrit, markazit)
- síranová (sádrovec)
- sirníková (FeS)
- organická

S výjimkou síranové síry která zůstane v tuhých zbytcích, všechny ostatní formy síry oxidují na SO₂. [1] Reakce spalitelné síry obsažené v palivech s kyslíkem je popsáno následující rovnicí:

\[S + O_2 \rightarrow SO_2 \] (1)

Disociací síranů, reakcí SO₂ s atomárním kyslíkem v plameni a katalytickou oxidací SO₂ vzniká ve spalinách oxid sírový. Jeho obsah ve spalinách dosahuje maximálně 3-5 % celkového obsahu oxidů síry při spalování uhlí.

Oxid sírový dále reaguje s vodní párou obsaženou ve spalinách dle rovnice:

\[SO_3 + H_2O \rightarrow H_2SO_4 \] (2)

Vzniklá kyselina sírová je v plynném stavu pro kovové části minimálně nebezpečná. K problémům může dojít, když se teplota spalin dostane pod rosný bod, dojde ke kondenzaci na studených plochách, například na stěnách kouřových kanálů a může vést k nízkoteplotní korozi.

Celkový obsah síry v uhlí kolísá téměř od nuly až do více než 30 g na kg uhlí podle lokality a v rozpětí desítek procent v průběhu těžby v jedné lokalitě. Udává se absolutním množstvím síry v 1kg uhlí, hmotovým podílem, nebo jako měrná sirnatost \(S_M \) vyjadřující množství síry, které připadá na jednotku energie ve spalovaném palivu [1].

\[S_M = \frac{1000.S_i'}{Q_i} \quad [g.MJ^{-1}] \] (3)

kde \(S_i' \) je obsah síry v [kg.kg⁻¹] a \(Q_i \) je výhřevnost paliva [MJ.kg⁻¹].
2.3. Těžba uhlí v ČR

V České republice došlo od roku 1990 k velkému útlumu těžby uhlí. Tento útlum se týkal jak těžby hnědého, tak černého uhlí. Velmi dobře patrné je to z Graf č. 10.

![Graf č. 10 Vývoj těžby uhlí v ČR v letech 1990-2005](image)

V elektrárenských blocích společnosti ČEZ, a.s. se využívá hnědé uhlí. Jedinou výjimkou je Elektrárna Dětmarovice, kde se spaluje černé uhlí. Obsah síry v sušině u nás využívaných uhlí se pohybuje v rozmezí 0,5 až 3 %.

2.4. Možnosti snižování emisí SO₂

K dispozici je několik možností snižování emisí SO₂. Jednou z možností je změna používaného paliva za palivo bez obsahu síry (např. zemní plyn) nebo s nižším obsahem síry. Další možností je odstraňování síry z paliva, tyto metody jsou ovšem velmi nákladné. Nejčastěji používanou metodou je však odstraňování oxidu sířičitého ze spalin.
2.4.1. Odstraňování síry z paliva

Technologie odstraňování síry z uhlí jsou zatím málo vyvinuté a v praxi se u velkých energetických zdrojů nevyužívají.

Metoda biologického loužení spočívá ve zkrápění uhlí loužicí vodou, přičemž se extrahují vodou rozpustné látky (síranová síra) a oxiduje pyrit. Jeho oxidace probíhá za katalytického účinku sírných železitých bakterií, přitomných v uhlíkové hmotě a důlní vodě. Síra odchází z procesu v loužici vodě jako silně zředěná kyselina sírová. Obsah síry v uhlí tak lze snížit až o 50%. Problémy této metody spočívají v potřebě značného množství loužicí vody (důlní voda, nebo čistá voda s uměle připraveným živým roztokem) a době trvání procesu, která představuje desítky dní.

Fyzikální separaci je možné odstranit síru pyritickou. Je to minerál, který se v uhlíkové hmotě v různých velikostech, má víc než dvakrát větší měrnou hmotnost než je maximální měrná hmotnost uhlí a je magneticky vodivý. Tříděním, flotací, magnetickou, odstředivou nebo fluidní separací lze obsah pyritické síry snížit o 30-60%. Stupeň odsíření rozemletého uhlí závisí na obsahu síry, poměru pyritické a organické síry, velikosti zrn pyritu a metodě separace.

2.4.2. Odstraňování SO₂ ze spalin

V současnosti se jako dominantní metody odsířování používají metody vápencové. Odsířovací procesy je možné rozdělit podle různých hledisek.

Podle zpracování činidla, které bylo použito k odstranění SO₂ se dělí na:

1) **Průtočné procesy** – činidlo použité pro zachycení SO₂ se na něj váže a vystupuje s ním z procesu ve formě produktu. Příkladem může být vázání SO₂ vápencem jako dihydrát síranu vápenatého (sádrovec):

 \[2\text{CaCO}_3 + 2 \text{SO}_2 + \text{O}_2 + 4\text{H}_2\text{O} = 2\text{CaSO}_4.2\text{H}_2\text{O} + 2\text{CO}_2 \] \hspace{1cm} (4)

2) **Regenerační procesy** – použité činidlo se regeneruje a vrací se zpět do procesu. Například natrium sulfítový proces, při kterém je vstupujícím činidlem Na₂SO₃ vznikající z NaOH nebo Na₂CO₃ podle reakce:

 \[2\text{NaOH} + \text{SO}_2 = \text{Na}_2\text{SO}_3 + \text{H}_2\text{O} \] \hspace{1cm} (5)

 \[\text{Na}_2\text{SO}_3 + \text{SO}_2 + \text{H}_2\text{O} = 2\text{NaHSO}_3 \] \hspace{1cm} (6)

který se ohřevem regeneruje zpět:

 \[2\text{NaHSO}_3 = \text{Na}_2\text{SO}_3 + \text{H}_2\text{O} + \text{SO}_2, \] \hspace{1cm} (7)

25
Uvolněný oxid siňčitý se dále zpracovává podle potřeby na S, H₂SO₄ nebo na kapalný SO₂.

Regenerační procesy jsou méně rozšířené než metody průtočné, protože jsou díky materiálové a energetické náročnosti oproti procesům průtočným nákladnější. Rovněž produkty odsíření se obtížnější uplatňují.

Další rozdělení je na:

1) **suché metody** - jsou sorpční a katalytické procesy probíhající na pevných sorbentech nebo katalysátorech při teplotách nad 100 ºC. Příkladem může být odsíření zažívací sodou.

2) **polosuché metody** - především v současnosti používané ve spalovnách, kde reakčním činidlem je převážně hydroxid vápenatý

3) **mokré metody** – za mokré metody lze považovat vypírání SO₂ vodními roztoky nejčastěji alkalicky reagujících látek. Příkladem mokrých procesů je mokrá vápencová vypírka, kde sorpce SO₂ probíhá při cca 60 ºC ve vodní suspenzi vápna nebo vápence podle reakce:

\[2\text{CaCO}_3 + 2\text{SO}_2 + \text{O}_2 + 4\text{H}_2\text{O} = 2\text{CaSO}_4.2\text{H}_2\text{O} + 2\text{CO}_2 \]

(8)

Jiným kritériem dělení odsířovacích procesů je fyzikální nebo chemický charakter procesu, podle kterého se metody mohou rozdělit na:

1) absorpční – mokrá vápencová metoda nebo natriumsulfítový proces

2) adsorpční – adsorpce SO₂ na silikagel, aktivní uhlí

3) procesy katalytické
2.5. Mokrá vápencová metoda odsiřování

Tato metoda patří mezi nejrozšířenější metody odsiřování spalin v České republice i ve světě. V Tab.č. 9 jsou uvedeny elektrárny společnosti ČEZ, a.s., kde je tato metoda odsiřování spalin využívána.

Tab.č. 9 Elektrárny ČEZ, a.s. odsiřující spaliny metodou mokré vápencové vypírky

<table>
<thead>
<tr>
<th>Elekrána</th>
<th>Rok uvedení odsiření do provozu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počerady</td>
<td>1996</td>
</tr>
<tr>
<td>Tušimice II</td>
<td>2009</td>
</tr>
<tr>
<td>Prunéřov I</td>
<td>1995</td>
</tr>
<tr>
<td>Prunéřov II</td>
<td>1996</td>
</tr>
<tr>
<td>Mělník II</td>
<td>1998</td>
</tr>
<tr>
<td>Mělník III</td>
<td>1998</td>
</tr>
<tr>
<td>Tisová</td>
<td>1997</td>
</tr>
<tr>
<td>Chvaletice</td>
<td>1997-8</td>
</tr>
<tr>
<td>Dětmarovice</td>
<td>1998</td>
</tr>
</tbody>
</table>

Metoda spočívá ve vypírání oxidu sířitého a dalších kyselých složek (HCl, HF) vodní suspenzí vápna nebo vápence, která probíhá nejlépe při teplotě okolo 60 °C dle reakce popsané rovnicí (8).

Řídícím mechanismem procesu je rychlost rozpouštění vápence. Tento proces lze urychlit:
- zmenšením velikosti částic a zvýšením povrchu vápence jemnějším rozemletím
- zvýšením stechiometrického poměru CaCO₃:SO₂. V praxi stechiometrie CaCO₃ : SO₂ bývá 1,02 – 1,07 :1 v závislosti na účinnosti pračky.
- zvýšením skrápěcího poměru (poměr objemu suspenze k objemu spalin za standartních podmínek)
- přídavkem aditiv – např. organické kyseliny, Mg²⁺
- větší zádrži suspenze v jímce absorbéru
- udržováním pH v kyselejší oblasti

Během procesu probíhá několik rovnovážných dějů. Nejdříve dochází k rozpouštění SO₂ a CO₂ ve vodě a tvorba kyselin:

\[
\text{SO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{SO}_3 \quad (9)
\]
\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \quad (10)
\]
Poté dochází k disociaci kyseliny siřičité a uhličité:

\[\begin{align*}
H_2SO_3 & \rightleftharpoons H^+ + HSO_3^- \quad (11) \\
HSO_3^- & \rightleftharpoons H^+ + SO_3^{2-} \quad (12) \\
H_2CO_3 & \rightleftharpoons H^+ + HCO_3^- \quad (13) \\
HCO_3^- & \rightleftharpoons H^+ + CO_3^{2-} \quad (14)
\end{align*} \]

Ovšem při disociaci se uvolňují ionty vodíku, které způsobují snížení hodnoty pH. Tím se snižuje absorpční schopnost prací suspenze. Odstranění iontů vodíku se děje neutralizací podle:

\[\begin{align*}
CaCO_3 + 2H^+ + 2HSO_3^- & \rightleftharpoons Ca(HSO_3)_2 + H_2O + CO_2 \\
CaCO_3 + H^+ + HCO_3^- & \rightleftharpoons Ca(HCO_3)_2 \\
Ca(HCO_3)_2 + 2H^+ + SO_3^{2-} & \rightleftharpoons CaSO_3 + 2H_2O + 2CO_2
\end{align*} \]

Rychlost reakce pohlcování SO\(_2\) a tvorba siřičitanu vápenatého závisí na velikosti reakčního povrchu mezi spalinami a absorpčním roztokem a na rozpusťnosti vápence. Rychlost rozpuštění vápence je funkční koncentrace vodíkových iontů a klesá při poklesu pH. Negativní vliv na rychlost štěpení vápence mají ionty vápníku, chloridů a siřičitanů.

Konečný produkt – sádrovec – vzniká v oxidační zóně prostoru absorbéru oxidací hydrogensiřičitanu vápenatého

\[Ca(HSO_3)_2 + 0,5 O_2 + H_2O \rightleftharpoons CaSO_4 + H_2 + H_2SO_4 \quad (18) \]

Potřebný kyslík se do oxidační zóny dopravuje vháněním vzduchu. Kyselina sírová reaguje s přebytečným vápencem na sádrovec a kyselinu uhličitou

\[H_2SO_4 + CaCO_3 + 2 H_2O \rightleftharpoons CaSO_4 \cdot 2 H_2O + H_2O + CO_2 \quad (19) \]

2.6. Polosuchá vápenná metoda odsiřování

Při této metodě je vodní suspenze vápna rozprašována v reaktoru, jímž je rozprašovací sušárna. Kde dochází k adiabatickému odpaření vody ze suspenze a ochlazení spalin na optimální teplotu reakce:

\[Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O \quad (20) \]

Vedle siřičitanu vápenatého se tvoří oxidací i malé množství síranu:

\[2CaSO_3 + O_2 \rightarrow 2 CaSO_4 \quad (21) \]
Těmito rovicemi posadané procesy lze realizovat třemi způsoby.

U první varianty jsou spaliny vystupující z kotle nejprve odprášeny v elektrostatickém odlučovači a poté vstupují do sušárny, kde se dostávají do styku s vápennou suspenzí. Reakce probíhá v kapličce suspenze. Odpařením vody ze suspenze vzniká pevný produkt, jehož část se odvádí spodním dílem sušárny a část odchází do tkaninového nebo elektrostatického odlučovače. Před vypuštěním komínem se spaliny případně ohřejí.(Obr.č. 1)

Obr.č. 1 Rozprašovací absorpce s předodlučením popílku

Pozn.: TO – tkaninový odlučovač, EO - elektroodlučovač

Při druhé variantě procesu jsou spaliny včetně neodloučeného popílku vedeny do sušárny, kde se přidává vápenná suspenze. Část výsledného produktu se recirkuluje.(Obr.č. 2).

Obr.č. 2 Rozprašovací absorpce bez předodlučení popílku

U poslední z variant se jedná o kombinaci suché vápencové aditivní technologie a polosuché vápencové metody. Vápenec se nastřikuje do kotle na práškové palivo, v němž kalcinuje a částečně zachycuje SO₂. Poté se spaliny v akčním reaktoru ochlazují nástřikem vody pro dosažení optimální teploty odsílení. Výsledný produkt je odstraněn v tkaninovém nebo elektrostatickém odlučovači.(Obr.č. 3)
U této metody odsířování je nutné dosáhnout takové teploty spalin, která se co nejvíce blíží k rosnému bodu vody ve spalinách. Vedle samotného dávkování vápenné suspenze je možné k dosažení potřebné teploty odpařovat v reaktoru i samostatně přiváděnou vodu.

Problémem je využití produktů odsířování. Obvyklé složení tohoto produktu je uvedeno v Tab.č. 10. Kvůli vysokému obsahu CaO má ve směsi s popílkem vlastnosti chudé maltoviny vhodné pro zakládání důlních stěn a pro výstavbu dna a stěn skládek komunálního odpadu.

Tab.č. 10 Obvyklé složení produktu polosuché vápenné metody odsíření spalin

<table>
<thead>
<tr>
<th>Látka</th>
<th>Složení (bez odloučení popílku) [%hm.</th>
<th>Složení (s odloučením popílku) [%hm.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Popílek</td>
<td>47,0</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>H₂O volná</td>
<td>3,0</td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>H₂O krystalově vázaná</td>
<td>4,2</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>CaSO₃</td>
<td>25,0</td>
<td>52,7</td>
<td></td>
</tr>
<tr>
<td>CaSO₄</td>
<td>6,8</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>9,5</td>
<td>12,3</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>0,9</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>CaF₂</td>
<td>0,3</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0,9</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>Inert</td>
<td>2,4</td>
<td>4,7</td>
<td></td>
</tr>
</tbody>
</table>
2.7. Suché metody odsiřování

2.7.1. Odsiřování vápencem

Suchá metoda odsiřování pomocí vápence probíhá při vysokých teplotách a lze ji aplikovat jak u práškových kotlů, tak i u kotlů fluidních. U práškových kotlů není dosahováno tak dobrých výsledků jako u kotlů fluidních.

2.7.1.1. Použití vápence při odsiření spalin z práškových kotlů

Spočívá v nastříkování jemně rozemletého vápence se vzdotem do spalin v kotli nebo přidávání mletého vápence do uhlí před mlýny. Při procesu probíhají reakce:

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \quad (22)
\]
\[
\text{CaO} + \text{SO}_2 + 0,5 \text{O}_2 \rightarrow \text{CaSO}_4 \quad (23)
\]

Kalcinace vápence probíhá při teplotách nad 750 °C, reakce mezi CaO a SO₂ probíhá významněji rychlostí mezi 600 – 1100 °C. Nad touto teplotou dochází k desaktivaci vzniklého kalcinátu jako důsledek změny porézní struktury. CaSO₃ při teplotách nad 600 °C není termostabilní, disproporcionuje se reakcí:

\[
4 \text{CaSO}_3 \rightarrow 3 \text{CaSO}_4 + \text{CaS} \quad (24)
\]

který dále oxiduje na CaSO₄.

Vápenec musí být dostatečně rozemlet, minimálně 90 % částic < 60 μm. Produktem reakce je CaSO₄ vedle značného množství volného CaO z vápence a popílku ze spalování uhlí.

2.7.1.2. Použití vápence při odsiření spalin ve fluidních kotlích

Zatím co při aplikaci vápence do práškových kotlů nelze dosáhnout vysoké proreagování kalcinátu pro omezenou dobu styku obou reagujících fází, u fluidního spalování paliv je prodloužení vápence ve fluidní vrstvě nepoměrně delší a může v průměru dosáhnout i řádově tisíce sekund. Při této době styku a při optimální teplotě sulfatace 800 – 850 °C, kdy kalcinace vápence je následována sulfatací, se uplatní i difúze SO₂ přes vrstvu CaSO₄ v pórech kalcinátu. Sulfatace kalcinátu je i podporována charakterem fluidního procesu, kde dochází k otěru vzniklého CaSO₄ na povrchu zrn a tím i k urychlení difúze SO₂ k volněmu CaO v částicích.
2.7.2. Požadavky na sorbent použitý k odsíření

U metod odsíření použitých v České republice se nejčastěji používá vápenec, vápno nebo vápenný hydrát.

Sotřeba sorbentu je ovlivněna především:
- obsahem síry v palivu
- požadovanou účinností odsíření
- použitým poměrem Ca/S
- typem a čistotou sorbentu
- reaktivitou a dalšími specifickými vlastnostmi sorbentu
- podmínkami pro průběh příslušných reakcí

Pro zajištění dobré ekonomie odsíření vápencovými sorbenty je nutné definovat požadavky na jejich kvalitu, zejménachemickou čistotu, melitelnost, granulometrii, reaktivitu a rozpustnost.

Chemické složení – vápenec by měl být co nejčistší, protože chemická reakce probíhá mezi CaO a SO₂. Další látky obsažené ve vápenci jsou balastem s výjimkou MgCO₃, který však reaguje s SO₂ pouze v omezené míře. To může být zavádějící pro suchou metodu ve fluidních kotlích, protože u velice čistých vápcenců je nízká poréznost, (mramor) a nelze ji zvýšovat během procesu, kdežto, když jsou ve vápenci příměsi např. jilových materiálů, lze očekávat, že díky jejich chemické přeměně může dojít paradoxně ke zvýšení měrného povrchu částice – zvyšují svůj objem

Melitelnost – s ohledem na náklady na mletí by měl být vápenec co nejlépe melitelný

Granulometrie – optimální velikost částic vápence pro prací suspenze závisí na kvalitě vápence a pohybu se v rozsahu 100% pod 40 mikronů až 100% pod 90 mikronů. Pro odsířování ve fluidních kotlích nesmí být částice příliš malé, protože by jejich doba setrvání v ohništi byla kratší, ale zase potřeňují velkou reakční plochu, takže je potřeba zvolit vhodný kompromis.

Reaktivita – udává kolik procent vzorku sorbentu reaguje s SO₂.

Rozpustnost – určuje koncentraci sorbentu v suspenzi. Např. vápno je rozpustnější než vápenec. Ve vodě se rozpustí při 20 °C 0,12 g/l vápna, ale pouze 0,014 g/l CaCO₃.

Pro mokrou vápencovou metodu jsou obvyklé tyto požadavky na sorbent:
- obsah CaCO₃ ve vápenci nad 95 % hm.,
- obsah MgO max. 2 % hm.,
- rozpustný SiO₂ do 2 % hm.,
- obsah Al₂O₃ max. 0,5 % hm.,
- obsah Fe₂O₃ do 0,25 % hm.,
- nulový zbytek na síťu 0,2 mm,
- max. 10% hm. zbytek na síťu 0,09 mm,
2.7.3. Odsiřování pomocí hydrogenuhličitanu sodného

Jako alternativní metoda odsiřování k vápencovým metodám se v současnosti jeví tato metoda, která má průtočnější charakter. Rozkladem hydrogenuhličitanu sodného vzniká vysoko reaktivní Na₂CO₃, který reaguje snadno s SO₂ ve spalinách podle schématu:

\[
2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad (25)
\]
\[
\text{Na}_2\text{CO}_3 + \text{SO}_2 \rightarrow \text{Na}_2\text{SO}_3 + \text{CO}_2 \quad (26)
\]

Přičemž menší podíl sířitranu pak oxiduje na síran.

Hydrogenuhličitan sodný reaguje také s chlorovodíkem při vzniku chloridu sodného dle (27) a s fluorovodíkem (28) při vzniku fluoridu sodného

\[
\text{NaHCO}_3 + \text{HCl} \rightarrow \text{NaCl} + \text{H}_2\text{O} + 2\text{CO}_2 \quad (27)
\]
\[
\text{NaHCO}_3 + \text{HF} \rightarrow \text{NaF} + \text{H}_2\text{O} + \text{CO}_2 \quad (28)
\]

Hydrogenuhličitan sodný je hygroskopický a má tendenci se slepovat v případě, že je velmi jemně namletý (dodává se jako hrubozrnný a na požadovanou granulometrii se přípravuje bezprostředně před aplikací do spalinového traktu).

Prokázané problémy a výhody použití hydrogenuhličitanu sodného:

Výhody:
- Vysoká účinnost odsiření
- Schopnost hydrogenuhličitanu sodného NaHCO₃ je také reagovat s NOx obsaženým ve výstupních spalinách z kotle, převážně reaguje s oxidem dusičitým NO₂, který je ale v místě vstřiku hydrogenuhličitanu sodného obsažen ve spalinách jen v minimálních koncentracích, tedy účinnost eliminace NOx je minimální, ale je možná. Výsledkem reakce (29) a (30) hydrogenuhličitanu sodného s oxidem dusičitým NO₂ obsaženým ve spalinách je produkt na bázi dusičnanu sodného NaNO₃.

\[
2\text{NaHCO}_3 + (\text{teplo}) \rightarrow \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad (29)
\]
\[
\text{Na}_2\text{CO}_3 + \text{N}_2\text{O}_2 + 1/2\text{O}_2 \rightarrow 2\text{NaNO}_3 + \text{CO}_2 \quad (30)
\]

Nevýhody
- Velké provozní náklady spojené s použitím hydrogenuhličitanu sodného (pořizovací náklady přípravku)
- Ukládání produktů odsiření na bázi síranu sodného Na₂SO₄ a také problematická likvidace těchto produktů.
Oproti suché aditivní vápencové technologii, je tento proces při stejném mechanismu reakce „tuhá látka – plyn“ odlišný vysokým proreagováním iontu Na⁺. To je způsobeno tím, že kalcinací NaHCO₃ vznikající Na₂CO₃ se nachází v přechodu od jedné krystalické struktury k druhé, nachází se v neuspořádaném stavu, přičemž vykazuje vysokou reaktivitu, nejvyšší ze všech porovnávaných pevných sorbentů.

2.8. Cíle dizertační práce

Dizertační práce je zaměřena na možnosti použití různých sorbentů, především však hydrogenuhličitanu sodného pro suché odsiřovací metody. Hlavním úkolem je provedení testů na reálných energetických zařízeních a to v takovém rozsahu a bylo možné případně přejít na trvalý provoz.

Hlavními cíli tohoto výzkumu je:

- Posouzení vhodného způsobu dávkování – nalezení vhodného místa pro dávkování sorbentu
- Posouzení vlivu sorbentů na tuhé zbytky po spalování – provedení rozborů tuhých zbytků po spalování a jejich vyhodnocení
- Provedení optimalizace dávkování – na základě provedených zkoušek nejvhodnější místo pro dávkování z hlediska účinnosti odsiření
- Posouzení vlivu granulometrie sorbentu na účinnost odsiření
3. Experimentální část

3.1. Použité sorbety pro odsíření

V této práci byla zkoumána odsířovací metoda s hydrogenuhlíčitanem sodným (sodou bikarbonou) a sorbentem na bázi hydroxidu vápenatého, jakožto alternativy k současným metodám odsířování založeným primárně na klasické metodě vápencové. Zájem o tuto metodu je způsoben nízkými investičními náklady a krátkou dobou realizace investice.

3.1.1. BICAR

Hydrogenuhličitan sodný NaHCO₃ je bílý prášek bez výrazné chuti a bez zápachu (Obr. č. 4). Materiál vyrobila a dodala v surovém stavu firma SOLVAY CHEMICALS GmbH, která tento materiál distribuuje pod obchodním názvem BICAR.

![Přípravek BICAR](image)

Obr. č. 4 Přípravek BICAR

Mikroskopický snímek již termicky aktivovaného hydrogenuhlíčitanu sodného je na Obr. č. 5.
Obr. č. 5 Mikroskopický snímek termicky aktivovaného hydrogenuhličitanu sodného

3.1.2. SORBACAL

SORBACAL je směs hydroxidu vápenatého Ca(OH)$_2$ a hydroxidu hořčnatého Mg(OH)$_2$, případně hydroxidu vápenatohořčnatého CaMg(OH)$_2$. Výrobek je na bázi hašeného vápna, bílý prášek bez zápachu a chuti. V roztoku s vodou tvoří vápenné mléko. Povrch jednotlivých zrn sorbentu je speciálně upraven pro dosažení vysoké reaktivity s plynovými složkami spalin typu SO$_2$, SO$_3$, HCl a HF. Výrobcem použitého sorbentu byla Vápenka Čertovy schody a.s. Materiál pro zkoušky byl dodán v sypkém stavu v požadované granulometrii pod 30 μm.

<table>
<thead>
<tr>
<th>Složka</th>
<th>min. [%]</th>
<th>max. [%]</th>
<th>charakteristické rozpětí [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO$_{tot}$</td>
<td>71,5</td>
<td>71,7 - 74,1</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>3,5</td>
<td>1,8 - 3</td>
<td></td>
</tr>
<tr>
<td>vlhkost</td>
<td>1,0</td>
<td>0,25 - 0,5</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2,0</td>
<td>0,40 - 0,65</td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0,5</td>
<td>0,00 - 0,09</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>0,5</td>
<td>0,04 - 0,09</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>2,0</td>
<td>0,07 - 0,2</td>
<td></td>
</tr>
<tr>
<td>SO$_3$</td>
<td>0,3</td>
<td>0,12 - 0,18</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0,005 - 0,008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(OH)$_2$</td>
<td>91</td>
<td>91 - 95</td>
<td></td>
</tr>
<tr>
<td>H$_2$O hydrátová</td>
<td>22,1 - 23,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Po odsiřovacích testech byla provedena na konfokálním mikroskopu fotografická dokumentace Sorbacalu. Na následujících fotografiích (Obr. č. 6) jsou zachyceny velmi jemné částice.
Sorbacalu, jejichž velikost je pod $< 1\mu m$. Z obrázků je ale zřejmé, že částice se shlukují do větších agregátů. Je otázkou, je-li tento proces ovlivňován vlhkostí (nebyla stanovena) nebo elektrostatickým potenciálem velmi jemných částic.

Obr.č. 6 Fotodokumentace Sorbacalu v konfokálním mikroskopu

3.2. Popis energetických jednotek kde byl proveden výzkum

3.2.1. Popis zařízení č.1

Zařízení č.1 se nachází v Teplárně Třebovice v Ostravě – Třebovicích, tvořenou třemi linkami ET1 – ET3, vlastněnou společností Dalkia Česká republika, a. s. Linka ET1 obsahuje 3 kotle o jednotlivém parním výkonu cca 80 t/h a vyprodukovánými emisemi SO$_2$ cca 1200 t/rok, linku ET2 tvoří
3 kotle o jednotlivém parním výkonu 220 t/h a vyprodukovanými emisemi SO₂ cca 3600 t/rok, a linka ET3 obsahuje 2 kotle o vyprodukovaných emisí SO₂ cca 61 t/rok. Odsiřovací zkoušky byly provedeny na kotli K13, který je součástí linky ET2. Parametry kotle K13, jsou uvedeny v Tab.č. 12. Řez kotlem je uveden na Obr.č. 7.

Kotel je s tavnou komorou v běžném dvoutahovém uspořádání, stěny spalovací komory jsou tvořeny trubkami výparníku. V rozích spalovací komory je umístěno 12 proudových hořáků. Ve dně spalovací komory je výtokový otvor pro periodický odvod strusky v tekutém stavu.

Obr.č. 7 Řez kotlem K13 (Zařízení č.1)

Mlýnice je vybavena trubnatými mlýny 2x15 t/h paliva. Uhelný prášek se mezibunkruje v zásobnících uhelného prášku.
Spaliny z kotelů jsou zavedeny do třístudňového elektrostatického odlučovače.

Kotel K13 je práškový, strmotrubnatý s výtavným ohništěm a přirozenou cirkulací. Je určen pro spalování ostravského prachu.

Tab. č. 12 Parametry zařízení č.1

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovitý výkon kotle</td>
<td>161 MW<sub>t</sub></td>
</tr>
<tr>
<td>Minimální výkon kotle</td>
<td>80 MW<sub>t</sub></td>
</tr>
<tr>
<td>Parní výkon při jmenovitém výkonu kotle</td>
<td>220 t.h<sup>-1</sup></td>
</tr>
<tr>
<td>Parní výkon minimálním výkonu</td>
<td>110 t.h<sup>-1</sup></td>
</tr>
<tr>
<td>Výpočtový přetlak</td>
<td>13,90 MPa</td>
</tr>
<tr>
<td>Zkušební přetlak</td>
<td>18,07 MPa</td>
</tr>
<tr>
<td>Tlak přehřáté páry na výstupu z kotle</td>
<td>10,89 MPa</td>
</tr>
<tr>
<td>Teplota přehřáté páry na výstupu z kotle - jmenovitá</td>
<td>535°C</td>
</tr>
<tr>
<td>Teplota přehřáté páry na výstupu z kotle - maximální</td>
<td>543°C</td>
</tr>
<tr>
<td>Teplota přehřáté páry na výstupu z kotle - minimální</td>
<td>527°C</td>
</tr>
<tr>
<td>Teplota napájecí vody- jmenovitá</td>
<td>180°C</td>
</tr>
<tr>
<td>Teplota napájecí vody- maximální</td>
<td>200°C</td>
</tr>
<tr>
<td>Teplota napájecí vody- minimální</td>
<td>110°C</td>
</tr>
</tbody>
</table>

3.2.2. Popis zařízení č.2

Kotel K8 se nachází v Elektrárně Kolín, která patří společnosti Dalkia Česká republika, a.s.

Jedná se o práškový kotel s granulačním ohništěm s přímým fukáním prášku, se čtyřmi tlukadlovými mlýny. Je určen pro spalování hnědouhého hrubopráchu. Najížděcím a stabilizačním palivem pro kotel je zemní plyn. Palivo je zavedeno do sušících šachet mlýnů, které jsou tvořeny membránovými stěnami výparníku. V šachtách mlýnů dochází k dílčímu vysušení paliva. Toto palivo je následně rezemleto tlukadlovými mlýny a vedeno přes obratové třídiče do osmi vířivých práškových hořáků které mají regulované přívody vzduchu. Sušicí šachty mlýnů jsou rovněž osazeny přívody hasící vody a páry. Mlýnské okruhy jsou dimenzovány tak, že pro běžný provoz kotle postačují tři okruhy v provozu, z provozních důvodů se doporučuje, zejména při výkonech nad 70 t/h, provozovat všechny 4 mlýny.

V čele kotle jsou umístěny dva monoblokové zapalovací a stabilizační plynové hořáky firmy „Weishaupt“ o celkovém výkonu 20,4 MW. Hořáky slouží pro najetí kotle a dále pro stabilizaci spalování v pásmech pod 40 % jmenovitého výkonu, nebo při náhlych, nečekaných změnách výkonů (směrem dolů), nebo dojde-li k nestabilnímu spalování vlivem zhoršení kvality paliva.

Spaliny z kotle K8 jsou zavedeny do třísekového elektrostatického odlučovače popíliku.
Tab.č. 13 Parametry zařízení č.2

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>jmenovitý parní výkon kotle</td>
<td>110 t/h</td>
</tr>
<tr>
<td>jmenovitý tepelný výkon kotle</td>
<td>85,44 MW</td>
</tr>
<tr>
<td>ekonomický parní výkon kotle</td>
<td>80 t/h</td>
</tr>
<tr>
<td>účinnost kotle při jmenovitém výkonu</td>
<td>89±1 %</td>
</tr>
<tr>
<td>účinnost kotle při výkonu 40%</td>
<td>84,5 %</td>
</tr>
<tr>
<td>jmenovitý tlak (absolutní)</td>
<td>4,3 MPa</td>
</tr>
<tr>
<td>jmenovitá teplota přehřáté páry</td>
<td>440 °C</td>
</tr>
<tr>
<td>minimální výkon kotle bez stabilizace</td>
<td>50 t/h</td>
</tr>
<tr>
<td>jmenovitá teplota napájecí vody</td>
<td>120 °C</td>
</tr>
<tr>
<td>použité palivo</td>
<td>hnědé uhli ze severočeského revíru - hruboprach</td>
</tr>
<tr>
<td>průměrná výhřevnost paliva</td>
<td>13,69 MJ/kg</td>
</tr>
<tr>
<td>podtlak spalin za kotlem při průměrné výhřevnosti paliva při jm.výkonu</td>
<td>-1368 Pa</td>
</tr>
<tr>
<td>obsah O₂ v suchých spalinách za kotlem při výhřevnosti paliva</td>
<td>3,55 %</td>
</tr>
<tr>
<td>množství vlhkých spalin při jmenovitém výkonu</td>
<td>134484 Nm³/h</td>
</tr>
</tbody>
</table>

3.2.3. **Popis zařízení č.3**

Kotel K5 se nachází v Elektrárně Kolín, která patří společnosti Dalkia Česká republika, a.s.

Kotel je řešen jako sálová jednotka, jejíž ohniště a druhý průtah spalin má celosvařované stěny, tvořené kotlovými trubkami. V druhém průtahu spalin je umístěn pětivlný svazek. Kotel je konstruován jako samonosný s přirozenou cirkulací.

Spalovací vzduch je možno při sníženém výkonu, nebo při najíždění přepouštět klapkou ohřívačů vzduchu do sání vzduchového ventilátoru, čímž je umožněno předehřívání vzduchu. Tím se snižuje i nebezpečí nízkotepelných korozí ohřívačů vzduchu, hlavně v zimním období.
Základní parametry zařízení č.3 jsou uvedeny v Tab. č. 14.

Tab. č. 14 Základní parametry zařízení č.3

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovitý výkon</td>
<td>50 t·h⁻¹</td>
</tr>
<tr>
<td>Hospodárný výkon</td>
<td>40 t·h⁻¹</td>
</tr>
<tr>
<td>Minimální výkon</td>
<td>15 t·h⁻¹</td>
</tr>
<tr>
<td>Jmenovitý tlak párý</td>
<td>1,00 MPa</td>
</tr>
<tr>
<td>Nejvyšší tlak párý</td>
<td>1,37 MPa</td>
</tr>
<tr>
<td>Konstrukční tlak</td>
<td>1,81 MPa</td>
</tr>
<tr>
<td>Jmenovitá teplota párý</td>
<td>230 °C</td>
</tr>
<tr>
<td>Jmenovitá teplota nap. vody</td>
<td>115 °C</td>
</tr>
<tr>
<td>Učinnost při jmenovitém výkonu</td>
<td>83 %</td>
</tr>
</tbody>
</table>

3.3. Provedené experimenty

Pro získání dostatečně velkého souboru dat, byly provedeny experimenty na třech zařízeních, které jsou popsány v kapitolách 3.2.1, 3.2.2 a 3.2.3. Jednalo se o práškový kotel s výtavným ohništěm, práškový kotel s granulačním ohništěm a roštový kotel.

Na zařízení č.1 byla provedena řada testů při různých výkonových úrovních a to 110 t/h a 180 t/h. Při každé výkonové úrovni byly provedeny testy, kdy byl dávkován sorbent tak, aby bylo dosaženo 20 %, 40 % a 60 % účinnosti odsíření. Při těchto experimentech byl použit přípravek BICAR.

3.3.1. Testy na zařízení č.1

Odsířovací zkoušky byly při několika výkonových úrovních a to 110 t/h a 180 t/h. Při každé výkonové úrovni byly provedeny testy, kdy byl dávkován sorbent tak, aby bylo dosaženo 20 %, 40 % a 60 % účinnosti odsíření. Při těchto experimentech byl použit přípravek BICAR.
Sorbent byl dávkován pneumaticky na výstupu z kotle, jak je vyznačeno na Obr. č. 8. Před samotným dávkováním byl sorbent namlet na požadovanou granulometrii. Pro testy byla použita mléč jednotka GTS – Grinding technologies and system MG 60-B (Obr. č. 10) od společnosti GTS. Jednotka se skládá ze stanoviště vyprázdnování velkoobjemových vaků o hmotnosti 1000 kg, tlukadlového mlýna, dynamického třídiče, dopravního ventilátoru a řídící jednotky.

Před jednotlivými testy byl při každé výkonové úrovni proveden test bez dávkování sorbentu pro získání hodnot emisí SO₂ při provozu kotle bez odsíravání. Jednalo se o testy 3a-0%, 5-0%, 7-0%, 8-0%, 9, 10, 13-0%, 14-0%. Rovněž tyto testy sloužily ke kalibraci a vzájemnému porovnání přístrojů měřících emise oxidu sířičitého před místem dávkování a na vstupu do komína.
Disertační práce

Ověření suchých metod odsířování

Obr. č. 9 Půdorysný nákres

po vyčištění

měření
(vyčištěné spaliny)
+ Pitotova trubice

odlučovač
(jednokomorový)

místě vhánění
přípravku BICAR®

mlýn

měření
(surové spaliny)

před vyčištěním

komín

mobilní laboratoř
Jak je patrné z Obr. č. 11 pracoviště pro dávkování přípravku BICAR bylo vybaveno dvěma stanovišti pro vyprázdňování velkoobjemových vaků, aby bylo zaručeno plynulé dávkování sorbentu bez přerušení.
Mletý hydrouhlíčitan sodný byl vháněn do obou vodorovných kouřovodů blízko výstupu z kotle, před elektrostatickým odlučovačem. Kvůli velkým rozměrům kouřovodů (4 m x 1,4 m) byly dávkovací trysky instalovány na každé straně kouřovodu (Obr. č. 12).

![Diagram](image)

Obr. č. 12 Schéma umístění trysk pro vstřikování sorbentu do spalinovou

Jako palivo pro část testů bylo použito černé energetické uhlí a pro část testů byla použita směs černého energetického uhlí (Tab. č. 15) a proplástku (Tab. č. 16).

Tab. č. 15 Složení černého uhlí

<table>
<thead>
<tr>
<th>Název</th>
<th>Označení</th>
<th>Jednotka</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výhřevnost</td>
<td>Q<sub>i</sub></td>
<td>[MJ/kg]</td>
<td>23</td>
</tr>
<tr>
<td>Obsah popela</td>
<td>A<sup>d</sup></td>
<td>[%]</td>
<td>14</td>
</tr>
<tr>
<td>Obsah síry</td>
<td>S<sup>r</sup></td>
<td>[%]</td>
<td>0,3 – 0,5</td>
</tr>
<tr>
<td>Obsah vody</td>
<td>W<sup>r</sup></td>
<td>[%]</td>
<td>8 - 10</td>
</tr>
</tbody>
</table>

Tab. č. 16 Složení proplástku

<table>
<thead>
<tr>
<th>Název</th>
<th>Označení</th>
<th>Jednotka</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výhřevnost</td>
<td>Q<sub>i</sub></td>
<td>[MJ/kg]</td>
<td>18</td>
</tr>
<tr>
<td>Obsah popela</td>
<td>A<sup>d</sup></td>
<td>[%]</td>
<td>44 – 46</td>
</tr>
<tr>
<td>Obsah prchavé hořlaviny</td>
<td>V<sup>anh</sup></td>
<td>[%]</td>
<td>31 – 34</td>
</tr>
<tr>
<td>Obsah síry</td>
<td>S<sup>r</sup></td>
<td>[%]</td>
<td>0,3 – 0,5</td>
</tr>
<tr>
<td>Obsah vody</td>
<td>W<sup>r</sup></td>
<td>[%]</td>
<td>6 - 10</td>
</tr>
</tbody>
</table>
3.3.2. Testy na zařízení č.2

Odsiřovací zkoušky byly při různých výkonových úrovních. Při každé výkonové úrovni byly provedeny testy s přípravky Bicar a Sorbacal. Při výkonu 95 t/h byl proveden test, kdy byly oba sorbenty dávkovány současně. Přehled provedených testů je uveden v Tab.č. 17.

Tab.č. 17 Přehled provedených testů na zařízení č.2

<table>
<thead>
<tr>
<th>Označení testu</th>
<th>Datum</th>
<th>Parní výkon kotle [t/h]</th>
<th>Použitý sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>10.12.2008</td>
<td>60 t/h</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>22</td>
<td>10.12.2008</td>
<td>95 t/h</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>25</td>
<td>11.12.2008</td>
<td>65 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>26</td>
<td>11.12.2008</td>
<td>95 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>27</td>
<td>12.12.2008</td>
<td>95 t/h</td>
<td>Sorbacal + Bicar</td>
</tr>
<tr>
<td>30</td>
<td>12.1.2009</td>
<td>65 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>31</td>
<td>12.1.2009</td>
<td>90 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>32</td>
<td>27.8.2009</td>
<td>60 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>33</td>
<td>27.8.2009</td>
<td>70 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>34</td>
<td>28.8.2009</td>
<td>80 t/h</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>35</td>
<td>28.8.2009</td>
<td>80 t/h</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>36</td>
<td>28.8.2009</td>
<td>60 t/h</td>
<td>Sorbacal</td>
</tr>
</tbody>
</table>

Dodávka přípravku Sorbacal byla do elektrárny realizována autocisternou a následně byl sorbent pneumaticky přepraven do provozního zásobníku. Tento přípravek dodala firma Lhoist, stejně jako pro testy na zařízení č.3. Z provozního zásobníku byl materiál dopravován dávkovacím zařízením pneumaticky do spalinového traktu kotle. Obrázek dávkovacího zařízení je na Obr.č. 13.
Dávkovací místo sorbentu BICAR pro zařízení č.2 bylo na výstupu spalin z kotle za ohřívkem vzduchu v horizontálním kanálu za výstupem spalin z kotelny do odlučovače. Teplota spalin v tomto místě je cca 150 °C podle výkonu kotle. Dávkování bylo provedeno do 4 míst ze spodní stěny kanálu kouřovodu. Obrázek místa dávkování je na Obr.č. 14.

Při první sérii testů (Zkoušky č. 24, 25, 26, 30 a 31) byl přípravek BICAR namlet mimo objekt elektrárny a dopraven do elektrárny, kde byl několik dní skladován. Protože je však tento sorbent velice hygroskopický došlo k navázaní vody z ovzduší a následně ke tvorbě hrudek.

Při testech č. 30 až 33 bylo dávkovací místo (Obr.č. 15) před výstupem spalin z kotle za ohřívkem vody EKO ve vertikálním kanálu před výstupem spalin z kotelny do odlučovače. Teplota
spalin v tomto místě je cca 220 - 230°C podle výkonu kotle. Dávkování bylo prováděno do 4 míst II. tahu kotle z pravé a levé strany kotle. Dávkovací místa byla rovnoměrně rozdělena po průřezu II. tahu kotle. Celkem byly použity 4 dávkovací trysky, dvě na levé straně kotle a dvě na levé straně.

Obr. č. 15 Místo dávkování přípravku Bicar při opakovaných testech

Tryska pro dávkování a rozprašování přípravku Bicar která byla použita pro testy č. 30 až 33, je na Obr. č. 16.

Obr. č. 16 Tryska pro dávkování sorbentu BICAR
Před každou sérií testů bylo provedeno měření, kdy nebyl dávkován sorbent. Byly tak získány referenční hodnoty SO₂ před odsířováním, které sloužily ke kalibraci a vzájemnému porovnání výsledků měření a případné opětovné kalibraci měřicích přístrojů.

Během prováděných testů byly kontinuálně měřeny plynné emise a odebrány vzorky popílku z elektroodlučovače a vzorky paliva. Měření emisí prováděla firma TESO, při opakovaných testech (Zkoušky č.30,31), měření prováděla měřicí skupina Pracoviště pro diagnostiku a provoz energetických zařízení z VŠB-TU Ostrava.

3.3.3. Testy na zařízení č.3

Odsířovací zkoušky byly při jedné výkonové úrovni 50 t/h. Při této výkonové úrovni byly provedeny testy s přípravky Bicar a Sorbacal. Rovněž byl proveden test, kdy byly oba sorbenty dávkovány současně. Přehled provedených testů na zařízení č.3 je uveden v Tab.č. 18.

Tab.č. 18 Přehled testů provedených na zařízení č.3

<table>
<thead>
<tr>
<th>Označení testu</th>
<th>Datum</th>
<th>Parní výkon kotle [t/h]</th>
<th>Použitý sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>11.12.2008</td>
<td>50 t/h</td>
<td>Bicar</td>
</tr>
<tr>
<td>28</td>
<td>12.12.2008</td>
<td>50 t/h</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>29</td>
<td>12.12.2008</td>
<td>50 t/h</td>
<td>Sorbacal + Bicar</td>
</tr>
</tbody>
</table>

Zařízení pro pneumatickou dopravu přípravku BICAR dodala firma EVECO Brno. Dávkovací místo přípravku BICAR pro zařízení č.3 bylo na výstupu spalin z kotle za ohřívákem vzduchu ve vertikálním kanálu před výstupem spalin z kotly do odlučovače. Dávkovací místo bylo do pravého a levého kruhového kanálu na výstupu spalin z kotle do EO. Teplota spalin v tomto místě je cca 150 až 180°C podle výkonu kotle. Obrázek místa dávkování je na Obr.č. 18.

Pro testy byl přípravek BICAR namlet mimo objekt a dopraven do elektrárny, kde byl několik dní skladován. Protože je však tento sorbent velice hydroskopický došlo ke tvorbě hrudek, což nepříznivě ovlivnilo účinnost odsíťování.

Obr.č. 18 Místa pro dávkování sorbentu BICAR na zařízení č.3

Obr.č. 19 Místa pro dávkování sorbentu SORBACAL na zařízení č.3
3.3.4. Metodika měření plynných emisí

Během provedených testů se na měření plynných emisí podílelo více firem. V této kapitole uvedená metodika měření plynných emisí je od Pracoviště pro provoz a diagnostiku tepelně energetických zařízení. Metodika ostatních pracovišť byla obdobná, jen ten se lišilo technické vybavení.

Koncentrace CO, NOx SO2 byly měřeny kontinuálním analyzátorem Uras 10 E od firmy Hartmann & Braun pracujícím na principu absorpce infračerveného záření.

Odběr vzorků spalin byl uskutečňován pomocí vyhřívané sondy s vyhřívaným keramickým filtrem pro odloučení tuhých částic (Obr. č. 20), za kterým je připojeno vyhlížené vedení vzorku (vytápěná hadice od firmy JCT) k zabránění kondenzace odebraného vzorku spalin při jeho dopravě. Na konci vyhlíženého vedení byla instalována chladnice plynu od firmy JCT, v níž dochází k odloučení vlhkosti ze spalin. Takto upravený vzorek byl zaveden do analyzátoru, který je před měřením kalibrán pomocí směsi kalibračních plynů.

Výsledky jsou vyjádřeny v miligramech CO a SO2 v 1 m3 suchých spalin za normálních podmínek, vztažené na referenční obsah O2 11%. Koncentrace oxidů dusíku jsou vyjádřeny v miligramech NOx přečíslených na NO2 v 1 m3 suchých spalin za normálních podmínek, vztaženy na referenční obsah O2 11%.

![Obr. č. 20 Odběrová hlavice s vyhřívaným keramickým filtrem](image-url)
Obr.č. 21 Schéma zapojení apаратury pro měření plynných složek spalin
3.4. Vyhodnocení provedených testů

3.4.1. Vyhodnocení provedených zkoušek na zařízení č.1

Testy na tomto zařízení proběhly v říjnu 2007 a trvaly celkem 9 dní. Přípravek Bicar byl namlet na požadovanou granulometrii, těsně před dávkováním do spalinového traku, granulometrie jak namletého tak nemletého přípravku je v Graf č. 11.

![Graf č. 11 Propadová charakteristika přípravku Bicar](image)

První série testů, dle Tab.č. 19, probíhala při parním výkonu 110t/h a jako palivo bylo použito černé energetické uhlí (rozbyry paliva jsou uvedeny v Tab.č. 27). Před zahájením dávkování sorbentu byl proveden test označený jako 3a-0%, při kterém byla stanovená průměrná hodnota emisí SO₂ 704 mg/m³. Poté byl proveden test (3a-20%), kdy bylo dávkováno 100 kg/h sorbentu, což odpovídalo teoreticky vypočtené účinnosti odsíření na úrovni 20 %. Skutečná účinnost odsíření dosáhla 23 %. Došlo k snížení emisí SO₂ o 165 mg/m³. Pro teoretickou účinnost odsíření 40% byl stanoven průtok přípravku BICAR na 180 kg/h. Při tomto testu (3b-40%) byly emise SO₂ 411 mg/m³, došlo tedy ke snížení o 293 mg/m³, skutečná účinnost odsíření byla 41,6 %. Při posledním testu (3c-60%) při tomto palivu, bylo dávkováno 280 kg/h přípravku BICAR. Při tomto testu došlo nesnížení emisí SO₂ na hodnotu 312 mg/m³, skutečná účinnost odsíření byla 55,7 %.
Tab. č. 19 Naměřené a vypočtené hodnoty pro množství páry 110 t/h a palivo prášek

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Datum</th>
<th>Parní výkon</th>
<th>Množství páry</th>
<th>Palivo</th>
<th>MO</th>
<th>množství NaHCO₃</th>
<th>SO₂ Solvay</th>
<th>Účinnost odsíření dle Solvay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>t/h</td>
<td></td>
<td>kg/h</td>
<td>mg/m³N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>3a-0%</td>
<td>10.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>0</td>
<td>704</td>
<td>0</td>
</tr>
<tr>
<td>3a-20%</td>
<td>10.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>100</td>
<td>539</td>
<td>23,4</td>
</tr>
<tr>
<td>3b-40%</td>
<td>10.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>180</td>
<td>411</td>
<td>41,6</td>
</tr>
<tr>
<td>3c-60%</td>
<td>10.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>280</td>
<td>312</td>
<td>55,7</td>
</tr>
</tbody>
</table>

Pozn.: MO – mlýnský okruh, který by v provozu

Při stejně výkonové úrovni (110 t/h) byly provedeny testy, kdy byla použita jako paliva směs černého energetického uhlí a propláštíku. Byly provedeny dvě série testů, jedna při provozu dvou mlýnských okruhů a druhá při provozu pouze jednoho mlýnského okruhu. Výsledky těchto testů jsou uvedeny v Tab. č. 20. Bez dávkování přípravku BICAR byly při provozu obou mlýnských okruhů naměřeny emise SO₂ 728 mg/m₃. Při testu 7a-20%, kdy byla požadována teoretická účinnost odsíření 20%, pro tuto hodnotu bylo stanoveno množství BICAR na 105 kg/h. Došlo k redukci SO₂ na hodnotu 517 mg/m₃, skutečná účinnost odsíření byla 29 %. Pro teoretickou účinnost odsíření 40 %, test 7b-40%, bylo dávkováno 195 kg/h. Došlo k poklesu emisí oxidu sířičitého o 329 mg/m₃. Skutečná účinnost odsíření byla 45,2 %. Při teoretické účinnosti odsíření 40 %, test 7c-60%, bylo naměřeno 303 mg/m₃ SO₂, při tomto testu byla skutečná účinnost odsíření 58,4 %.

Další série testů byla provedena při provozu pouze jednoho mlýnského okruhu. Bez dávkování sorbentu (test 8-0%) bylo naměřeno 739 mg/m₃ SO₂. Při testu 8a-20% bylo dávkováno 100 kg/h přípravku BICAR. Emise SO₂ klesly na 552 mg/m₃, došlo tedy k redukci o 187 mg/m₃ a účinnost odsíření byla 25,3 %. Pro teoretickou účinnost odsíření 40%, test 8b-40%, bylo stanoveno množství BICAR 185 kg/h. Emise SO₂ klesly na 452 mg/m₃, došlo tedy k redukci o 287 mg/m₃ a účinnost odsíření byla 38,8 %. Při testu 8c-60%, byl stanoven průtok přípravku BICAR 300 kg/h. Emise SO₂ se snížily na 318 mg/m₃, došlo redukci SO₂ o 411 mg/m₃. Skutečná účinnost odsíření byla 57 %.
Tab. č. 20 Naměřené a vypočtené hodnoty pro množství páry 110 t/h a palivo prášek+proplásteck

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Datum</th>
<th>Parní výkon</th>
<th>Množství páry</th>
<th>Palivo</th>
<th>MO</th>
<th>množství NaHCO₃</th>
<th>SO₂</th>
<th>Účinnost odsíření</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW t/h</td>
<td>110 t/h</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>728</td>
<td>%</td>
</tr>
<tr>
<td>7-0%</td>
<td>11.10.2007</td>
<td>81</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>105</td>
<td>517</td>
<td>29,0</td>
</tr>
<tr>
<td>7a-20%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>195</td>
<td>399</td>
<td>45,2</td>
</tr>
<tr>
<td>7b-40%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>285</td>
<td>303</td>
<td>58,4</td>
</tr>
<tr>
<td>7c-60%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>131</td>
<td>0</td>
<td>739</td>
</tr>
<tr>
<td>8-0%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>131</td>
<td>100</td>
<td>552</td>
</tr>
<tr>
<td>8a-20%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>185</td>
<td>452</td>
<td>38,8</td>
</tr>
<tr>
<td>8b-40%</td>
<td>11.10.2007</td>
<td>82</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>300</td>
<td>318</td>
<td>57,0</td>
</tr>
</tbody>
</table>

Nejvíce testů bylo provedeno při parním výkonu 180 t/h, výsledky jsou uvedeny v Tab. č. 21. Tyto testy byly provedeny při provozu dvou mlýnských okruhů, při provozu jednoho mlýnského okruhu a bez provozu mlýnských okruhů.

Při provozu s jedním mlýnským okruhem byly neměřeny před zahájením dávkování přípravku emise SO₂ na úrovni 718 mg/m₃, při dávkování 150 kg/h sorbentu bylo dosaženo snížení emisí na 554 mg/m₃ a bylo dosaženo 22,5 % účinností odsíření. Při zkoušce 5b-40% bylo dávkováno 297 kg/h sorbentu, byly sníženy emise SO₂ na 392 mg/m₃, účinnost odsíření dosáhla 45,5 %. Pro test, kdy byla teoretická účinnost odsíření (zkouška 5c-60%), byl přípravek dávkován v množství 476 kg/h. Došlo ke snížení emisí SO₂ o 380 mg/m₃ na úroveň 338 mg/m₃ a bylo dosaženo 52,7 % skutečné účinnosti odsíření.

Při provozu dvou mlýnských okruhů bylo bez odsíření (zkouška 6-0%) naměřeno 724 mg/m₃ SO₂. Při zkoušce 6a-20% bylo dávkováno 150 kg/h sorbentu, emise SO₂ poklesly na 535 mg/m₃ a účinnost odsíření byla 26,1 %. Při zvýšení dávkování sorbentu na 300 kg/h (zkouška 6b-40%) byla naměřena koncentrace SO₂ 438 mg/m₃ a účinnost odsíření byla 39,5 %. Při testu 6c-60% bylo dávkováno 453 kg/h sorbentu a emise SO₂ klesly na 339 mg/m₃. Při tomto testu bylo dosaženo 53,2 % účinnosti odsíření.
Tab. č. 21 Naměřené a vypočtené hodnoty pro množství páry 180 t/h a palivo prášek+proplástek

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Datum</th>
<th>Parní výkon</th>
<th>Množství páry</th>
<th>Palivo</th>
<th>MO</th>
<th>množství NaHCO₃</th>
<th>SO₂</th>
<th>Účinnost odsíření</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t/h</td>
<td></td>
<td></td>
<td>kg/h</td>
<td>mg/mN³</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>5-0%</td>
<td>16.10.2007</td>
<td>135</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>0</td>
<td>718</td>
<td>0</td>
</tr>
<tr>
<td>5a-20%</td>
<td>16.10.2007</td>
<td>135</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>150</td>
<td>554</td>
<td>22,5</td>
</tr>
<tr>
<td>5b-40%</td>
<td>16.10.2007</td>
<td>135</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>297</td>
<td>392</td>
<td>45,2</td>
</tr>
<tr>
<td>5c-60%</td>
<td>17.10.2007</td>
<td>135</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>476</td>
<td>338</td>
<td>52,7</td>
</tr>
<tr>
<td>6-0%</td>
<td>15.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>724</td>
<td>0,0</td>
</tr>
<tr>
<td>6a-20%</td>
<td>16.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>150</td>
<td>535</td>
<td>26,1</td>
</tr>
<tr>
<td>6b-40%</td>
<td>17.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>300</td>
<td>438</td>
<td>39,5</td>
</tr>
<tr>
<td>6c-60%</td>
<td>15.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>339</td>
<td>53,2</td>
</tr>
<tr>
<td>9.10</td>
<td>15.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>724</td>
<td>0</td>
</tr>
<tr>
<td>9-60%</td>
<td>15.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>263</td>
<td>63,7</td>
</tr>
<tr>
<td>10-60%</td>
<td>15.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>339</td>
<td>53,2</td>
</tr>
<tr>
<td>13-0%</td>
<td>19.10.2007</td>
<td>136</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>780</td>
<td>0</td>
</tr>
<tr>
<td>13a-40%</td>
<td>19.10.2007</td>
<td>148</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>340</td>
<td>454</td>
<td>41,8</td>
</tr>
<tr>
<td>13b-60%</td>
<td>19.10.2007</td>
<td>147</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>548</td>
<td>323</td>
<td>58,6</td>
</tr>
<tr>
<td>14-0%</td>
<td>22.10.2007</td>
<td>133</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>813</td>
<td>0</td>
</tr>
<tr>
<td>14a-40%</td>
<td>23.10.2007</td>
<td>136</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>280</td>
<td>426</td>
<td>47,6</td>
</tr>
<tr>
<td>14b-60%</td>
<td>22.10.2007</td>
<td>134</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>496</td>
<td>307</td>
<td>62,2</td>
</tr>
</tbody>
</table>

Při parním výkonu 180 t/h byly provedeny i testy bez provozu mlýnských okruhů. Při testu 14-0% nebyl sorbent dávkován a emise SO₂ byly na úrovni 813 mg/mN³. Při dávkování 280 kg/h sorbentu (zkouška 14a-40%) klesly emise SO₂ na 426 mg/mN³ a bylo dosaženo 47,6 % účinnosti odsíření. Při dalším testu (14b-60%) byl sorbent dávkován v množství 496 kg/h. Ve spalinách bylo naměřeno 307 mg/mN³ SO₂.

Závislosti účinnosti odsířování na množství dávkovaného přípravku BICAR pro různé výkonové úrovně jsou uvedeny v Graf č. 12 až Graf č. 14.
Graf č. 12 Závislost účinnosti odsíření na množství NaHCO₃ při parním výkonu 110 t/h, palivo prášek

Graf č. 13 Závislost účinnosti odsíření na množství NaHCO₃ při parním výkonu 110 t/h, palivo prášek + propláštěk
Graf č. 14 Závislost účinnosti odsíření na množství NaHCO₃ při parním výkonu 180 t/h, palivo prášek + propláštěk

Jak je patrné z Graf č. 15, je nutné při parním výkonu 110 t/h pro splnění emisního limitu 200 mg/m³ dávkovat sorbent v množství cca 450 kg/h. Při výkonu 180 t/h je to pak cca 740 kg/h jak je uvedeno v Graf č. 16.

Graf č. 15 Snižení emisí SO₂ v závislosti na množství přípravku BICAR při výkonu 110 t/h
Pro vzájemné porovnání testů při různých výkonových úrovních je stanoven jako parametr molární poměr Na/S.

Tab. č. 22 Vypočtené hodnoty poměru Na/S pro množství páry 110 t/h a palivo prášek

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Množství páry</th>
<th>Množství NaHCO₃</th>
<th>Množství paliva</th>
<th>obsah S v palivu</th>
<th>množství S</th>
<th>NaHCO₃/S</th>
<th>Na/S</th>
<th>Na/S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/h</td>
<td>kg/h</td>
<td>t.h⁻¹</td>
<td>%</td>
<td>kg.h⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kmol.kmol⁻¹</td>
</tr>
<tr>
<td>3a-0%</td>
<td>110</td>
<td>0</td>
<td>11,98</td>
<td>0,45</td>
<td>53,9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3a-20%</td>
<td>110</td>
<td>100</td>
<td>11,90</td>
<td>0,46</td>
<td>54,7</td>
<td>1,83</td>
<td>0,49</td>
<td>0,70</td>
</tr>
<tr>
<td>3b-40%</td>
<td>110</td>
<td>180</td>
<td>12,21</td>
<td>0,51</td>
<td>62,3</td>
<td>2,89</td>
<td>0,78</td>
<td>1,10</td>
</tr>
<tr>
<td>3c-60%</td>
<td>110</td>
<td>280</td>
<td>11,70</td>
<td>0,41</td>
<td>48,0</td>
<td>5,84</td>
<td>1,58</td>
<td>2,22</td>
</tr>
</tbody>
</table>

Tab. č. 23 Vypočtené hodnoty poměru Na/S pro množství páry 110 t/h a palivo prášek+proplástek

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Množství páry</th>
<th>Množství NaHCO₃</th>
<th>Množství paliva</th>
<th>obsah S v palivu</th>
<th>množství S</th>
<th>NaHCO₃/S</th>
<th>Na/S</th>
<th>Na/S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/h</td>
<td>kg/h</td>
<td>t.h⁻¹</td>
<td>%</td>
<td>kg.h⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kmol.kmol⁻¹</td>
</tr>
<tr>
<td>7-0%</td>
<td>110</td>
<td>0</td>
<td>11,42</td>
<td>0,42</td>
<td>47,9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7a-20%</td>
<td>110</td>
<td>105</td>
<td>11,50</td>
<td>0,45</td>
<td>51,8</td>
<td>2,03</td>
<td>0,55</td>
<td>0,77</td>
</tr>
<tr>
<td>7b-40%</td>
<td>110</td>
<td>195</td>
<td>11,77</td>
<td>0,44</td>
<td>51,8</td>
<td>3,76</td>
<td>1,02</td>
<td>1,43</td>
</tr>
<tr>
<td>7c-60%</td>
<td>110</td>
<td>285</td>
<td>12,25</td>
<td>0,44</td>
<td>53,9</td>
<td>5,29</td>
<td>1,43</td>
<td>2,01</td>
</tr>
<tr>
<td>8-0%</td>
<td>110</td>
<td>0</td>
<td>12,34</td>
<td>0,48</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8a-20%</td>
<td>110</td>
<td>100</td>
<td>12,28</td>
<td>0,48</td>
<td>58,9</td>
<td>1,70</td>
<td>0,46</td>
<td>0,65</td>
</tr>
<tr>
<td>8b-40%</td>
<td>110</td>
<td>185</td>
<td>13,06</td>
<td>0,45</td>
<td>58,8</td>
<td>3,15</td>
<td>0,85</td>
<td>1,20</td>
</tr>
<tr>
<td>8c-60%</td>
<td>110</td>
<td>300</td>
<td>13,89</td>
<td>0,45</td>
<td>62,5</td>
<td>4,80</td>
<td>1,30</td>
<td>1,83</td>
</tr>
</tbody>
</table>
Tab. č. 24 Vypočtené hodnoty poměru Na/S pro množství páry 180 t/h a palivo prášek+propláštěk

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Množství páry</th>
<th>množství NaHCO₃</th>
<th>množství paliva</th>
<th>obsah S v palivu</th>
<th>množství S</th>
<th>NaHCO₃/S</th>
<th>Na/S</th>
<th>Na/S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/h</td>
<td>kg/h</td>
<td>t.h⁻¹</td>
<td>%</td>
<td>kg.h⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kg.kg⁻¹</td>
<td>kmol.kmol⁻¹</td>
</tr>
<tr>
<td>5-0%</td>
<td>180</td>
<td>0</td>
<td>21,60</td>
<td>0,44</td>
<td>95,0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5a-20%</td>
<td>180</td>
<td>150</td>
<td>21,70</td>
<td>0,47</td>
<td>102,0</td>
<td>1,47</td>
<td>0,40</td>
<td>0,56</td>
</tr>
<tr>
<td>5b-40%</td>
<td>180</td>
<td>297</td>
<td>20,72</td>
<td>0,41</td>
<td>85,0</td>
<td>3,50</td>
<td>0,94</td>
<td>1,33</td>
</tr>
<tr>
<td>5c-60%</td>
<td>180</td>
<td>476</td>
<td>20,52</td>
<td>0,43</td>
<td>88,2</td>
<td>5,40</td>
<td>1,46</td>
<td>2,06</td>
</tr>
<tr>
<td>6-0%</td>
<td>180</td>
<td>0</td>
<td>21,27</td>
<td>0,45</td>
<td>95,7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6a-20%</td>
<td>180</td>
<td>150</td>
<td>19,99</td>
<td>0,44</td>
<td>88,0</td>
<td>1,71</td>
<td>0,46</td>
<td>0,65</td>
</tr>
<tr>
<td>6b-40%</td>
<td>180</td>
<td>300</td>
<td>21,04</td>
<td>0,42</td>
<td>88,4</td>
<td>3,40</td>
<td>0,92</td>
<td>1,29</td>
</tr>
<tr>
<td>6c-60%</td>
<td>180</td>
<td>453</td>
<td>19,78</td>
<td>0,46</td>
<td>91,0</td>
<td>5,00</td>
<td>1,35</td>
<td>1,91</td>
</tr>
<tr>
<td>9,10</td>
<td>180</td>
<td>0</td>
<td>20,49</td>
<td>0,45</td>
<td>92,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9-60%</td>
<td>180</td>
<td>453</td>
<td>19,78</td>
<td>0,46</td>
<td>91,0</td>
<td>4,98</td>
<td>1,34</td>
<td>1,90</td>
</tr>
<tr>
<td>10-60%</td>
<td>180</td>
<td>453</td>
<td>19,78</td>
<td>0,46</td>
<td>91,0</td>
<td>4,98</td>
<td>1,34</td>
<td>1,90</td>
</tr>
<tr>
<td>13-0%</td>
<td>180</td>
<td>0</td>
<td>21,76</td>
<td>0,50</td>
<td>108,8</td>
<td>3,09</td>
<td>0,83</td>
<td>1,18</td>
</tr>
<tr>
<td>13a-40%</td>
<td>180</td>
<td>340</td>
<td>22,91</td>
<td>0,48</td>
<td>110,0</td>
<td>3,09</td>
<td>0,83</td>
<td>1,18</td>
</tr>
<tr>
<td>13b-60%</td>
<td>180</td>
<td>548</td>
<td>22,43</td>
<td>0,48</td>
<td>107,6</td>
<td>5,09</td>
<td>1,37</td>
<td>1,94</td>
</tr>
<tr>
<td>14-0%</td>
<td>180</td>
<td>0</td>
<td>19,62</td>
<td>0,51</td>
<td>100,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14a-40%</td>
<td>180</td>
<td>280</td>
<td>20,55</td>
<td>0,42</td>
<td>86,3</td>
<td>3,24</td>
<td>0,88</td>
<td>1,24</td>
</tr>
<tr>
<td>14b-60%</td>
<td>180</td>
<td>496</td>
<td>19,43</td>
<td>0,51</td>
<td>99,1</td>
<td>5,00</td>
<td>1,35</td>
<td>1,91</td>
</tr>
</tbody>
</table>

Graf č. 17 Závislost účinnosti odsíření na molárním poměru Na/S
Dle rovnice 27 hydrogenuhličitan sodný reaguje také s chlorovodíkem při vzniku chloridu sodného. Naměřené hodnoty eliminace HCl při testech na výkonové úrovni 110 t/h jsou uvedeny v Tab.č. 25. Jak vyplývá z Tab.č. 25 bylo při 60% teoretické účinnosti odsíření dosaženo až na jednu vyjímkou (3c-60%), vždy minimálně 90% účinnosti odstranění HCl.

Tab.č. 25 Účinnost odstranění HCl při parním výkonu 110 t/h

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Datum</th>
<th>Množství páry</th>
<th>Palivo</th>
<th>MO</th>
<th>množství NaHCO₃</th>
<th>HCl</th>
<th>Účinnost odstranění HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a-0%</td>
<td>10.10.2007</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>3a-20%</td>
<td>10.10.2007</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>100</td>
<td>22</td>
<td>63,3</td>
</tr>
<tr>
<td>3b-40%</td>
<td>10.10.2007</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>180</td>
<td>12</td>
<td>80,0</td>
</tr>
<tr>
<td>3c-60%</td>
<td>10.10.2007</td>
<td>110</td>
<td>práš.</td>
<td>131+132</td>
<td>280</td>
<td>7</td>
<td>88,3</td>
</tr>
<tr>
<td>7-0%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>7a-20%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>105</td>
<td>14</td>
<td>77,8</td>
</tr>
<tr>
<td>7b-40%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>195</td>
<td>6</td>
<td>90,5</td>
</tr>
<tr>
<td>7c-60%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>285</td>
<td>4</td>
<td>93,7</td>
</tr>
<tr>
<td>8-0%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>8a-20%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131</td>
<td>100</td>
<td>15</td>
<td>70,0</td>
</tr>
<tr>
<td>8b-40%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131</td>
<td>185</td>
<td>7</td>
<td>86,0</td>
</tr>
<tr>
<td>8c-60%</td>
<td>11.10.2007</td>
<td>110</td>
<td>práš.+propl.</td>
<td>131</td>
<td>300</td>
<td>3</td>
<td>94,0</td>
</tr>
</tbody>
</table>
Graf č. 19 Redukce HCl v závislosti na množství NaHCO₃ při parním výkonu 110 t/h

Naměřené hodnoty eliminace HCl při testech na výkonové úrovni 180t/h jsou uvedeny v Tab.č. 26. Účinnost odstranění HCl dosahovala během testů při tomto parním výkonu 85 – 100 %.

Tab.č. 26 Účinnost odstranění HCl při parním výkonu 180 t/h

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Datum</th>
<th>Množství páry</th>
<th>Palivo</th>
<th>MO</th>
<th>množství NaHCO₃</th>
<th>HCl</th>
<th>Účinnost odstranění HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-0%</td>
<td>16.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>0</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>5a-20%</td>
<td>16.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>150</td>
<td>8</td>
<td>84,9</td>
</tr>
<tr>
<td>5b-40%</td>
<td>16.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>297</td>
<td>2</td>
<td>96,2</td>
</tr>
<tr>
<td>5c-60%</td>
<td>17.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131</td>
<td>476</td>
<td>2</td>
<td>96,2</td>
</tr>
<tr>
<td>6-0%</td>
<td>15.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>6a-20%</td>
<td>16.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>150</td>
<td>9</td>
<td>85,0</td>
</tr>
<tr>
<td>6b-40%</td>
<td>17.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>300</td>
<td>3</td>
<td>95,0</td>
</tr>
<tr>
<td>6c-60%</td>
<td>15.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>2</td>
<td>96,7</td>
</tr>
<tr>
<td>9,10</td>
<td>15.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>9-60%</td>
<td>15.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>0</td>
<td>100,0</td>
</tr>
<tr>
<td>10-60%</td>
<td>15.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>453</td>
<td>2</td>
<td>96,7</td>
</tr>
<tr>
<td>13-0%</td>
<td>19.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>0</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>13a-40%</td>
<td>19.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>340</td>
<td>3</td>
<td>94,7</td>
</tr>
<tr>
<td>13b-60%</td>
<td>19.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td>131+132</td>
<td>548</td>
<td>1</td>
<td>98,2</td>
</tr>
<tr>
<td>14-0%</td>
<td>22.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td></td>
<td>0</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>14a-40%</td>
<td>23.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td></td>
<td>280</td>
<td>2</td>
<td>96,2</td>
</tr>
<tr>
<td>14b-60%</td>
<td>22.10.2007</td>
<td>180</td>
<td>práš.+propl.</td>
<td></td>
<td>496</td>
<td>1</td>
<td>98,1</td>
</tr>
</tbody>
</table>
Graf č. 20 Redukce HCl v závislosti na množství NaHCO₃ při parním výkonu 180 t/h

V laboratoři Ampluservis byly provedeny rozbory paliva pro jednotlivé zkoušky. Obsah síry v surovém palivu se pohyboval rozmezí od 0,41% do 0,51%. Výsledky provedených rozborů jsou v Tab.č. 27.

Tab.č. 27 Rozbory paliva požitého při testech na zařízení č.1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0%</td>
<td>0,47</td>
<td>0,45</td>
<td>5,84</td>
<td>0,67</td>
<td>14,77</td>
<td>14,00</td>
<td>35,50</td>
<td>27,3775</td>
<td>29,3</td>
</tr>
<tr>
<td>3a-20%</td>
<td>0,49</td>
<td>0,46</td>
<td>6,38</td>
<td>0,66</td>
<td>13,56</td>
<td>12,78</td>
<td>35,47</td>
<td>27,5742</td>
<td>29,0</td>
</tr>
<tr>
<td>3b-40%</td>
<td>0,54</td>
<td>0,51</td>
<td>7,00</td>
<td>0,65</td>
<td>14,83</td>
<td>13,88</td>
<td>35,33</td>
<td>26,8573</td>
<td>29,9</td>
</tr>
<tr>
<td>3c-60%</td>
<td>0,43</td>
<td>0,41</td>
<td>5,83</td>
<td>0,65</td>
<td>13,15</td>
<td>12,46</td>
<td>35,66</td>
<td>28,0395</td>
<td>29,3</td>
</tr>
<tr>
<td>7-0%</td>
<td>0,45</td>
<td>0,42</td>
<td>6,84</td>
<td>0,60</td>
<td>11,47</td>
<td>10,75</td>
<td>35,81</td>
<td>28,3815</td>
<td>29,2</td>
</tr>
<tr>
<td>7a-20%</td>
<td>0,48</td>
<td>0,45</td>
<td>6,00</td>
<td>0,65</td>
<td>11,40</td>
<td>10,79</td>
<td>35,61</td>
<td>28,5140</td>
<td>29,1</td>
</tr>
<tr>
<td>7b-40%</td>
<td>0,47</td>
<td>0,44</td>
<td>6,85</td>
<td>0,63</td>
<td>12,18</td>
<td>11,42</td>
<td>35,46</td>
<td>27,8604</td>
<td>29,4</td>
</tr>
<tr>
<td>7c-60%</td>
<td>0,47</td>
<td>0,44</td>
<td>7,42</td>
<td>0,53</td>
<td>15,31</td>
<td>14,25</td>
<td>35,57</td>
<td>26,7661</td>
<td>28,7</td>
</tr>
<tr>
<td>8-0%</td>
<td>0,50</td>
<td>0,48</td>
<td>5,33</td>
<td>0,51</td>
<td>17,26</td>
<td>16,42</td>
<td>35,29</td>
<td>26,5690</td>
<td>28,4</td>
</tr>
<tr>
<td>8a-20%</td>
<td>0,51</td>
<td>0,48</td>
<td>5,67</td>
<td>0,54</td>
<td>16,65</td>
<td>15,79</td>
<td>35,35</td>
<td>26,7077</td>
<td>28,7</td>
</tr>
<tr>
<td>8b-40%</td>
<td>0,48</td>
<td>0,45</td>
<td>7,17</td>
<td>0,57</td>
<td>19,92</td>
<td>18,60</td>
<td>35,23</td>
<td>25,1099</td>
<td>29,4</td>
</tr>
<tr>
<td>8c-60%</td>
<td>0,48</td>
<td>0,45</td>
<td>6,84</td>
<td>0,61</td>
<td>24,53</td>
<td>22,99</td>
<td>35,05</td>
<td>23,6072</td>
<td>29,1</td>
</tr>
<tr>
<td>6-0%</td>
<td>0,48</td>
<td>0,45</td>
<td>6,17</td>
<td>0,66</td>
<td>20,61</td>
<td>19,47</td>
<td>35,26</td>
<td>25,2012</td>
<td>30,3</td>
</tr>
<tr>
<td>9</td>
<td>0,47</td>
<td>0,45</td>
<td>5,17</td>
<td>0,75</td>
<td>19,25</td>
<td>18,39</td>
<td>35,56</td>
<td>26,1621</td>
<td>29,6</td>
</tr>
<tr>
<td>6c-60%,10</td>
<td>0,48</td>
<td>0,46</td>
<td>5,34</td>
<td>0,75</td>
<td>16,30</td>
<td>15,55</td>
<td>35,59</td>
<td>27,1022</td>
<td>29,9</td>
</tr>
<tr>
<td>5b</td>
<td>0,44</td>
<td>0,41</td>
<td>8,17</td>
<td>0,64</td>
<td>15,93</td>
<td>14,72</td>
<td>35,22</td>
<td>26,0571</td>
<td>29,8</td>
</tr>
<tr>
<td>6a-20%</td>
<td>0,47</td>
<td>0,44</td>
<td>7,84</td>
<td>0,67</td>
<td>14,33</td>
<td>13,30</td>
<td>35,41</td>
<td>26,8133</td>
<td>29,8</td>
</tr>
<tr>
<td>5a-20%</td>
<td>0,51</td>
<td>0,47</td>
<td>9,00</td>
<td>0,64</td>
<td>18,66</td>
<td>17,09</td>
<td>35,14</td>
<td>24,8889</td>
<td>29,7</td>
</tr>
<tr>
<td>6b-40%</td>
<td>0,46</td>
<td>0,42</td>
<td>8,34</td>
<td>0,52</td>
<td>18,20</td>
<td>16,77</td>
<td>35,46</td>
<td>25,4778</td>
<td>30,2</td>
</tr>
<tr>
<td>5c-60%</td>
<td>0,47</td>
<td>0,43</td>
<td>8,00</td>
<td>0,54</td>
<td>16,10</td>
<td>14,89</td>
<td>35,56</td>
<td>26,3235</td>
<td>29,6</td>
</tr>
<tr>
<td>13a-40%</td>
<td>0,52</td>
<td>0,48</td>
<td>9,00</td>
<td>0,59</td>
<td>16,14</td>
<td>14,77</td>
<td>35,36</td>
<td>25,8432</td>
<td>30,0</td>
</tr>
<tr>
<td>13b-60%</td>
<td>0,52</td>
<td>0,48</td>
<td>8,37</td>
<td>0,49</td>
<td>15,65</td>
<td>14,41</td>
<td>35,39</td>
<td>26,2216</td>
<td>30,1</td>
</tr>
<tr>
<td>14b-60%</td>
<td>0,54</td>
<td>0,51</td>
<td>7,00</td>
<td>0,56</td>
<td>13,26</td>
<td>12,40</td>
<td>35,60</td>
<td>27,5808</td>
<td>29,8</td>
</tr>
<tr>
<td>14-0%</td>
<td>0,54</td>
<td>0,51</td>
<td>7,00</td>
<td>0,59</td>
<td>14,68</td>
<td>13,73</td>
<td>35,59</td>
<td>27,1142</td>
<td>30,2</td>
</tr>
<tr>
<td>14a-40%</td>
<td>0,45</td>
<td>0,42</td>
<td>6,50</td>
<td>0,84</td>
<td>16,73</td>
<td>15,78</td>
<td>35,43</td>
<td>26,4714</td>
<td>30,9</td>
</tr>
</tbody>
</table>
3.4.2. Vyhodnocení provedených zkoušek na zařízení č.2

V průběhu testů byly odebrány vzorky sorbentů BICAR a SORBACAL a v Laboratoři sypkých hmot na VŠB-TU Ostrava byla stanovena jejich granulometrie, výsledky jsou uvedeny v Graf č. 21 a Graf č. 22. Granulometrie přípravku Bicar uvedená v Graf č. 21 platí pro testy číslo 24, 25, 26, 27, 29, 30 a 31.

Graf č. 21 Granulometrie Bicar použitého na zařízení č.2 a č.3

Graf č. 22 Granulometrie Sorbacal použitého na zařízení č.2 a č.3
Jak již bylo zmíněno v kapitole 3.2.2, přípravek BICAR tvořil při testech hрудky. Toto velmi negativně ovlivnilo provedené testy, jak je patrné z Tab.č. 28 a ještě názornější je to za Tab.č. 53, kde je provedeno porovnání zkoušek na jednotlivých zařízeních.

Jak vyplývá z Tab.č. 28 byly na tomto zařízení provedeny prvotní testy s přípravky BICAR a SORBACAL při dvou výkonových úrovních. Při výkonu 60 t/h, kdy bylo dávkováno 1200 kg/h přípravku Sorbacal došlo ke snížení emisí SO₂ o 1060 mg/m₃, účinnost odsiření byla 44,7 %. Při výkonu 95 t/h bylo dávkováno 1300 kg/h přípravku Sorbacal. Emise SO₂ se z 2118 mg/m₃ snížily na 1131 mg/m₃.

Po testech s přípravkem Sorbacal, byly provedeny testy s přípravkem Bicar. Jednalo se o testy č. 25, 26, 30 a 31. Při testech č. 30 a 31 byly opakované testy, při kterých se přípravek Bicar dávkoval do vyšší teploty. Při parním výkonu 65 t/h bylo dávkováno 680 kg/h přípravku Bicar a došlo k snížení emisí SO₂ o 596 mg/m₃, účinnost odsiření byla 25,79 %. Po zvýšení parního výkonu na 95 t/h bylo dávkováno 830 kg/h sorbentu. Emise SO₂ poklesly z 2671 mg/m₃ na 2000 mg/m₃ a bylo dosaženo 25,12 % účinnosti odsiření. Při testech č. 25, 26, 27 a 31 byl sorbent dávkován do vyšší teploty, ale dosažené výsledky neodpovídaly předpokladům.

Tab.č. 28 Emise SO₂ na zařízení č.2

<table>
<thead>
<tr>
<th>Zkouška č.</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výkon kotle [t.h⁻¹]</td>
<td>60</td>
<td>95</td>
<td>65</td>
<td>95</td>
<td>95</td>
<td>65</td>
<td>90</td>
</tr>
<tr>
<td>Sorbent</td>
<td>Sorbacal</td>
<td>Sorbacal</td>
<td>Bicar</td>
<td>Bicar</td>
<td>Sorbacal + Bicar</td>
<td>Bicar</td>
<td>Bicar</td>
</tr>
<tr>
<td>Spotřeba sorbentu [kg.h⁻¹]</td>
<td>1200</td>
<td>1300</td>
<td>680</td>
<td>830</td>
<td>700 (S) 680 (B)</td>
<td>482</td>
<td>650</td>
</tr>
<tr>
<td>SO₂ před ø [mg.m⁻³]</td>
<td>2371</td>
<td>2118</td>
<td>2311</td>
<td>2671</td>
<td>2114</td>
<td>2846</td>
<td>1537</td>
</tr>
<tr>
<td>SO₂ za ø [mg.m⁻³]</td>
<td>1311</td>
<td>987</td>
<td>1715</td>
<td>2000</td>
<td>1095</td>
<td>2317</td>
<td>1012</td>
</tr>
<tr>
<td>ΔSO₂ ø [mg.m⁻³]</td>
<td>1060</td>
<td>1131</td>
<td>596</td>
<td>671</td>
<td>1019</td>
<td>529</td>
<td>525</td>
</tr>
<tr>
<td>Účinnost odsiření [%]</td>
<td>44,71</td>
<td>53,40</td>
<td>25,79</td>
<td>25,12</td>
<td>48,20</td>
<td>18,59</td>
<td>34,16</td>
</tr>
</tbody>
</table>

Protože výsledky testů uvedené v Tab.č. 28 neodpovídaly předpokladům a zkušenostem získaným při testech na zařízení č.1, byly provedeny v srpnu roku 2009 opakovánie testy. Tyto testy sloužily k ověření, že přičinou špatných výsledků prvotních testů byla granulometrie sorbentu. Výsledky těchto testů jsou v Tab.č. 29.

Při testu č.32 bylo dávkováno 135kg/h přípravku Bicar a parní výkon byl 60 t/h. Emise SO₂ poklesly z hodnoty 2336 mg/m₃ na 1487 mg/m₃. Účinnost odsiření byla 35,93 %. Po tomto testu byl parní výkon zvýšen na 70 t/h (zkouška č.33). Množství dávkovaného sorbentu zůstalo stejné jako u předchozího testu. Emise SO₂ se snížily o 489 mg/m₃, účinnost odsiření byla 22,69 %. Po testech s přípravkem Bicar byly provedeny testy s přípravkem Sorbacal.
Při testu č.34 byl parní výkon kotle 80 t/h bylo dávkováno 700 kg/h Sorbacalu, emise SO$_2$ klesly z hodnoty 2034 mg/m$_3$ na 1653 mg/m$_3$ a účinnost odsíření byla 18,73 %. Poté bylo zvýšeno množství dávkovaného sorbentu na 1000 kg/h (test č.35) a došlo k poklesu emisí SO$_2$ o 596 mg/m$_3$ na 1269 mg/m$_3$. Při tomto testu bylo dosaženo 31,97 % účinnosti odsíření. Při testu č. 36 byl parní výkon 60 t/h a dávkované množství sorbentu bylo 650 kg/h.

Tab.č. 29 Emise SO$_2$ na zařízení č.2 – opakované testy

<table>
<thead>
<tr>
<th>Zkouška č.</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výkon kotle [t.h$^{-1}$]</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Sorbent</td>
<td>Bicar</td>
<td>Bicar</td>
<td>Sorbacal</td>
<td>Sorbacal</td>
<td>Sorbacal</td>
</tr>
<tr>
<td>Spotřeba sorbentu [kg.h$^{-1}$]</td>
<td>135</td>
<td>135</td>
<td>700</td>
<td>1000</td>
<td>650</td>
</tr>
<tr>
<td>SO$_2$ před ø [mg.m$_3$]</td>
<td>2336</td>
<td>2154</td>
<td>2034</td>
<td>1865</td>
<td>1638</td>
</tr>
<tr>
<td>SO$_2$ za ø [mg.m$_3$]</td>
<td>1497</td>
<td>1665</td>
<td>1653</td>
<td>1269</td>
<td>1203</td>
</tr>
<tr>
<td>∆SO$_2$ ø [mg.m$_3$]</td>
<td>839</td>
<td>489</td>
<td>381</td>
<td>596</td>
<td>435</td>
</tr>
<tr>
<td>Účinnost odsíření [%]</td>
<td>35,93</td>
<td>22,69</td>
<td>18,73</td>
<td>31,97</td>
<td>26,53</td>
</tr>
</tbody>
</table>

Tab.č. 30 Vypočtené hodnoty poměru Na/S pro testy na zařízení č.2

<table>
<thead>
<tr>
<th>Zkouška č.</th>
<th>Výkon kotle [t.h$^{-1}$]</th>
<th>Spotřeba sorbentu [kg.h$^{-1}$]</th>
<th>∆SO$_2$ ø [mg.m$_3$]</th>
<th>Účinnost odsíření [%]</th>
<th>NaHCO$_3$/S</th>
<th>Na/S</th>
<th>Na/S kmol/kmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>65</td>
<td>680</td>
<td>596</td>
<td>25,79</td>
<td>7,97</td>
<td>2,15</td>
<td>3,03</td>
</tr>
<tr>
<td>26</td>
<td>95</td>
<td>830</td>
<td>671</td>
<td>25,12</td>
<td>4,76</td>
<td>1,284</td>
<td>1,81</td>
</tr>
<tr>
<td>32</td>
<td>60</td>
<td>135</td>
<td>839</td>
<td>35,93</td>
<td>1,75</td>
<td>0,47</td>
<td>0,66</td>
</tr>
<tr>
<td>33</td>
<td>70</td>
<td>135</td>
<td>489</td>
<td>22,69</td>
<td>1,80</td>
<td>0,49</td>
<td>0,69</td>
</tr>
</tbody>
</table>
Během jednotlivých zkoušek byly odebírány vzorky popílku a paliva. V laboratoři Ampluservis byly provedeny rozbor paliva pro jednotlivé zkoušky. Jak je patrné z Tab. č. 31 obsah síry v hořlavině se pohyboval v rozmezí 0,9% až 1,7%. Toto velké rozmezí bylo zapříčiněno tím, že se během testů dostalo do kotle i jiné palivo, které nebylo určeno pro testy. Pro zkoušky č. 30 a 31 rozbor paliva nebyl proveden.

Tab. č. 31 Rozbor paliva pojednotlivé zkoušky na zařízení č.2

<table>
<thead>
<tr>
<th>Označení vzorku</th>
<th>W<sup>f</sup> [%]</th>
<th>A<sup>f</sup> [%]</th>
<th>A<sup>d</sup> [%]</th>
<th>Q<sub>s</sub><sup>daf</sup> [MJ/kg]</th>
<th>Q<sub>r</sub><sup>f</sup> [MJ/kg]</th>
<th>V<sup>def</sup> [%]</th>
<th>S<sup>def</sup> [%]</th>
<th>N<sup>daf</sup> [%]</th>
<th>C<sup>def</sup> [%]</th>
<th>H<sup>def</sup> [%]</th>
<th>O<sub>d</sub><sup>def</sup> [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zkouška č. 21</td>
<td>27,03</td>
<td>17,01</td>
<td>23,31</td>
<td>29,66</td>
<td>15,19</td>
<td>53,58</td>
<td>1,55</td>
<td>1,282</td>
<td>71,805</td>
<td>6,102</td>
<td>19,261</td>
</tr>
<tr>
<td>Zkouška č. 22</td>
<td>36,78</td>
<td>20,93</td>
<td>33,11</td>
<td>28,02</td>
<td>10,4</td>
<td>59,2</td>
<td>0,9</td>
<td>1,387</td>
<td>69,134</td>
<td>5,959</td>
<td>22,623</td>
</tr>
<tr>
<td>Zkouška č. 25</td>
<td>29,85</td>
<td>10,99</td>
<td>15,67</td>
<td>29,87</td>
<td>16,21</td>
<td>50,07</td>
<td>1,7</td>
<td>0,891</td>
<td>73,15</td>
<td>5,693</td>
<td>18,569</td>
</tr>
<tr>
<td>Zkouška č. 26</td>
<td>29,2</td>
<td>5,64</td>
<td>7,96</td>
<td>30,02</td>
<td>18,05</td>
<td>49,78</td>
<td>1,64</td>
<td>0,943</td>
<td>74,336</td>
<td>5,587</td>
<td>17,494</td>
</tr>
<tr>
<td>Zkouška č. 27</td>
<td>29,53</td>
<td>7,68</td>
<td>10,89</td>
<td>30,18</td>
<td>17,45</td>
<td>50,56</td>
<td>1,57</td>
<td>0,89</td>
<td>73,862</td>
<td>5,703</td>
<td>17,977</td>
</tr>
<tr>
<td>Zkouška č. 32</td>
<td>28,79</td>
<td>10,14</td>
<td>14,25</td>
<td>29,90</td>
<td>16,77</td>
<td>50,39</td>
<td>1,25</td>
<td>1,025</td>
<td>73,003</td>
<td>5,889</td>
<td>18,836</td>
</tr>
<tr>
<td>Zkouška č. 33</td>
<td>28,27</td>
<td>10,60</td>
<td>14,78</td>
<td>30,51</td>
<td>17,17</td>
<td>50,45</td>
<td>1,13</td>
<td>0,996</td>
<td>72,799</td>
<td>5,900</td>
<td>19,171</td>
</tr>
<tr>
<td>Zkouška č. 34</td>
<td>27,87</td>
<td>14,37</td>
<td>19,93</td>
<td>30,82</td>
<td>16,39</td>
<td>47,29</td>
<td>1,13</td>
<td>1,070</td>
<td>75,096</td>
<td>5,801</td>
<td>16,906</td>
</tr>
<tr>
<td>Zkouška č. 35</td>
<td>28,24</td>
<td>13,32</td>
<td>18,57</td>
<td>31,37</td>
<td>16,90</td>
<td>47,28</td>
<td>1,04</td>
<td>1,075</td>
<td>75,699</td>
<td>5,812</td>
<td>16,378</td>
</tr>
<tr>
<td>Zkouška č. 36</td>
<td>29,63</td>
<td>15,44</td>
<td>21,94</td>
<td>30,68</td>
<td>15,42</td>
<td>47,45</td>
<td>0,83</td>
<td>1,117</td>
<td>74,991</td>
<td>5,918</td>
<td>17,149</td>
</tr>
</tbody>
</table>
3.4.3. Vyhodnocení provedených zkoušek na zařízení č.3

Testy na zařízení č. 3 probíhaly ve stejné době jako testy na zařízení č.2. Pro obě zařízení bylo použito stejné dávkovací zařízení, proto granulometrie sorbentů uvedená ve výsledcích testů na tomto zařízení platí i pro zařízení č.3.

Během jednotlivých zkoušek byly odebrány vzorky popílku a paliva. V laboratoři Ampluservis byly provedeny rozbory paliva pro jednotlivé zkoušky. Jak je patrné z Tab.č. 34 obsah síry v hořlavině se pohyboval se u jednotlivých zkoušek pohyboval v rozmezí 1,25 % až 1,59 %.

Všechny testy proběhly při parním výkonu kotle 50 t/h a výsledky jsou uvedeny v Tab.č. 32. Při testu č.24 bylo dávkováno 380 kg/h přípravku Bicar. Emise SO₂ poklesly z hodnoty 2426 mg/m³ na 1415 mg/m³. Účinnost odsíření byla 41,67 %. Při testu č. 28 byl jako sorbent použit přípravek Sorbacal. Při dávkování 800 kg/h tohoto přípravku, bylo dosaženo 31,18 % účinnosti odsíření.

Tab.č. 32 Emise SO₂ na zařízení č.3

<table>
<thead>
<tr>
<th>Zkouška č.</th>
<th>Výkon kotle [t.h⁻¹]</th>
<th>Sorbent</th>
<th>Spotřeba sorbentu [kg.h⁻¹]</th>
<th>SO₂ před ø [mg.m⁻³]</th>
<th>SO₂ za ø [mg.m⁻³]</th>
<th>∆SO₂ ø [mg.m⁻³]</th>
<th>Účinnost odsíření [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>50</td>
<td>Bicar</td>
<td>380</td>
<td>2426</td>
<td>1415</td>
<td>1011</td>
<td>41,67</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>Sorbacal + Bicar</td>
<td>800</td>
<td>2136</td>
<td>1470</td>
<td>666</td>
<td>31,18</td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>Sorbacal</td>
<td>600 (S) 300 (B)</td>
<td>2343</td>
<td>885</td>
<td>1458</td>
<td>62,23</td>
</tr>
</tbody>
</table>

Tab.č. 33 Vypočtené hodnoty poměru Na/S pro testy na zařízení č.3

<table>
<thead>
<tr>
<th>Zkouška č.</th>
<th>Výkon kotle [t.h⁻¹]</th>
<th>Spotřeba sorbentu [kg.h⁻¹]</th>
<th>∆SO₂ ø [mg.m⁻³]</th>
<th>Účinnost odsíření [%]</th>
<th>NaHCO₃/S</th>
<th>Na/S</th>
<th>Na/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>50</td>
<td>380</td>
<td>1011</td>
<td>41,67</td>
<td>4,49</td>
<td>1,21</td>
<td>1,71</td>
</tr>
</tbody>
</table>

Tab.č. 34 Rozbor paliva pojednotlivé zkoušky na zařízení č.3
3.5. Analýza popílků

3.5.1. Vyhodnocení popílků ze zkoušek na zařízení č.1

Vzorky popílků byly odebrány při testech na výkonové úrovni 180 t/h a při různých stupních odsíření. Vzorky byly odebrány z jednotlivých sekci elektroodlučovače. Označení jednotlivých vzorků je v Tab.č. 35.

Tab.č. 35 Označení vzorků odebraných popílků

<table>
<thead>
<tr>
<th>Teoretická účinnost odsíření</th>
<th>Označení vzorku</th>
<th>Popis odebraného vzorku</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>T1</td>
<td>Popílek I. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. Sekce Pravá</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. Sekce Pravá</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>Popílek III.</td>
</tr>
<tr>
<td>40%</td>
<td>T15</td>
<td>Popílek I. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T16</td>
<td>Popílek II. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T17</td>
<td>Popílek I. Sekce Pravá</td>
</tr>
<tr>
<td></td>
<td>T18</td>
<td>Popílek II. Sekce Pravá</td>
</tr>
<tr>
<td>20%</td>
<td>T6</td>
<td>Popílek I. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T7</td>
<td>Popílek II. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T8</td>
<td>Popílek I. Sekce Pravá</td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>Popílek II. Sekce Pravá</td>
</tr>
<tr>
<td>0%</td>
<td>T11</td>
<td>Popílek I. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T12</td>
<td>Popílek II. Sekce Levá</td>
</tr>
<tr>
<td></td>
<td>T13</td>
<td>Popílek I. Sekce Pravá</td>
</tr>
<tr>
<td></td>
<td>T14</td>
<td>Popílek II. Sekce Pravá</td>
</tr>
</tbody>
</table>

Fotodokumentace vzorku odebraného popílku provedená mikroskopem Olympus je na Obr.č. 22.
3.5.1.1. Geochemie popílků

V laboratořích Zdravotního ústavu Ostrava byly provedeny chemické analýzy metodou RTG – fluorescence. Protože jsou u této metody problémy s mezí detekce u alkálií, byl obsah sodíku analyzován ještě přesnější metodou – mokrou silikátovou analýzou v laboratořích VŠB – TU Ostrava. Výsledky jsou uvedeny v Tab.č. 36. Z porovnání výsledků obou metod stanovení Na₂O je zřejmé, že existuje určitá shoda mezi oběma metodami, což lze vyjádřit lineárním koeficientem korelace r=0,77, který splňuje podmínku kritické hodnoty koeficientu korelace při hladině významnosti 0,05 (r=0,63). Nejproblematičtější jsou hodnoty v rozmezí 2,5 – 3,0 % pro metodu RTG-fluorescence, která nereaguje dostatečně citlivě na změny Na₂O. Z porovnání průměrných hodnot obsahu Na₂O je zřejmé, že pro nižší obsahy okolo meze detekce RTG-fluorescence se rozdíl pohybuje v rozmezí 25 – 50%, v obsazích nad 3 % se rozdíl sniží na cca 18 % a při obsahu okolo 5 % jsou hodnoty obou metod srovnatelné. U obou metod se projevuje malý rozdíl v obsahu Na₂O mezi 20 a 40 %.

Obr.č. 22 Fotodokumentace charakteru popílků – v konfokálním mikroskopu Olympus
Tab.č. 36 Porovnání metod – silikátová analýza a RTG – fluorescence - obsah Na₂O v popílku

<table>
<thead>
<tr>
<th>Teoretická účinnost odsíření</th>
<th>Vzorek</th>
<th>Místo odběru</th>
<th>Silikátová analýza [%]</th>
<th>RTG – fluorescence [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>T1</td>
<td>Popílek I. Levá</td>
<td>6,27</td>
<td>5,3</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. Levá</td>
<td>4,88</td>
<td>5,57</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. Pravá</td>
<td>5,08</td>
<td>6,73</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. Pravá</td>
<td>4,77</td>
<td>4,64</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>Popílek III. Pravá</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td>T15</td>
<td>Popílek I. Levá</td>
<td>3,99</td>
<td>4,74</td>
</tr>
<tr>
<td></td>
<td>T16</td>
<td>Popílek II. Levá</td>
<td>2,947</td>
<td>2,62</td>
</tr>
<tr>
<td></td>
<td>T17</td>
<td>Popílek I. Pravá</td>
<td>3,1</td>
<td>5,45</td>
</tr>
<tr>
<td></td>
<td>T18</td>
<td>Popílek II. Pravá</td>
<td>3,028</td>
<td>3,15</td>
</tr>
<tr>
<td>20%</td>
<td>T6</td>
<td>Popílek I. Levá</td>
<td>2,2</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>T7</td>
<td>Popílek II. Levá</td>
<td>2,67</td>
<td>2,66</td>
</tr>
<tr>
<td></td>
<td>T8</td>
<td>Popílek I. Pravá</td>
<td>2,66</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>Popílek II. Pravá</td>
<td>2,73</td>
<td>3,49</td>
</tr>
<tr>
<td>0%</td>
<td>T11</td>
<td>Popílek I. Levá</td>
<td>0,935</td>
<td>2,02</td>
</tr>
<tr>
<td></td>
<td>T12</td>
<td>Popílek II. Levá</td>
<td>1,459</td>
<td>2,02</td>
</tr>
<tr>
<td></td>
<td>T13</td>
<td>Popílek I. Pravá</td>
<td>2,555</td>
<td>4,65</td>
</tr>
<tr>
<td></td>
<td>T14</td>
<td>Popílek II. Pravá</td>
<td>1,374</td>
<td>2,99</td>
</tr>
</tbody>
</table>

Graf č. 24 Stanovení Na₂O v popílku pomocí silikátové analýzy
Disertační práce

Ověření suchých metod odsířování

RTG fluorescenční analýza

Graf č. 25 Stanovení Na$_2$O v popílku pomocí RTG fluorescence

Graf č. 26 Průměrný obsah Na$_2$O v popílcích
Tab. č. 37 Výsledky RTG-fluorescenční analýzy – majoritní komponenty

<table>
<thead>
<tr>
<th></th>
<th>Odsíření 0%</th>
<th></th>
<th></th>
<th>Odsíření 20%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. sekce</td>
<td>I. sekce</td>
<td>II. sekce</td>
<td>I. sekce</td>
<td>I. sekce</td>
<td>II. sekce</td>
<td>II. sekce</td>
<td>II. sekce</td>
</tr>
<tr>
<td></td>
<td>levá</td>
<td>pravá</td>
<td>levá</td>
<td>pravá</td>
<td>levá</td>
<td>pravá</td>
<td>levá</td>
<td>pravá</td>
</tr>
<tr>
<td></td>
<td>T11</td>
<td>T13</td>
<td>T12</td>
<td>T14</td>
<td>T6</td>
<td>T8</td>
<td>T7</td>
<td>T9</td>
</tr>
<tr>
<td>SiO₂</td>
<td>57,97</td>
<td>52,84</td>
<td>52,2</td>
<td>49,85</td>
<td>51,34</td>
<td>53,27</td>
<td>46,85</td>
<td>47,49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1,07</td>
<td>0,96</td>
<td>1,12</td>
<td>1,13</td>
<td>0,99</td>
<td>1,01</td>
<td>1,11</td>
<td>1,06</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21,54</td>
<td>18,25</td>
<td>22,86</td>
<td>22,48</td>
<td>18,67</td>
<td>19,84</td>
<td>20,97</td>
<td>20,59</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7,66</td>
<td>8,15</td>
<td>9,44</td>
<td>9,28</td>
<td>8,12</td>
<td>8,32</td>
<td>10,29</td>
<td>9,46</td>
</tr>
<tr>
<td>MnO</td>
<td>0,15</td>
<td>0,17</td>
<td>0,2</td>
<td>0,19</td>
<td>0,17</td>
<td>0,17</td>
<td>0,23</td>
<td>0,21</td>
</tr>
<tr>
<td>MgO</td>
<td>1,28</td>
<td>1,81</td>
<td>1,31</td>
<td>1,91</td>
<td>1,76</td>
<td>1,48</td>
<td>1,79</td>
<td>1,67</td>
</tr>
<tr>
<td>CaO</td>
<td>4,16</td>
<td>4,78</td>
<td>4,98</td>
<td>4,92</td>
<td>4,51</td>
<td>4,6</td>
<td>5,11</td>
<td>4,95</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2,02</td>
<td>4,65</td>
<td>2,02</td>
<td>2,99</td>
<td>4,5</td>
<td>4,5</td>
<td>2,66</td>
<td>3,49</td>
</tr>
<tr>
<td>K₂O</td>
<td>2,58</td>
<td>2,25</td>
<td>2,6</td>
<td>2,58</td>
<td>2,35</td>
<td>2,36</td>
<td>2,46</td>
<td>2,39</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,14</td>
<td>0,1</td>
<td>0,22</td>
<td>0,21</td>
<td>0,08</td>
<td>0,15</td>
<td>0,2</td>
<td>0,21</td>
</tr>
<tr>
<td>SO₃</td>
<td>1,49</td>
<td>3,62</td>
<td>2,48</td>
<td>2,04</td>
<td>4,34</td>
<td>3,97</td>
<td>3,65</td>
<td>3,77</td>
</tr>
<tr>
<td>suma</td>
<td>100,01</td>
<td>97,59</td>
<td>99,44</td>
<td>97,58</td>
<td>96,84</td>
<td>97,2</td>
<td>95,32</td>
<td>95,3</td>
</tr>
</tbody>
</table>

Pokračování Tab. č. 37

<table>
<thead>
<tr>
<th></th>
<th>Odsíření 40%</th>
<th></th>
<th></th>
<th>Odsíření 60%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. sekce</td>
<td>I. sekce</td>
<td>II. sekce</td>
<td>I. sekce</td>
<td>I. sekce</td>
<td>II. sekce</td>
<td>II. sekce</td>
<td>II. sekce</td>
</tr>
<tr>
<td></td>
<td>levá</td>
<td>pravá</td>
<td>levá</td>
<td>pravé</td>
<td>levá</td>
<td>pravé</td>
<td>levá</td>
<td>pravé</td>
</tr>
<tr>
<td></td>
<td>T15</td>
<td>T17</td>
<td>T16</td>
<td>T18</td>
<td>T1</td>
<td>T3</td>
<td>T2</td>
<td>T4</td>
</tr>
<tr>
<td>SiO₂</td>
<td>50,49</td>
<td>51,13</td>
<td>48,78</td>
<td>48,99</td>
<td>46,64</td>
<td>45,14</td>
<td>43,43</td>
<td>45,14</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,96</td>
<td>0,97</td>
<td>1,09</td>
<td>1,03</td>
<td>0,92</td>
<td>0,92</td>
<td>1,01</td>
<td>1,01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19,46</td>
<td>18,63</td>
<td>21,35</td>
<td>20,78</td>
<td>17,46</td>
<td>17,95</td>
<td>19,27</td>
<td>19,46</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7,76</td>
<td>7,71</td>
<td>9,26</td>
<td>8,71</td>
<td>7,45</td>
<td>7,56</td>
<td>9,11</td>
<td>8,74</td>
</tr>
<tr>
<td>MnO</td>
<td>0,14</td>
<td>0,14</td>
<td>0,19</td>
<td>0,17</td>
<td>0,16</td>
<td>0,16</td>
<td>0,21</td>
<td>0,2</td>
</tr>
<tr>
<td>MgO</td>
<td>1,14</td>
<td>1,54</td>
<td>1,41</td>
<td>1,71</td>
<td>1,19</td>
<td>1,44</td>
<td>1,92</td>
<td>1,43</td>
</tr>
<tr>
<td>CaO</td>
<td>3,65</td>
<td>3,69</td>
<td>4,28</td>
<td>4</td>
<td>3,9</td>
<td>3,92</td>
<td>4,49</td>
<td>4,48</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4,74</td>
<td>5,45</td>
<td>2,62</td>
<td>3,15</td>
<td>5,3</td>
<td>6,73</td>
<td>5,57</td>
<td>3,14</td>
</tr>
<tr>
<td>K₂O</td>
<td>2,42</td>
<td>2,46</td>
<td>2,57</td>
<td>2,51</td>
<td>2,25</td>
<td>2,24</td>
<td>2,35</td>
<td>2,37</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,17</td>
<td>0,17</td>
<td>0,24</td>
<td>0,2</td>
<td>0,11</td>
<td>0,05</td>
<td>0,19</td>
<td>0,21</td>
</tr>
<tr>
<td>SO₃</td>
<td>4,62</td>
<td>4,17</td>
<td>3,8</td>
<td>3,87</td>
<td>6,97</td>
<td>5,82</td>
<td>6,09</td>
<td>6,19</td>
</tr>
<tr>
<td>suma</td>
<td>95,57</td>
<td>96,05</td>
<td>95,58</td>
<td>95,12</td>
<td>92,33</td>
<td>91,92</td>
<td>93,64</td>
<td>92,36</td>
</tr>
</tbody>
</table>
Graf č. 27 Obsah SiO\textsubscript{2} v závislosti na teoretické účinnosti odsíření

Graf č. 28 Obsah TiO\textsubscript{2} v závislosti na teoretické účinnosti odsíření

Graf č. 29 Obsah Al\textsubscript{2}O\textsubscript{3} v závislosti na teoretické účinnosti odsíření
Graf č. 30 Obsah Fe₂O₃ v závislosti na teoretické účinnosti odsíření

Graf č. 31 Obsah MnO v závislosti na teoretické účinnosti odsíření

Graf č. 32 Obsah MgO v závislosti na teoretické účinnosti odsíření
Graf č. 33 Obsah CaO v závislosti na teoretické účinnosti odsíření

Graf č. 34 Obsah K2O v závislosti na teoretické účinnosti odsíření

3.5.1.2. Vyluhovatelnost popílků

Změna v charakteru popílku byla posuzována podle vyhlášky č.294/2005 Sb. podle tabulky č.2.1 vyhlášky. Analýzy odebraných vzorků byly provedeny v akreditované laboratoři Zdravotního ústavu se sídlem v Ostravě, Odbor hygienických laboratoří Karviná. Nejvýše přípustné hodnoty ukazatelů – koncentrací škodlivin ve vodném výluhu odpadu (v mg/l) pro jednotlivé třídy vyluhovatelnosti jsou uvedeny v tabulce č. 2.1. vyhlášky č.294/2005 Sb. Pro analýzu byl vybrán popílek ze zkoušky při maximálním stupni odsíření (60%). Byl připraven homogenizací popílků odebraných ze všech 4 odlučovačů v poměru, který odpovídá produkovanému množství. V tomto...
vzorku byla provedena i analýza obsahu polutantů v sušině podle požadavků tabulky č.10.1 ve vyhlášce č.294/2005 Sb. a ekotoxicita podle rozsahu tabulky č.10.2 vyhlášky č.294/2005.

Tab.č. 38 Vyluhovatelnost popílků

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Třída vyluhovatelnosti</th>
<th>Výsledky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>IIa</td>
</tr>
<tr>
<td></td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>DOC (rozpuštěný organický uhlík)</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Fenolový index</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Chloridy</td>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>Fluoridy</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>sírany</td>
<td>100</td>
<td>3000</td>
</tr>
<tr>
<td>As</td>
<td>0,05</td>
<td>2,5</td>
</tr>
<tr>
<td>Ba</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Cd</td>
<td>0,004</td>
<td>0,5</td>
</tr>
<tr>
<td>Cr celkový</td>
<td>0,05</td>
<td>7</td>
</tr>
<tr>
<td>Cu</td>
<td>0,2</td>
<td>10</td>
</tr>
<tr>
<td>Hg</td>
<td>0,001</td>
<td>0,2</td>
</tr>
<tr>
<td>Ni</td>
<td>0,04</td>
<td>4</td>
</tr>
<tr>
<td>Pb</td>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td>Sb</td>
<td>0,006</td>
<td>0,5</td>
</tr>
<tr>
<td>Se</td>
<td>0,01</td>
<td>0,7</td>
</tr>
<tr>
<td>Zn</td>
<td>0,4</td>
<td>20</td>
</tr>
<tr>
<td>Mo</td>
<td>0,05</td>
<td>3</td>
</tr>
<tr>
<td>RL (rozpuštěné látky)</td>
<td>400</td>
<td>8 000</td>
</tr>
<tr>
<td>pH</td>
<td>≥ 6</td>
<td>≥ 6</td>
</tr>
</tbody>
</table>

Z Tab.č. 38 je zřejmé, že se při použití hydrogenuhličitanu sodného podstatně zvýší množství rozpuštěných látek, což je ovlivněno poměrně značnou rozpustností výsledných produktů odsiření s obsahem síranu sodného (thenarditu). Vysoké obsahy rozpuštěných látek mohou být kritické i z hlediska ekotoxicky. Při koncentracích nad 3 000 mg/l může docházet k porušení buněčné membrány organismů. Z tabulky je zřejmé, že došlo také k vyšší vychovatelnosti fluoridů, což je také ovlivněno vyšší rozpustností fluoridu sodného, který vzniká podle výše uvedené reakce v procesu odsiřování.
Tab. č. 39 Vodný výluh z popílků

<table>
<thead>
<tr>
<th>Teoretická účinnost odsíření</th>
<th>Vzorek</th>
<th>Místo odběru</th>
<th>pH</th>
<th>Vodivost [mS/cm]</th>
<th>Na+ [mg/l]</th>
<th>Chloridy [mg/l]</th>
<th>Sírany [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>12,51</td>
<td>18,82</td>
<td>4499,4</td>
<td>916,2</td>
<td>4269,1</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>12,39</td>
<td>15,51</td>
<td>3563,8</td>
<td>673,04</td>
<td>3842,19</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>12,52</td>
<td>15,73</td>
<td>3385,9</td>
<td>884,57</td>
<td>3557,58</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>12,41</td>
<td>14,72</td>
<td>3624,9</td>
<td>749,96</td>
<td>4126,8</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>Popílek III.</td>
<td>11,21</td>
<td>3,25</td>
<td>206,3</td>
<td>60,89</td>
<td>1465,75</td>
</tr>
<tr>
<td>40%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>11,53</td>
<td>10,71</td>
<td>2091,2</td>
<td>849,31</td>
<td>2134,55</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>12,57</td>
<td>10,22</td>
<td>1859,6</td>
<td>237,17</td>
<td>1138,43</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>12,41</td>
<td>10,79</td>
<td>2008,1</td>
<td>852,52</td>
<td>2419,16</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>12,57</td>
<td>10,79</td>
<td>2008,1</td>
<td>852,52</td>
<td>2419,16</td>
</tr>
<tr>
<td>0%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>12,57</td>
<td>6,64</td>
<td>330,3</td>
<td>147,43</td>
<td>604,79</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>12,58</td>
<td>7,8</td>
<td>573,2</td>
<td>224,35</td>
<td>960,55</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>12,65</td>
<td>8,15</td>
<td>519,1</td>
<td>166,66</td>
<td>1067,28</td>
</tr>
<tr>
<td>20%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>12,49</td>
<td>12,2</td>
<td>2234,1</td>
<td>397,41</td>
<td>2774,91</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>12,36</td>
<td>9,62</td>
<td>1577,5</td>
<td>339,73</td>
<td>2134,55</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>12,60</td>
<td>9,87</td>
<td>1688,4</td>
<td>352,54</td>
<td>1849,94</td>
</tr>
</tbody>
</table>

Pokračování předchozí tabulky

<table>
<thead>
<tr>
<th>Teoretická účinnost odsíření</th>
<th>Vzorek</th>
<th>Místo odběru</th>
<th>Ca [mg/l]</th>
<th>Mg [mg/l]</th>
<th>(NH₄)⁺ [mg/l]</th>
<th>(NO₃)⁻ [mg/l]</th>
<th>(PO₄)³⁻ [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>16,13</td>
<td>14,68</td>
<td>0,2</td>
<td>12,01</td>
<td>2,041</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>88,71</td>
<td>14,68</td>
<td>0,152</td>
<td>12,19</td>
<td>0,068</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>16,13</td>
<td>9,79</td>
<td>0,152</td>
<td>5,38</td>
<td>0,715</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>88,71</td>
<td>9,79</td>
<td>0,222</td>
<td>4,96</td>
<td>0,101</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>Popílek III.</td>
<td>645,19</td>
<td>63,82</td>
<td>0,244</td>
<td>0,94</td>
<td>0,101</td>
</tr>
<tr>
<td>40%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>282,27</td>
<td>24,47</td>
<td>0,126</td>
<td>4,5</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>508,09</td>
<td>19,57</td>
<td>0,102</td>
<td>3,47</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>346,79</td>
<td>83,19</td>
<td>0,123</td>
<td>2,27</td>
<td>0,085</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>483,89</td>
<td>34,26</td>
<td>0,192</td>
<td>2,65</td>
<td>0,051</td>
</tr>
<tr>
<td>0%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>443,57</td>
<td>29,36</td>
<td>0,137</td>
<td>1,79</td>
<td>0,107</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>532,28</td>
<td>19,58</td>
<td>0,213</td>
<td>1,67</td>
<td>0,107</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>258,06</td>
<td>24,47</td>
<td>0,228</td>
<td>6,61</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>564,54</td>
<td>39,15</td>
<td>0,219</td>
<td>2,22</td>
<td>0,107</td>
</tr>
<tr>
<td>20%</td>
<td>T1</td>
<td>Popílek I. sekce Levá</td>
<td>24,19</td>
<td>19,58</td>
<td>1,457</td>
<td>9,17</td>
<td>0,203</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Popílek II. sekce Levá</td>
<td>306,47</td>
<td>14,68</td>
<td>0,348</td>
<td>9,58</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Popílek I. sekce Pravá</td>
<td>112,91</td>
<td>44,04</td>
<td>0,204</td>
<td>5,38</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Popílek II. sekce Pravá</td>
<td>274,21</td>
<td>19,58</td>
<td>0,163</td>
<td>8,83</td>
<td>0,091</td>
</tr>
</tbody>
</table>
Tab. č. 40 Vodný výluh z popílku – průměrné hodnoty

<table>
<thead>
<tr>
<th>Účinnost odsíření</th>
<th>Na⁺</th>
<th>Chloridy</th>
<th>Sírané</th>
<th>(NH₄)⁺</th>
<th>(NO₃)⁻</th>
<th>(PO₄)³⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>3768,5</td>
<td>805,9425</td>
<td>3948,918</td>
<td>0,1815</td>
<td>8,635</td>
<td>0,73125</td>
</tr>
<tr>
<td>40%</td>
<td>1893,6</td>
<td>783,61</td>
<td>2365,82</td>
<td>0,13575</td>
<td>3,2225</td>
<td>0,0395</td>
</tr>
<tr>
<td>20%</td>
<td>1783,15</td>
<td>368,5675</td>
<td>2241,275</td>
<td>0,143</td>
<td>8,24</td>
<td>0,0955</td>
</tr>
<tr>
<td>0%</td>
<td>444,175</td>
<td>193,9025</td>
<td>942,7625</td>
<td>0,19925</td>
<td>3,0725</td>
<td>0,08725</td>
</tr>
</tbody>
</table>

V Graf č. 35 je uveden nárůst koncentrace Na⁺ v závislosti na množství dávkovaného sorbentu, kdy takové koncentrace je od 444 mg/l bez dávkování sorbentu až po 3768 mg/l při dávkování 450 kg/h NaHCO₃.

![Graf č. 35 Koncentrace Na⁺ ve vodném výluhu](image)

V Graf č. 36 je uvedena závislost koncentrace síranů ve vodném výluhu z popílku v závislosti na skutečné účinnosti odsíření.
Jak již bylo zmíněno v teoretické části, tak NaHCO₃ snižuje i množství HCl ve spalinách. Proto bylo očekáváno, že se ve vodném výluhu z popílků objeví Cl⁻. Tento předpoklad byl potvrzen, jak je patrné z Graf č. 37. Koncentrace Cl⁻ stoupá s množstvím dávkovaného sorbentu, až do množství sobrentu 300 kg/h. S dalším zvyšováním množstvím dávkovaného sorbentu již téměř nedochází ke zvyšování koncentrace Cl⁻ ve vodném výluhu. Toto je způsobeno tím, že již při dávkování 300 kg/h sorbentu je ze spalin odstraněn téměř všechen HCl (Graf č. 20).
3.5.1.3. Elementární analýza popílků

Metodou RTG fluorescence byl stanoven obsah stopových prvků v popílkách. Tato analýza byla provedena pro popílky z jednotlivých sekcí z elektroodlučovače. Výsledky této analýzy jsou v Tab. č. 41.

Tab. č. 41 Obsah stopových prvků (mg/kg sušiny) – stanoveno metodou RTG fluorescence

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Sekce elektrostatického odlučovače</th>
<th>Průměr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l. Levá</td>
<td>l. Pravá</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>1390</td>
<td>3200</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>6480</td>
<td>7180</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>5960</td>
<td>5620</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>6250</td>
<td>6070</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>742</td>
<td>670</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>731</td>
<td>763</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>733</td>
<td>713</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>683</td>
<td>693</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>193</td>
<td>161</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>172</td>
<td>159</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>184</td>
<td>173</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>157</td>
<td>146</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>128</td>
<td>110</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>111</td>
<td>113</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>50</td>
<td>27,6</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>44,6</td>
<td>41,3</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>47,4</td>
<td>31,7</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>33,7</td>
<td>28,2</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>99</td>
<td>97,4</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>99,3</td>
<td>112</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>99,1</td>
<td>99,4</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>Odsíření 20%</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td>Odsíření 40%</td>
<td>114</td>
<td>120</td>
</tr>
<tr>
<td>Odsíření 60%</td>
<td>108</td>
<td>111</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odsíření 0%</td>
<td>108</td>
<td>78,5</td>
</tr>
</tbody>
</table>

81
Jak je patrné z Graf č. 38 až Graf č. 40, tak odsiřování hydrogenuhličitanem sodným nemá vliv na nárůst obsahu (Ba, V, Cu, Zn, Cr, Co, Ni, Pb, Se, Sn, Sb, Cd, Ag, Mo a As) v popílku.
Graf č. 38 Průměrný obsah Ba, V, Cu a Zn v sušině pro různé úrovně odsíření

Graf č. 39 Průměrný obsah Cr, Co, Ni, Pb a Se v sušině pro různé úrovně odsíření

Graf č. 40 Průměrný obsah Sn, Sb, Cd, Ag, Mo a As v sušině pro různé úrovně odsíření
3.5.1.4. Nedopal v popílku

Tab. č. 42 Nedopal a základní prvky

<table>
<thead>
<tr>
<th>Odsíření</th>
<th>Označení</th>
<th>Místo odběru</th>
<th>Vlhkost [%]</th>
<th>Nedopal [%]</th>
<th>C [%]</th>
<th>S [%]</th>
<th>Nedopal/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>T 1</td>
<td>Popílek I. sekce Levá</td>
<td>0,17</td>
<td>3,4</td>
<td>1,92</td>
<td>1,032</td>
<td>1,77</td>
</tr>
<tr>
<td></td>
<td>T 3</td>
<td>Popílek I. sekce Pravá</td>
<td>0,18</td>
<td>4,07</td>
<td>2,77</td>
<td>0,635</td>
<td>1,47</td>
</tr>
<tr>
<td></td>
<td>T 2</td>
<td>Popílek II. sekce Levá</td>
<td>0,19</td>
<td>1,87</td>
<td>0,8</td>
<td>0,997</td>
<td>2,33</td>
</tr>
<tr>
<td></td>
<td>T 4</td>
<td>Popílek II. sekce Pravá</td>
<td>0,13</td>
<td>2,99</td>
<td>1,95</td>
<td>0,596</td>
<td>1,53</td>
</tr>
<tr>
<td>40%</td>
<td>T 15</td>
<td>Popílek I. sekce Levá</td>
<td>0,13</td>
<td>1,66</td>
<td>1,44</td>
<td>0,846</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td>T 17</td>
<td>Popílek I. sekce Pravá</td>
<td>0,18</td>
<td>1,65</td>
<td>1,15</td>
<td>0,375</td>
<td>1,43</td>
</tr>
<tr>
<td></td>
<td>T 16</td>
<td>Popílek II. sekce Levá</td>
<td>0,21</td>
<td>1,01</td>
<td>0,57</td>
<td>0,57</td>
<td>1,78</td>
</tr>
<tr>
<td></td>
<td>T 18</td>
<td>Popílek II. sekce Pravá</td>
<td>0,19</td>
<td>1,55</td>
<td>1,09</td>
<td>0,408</td>
<td>1,42</td>
</tr>
<tr>
<td>20%</td>
<td>T 6</td>
<td>Popílek I. sekce Levá</td>
<td>0,08</td>
<td>1,44</td>
<td>0,88</td>
<td>0,279</td>
<td>1,63</td>
</tr>
<tr>
<td></td>
<td>T 8</td>
<td>Popílek I. sekce Pravá</td>
<td>0,11</td>
<td>1,54</td>
<td>1,12</td>
<td>0,324</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>T 7</td>
<td>Popílek II. sekce Levá</td>
<td>0,11</td>
<td>1,02</td>
<td>0,6</td>
<td>0,44</td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td>T 9</td>
<td>Popílek II. sekce Pravá</td>
<td>0,17</td>
<td>1,55</td>
<td>1,08</td>
<td>0,315</td>
<td>1,44</td>
</tr>
<tr>
<td>0%</td>
<td>T 11</td>
<td>Popílek I. sekce Levá</td>
<td>0,09</td>
<td>0,56</td>
<td>0,66</td>
<td>0,01</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>T 13</td>
<td>Popílek I. sekce Pravá</td>
<td>0,14</td>
<td>1,38</td>
<td>0,78</td>
<td>0,01</td>
<td>1,76</td>
</tr>
<tr>
<td></td>
<td>T 12</td>
<td>Popílek II. sekce Levá</td>
<td>0,17</td>
<td>0,96</td>
<td>0,45</td>
<td>0,01</td>
<td>2,11</td>
</tr>
<tr>
<td></td>
<td>T 14</td>
<td>Popílek II. sekce Pravá</td>
<td>0,22</td>
<td>0,89</td>
<td>0,98</td>
<td>0,01</td>
<td>0,91</td>
</tr>
</tbody>
</table>

Jak je patrné z Graf č. 41, s postupným zvýšováním stupně odsíření došlo k nárůstu nedopalu v popílku. Z původních 0,95 % při provozu kotle bez odsíření až na 3,08 % při 60 % teoretickém stupni odsíření. Toto zvýšení ovšem zapřičiněno množstvím dávkovaného sorbentu, ale provozem kotle.
3.5.1.5. Ekotoxicita

Ekotoxicita vodného výluhu může být způsobena následujícími faktory:

Vysoký obsah rozpustěných látek (tzv. nepřímá ekotoxicita), která je způsobena vysokým osmotickým tlakem rozpustěných iontů, může docházet k praskání buněčné membrány

Přítomností thenarditu (\(\text{Na}_2\text{SO}_4 \)) nebo \(\text{Na}^+ \) iontů?

Z Graf č. 42 je zřejmé, že při naředění výluhu 100 x, tzn. poklesu obsahu rozpustěných látek na 600 – 900 mg/l a obsahu sodíku 30 – 40 mg/l klesá hodnota inhibice na 30 – 40 %. Vyhláška 294/2005 Sb. požaduje max. 30 % inhibici.
3.5.1.6. Obsah škodlivin v sušině dle vyhlášky 294/2005 Sb.

Dle vyhlášky 294/2005 Sb. byl stanoven obsah škodlivin v popílku. Výsledky uvedené v Tab.č. 43 ukazují, že limit nebyl překročen ani u jednoho ukazatele.

Tab.č. 43 Obsah škodlivin v sušině

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Jednotka</th>
<th>Limitní hodnota</th>
<th>Vzorek</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>mg/kg sušiny</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Cd</td>
<td>mg/kg sušiny</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg sušiny</td>
<td>200</td>
<td>65</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg sušiny</td>
<td>0,8</td>
<td>0,07</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg sušiny</td>
<td>80</td>
<td>46</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg sušiny</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>V</td>
<td>mg/kg sušiny</td>
<td>180</td>
<td>104</td>
</tr>
<tr>
<td>BTEX</td>
<td>mg/kg sušiny</td>
<td>0,4</td>
<td><0,1</td>
</tr>
<tr>
<td>PAU</td>
<td>mg/kg sušiny</td>
<td>6</td>
<td>0,273</td>
</tr>
<tr>
<td>PCB</td>
<td>mg/kg sušiny</td>
<td>0,2</td>
<td><0,01</td>
</tr>
</tbody>
</table>

Pozn.: BTEX – suma benzenu, toluenu, etylbenzenu a xylenu, PAU – polycyklické aromatické uhlovodíky, PCB – polychlorované bifenyly

3.5.2. Vyhodnocení popílků ze zkoušek na zařízení č.2

Při zkouškách na zařízení č.2 byly provedeny analýzy popílků ze zkoušek 21, 22, 25, 26, 27 a z opakovaných testů 32, 33, 34 a 35. Pro zkoušky 30 a 31 rozbory popílků nebyly provedeny.

3.5.2.1. Geochemie popílků

Výsledky obsahu rizikových prvků v popílcích jsou uvedeny v Tab.č. 44. V posledním sloupci jsou uvedeny limity požadované vyhláškou č.294/2005 Sb. v případě, že jsou popílky využívány na povrchu terénu a pro rekonstrukci. Z výsledků je zřejmé, že limit není splněn u As, jehož obsahy jsou překročeny trojnásobně až sedminásobně. Rovněž byl u některých vzorku překročen limit u Ni.
Tab. č. 44 Geochemická analýza popílku

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Jednotka</th>
<th>Zkouška č.32</th>
<th>Zkouška č.33</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>mg/kg sušiny</td>
<td>0.34</td>
<td>0.39</td>
<td>1.1</td>
</tr>
<tr>
<td>Ag</td>
<td>mg/kg sušiny</td>
<td>0.902</td>
<td>1.09</td>
<td>1.65</td>
</tr>
<tr>
<td>As</td>
<td>mg/kg sušiny</td>
<td>72.3</td>
<td>39.6</td>
<td>69.9</td>
</tr>
<tr>
<td>Ba</td>
<td>mg/kg sušiny</td>
<td>323</td>
<td>755</td>
<td>1180</td>
</tr>
<tr>
<td>Cd</td>
<td>mg/kg sušiny</td>
<td>0.284</td>
<td>0.302</td>
<td>0.798</td>
</tr>
<tr>
<td>Co</td>
<td>mg/kg sušiny</td>
<td>19.6</td>
<td>31.5</td>
<td>57.7</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg sušiny</td>
<td>48.3</td>
<td>74</td>
<td>112</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg sušiny</td>
<td>49.6</td>
<td>166</td>
<td>290</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/kg sušiny</td>
<td>45.3</td>
<td>56</td>
<td>94.6</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg sušiny</td>
<td>9.85</td>
<td>3.95</td>
<td>17.5</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/kg sušiny</td>
<td>75.5</td>
<td>64.9</td>
<td>177</td>
</tr>
<tr>
<td>pH</td>
<td>m/l</td>
<td>12.6</td>
<td>12.6</td>
<td>10</td>
</tr>
<tr>
<td>RL</td>
<td>mg/l</td>
<td>4600</td>
<td>3600</td>
<td>5000</td>
</tr>
<tr>
<td>Sušina</td>
<td>%</td>
<td>99.4</td>
<td>99.8</td>
<td>99.1</td>
</tr>
</tbody>
</table>

Pozn.: RL – rozpuštěné látky

U opakovaných testů byl obsah rizikových prvků stanoven u zkoušek č.32 a 33 (Tab. č. 45). Jak je z výsledků patrné tak byl překročen limit u arzenu, antimonu, selenu a molybdenu.

Tab. č. 45 Chemická analýza popílku z opakovaných zkoušek

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Jednotka</th>
<th>Zkouška č.32</th>
<th>Zkouška č.33</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>m/l</td>
<td>9,4</td>
<td>3,8</td>
<td>max. 50</td>
</tr>
<tr>
<td>Fenoly (fenolový index)</td>
<td>m/l</td>
<td><0,05</td>
<td><0,05</td>
<td>max. 0,1</td>
</tr>
<tr>
<td>As (arzen)</td>
<td>m/l</td>
<td>1,41</td>
<td>0,517</td>
<td>max. 0,05</td>
</tr>
<tr>
<td>Ba (baryum)</td>
<td>m/l</td>
<td>0,042</td>
<td>0,079</td>
<td>max. 2,0</td>
</tr>
<tr>
<td>Cd (kadmium)</td>
<td>m/l</td>
<td>0,0009</td>
<td><0,0002</td>
<td>max. 0,04</td>
</tr>
<tr>
<td>Cu (měď)</td>
<td>m/l</td>
<td>0,02</td>
<td>0,002</td>
<td>max. 0,2</td>
</tr>
<tr>
<td>Hg (rtuť)</td>
<td>m/l</td>
<td><0,0005</td>
<td><0,0005</td>
<td>max. 0,001</td>
</tr>
<tr>
<td>Ni (nikl)</td>
<td>m/l</td>
<td><0,0009</td>
<td>0,0011</td>
<td>max. 0,04</td>
</tr>
<tr>
<td>Pb (olovo)</td>
<td>m/l</td>
<td><0,004</td>
<td><0,004</td>
<td>max. 0,05</td>
</tr>
<tr>
<td>Sb (antimon)</td>
<td>m/l</td>
<td>0,014</td>
<td>0,008</td>
<td>max. 0,006</td>
</tr>
<tr>
<td>Se (selen)</td>
<td>m/l</td>
<td>0,81</td>
<td>0,453</td>
<td>max. 0,01</td>
</tr>
<tr>
<td>Zn (zinek)</td>
<td>m/l</td>
<td>0,006</td>
<td>0,017</td>
<td>max. 0,4</td>
</tr>
<tr>
<td>Mo (molybden)</td>
<td>m/l</td>
<td>0,201</td>
<td>0,200</td>
<td>max. 0,05</td>
</tr>
</tbody>
</table>

Pozn. DOC – rozpuštěný organický uhlík
Tab. č. 46 Silikátová analýza popílků ze zařízení č.2

<table>
<thead>
<tr>
<th>Jednotka</th>
<th>Číslo zkoušky</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ [%]</td>
<td></td>
<td>18</td>
<td>24,2</td>
<td>28,1</td>
<td>16,4</td>
<td>17,2</td>
</tr>
<tr>
<td>CaO [%]</td>
<td></td>
<td>26,7</td>
<td>13,2</td>
<td>3,89</td>
<td>4,4</td>
<td>15,6</td>
</tr>
<tr>
<td>Fe₂O₃ [%]</td>
<td></td>
<td>6,86</td>
<td>7,06</td>
<td>8,38</td>
<td>10,4</td>
<td>6,41</td>
</tr>
<tr>
<td>K₂O [%]</td>
<td></td>
<td>0,947</td>
<td>0,744</td>
<td>0,975</td>
<td>1,04</td>
<td>0,532</td>
</tr>
<tr>
<td>MgO [%]</td>
<td></td>
<td>1,18</td>
<td>1,2</td>
<td>1,38</td>
<td>1,43</td>
<td>1,22</td>
</tr>
<tr>
<td>MnO [%]</td>
<td></td>
<td>0,062</td>
<td>0,05</td>
<td>0,09</td>
<td>0,08</td>
<td>0,058</td>
</tr>
<tr>
<td>Na₂O [%]</td>
<td></td>
<td>0,43</td>
<td>1,61</td>
<td>4,19</td>
<td>11,6</td>
<td>7,47</td>
</tr>
<tr>
<td>SiO₂ [%]</td>
<td></td>
<td>29,1</td>
<td>35,8</td>
<td>37,9</td>
<td>24,9</td>
<td>23,7</td>
</tr>
<tr>
<td>TiO₂ [%]</td>
<td></td>
<td>1,39</td>
<td>4,03</td>
<td>4,53</td>
<td>1,89</td>
<td>2,73</td>
</tr>
</tbody>
</table>

3.5.2.2. Mineralogická analýza

Mineralogická fázová analýza popílků poskytuje základní informace o fázovém složení popílků, které lze využít pro charakteristiku průběhu spalovacích zkoušek.

Fázové složení studovaných vzorků

Při analýzách fázového složení studovaných produktů spalování (Zkoušky č. 21, 22, 25, 26 a 27) byly zjištěny závažné skutečnosti, které ukazují, že odsířování nefungovalo dostatečně. Vzorky ze
zkoušek, při kterých byl jako sorbent použit Sorbacal obsahují poměrně vysoký podíl portlanditu – Ca(OH)$_2$, který je dominantní a funkčně rozhodující složkou tohoto sorbentu. Také obsahy anhydritu jsou v těchto vzorcích velmi nízké. Srovnatelné obsahy anhydritu byly zjištěny také ve vzorcích odsiřovaných pomocí Bicaru. Pravděpodobně se jedná o pozdařlivé obsahy anhydritu, které vznikají v procesu spalování z karbonátů, přítomných v palivu. Obsahy oxidu vápenatého - CaO nebyly zjištěny ani ve stopách.

Tab.č. 47 Mineralogická fázová analýza

<table>
<thead>
<tr>
<th></th>
<th>Zkouška 21</th>
<th>Zkouška 22</th>
<th>Zkouška 25</th>
<th>Zkouška 26</th>
<th>Zkouška 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorfní</td>
<td>56.30 ± 4.20</td>
<td>67.30 ± 3.30</td>
<td>78.30 ± 2.85</td>
<td>66.70 ± 4.50</td>
<td>67.10 ± 3.60</td>
</tr>
<tr>
<td>Anhydrit</td>
<td>0.43 ± 0.30</td>
<td>1.40 ± 0.57</td>
<td>1.41 ± 0.84</td>
<td>1.66 ± 0.69</td>
<td>0.51 ± 0.33</td>
</tr>
<tr>
<td>Hematit</td>
<td>3.72 ± 1.14</td>
<td>2.64 ± 0.78</td>
<td>3.06 ± 0.75</td>
<td>5.35 ± 0.93</td>
<td>2.52 ± 1.14</td>
</tr>
<tr>
<td>Mullit</td>
<td>10.59 ± 2.01</td>
<td>12.30 ± 2.10</td>
<td>10.96 ± 2.82</td>
<td>5.46 ± 1.74</td>
<td>9.45 ± 1.86</td>
</tr>
<tr>
<td>Portlandit</td>
<td>20.10 ± 2.43</td>
<td>10.01 ± 1.35</td>
<td></td>
<td>15.97 ± 2.31</td>
<td></td>
</tr>
<tr>
<td>Křemen</td>
<td>8.90 ± 1.08</td>
<td>5.90 ± 0.96</td>
<td>6.23 ± 0.93</td>
<td>3.92 ± 0.87</td>
<td>4.49 ± 0.81</td>
</tr>
<tr>
<td>Nahcolit</td>
<td></td>
<td></td>
<td></td>
<td>16.90 ± 3.60</td>
<td></td>
</tr>
</tbody>
</table>

3.5.2.3. Ekotoxicita

V případě, že budou popílky využívány na povrchu terénu pro úpravu a rekultivaci musí splňovat také požadavky ekotoxikologických testů. U *Daphnia magna* nesmí procento imbolizace přesáhnout 30%, u řasy *Selenastrum* nesmí inhibice nebo stimulace růstu řasy také překročit 30 % a u ryby nesmí dojít k úhynu ani jediné ryby. Také u semena *Sinapsis alba* nesmí dojít k stimulaci nebo inhibici růstu větší než 30 % ve srovnání s kontrolními vzorky. Při hodnocení ekotoxicity musí být splněny požadavky na všechny testované organismy.

Z výsledků uvedených v Tab.č. 48 je zřejmé, nejcitlivějším organismem na upravené prostředí vodného výluhu je *Daphnia magna* a následně semeno *Sinapsis alba*. Příčiny nevyhovující výsledků
souvisí se dvěmi problémy, které bez dalších doplňujících analýz nebylo možné identifikovat. Následně proto nebylo možné určit ani technologickou možnost eliminace ekotoxicity. Ekotoxicita ve vodném výluhu může být způsobena vysokým obsahem rozpuštěných látek ve vodném výluhu. Při vysokém obsahu rozpuštěných látek dochází k problému s vyrovnáním osmotického tlaku u buněk jednotlivých organismů. Z výsledků fázové mineralogické analýzy je zřejmé, že ve vodném výluhu se vyskytuje nezreagovaný hydroxid vápenatý. V případě, že by jeho obsah ve vodném výluhu byl nižší, větší část by se využila na tvorbu síranu vápenatého (sádrovec, anhydrit, bassanit) s nižším součinitelem rozpustnosti, lze předpokládat snížení inhibice. Druhou příčinou může být zvýšený vyskyt rizikových prvků ve vodném výluhu. Tyto analýzy nebyly součástí zkoušek a je nutné je doplnit. Ve vodném výluhu z popílků se jako problémové mohou jevit koncentrace As, které několikanásobně převyšuje i limit pro sušinu popílků. Kromě As se v popílcích může vyskytovat i Se, který se uvolňuje při oxidaci pyrit ze sulfidů a selenáty a seleničnany se chovají podobně jako sulfáty. I další rizikové prvky, které jsou řazeny mezi oxianionty (Cr, Mo,V) se zvýšenou schopností vyluhovatelnosti v alkalickém prostředí mohou být přičinou ekotoxicity u analyzovaných vzorků. Pro vysvětlení příčiny ekotoxicity by bylo nutné doplnit následující informace.

- Obsah rizikových prvků v uhlí
- Kompletní chemických rozbor vodného výluhu (majoritní složky a stopové prvky) k výpočtu zastoupení jednotlivých minerálních fází ve vodném výluhu na bázi koeficientu rozpustnosti.
- Porovnání obsahu rizikových prvků ve výluhu s tabelovanými hodnotami EC50 pro vodné organismy.

Tab. č. 48 Ekotoxicita

<table>
<thead>
<tr>
<th>Vzorek číslo</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna</td>
<td>Imobilizace 48 h % 100 100 100 100 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmodesmus s.</td>
<td>Inhibice 72 h % 17 8.9 27 61 58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poecilia reticulata</td>
<td>Mortalita 96 h % 11 0 56 100 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinapsis alba</td>
<td>Inhibice 72 h % 33 25 26 100 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.3. Vyhodnocení popílků ze zkoušek na zařízení č.3

V této části jsou uvedeny analyzy popílků odebraných na zařízení č.3. Jsou zde uvedeny pouze výsledky. Podrobnější popis výsledků je uveden v kapitolách 3.5.2.1 až 3.5.2.3.

3.5.3.1. Geochemie popílků

Stejně jako to bylo u popílků z testů na zařízení č. 2, byl i u testů na zařízení č.3 několikanásobně překročen limit pro As. U jednoho vzorku byl překročen limit pro Ni. Geochemická analýza popílků je uvedena v Tab.č. 49.

Tab.č. 49 Geochemická analýza popílku

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>Limit</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg sušiny</td>
<td>0.39</td>
<td>0.21</td>
<td>0.083</td>
</tr>
<tr>
<td>Ag</td>
<td>0.879</td>
<td>1.24</td>
<td>0.935</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>97.2</td>
<td>50</td>
<td>32.4</td>
<td>10</td>
</tr>
<tr>
<td>Ba</td>
<td>640</td>
<td>294</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.71</td>
<td>0.459</td>
<td>0.273</td>
<td>1</td>
</tr>
<tr>
<td>Co</td>
<td>44.2</td>
<td>22.1</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>100</td>
<td>49.1</td>
<td>33.5</td>
<td>200</td>
</tr>
<tr>
<td>Cu</td>
<td>77.6</td>
<td>49</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>102</td>
<td>50.8</td>
<td>38.5</td>
<td>80</td>
</tr>
<tr>
<td>Pb</td>
<td>22.4</td>
<td>11.9</td>
<td>7.58</td>
<td>100</td>
</tr>
<tr>
<td>Zn</td>
<td>175</td>
<td>87.4</td>
<td>64.3</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>11.9</td>
<td>12.6</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td>mg/l</td>
<td>4700</td>
<td>5000</td>
<td>24000</td>
</tr>
<tr>
<td>Sušina</td>
<td>%</td>
<td>99.5</td>
<td>99.4</td>
<td>99.9</td>
</tr>
</tbody>
</table>
Tab.č. 50 Silikátová analýza popílků ze zařízení č.3

<table>
<thead>
<tr>
<th></th>
<th>Jednotka</th>
<th>Číslo zkoušky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>[%]</td>
<td>7,79</td>
</tr>
<tr>
<td>CaO</td>
<td>[%]</td>
<td>5,09</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>[%]</td>
<td>5,7</td>
</tr>
<tr>
<td>K₂O</td>
<td>[%]</td>
<td>0,562</td>
</tr>
<tr>
<td>MgO</td>
<td>[%]</td>
<td>1,5</td>
</tr>
<tr>
<td>MnO</td>
<td>[%]</td>
<td>0,06</td>
</tr>
<tr>
<td>Na₂O</td>
<td>[%]</td>
<td>22,6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>[%]</td>
<td>9,79</td>
</tr>
<tr>
<td>TiO₂</td>
<td>[%]</td>
<td>0,535</td>
</tr>
</tbody>
</table>

3.5.3.2. Mineralogická analýza

Tab.č. 51 Mineralogická fázová analýza

<table>
<thead>
<tr>
<th>Vzorek číslo</th>
<th>24</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorfní</td>
<td>88.80 ± 3.0</td>
<td>57.60 ± 4.80</td>
<td>59.10 ± 4.50</td>
</tr>
<tr>
<td>Anhydrit</td>
<td>3.49 ± 0.81</td>
<td>0.54 ± 0.42</td>
<td>1.64 ± 0.72</td>
</tr>
<tr>
<td>Hematit</td>
<td>1.55 ± 0.81</td>
<td>0.95 ± 0.78</td>
<td>0.53 ± 0.48</td>
</tr>
<tr>
<td>Mullit</td>
<td>2.17 ± 2.55</td>
<td>2.62 ± 1.56</td>
<td>2.56 ± 1.80</td>
</tr>
<tr>
<td>Portlandit</td>
<td></td>
<td>41.60 ± 4.20</td>
<td>33.30 ± 3.60</td>
</tr>
<tr>
<td>Křemen</td>
<td>1.18 ± 0.60</td>
<td>1.74 ± 0.84</td>
<td>1.21 ± 0.75</td>
</tr>
<tr>
<td>Nahcolit</td>
<td>2.79 ± 17.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5.3.3. Ekotoxicita

V Tab. č. 52 uvedené výsledky ekotoxicky jsou obdobné jako u zařízení č.2. Z výsledků vyplývá, že ani jeden z testovaných vzorků nevyhověl.

Tab. č. 52 Ekotoxicita

<table>
<thead>
<tr>
<th>Vzorek číslo</th>
<th>Imobilizace 48 h</th>
<th>%</th>
<th>24</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Desmodesmus s.</td>
<td>Inhibice 72 h</td>
<td>%</td>
<td>100</td>
<td>21</td>
<td>63</td>
</tr>
<tr>
<td>Poecilia reticulata</td>
<td>Mortalita 96 h</td>
<td>%</td>
<td>100</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Sinapsis alba</td>
<td>Inhibice 72 h</td>
<td>%</td>
<td>100</td>
<td>53</td>
<td>100</td>
</tr>
</tbody>
</table>
3.6. Závěr experimentální části

Jak je patrné z Graf č. 43 byl přípravek BICAR pro zkoušky na zařízení č.1 namlet na menší granulometrii než sorbent pro testy na zařízení č.2 a 3. Z grafu vyplývá, že 90 % částic sorbentu pro testy na zařízení č.1 bylo menších než 20 μm, zatím co u sorbentu pro testy pro zařízení č. 2 a 3 bylo jen cca 55% částic menších než 20 μm. Pro dobrou účinnost se udává velikost zrn

- 90 % částic ≤ 20 μm
- 50 % částic = 50 μm

čehož u sorbentu pro testy na zařízení č.2 a 3 při prvních testech nebylo dosaženo. Toto je taky jedním z důvodů, proč nebylo dosaženo optimálních výsledků odsíření. Při opakovaných testech (Zkoušky č. 30 a 31) byl přípravek dávkován do vyšší teploty (cca 250°), ale předpokládaných výsledků nebylo taktéž dosaženo. Následně byly provedeny další testy (Zkoušky č. 32 a 33), kdy byl přípravek namlet na požadovanou granulometrii těsně před dávkováním. Pře těchto testech již bylo předpokládaných výsledků dosaženo.

<table>
<thead>
<tr>
<th>Nemletý BICAR</th>
<th>Mletý BICAR pro zkoušky na zař.č.1</th>
<th>Mletý BICAR pro zkoušky na zař.č.2 a 3</th>
</tr>
</thead>
</table>

Graf č. 43 Propadová charakteristika přípravku BICAR

Vzájemné porovnání provedených testů s přípravkem Bicar na zařízeních je pro účinnost odsíření v závislosti na poměru Na/S je uvedeno v Tab.č. 53 a Graf č. 44. Z grafu je patrné, že při zkouškách č. 25 a 26 provedených na zařízení č.2 odsiřování nefungovalo dle předpokladů. Při opakovaných zkouškách č. 32 a č.33 bylo dosaženo očekávaných výsledků.
Tab.č. 53 Závislost účinnosti odsíření na molárním poměru Na/S pro všechny zkoušky

<table>
<thead>
<tr>
<th>Zkouška</th>
<th>Na/S</th>
<th>účinnost odsíření</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kmol.kmol⁻¹</td>
<td>[%]</td>
</tr>
<tr>
<td>3a-20%</td>
<td>0,70</td>
<td>23,4</td>
</tr>
<tr>
<td>3b-40%</td>
<td>1,10</td>
<td>41,6</td>
</tr>
<tr>
<td>3c-60%</td>
<td>2,22</td>
<td>55,7</td>
</tr>
<tr>
<td>7a-20%</td>
<td>0,77</td>
<td>29,0</td>
</tr>
<tr>
<td>7b-40%</td>
<td>1,43</td>
<td>45,2</td>
</tr>
<tr>
<td>7c-60%</td>
<td>2,01</td>
<td>58,4</td>
</tr>
<tr>
<td>8a-20%</td>
<td>0,65</td>
<td>25,3</td>
</tr>
<tr>
<td>8b-40%</td>
<td>1,20</td>
<td>38,8</td>
</tr>
<tr>
<td>8c-60%</td>
<td>1,83</td>
<td>57,0</td>
</tr>
<tr>
<td>5a-20%</td>
<td>0,56</td>
<td>22,5</td>
</tr>
<tr>
<td>5b-40%</td>
<td>1,33</td>
<td>45,2</td>
</tr>
<tr>
<td>5c-60%</td>
<td>2,06</td>
<td>52,7</td>
</tr>
<tr>
<td>6a-20%</td>
<td>0,65</td>
<td>26,1</td>
</tr>
<tr>
<td>6b-40%</td>
<td>1,29</td>
<td>39,5</td>
</tr>
<tr>
<td>6c-60%</td>
<td>1,91</td>
<td>53,2</td>
</tr>
<tr>
<td>9-60%</td>
<td>1,90</td>
<td>63,7</td>
</tr>
<tr>
<td>10-60%</td>
<td>1,90</td>
<td>53,2</td>
</tr>
<tr>
<td>13a-40%</td>
<td>1,18</td>
<td>41,8</td>
</tr>
<tr>
<td>13b-60%</td>
<td>1,94</td>
<td>58,6</td>
</tr>
<tr>
<td>14a-40%</td>
<td>1,24</td>
<td>47,6</td>
</tr>
<tr>
<td>14b-60%</td>
<td>1,91</td>
<td>62,2</td>
</tr>
<tr>
<td>24</td>
<td>1,71</td>
<td>41,67</td>
</tr>
<tr>
<td>25</td>
<td>3,04</td>
<td>25,79</td>
</tr>
<tr>
<td>26</td>
<td>1,81</td>
<td>25,12</td>
</tr>
<tr>
<td>32</td>
<td>0,66</td>
<td>35,93</td>
</tr>
<tr>
<td>33</td>
<td>0,69</td>
<td>22,64</td>
</tr>
</tbody>
</table>
Při testech na zařízení č. 1 byla rovněž ověřena schopnost přípravku Bicar k odstranění HCl ze spalín. Již při 40 % teoretické účinnosti odsíření byla odstraněna většina HCl ze spalín. Jak je uváděno v literatuře, tak hydrogenhulíčitan sodný redukuje obsah HF ve spalinách, tento parametr však nebyl měřen.

S přípravkem na bázi hydroxidu vápenatého (Sorbacal) byl z finančních důvodů proveden pouze omezený počet testů. I přesto lze konstatovat, že pro stejnou účinnost odsíření je potřeba dávkovat daleko větší množství tohoto přípravku, oproti přípravku Bicar. Přípravek Sorbacal, je ovšem levnější.
4. Závěr

Testy s hydrogenuhličitanem sodným provedené v Elektrárně Třebovice byly první testy provedené na velkém energetickém zařízení v České republice. Další testy provedené v Elektrárně Kolín sloužily k ověření získaných zkušeností z předchozích testů. Rovněž sloužily k stanovení postupů, které je nutné dodržet pro správné fungování této metody odsiřování.

Jak vyplývá z provedených rozborů popílků a jejich vyhodnocení v předchozích kapitolách, je nutné věnovat taktéž pozornost nakládání s popílkou. Velká část vzorků nevyhověla při testech ekotoxicity. Rovněž byly u některých vzorků překročeny stanovené limity pro obsah rizikových prvků dle požadavků vyhlášky č.294/2005 Sb., pro případ, že by byly popílky využívány na povrchu terénu a pro rekultivaci.

Tato metoda odsiřování je velmi účinná. Zařízení pro mletí a dávkování sorbentu je jednoduché a tím jsou investiční náklady relativně malé. Další výhodou této metody je malá prostorová náročnost na strojní zařízení. Avšak vysoká cena sorbentu a případné problémy s nakládáním s popílky pravděpodobně zabrání masovému rozšíření tohoto způsobu odsiřování.

Dalším směrem kam by se měl tento výzkum ubírat je nakládání s tuhými zbytky po spalování, protože toto je v současnosti jediným problematickým bodem.
5. Použitá literatura

[12] Situační zpráva k Programu snížení emisí a imisí znečišťujících látek do ovzduší Moravskoslezského kraje za rok 2007

6. Publikace autora

Čulík,M., Pumprla,O.: Risk analysis of wind power plant by applying CorporateMetrics methodology. In sborník ECON 2006. Ostrava 2006, s. 32-43, ISSN 0862-7908

Pumprla, O., Dluhošová, D.: Hodnocení provozu větrných elektráren z technicko-ekonomického hlediska. In Alternativní energie. č.1, 2007, s. 24-25, ISSN 1212-1673

Vrtek, M., Pumprla, O., Horák, B.: Hodnocení provozu fotovoltaické elektrárny na VŠB-TU Ostrava. In Alternativní energie č.5., 2007, ISSN 1212-1673

Vrtek, M., Pumprla, O.: Hodnocení provozu fotovoltaické elektrárny. In Acta Mechanica Slovaca. 2007, s. 505-510, ISSN 1335-2393

Kaminský, J., Vrtek, M., Pumprla, O.: Dopady zvyšování podílu obnovitelných zdrojů na energetickou soustavu. In Acta Mechanica Slovaca. 2007, s. 495-503, ISSN 1335-2393

Čech, B., Pumprla, O., Raclavská, H.: Zpráva z odsiřovacích zkoušek na kotli K5 a K8 v elektrárně Kolín, 2008, účast na měření, spolupráce na zprávě

100