Návrh přípravku pro utahování šroubů diferenciálního kola

Jig Proposal for Tightening of Differential Wheel Screws

Student: Bc. Jiří Judas

Vedoucí diplomové práce: doc. Dr.Ing. Ivan Mrkvica

Ostrava 2011
Místopřísežné prohlášení studenta

Prohlašuji, že jsem celou diplomovou práci včetně příloh vypracoval samostatně pod vedením vedoucího diplomové práce a uvedl jsem všechny použité podklady a literaturu.

V Ostravě

Podpis studenta
Prohlašuji, že

- byl jsem seznámen s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.

- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně ke své vnitřní potřebě diplomovou práci užít (§35 odst. 3).

- souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci budou zveřejněny v informačním systému VŠB-TUO.

- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.

- bylo sjednáno, že užít své dílo – diplomovou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

- beru na vědomí, že odevzdáním své práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě dne................... ...

Podpis studenta

Diplomová práce se zabývá návrhem přípravku pro utahování šroubů diferenciálního kola. Popisují zde postavení přípravků ve výrobě, jejich důležitost a rozmanitost. Seznámíme se zde s aktuální situací montážní stanice, kterou se budu snažit vyřešit. Výsledné řešení přípravku je součástí přílohy.

ANNOTATION OF DIPLOMA THESIS

The following diploma thesis deals with proposal of jig for tightening of differential wheel screws. I describe the jigs position in fabrication, their importance and diversity. We will learn about the actual situation of assembly station, which I am solving. Final solution is a part of appendix.
OBSAH

Seznam použitého značení, symbolů a zkratek .. 1
Úvod .. 2
Cíl práce .. 3
1. Definice a klasifikace přípravků [1] .. 4
 2.1. Zásady konstrukce přípravků a pomocného zařízení 7
 2.2. Nejdůležitější konstrukční zásady ... 9
 3.1. Princip ustavení .. 11
 3.2. Konstrukční rovina – ustavující rovina – opěrná plocha 13
 3.3. Konstrukce opěrných elementů přípravku .. 15
 5.1. Ochrana před třískami .. 27
7. Rozbor stávající situace .. 30
8. Návrh řešení .. 32
9. Finální řešení .. 42
10. Technicko-ekonomické zhodnocení ... 45
11. Závěr ... 47
12. Seznam použité literatury .. 48
13. Seznam příloh ... 50
14. Seznam tabulek .. 51
15. Seznam obrázků .. 52
Seznam použitého značení, symbolů a zkratek

<table>
<thead>
<tr>
<th>ZNAK</th>
<th>VELIČINA</th>
<th>JEDNOTKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_S</td>
<td>jmenovitý výpočtový průřez</td>
<td>[mm2]</td>
</tr>
<tr>
<td>D_1</td>
<td>naváděcí průměr středícího čepu</td>
<td>[mm]</td>
</tr>
<tr>
<td>D_2</td>
<td>průměr středícího čepu</td>
<td>[mm]</td>
</tr>
<tr>
<td>E</td>
<td>modul pružnosti v tahu</td>
<td>[MPa]</td>
</tr>
<tr>
<td>F_{max}</td>
<td>maximální zatěžující síla</td>
<td>[N]</td>
</tr>
<tr>
<td>H</td>
<td>výška čepu</td>
<td>[mm]</td>
</tr>
<tr>
<td>H_1</td>
<td>nosná výška závitu</td>
<td>[mm]</td>
</tr>
<tr>
<td>I_k</td>
<td>kvadratický moment průřezu</td>
<td>[m4]</td>
</tr>
<tr>
<td>M_{max}</td>
<td>maximální kroutící moment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>M_{Omax}</td>
<td>maximální ohybový moment</td>
<td>Nm</td>
</tr>
<tr>
<td>P</td>
<td>stoupání závitu</td>
<td>[mm]</td>
</tr>
<tr>
<td>R</td>
<td>vzdálenost od osy výrobku k opěrnému bodu O</td>
<td>[mm]</td>
</tr>
<tr>
<td>R_m</td>
<td>pevnost v tahu</td>
<td>[MPa]</td>
</tr>
<tr>
<td>W_o</td>
<td>průřezový modul v ohybu</td>
<td>[m3]</td>
</tr>
<tr>
<td>b</td>
<td>šířka naváděcí části středícího čepu</td>
<td>[mm]</td>
</tr>
<tr>
<td>d</td>
<td>nejmenší průměr otvoru</td>
<td>[mm]</td>
</tr>
<tr>
<td>d_1</td>
<td>malý průměr závitu</td>
<td>[mm]</td>
</tr>
<tr>
<td>d_2</td>
<td>střední průměr závitu</td>
<td>[mm]</td>
</tr>
<tr>
<td>d_3</td>
<td>malý průměr závitu (průměr jádra)</td>
<td>[mm]</td>
</tr>
<tr>
<td>l</td>
<td>délka vyložení</td>
<td>[mm]</td>
</tr>
<tr>
<td>m</td>
<td>hmotnost</td>
<td>[kg]</td>
</tr>
<tr>
<td>p</td>
<td>napětí</td>
<td>[MPa]</td>
</tr>
<tr>
<td>p_D</td>
<td>dovolené napětí</td>
<td>[MPa]</td>
</tr>
<tr>
<td>γ_{max}</td>
<td>maximální průhýb tyče</td>
<td>[mm]</td>
</tr>
<tr>
<td>z</td>
<td>počet aktivních závitů</td>
<td>[-]</td>
</tr>
<tr>
<td>α</td>
<td>úhel sklonu výrobku v mezní poloze</td>
<td>[°]</td>
</tr>
<tr>
<td>Δ</td>
<td>nejmenší vůle uložení</td>
<td>[mm]</td>
</tr>
<tr>
<td>σ</td>
<td>napětí</td>
<td>[MPa]</td>
</tr>
<tr>
<td>σ_D</td>
<td>dovolené napětí</td>
<td>[MPa]</td>
</tr>
<tr>
<td>σ_o</td>
<td>napětí v ohybu</td>
<td>[MPa]</td>
</tr>
</tbody>
</table>
Úvod

Přípravky jsou jedním z prostředků ke zvýšení technické a ekonomické úrovně výroby. Mezi výrobní prostředky patří: nástroje, přípravky a kontrolní měřidla. Mnoho takovýchto prostředků lze používat nezávisle na tvaru obrobku, některé pak nezávisle na výrobním postupu, např. vrtání, frézování, soustružení apod.

Typickými představiteli těchto výrobních prostředků jsou svěráky, sklíčídla, dělicí hlavy, šroubovité vrtáky, soustružnické nože, posuvná měřidla, koncové měry aj. Často jsou tyto prostředky používány v podobě komunální, nebo univerzální.

Jiné výrobní prostředky, např. formy pro tlakové lití, ohýbací nástroje, vrtací přípravky i vícepolohová měřidla, lze použít jen pro výrobu stejných, nebo skupinově blízkých součástí. Jejich konstrukční provedení je spojeno s obrobkem a proto jsou označovány jako speciální výrobní prostředky. Aby mohly být takovéto prostředky hospodárně využity, je třeba jejich nasazení při sériové výrobě.

Sériovostí se dosáhne též spojením malého počtu výrobků určité podobnosti do jedné skupiny. Takto sestavené skupiny lze pak hospodárně obrábět na jednotlivých výrobních prostředcích.

V malosériové a kusové výrobě se jich používá jen při požadované vysoké kvalitě výrobku a taky když je opracování součástí bez výrobních prostředků téměř nemožné, nebo když se dosáhne určitého zjednodušení práce.

Mechanizace a obzvláště automatizace výrobního procesu zostřují rozpory v nasazování univerzálních, nebo speciálních výrobních prostředků. Protože cena speciálních prostředků je vysoká, je snaha o konstrukci jen univerzálních prostředků. Z druhého pohledu však jejich objem roste s mechanizací a automatizací stále více. Určitou pomocí při odstraňování tohoto problému je pokračující standardizace součástí.
Cíl práce

Cílem této diplomové práce je navrhnout, rozkreslit a zhodnotit přípravek pro utahování šroubů diferenciálního kola pomocí utahovačky Bosch Rexroth ESA150S.

Při ručním dotahování není totiž možné udržet samotnou utahovačku v ruce kvůli velkému utahovacímu momentu (viz. Tabulka 3).

Obr. 1: Zadání
1. Definice a klasifikace přípravků [1]

Zatímco nástroj působí aktivně na utváření ploch obrobků, umožňují přípravky provádět výrobní operace v požadované kvalitě a v určitém výrobním čase. Z toho lze přípravky definovat pojmově:

Jsou to speciální výrobní prostředky, které svou funkcí umožňují dodržet určitou polohu opracované součásti proti použitému nástroji. Poloha ustavení obrobku se nesmí během operace měnit. Přitom výměna obrobku, popřípadě nástroje, se musí dít bez obtíží snadno a rychle.

Úkoly, které přípravky v praxi plní lze rozdělit do tří skupin:

3. **Rozšířují rozsah technologického vybavení stroje.** Provozy se sériovou výrobou jsou v zásadě vybaveny universálními stroji. Užití speciálních přípravků umožňuje využití těchto strojů i při velkosériové výrobě, nebo mohou tyto stroje plnit úlohy, které přísluší jiným výrobním strojům.

Jestliže nasazujeme při obsluze univerzálních obráběcích strojů dělníky s vyšší kvalifikací, pak při práci na strojích vybavených speciálními přípravky můžeme využít pracovní síly s nižší kvalifikací. Snížení vedlejšího času dovoluje v některých případech i užití vícestrojové obsluhy.

Účelem přípravku je zajistit jednoznačnou polohu obrobku při jeho ustavení a to při opakované výrobě. Přípravek umožňuje realizovat technologický postup výroby lehce, spolehlivě a hospodárně. Tyto výhody nám pak přináší růst produktivity práce a zlepšení pracovních podmínek.

Klasifikace přípravků se dělí podle několika charakteristických znaků:

1. Podle **operačních znaků** jsou děleny do následujících skupin:
 1.1. Strojní přípravky – slouží k ustavení a upnutí součástí na obráběcích strojích. Podle způsobu obrábění se dělí dále na vrtací, soustružnické, vyvrtávací, brusné, aj. Tvoří nejširší skupinu přípravků, až 80% z celkového počtu přípravků.
 1.2. Kontrolní přípravky – používají se ke kontrole správnosti rozměrů a to v mezioperační a výstupní fázi výroby. Slouží též ke kontrole samotných prvků, skupin i strojů.
 1.3. Montážní přípravky – umožňují snadnější spojení sdružených částí a montážních jednotek složeného výrobku. Vyvozují potřebnou deformaci pružných elementů (pružiny, pera, apod.). Vykonávají operace potřebné k vyvození větších sil. Do této skupiny lze zařadit i přípravky svařovací.
1.5. Podávací přípravky – uskutečňují přemístování dílců různým stupněm automatizace.

2. Podle stupně specializace se přípravky dělí na univerzální, speciální a specializované:

2.2. **Speciální přípravky** jsou jednoúčelová, neseřizovatelné a slouží k upnutí obrobku pro určitou operaci. Jsou vhodné při velkosériové, nebo hromadné výrobně součástí typu – hřídel, příruba, pouzdro apod.

2.3. **Skupinové přípravky** jsou určeny pro upínání skupin obrobků s podobnými konstrukčními i technologickými znaky, které jsou sjednoceny podle obecných základních ploch a charakteru obrábění. Tvoří určitou analogii s přípravky speciálními, které dále rozvíjí.

2.4. **Stavebnicové přípravky** se svým charakterem blíží přípravkům skupinovým. Jsou však složeny ze standardizovaných dílců a montázních jednotek, které jsou rozebratelné a lze jich v různých kombinacích využít několikanásobně.

3. Podle **funkce elementů** přípravků je dělíme dále na ustavovací, upínací, s ručním upínáním, s mechanickým upínáním, sílové převody, určující polohu a směr pohybu nástrojů, pomocné apod.
2. Zásady konstrukce přípravků [2]

2.1. Zásady konstrukce přípravků a pomocného zařízení

Aby přípravek splnil své poslání, musí být nejen přesný, ale i hospodárný, tj. musí mít součinitel hospodárnosti větší než jedna. Znamená to, že úspory dosažené přípravkem musí být větší než jeho pořizovací náklady. Velikost úspor zde závisí na úsporách dosažených nejprve na jednom obrobku a dále na celkovém počtu obráběných obrobků.

Například celkový počet vyráběných kusů jednoho druhu obrobku je v kusové výrobě celkem malý. Proto se musí konstruovat jednoduché a levné přípravky a zařízení. Takovými zařízeními se ovšem dosáhne jen malé produktivity výroby. Porovnají-li se obrobky obráběné na jednom obráběcím stroji za určité časové období, ukáže se, že je lze rozřídit na skupiny, v nichž si jednotlivé obrobky jsou tak podobné, že se pro jejich výrobu dá vyřešit společný přípravek.

Pro jednotlivé obrobky jsou pak v tomto přípravku sčítovatelné, nebo výměnné součástky. Největší část, nebo skupina součástí přípravku by zůstala pro celou skupinu společná. Tím se počet obrobků v jednom přípravku zvýší několikanásobně, čímž se zvednou i úspory. Obrobky mají takto rozřídit již v konstrukční kanceláři zavedením tvarového číslování výkresů, nebo označením výkresu klasifikačním číslem.

Při tvarovém číslování výkresů se součástí nejdříve třídí do obecných tříd (hřidele, pouzdra, ozubená kola, skříně, páky, apod.). Každá třída se pak dělí na skupiny podle technologických podmínek. Do jednotlivých skupin se zařadí obrobky stejného druhu polotovaru, podobného tvaru a rozměrů, s obdobnou polohou obráběných ploch, s podobnými požadavky na přesnost a jakost povrchu.

Základní seřízení stroje zůstává téměř po celou dobu výroby všech ostatních obrobků nezměněno, jen při přechodu výroby na další obrobek vyžaduje menší úpravy. U těchto přípravků a zařízení se zavádí potřebné rychloupínací prvky, zkráti se upínací časy, což znamená další úspory.

Mezi nejdůležitější rychloupínací zařízení patří vzduchová a hydraulická zařízení. Jejich zavedením se zkracuje upínací čas přibližně na čtvrtinu času potřebného pro ruční upínání. Přípravky s pneumatickým, pneumaticko-hydraulickým, nebo hydraulickým upínáním jsou většinou dražší než přípravky s ručním upínáním.

Obr. 2: Komplexní obrobek
2.2. Nejdůležitější konstrukční zásady

Při konstrukci upínacích přípravků se musíme ředit těmito zásadami:

a) Před navržením přípravku se musí přesně vyjasnit celý pracovní postup vyráběné součásti. Zvlášť důležité je, aby se při prvním obrábění získala základní plocha, nebo díra, které budou výchozí při dalších operacích.

b) Pro menší série je výhodné uspořádat operace tak, aby se dalo použít jednoho upínacího přípravku pro několik operací.

c) Obráběná plocha musí ležet co nejblíže k upínací ploše obráběcího stroje, aby byla zaručena stabilita upínacího přípravku.

d) Přípravek musí být tuhý, aby se nedeformoval působením řezných a upínacích sil.

e) Položka předmětů v přípravku má být zajištěna pevnými dorazy.

f) Výslednice pracovních sil má působit pokud možno proti pevným dorazovým plochám.

g) Obsluha má být jednoduchá a pohodlná. Ovládací prvky (páky, rukojeti, ruční kola, matice, apod.) musí být dobře přístupné.

h) Má-li se přípravek při práci přemístovat a snímat ze stroje, nesmí mít větší hmotnost než 20kg. Pro snazší přemístování se přípravky opatřují rukojetí, uchy apod. obr. 3.

i) Je třeba pamatovat na odtok chladicí tekutiny (řezné kapaliny) a na odpad třísek. Dosedací plochy musí být čisté a snadno čistitelné.

j) Plochy, které jsou vystaveny opotřebení, musí být tvrdé. Někdy musí být i vyměnitelné.

k) Přípravky, které se upínají na vřeteno stroje, musí být vyvážené, aby nezpůsobovaly nepřípustné chvění vřetena a tím i nepřesnost výroby a menší trvanlivost nástroje. Musí být lehké, aby nezvětšovaly moment setrvačnosti vřetena a tím nezatežovaly rozbíhání a brzdění.

l) Všechny ostré hrany, které mohou přijít do styku s lidskou rukou, musí být zaobleny, aby se předešlo zranění.
m) Vkládací prostor pro obrobek musí být upraven tak, aby se ruční manipulace konala z dostatečné vzdálenosti od nebezpečných částí stroje, nástrojů apod.

n) Při konstrukci je vhodné co nejvíce používat normalizovaných součástí. Nejdříve je nutné se přesvědčit, zda by se pro daný případ nemohlo použít přípravku již hotového, popřípadě upraveného.

o) Je vhodné řešit přípravek stavebnicově.

p) Konstrukce přípravku nesmí připustit obrácené vložení předmětu.
3. Ustavení obrobku v přípravku [1]

Součást se musí při výrobě ustavit přímo na stroj, nebo do přípravku v určité poloze vzhledem k nástroji, aby byly dodrženy řezné podmínky.

3.1. Princip ustavení

Ustavení lze definovat zařazením obrobku, nebo nástroje do jednoznačné polohy pro vykonání vyžadované operace na příslušném výrobním zařízení. Díky správně ustaveným obrobkům získáme požadovanou přesnost výkresových tolerancí. Základy správného ustavení součásti v přípravku jsou odvozeny z teorie stupňů volnosti.

Obr. 4: Kvádr v kartézském souřadném systému
Podle obr. 5a lze v rovině $x - y$ posunout těleso ve směru os x a y a otočit okolo osy z. Tím vymezuje rovina tělesu tři stupně volnosti. Přiřadíme-li druhou rovinu $x - z$, obr. 5b ztratí těleso další dva stupně volnosti a to posun ve směru osy y a rotaci okolo osy z. Tělesu zůstává jen jeden stupeň volnosti, tj. posunutí ve směru osy x. Tento šestý stupeň je vymezen třetí rovinou $y - z$, obr. 5c.

Obr. 5: Odebírání stupňů volnosti

Pro ustavení obrobku v přípravku nejde jen o vymezení šesti stupňů volnosti. Mimo to musí být zajištěn takový souřadnicový systém, ke kterému se vztahuje vymezení stupňů volnosti a to v určité poloze k nástroji.

Vymezení šesti stupňů volnosti není požadováno u každého ustavení obrobku. Kolik stupňů volnosti je třeba vymezit, to určuje technologický postup výroby, druh operace a požadovaná přesnost výrobku. Na obr. 6a je znázorněn kvádr, jehož rozměr a $\pm t_z$ je obroben frézováním.

Obr. 6: Správné ustavení při frézování drážky
Pro vhodné ustavení obrobku se vyžaduje vymezení tří stupňů volnosti. Požadavek ustavení proti nástroji splňuje a zajišťuje rovina \(x - y \). Abychom mohli při frézování drážky, obr. 6b obrobít vedle jmenovitého rozměru a těž i rozměr \(b \), musíme pro ustavení součástí použít další boční rovinu \(x - z \). Přitom vymezíme obrobku již pět stupňů volnosti.

Při frézování nepříchozí drážky, obr. 6c určují přesnou polohu ustavení obrobku již tři roviny. Tyto roviny také zajišťují přesné obrobení všech tří rozměrů \(a, b, \) i \(c \). Z toho vyplývá, že při ustavování obrobků vymezuji jen tolik stupňů volnosti, kolik jich bezpodmínečně potřebujeme k zajištění výroby konstrukcí daných rozměrů součástí.

3.2. Konstrukční rovina – ustavující rovina – opěrná plocha

Každý obrobek je složkou stroje nebo přístroje, kde plní určitou funkci. Zakotování rozměrů součástí je provedeno tak, aby zajišťovalo její funkci. Rozměry jsou ve většině vztaženy a tolerovány k určité rovině. Takovou rovinu, ke které konstruktér vztahuje určující rozměry, označujeme jako konstrukční rovinou a je zároveň funkční podmiňující plochou.

Ustavující rovina (určující nastavení) je zpravidla rovinou kontaktu obrobku s opěrnými elementy přípravku. Tato rovina je výrobně podmiňující plochou. Jako opěrné plochy označujeme ty roviny, které se v určité situaci stykají při ustavení.

Opěrné plochy určuje konstruktér a tím se odlišují od ustavujících rovin. Tyto plochy (ustavující a opěrnou) volíme tak, aby byly shodné s rovinou konstrukční. Tím se zmenší ohyby rozměrů výrobku na minimum.

Tabulka 1: Značky rovin a opěrných ploch
3.3. **Konstrukce opěrných elementů přípravku**

Volba opěrných ploch a elementů přípravku ovlivňuje polohu ustavující roviny k rovině konstrukční. Opěrné plochy můžeme rozdělit na plochy rovinné, rovinně zakřivené a prostorově zakřivené. V případě, že křivost obrobku je funkční plochou, pak musí být obrobena jako první.

Válcová plocha patří mezi zvláštní případy rovinně zakřivených ploch. Obrobek tedy může být ustaven rozdílně a to podle opěrné plochy rovinné, válcové nebo jinak rovinně zakřivené.

Vedle geometrických tvarů opěrných ploch obrobků je důležitá i kvalita jejich povrchů. Špatně ustavitelné jsou surové opěrné plochy výkovků a odlitků.

3.3.1 **Ustavení obrobků s rovinnými opěrnými plochami**

Na obr. 7 je znázorněn obecný případ ustavení podle tří na sebe kolmých konstrukčních rovin. Roviny jsou udány jmenovitými rozměry d, e a f.

První ustavující rovinou je plocha, která je vymezená největšími rozměry. Tato plocha je určena třemi opěrnými elementy, obr. 7b Tím má obrobek vymezeny tři stupně volnosti, posun ve směru osy z a rotace okolo os x i y. O dva opěrné elementy druhé opěrné plochy přípravku je opřena menší ustavující rovina.

Tím vymezujeme další dva stupně volnosti, posun ve směru osy y a rotaci okolo osy z. Poslední stupeň volnosti na nejmenší ustavující rovině obrobku je vymezen jedním opěrným elementem, který je přiřažen třetí opěrné ploše přípravku. Tuhost a tím i kvalitu obráběné plochy ovlivňují druhy použitých opěrných elementů. Nerovné opěrné plochy odlitků, výkovků apod. je vhodné ustavovat na tři opěrné elementy.
Obr. 7: Ustavení podle tří na sebe kolmých rovin

Z toho plyne, řep či ustavování obrobku nutno přihlížet k jeho tuhosti. Málo tuhé dilce lze úspěšně ustavovat na jednu opěrnou plochu přípravku, obr. 8. Plošná opěra má křížové drážkování pro snadnější odstraňování třísek a nečistot.

Obr. 8: Plošná opěra
3.3.2 Ustavení obrobků s válcovými opěrnými plochami

Opět můžeme ustavovat podle jedné, dvou, nebo tří konstrukčních rovin. Na obr. 9 je znázorněn dílec ustavený pro operaci frézování. Konstrukční rovina je odvozena od jmenovitého rozměru a. površka válcové plochy leží v konstrukční rovině.

Obr. 9: Ustavení pomocí dvou kolmých ploch

Dílec je ustaven pomocí dvou kolmých opěrných ploch přípravku (prizma), obr. 9b Površky válce leží v ustavující rovině a shodně pak i v rovině konstrukční. Roviny se vzájemně překrývají a tím je zajištěna bezchybnost výroby dílce ve směru rozměru a.

Při ustavení obrobku podle jedné osově roviny, obr. 10, užijeme rovněž prizmatické opěry. Druhá konstrukční rovina (čelní rovina), obr. 10a, se kryje bezchybně s ustavující rovinou, když opěrnou plochu přípravku vytváří jeden bod. Předpokladem je kolmost površek dílce na jeho čelní rovinu.

Drážkami rozdělené kuželové pouzdro vyrovnává toleranční rozdílnost průměrů obrobku. Obě konstrukční roviny se tak kryjí s ustavujícími rovinami a tak zaručují bezchybnost ustavení.

Obr. 10: Ustavení do prizmatu

Obr. 11: Ustavení do kleštin
3.3.3 Středící nákrúžky a středící čepy [1,2]

Při ustawování obrobku za otvor se velmi často stává, že se dílce při zavádění na opěru vzpříči a jejich naražení se provádí paličkou. Vzpříčení se dá zabránit konstrukční úpravou zaváděcí části středící opěry, obr. 12.

Obr. 12: Středící čep

Při ručním i mechanickém nasouvání obrobku na středící opěru bývá odchýlení os v rozmezí 15° až 20°. Tuto úchylku kompenzuje úzká válcová část d=x a krček průměru d₂. Velikost těchto rozměrů vypočteme z geometrických poměrů mezi rozměry díry, tvarem zaváděcí části opěry a úhlem vkládání. Mezi nejmenším průměrem otvoru d a průměrem čepu d₁ je vůle: \(\Delta = d - d₁ \).
Pro nasunutí zaváděcí Části do otvoru při úhlu musí být úhlopříčka obdélníku \(d_1 \times b \) menší než průměr otvoru obrobku, tzn.: \(d_2 = d_1^2 + b^2 \).

Obr. 13: Schéma výpočtu středícího čepu

Průměr \(D_1 \) je menší než průměr \(D \) a mezi oběma průměry je vůle \(D - D_1 = \Delta \).

Z trojúhelníku OAC (obr. 13) určíme, že:

\[
\begin{align*}
AC^2 &= OA^2 - OC^2, \\
b^2 &= D^2 - D_1^2 = D^2 - D^2 + 2D\Delta - \Delta^2, \\
b^2 &= 2D\Delta - \Delta^2, \\
b &= \sqrt{2D\Delta - \Delta^2}.
\end{align*}
\]

Protože \(\Delta^2 \) hodnota velmi malá, zanedbáme ji a dostaneme pro \(b \) výraz:

\[
b = \sqrt{2D\Delta}.
\]
Trn se při ručním nasouvání odkloní o úhel α, který bývá kolem 15 až 20°.
Proto je naváděcí část za válcovou částí průměru D_1 a šířky b ztenčena na průměr D_2 až do bodu A (obr. 14), načez přechází v kužel s vrcholovým úhlem 2α.
Ve vzdálenosti l má již trn požadovaný průměr D. Hrany naváděcího průměru D_1 i průměru D trnu musí byt zaobleny, aby nedošlo k poškození otvoru D.

Obr. 14: Schéma výpočtu středícího čepu 2

Přistupme nyní k určení velikosti průměru D_2. Z trojúhelníku HAC platí:

$$
HA^2 = AC^2 - CH^2,
$$

po dosazení je

$$
y^2 = D_1^2 - (1 - x)^2 = D_1^2 - l^2 + 2lx - x^2.
$$

Z trojúhelníku AFG určíme, že:

$$
FG = k = x \tan \alpha,
$$

$$
y = D - k = D - x \tan \alpha,
$$
\[y^2 = (D - x \tan \alpha)^2 = D^2 - l^2 + 2lx - x^2, \]
pro malé vůle je možno položit \(D_1 = D \).

Odtud
\[D^2 - 2Dx \tan \alpha + x^2 \tan^2 \alpha = D^2 - l^2 + 2lx - x^2. \]

Anulováním rovnice dostaneme
\[x^2 \tan^2 \alpha + x^2 - 2Dx \tan \alpha - 2lx + l^2 = 0, \]
po úpravě
\[x^2 (\tan^2 \alpha + 1) - 2x(D \tan \alpha + l) + l^2 = 0, \]
dosazením za \(l = D \tan \alpha \) dostaneme
\[x^2 (\tan^2 \alpha + 1) - 4xD \tan \alpha + D^2 \tan^2 \alpha = 0; \]
pak
\[x_{1,2} = \frac{4D \tan \alpha \pm \sqrt{16D^2 \tan^2 \alpha - 4(\tan^2 \alpha + 1)D^2 \tan^2 \alpha}}{2(\tan^2 \alpha + 1)}, \]
po úpravě
\[x_{1,2} = \frac{D \tan \alpha (2 \pm \sqrt{3 - \tan^2 \alpha})}{\tan^2 \alpha + 1}. \]

Nejmenší hodnota odpovídá znaménku minus před odmocninou, takže stačí uvažovat výraz
\[x = \frac{D \tan \alpha (2 - \sqrt{3 - \tan^2 \alpha})}{\tan^2 \alpha + 1}. \]

Protože
\[D_2 = D - 2x \tan \alpha = D - \frac{2D \tan^2 \alpha (2 - \sqrt{3 - \tan^2 \alpha})}{\tan^2 \alpha + 1}, \]
je konečný výraz pro
\[D_2 = D \left[1 - \frac{2 \tan^2 \alpha (2 - \sqrt{3 - \tan^2 \alpha})}{\tan^2 \alpha + 1} \right]. \]

Označíme-li výraz v závorce písmenem \(m \), můžeme pak psát
\[D_2 = m \times D. \]

![Obr. 15: Výpočet výšky středícího čepu](image)

\[d - \text{nejmenší průměr otvoru}\]
\[\Delta - \text{nejmenší vůle uložení}\]
\[(d - \Delta) - \text{největší průměr čepu}\]
\[R - \text{vzdálenost od osy výrobku k opěrnému bodu O}\]
\[\alpha - \text{úhel sklonu výrobku v mezní poloze}\]
Maximální výšku čepu \(H \) vypočítáme tak, že vyjádříme z trojúhelníku AOF

\[
\sin \alpha = \frac{H}{z + R},
\]

z trojúhelníku CBF

\[
\cos \alpha = \frac{d - \Delta}{d}.
\]

Připravené vztahy dosadíme do obecně platné rovnice

\[
\sin^2 \alpha + \cos^2 \alpha = 1,
\]

pak

\[
\left(\frac{H}{z + R} \right)^2 + \left(\frac{d - \Delta}{d} \right)^2 = 1,
\]

ze které můžeme již vypočítat výšku čepu \(H \)

\[
H^2 = \left[1 - \left(\frac{d - \Delta}{d} \right)^2 \right] \left(\frac{d}{2} + R \right)^2,
\]

\[
H^2 = \frac{2d\Delta - \Delta^2}{d^2} \left(\frac{d}{2} + R \right).
\]

Zanedbáme veličinu druhého řádu \(\Delta^2 \) (\(\Delta \) je řádově v setinách mm), pak

\[
H^2 = 2d\Delta \left(\frac{R + 0,5d}{d} \right)^2
\]

A výška čepu

\[
H = \frac{R + 0,5d}{d} \sqrt{2d\Delta}.
\]
4. Použití přípravků [2]

Přípravky pomáhají zlepšovat jakost výrobku a zvětšovat pracovní výkon. V některých případech jsou přípravky pro vykonání potřebné operace naprosto nezbytné. Vhodně volené přípravky umožňují často dělníkovi práci na dvou i více strojích zároveň. Použití i konstrukce přípravku se řídí druhem výroby, tj. kusové nebo sériové.

Při kusové výrobě se součásti obrábějí i montují pomocí běžného výrobního zařízení, popřípadě se použije jen takových pomůcek, které jsou pro žádané operace nezbytné. Odlitky se před obráběním orýsuji. Podle tohoto označení se pak součást obrábí. Při obrábění je nutno neustále porovnávat zhotovené rozměry s výkresem.

Obrábění rotačních obrobků na soustruzích a bruskách nevyžaduje sice vždy orýsovací, avšak i zde je třeba věnovat velkou pozornost správnému středění (vyrovnání) obrobku. Práce na univerzálních strojích v kusové výrobě je vždy zdlouhavá a vyžaduje zručné i spolehlivé pracovníky, aby se zabránilo zmetkům často velmi drahých obrobků, zvláště jde-li o rozměrné, nebo složité obrobky.

K upínání se používá normálních upínacích pomůcek: ustavení obrobku na stroji ve správné poloze a upnutí je tedy většinou nepohodlné, zdlouhavé a obtížné a obrobky je nutno při montáži často dodatečně opravovat (přelícovávat). Přesto je tento pracovní postup při kusové výrobě hospodárný, neboť pořizování speciálních přípravků by bylo velmi drahé. Konstruktéř musí při navrhování přípravků dbát na to, aby jeho zařízení bylo spolehlivé po stránce funkční a abv se dalo vyrobit pomocí zařízení, které je v závodě k dispozici.

Při sériové výrobě je již výhodné navrhnout vhodné speciální přípravky. Součásti se nemusí orýsovávat. Speciální upínací přípravky zaručují správné a rychlé ustavení součásti vzhledem k nástroji bez podstatného vlivu dělníka a často odstraňují i proměřování. Tim se podstatně zkrátí vedlejší časy. Přitom lze součást vyrobit s potřebnou přesností, takže se ušetří dodatečná úprava při montáži. Součásti přípravku jsou výměnné. To umožňuje jejich skladování a zrychlení jejich dodávky.
Pro hromadnou výrobu je výhodné použít složitějšího speciálního výrobního zařízení. Pro každou operaci nebo pro několik operací na obrobku je použito buď speciálního, nebo normálního obráběcího stroje doplněného speciálním zařízením umožňujícím dosažení největšího řezného výkonu při nejkratších vedlejších časech.

V dnešních podmínkách je již výroba mezi závody rozdělena tak, že každý závod vyrábí jen určité druhy výrobků. To umožňuje obrábět tvarově podobné součásti pomocí typizované výrobní technologie, doplněné skupinovým obráběním. Pro tento způsob výroby můžeme použít jednotného speciálního nářadí a jednotných přípravků pro určitou skupinu součástí podle typových technologických postupů.

Skupinové univerzální nebo seřizovatelné přípravky, popř. s malými doplňky pro jednotlivé obrobky, jsou potom vhodné pro celou skupinu obrobků. Zavedením skupinové výroby pomocí přípravků a vhodného pomocného zařízení má kusová výroba přibližně stejné podmínky jako výroba sériová.
5. Vliv třísek na konstrukci přípravku [2]

Třísky můžou způsobit různé nedostatky (např. změna polohy v přípravku, poškození upínacích součástí) a zavinit tak i zmetky obrobků. Ostré hrany třísek snadno zraní dělníka. Odletující třísky mohou způsobit i těžké úrazy. Při řešení přípravků je nutno odstranit vliv třísek jejich důsledným odstraňováním a ochranou před nimi.

Odstranění třísek lze dosáhnout:

a) Uspořádáním přípravku tak, aby z něj třísky padaly pokud možno vlastní hmotností, nebo vyletovaly odstředivou silou.
b) Dírami ve stěnách přípravku, je-li to výhodné pro odchod třísek
c) Zesílením plochy, po níž mohou třísky klouzat
d) Odstraněním prohlubenin, které by mohly bránit odchodu třísek
e) Odstraněním obtížně přístupných vnitřních hran, koutů, nebo výdutí
f) Vyvýšením ustavovacích ploch (opěrných) nad okolní plochy, na nichž menší množství třísek nemá vliv na dobré a přesné upnutí obrobku
g) Správnou velikostí ložných a upínacích ploch, které nemají být větší, než je třeba k zajištění obrobku v přípravku
h) Uspořádáním drážek a prohlubní na vnitřních hranách upínacích, nebo opěrných součástí

5.1. Ochrana před třískami

Součásti přípravku vystavené vlivu třísek se pro zmenšení otěru kali. Ochrany, zvláště pohyblivých součástí, se dosáhne jejich částečným, nebo úplným vestavěním, zakrytím, nebo stíracími ucpávkami. Odletující třísky se zachycují kryty z drátěného pletiva, nebo prÚhlednými deskami z plastu.

Při všech plánovaných opatřeních, počítajících s odstraňováním třísek nebo s ochranou před nimi, je nutno uvažovat jakost, velikost, tvar a množství odletujících třísek a jaké je při obrábění použito kapaliny.
6. **Volba materiálu pro přípravky [2]**

Materiál přípravku musí plně vyhovovat všem požadavkům, které budou na přípravek kladeny (dostatečná pevnost, pružnost, odolnost proti opotřebení apod.)

Hlediska, která rozhodují o volbě materiálu lze shrnout do těchto bodů:

1) Namáhání, opotřebování, tvar a funkce uvažovaného přípravku a jeho součásti
2) Nejmenší stupeň obrobění přípravku
3) Počet kusů vyráběných přípravků
4) Pracovní prostředí, pro které je přípravek určen
5) Požadovaná přesnost přípravku
6) Cena, skladovaný druh materiálu a výrobní možnosti nářadí
7) Hmotnost přípravku

V Tabulce 2 jsou příklady použití materiálu pro různé součásti. Všechny uvedené faktory je nutno při návrhu konstrukce v plné šíři respektovat, protože přípravek má vůbec umožnit, nebo zrychlit výrobu. Náklady na přípravek mají být pokud co možno nejnižší (z toho plyne volba technologie při výrobě přípravku), přesnost zpracovaného obrobku co nejvyšší a opakovatelná.

Dále minimální hmotnost přípravku, zvláště v těch případech, kdy je nutno s přípravkem manipulovat na výrobním stroji, eventuálně jej přemisťovat na různá technologická pracoviště atd. U všech těchto faktorů se uplatní volba použitých materiálů jako výchozí parametr k jejich úspěšnému splnění.
<table>
<thead>
<tr>
<th>Součást</th>
<th>Materiál</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvarové čelisti sklíčidla soustruhu, měkké</td>
<td>11 700</td>
<td>dosedací plocha</td>
</tr>
<tr>
<td>Dorazové a tlačné šrouby</td>
<td>12 050, 12 061</td>
<td>cementováno</td>
</tr>
<tr>
<td>Hřídele výstředníků, nebo vaček</td>
<td>12 010</td>
<td>cementováno</td>
</tr>
<tr>
<td>Kontrolní šablony pro soustruhu</td>
<td>11 340</td>
<td>cementováno</td>
</tr>
<tr>
<td>Kroužky do válečkových ložisek na zachycení</td>
<td>14 100, N9 424</td>
<td>kaleno</td>
</tr>
<tr>
<td>osového tlaku</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kruhové podložky zesílené</td>
<td>11 425</td>
<td>cementováno a kaleno</td>
</tr>
<tr>
<td>Kulové podložky</td>
<td>11 600</td>
<td>kaleno</td>
</tr>
<tr>
<td>Matice s kulovou plochou a s nákružkem</td>
<td>11 600</td>
<td>kaleno v oleji</td>
</tr>
<tr>
<td>Odlitky ze šedé litiny; větší odlitky;</td>
<td>422 418</td>
<td></td>
</tr>
<tr>
<td>Drobnější odlitky tenkostěnné</td>
<td>422 424</td>
<td></td>
</tr>
<tr>
<td>Opěrné čepy s hlavou, malé do φ 25 mm</td>
<td>19 452</td>
<td>kaleno HRC 56</td>
</tr>
<tr>
<td>Vetší průměr</td>
<td>12 010</td>
<td>cementováno</td>
</tr>
<tr>
<td>Otočné podložky</td>
<td>11 370</td>
<td>cementováno do hloubky min 0,5 mm</td>
</tr>
<tr>
<td>Páky výstředníků</td>
<td>11 500</td>
<td></td>
</tr>
<tr>
<td>Pojišťovací kolíky</td>
<td>12 050</td>
<td>kaleno</td>
</tr>
<tr>
<td>Prízma</td>
<td>N 2024</td>
<td>dosedací plocha kalena</td>
</tr>
<tr>
<td>Rukojeti</td>
<td>11 500</td>
<td></td>
</tr>
<tr>
<td>Středící čepy do φ 20 mm</td>
<td>19 452</td>
<td>kaleno HRC 56</td>
</tr>
<tr>
<td>Středící čepy přes φ 20 mm</td>
<td>12 010</td>
<td>cementováno 0,5 mm</td>
</tr>
<tr>
<td>Středící vložky</td>
<td>12 010</td>
<td>cementováno 0,5 mm</td>
</tr>
<tr>
<td>Šrouby se čtyřhrannou hlavou s čípek</td>
<td>11 600</td>
<td>čípek a hlava šroubu kaleny</td>
</tr>
<tr>
<td>Upínací trny do φ 20 mm</td>
<td>19 191, 19 192</td>
<td>kaleno</td>
</tr>
<tr>
<td>Upínací trny přes φ 20 mm</td>
<td>12 010, 14 220</td>
<td>cementováno</td>
</tr>
<tr>
<td>Upínací trny</td>
<td>BEVZ</td>
<td></td>
</tr>
<tr>
<td>Rozpínací trny</td>
<td>14 220, BEVZ</td>
<td>cementováno ve výjimečných případech</td>
</tr>
<tr>
<td>Kleštiny</td>
<td>16 420</td>
<td></td>
</tr>
<tr>
<td>Trny namáhané</td>
<td>15 150, 16 420, 16 640</td>
<td>kaleno</td>
</tr>
<tr>
<td>Hroty</td>
<td>19 191, 19 192</td>
<td>kaleno HRC 62</td>
</tr>
<tr>
<td>Klíny</td>
<td>11 600</td>
<td>kaleno</td>
</tr>
<tr>
<td>Vačky</td>
<td>12 010</td>
<td>cementováno 0,8 mm</td>
</tr>
<tr>
<td>Upínky</td>
<td>11 500</td>
<td>dosedací plocha kalena</td>
</tr>
<tr>
<td>Vrtací pouzdra vnitřní φ 6 až 17 mm</td>
<td>19 452</td>
<td>cementováno 0,5 mm a kaleno</td>
</tr>
<tr>
<td>Vrtací pouzdra větší</td>
<td>11 425</td>
<td>kaleno</td>
</tr>
<tr>
<td>Výstředníky</td>
<td>12 010, 14 220</td>
<td>cementováno</td>
</tr>
</tbody>
</table>

Tabulka 2: Přehled materiálů používané pro přípravky
7. Rozbor stávající situace

Toto pracoviště je použito pouze v případě, dojde-li k poruše na hlavní automatizované lince pro utahování šroubů na diferenciálním kole, které jsou obsluhou ručně předšroubovány.

Obr. 16: Stávající montážní stůl

Obsluha umístí diferenciál na gumovou podložku pracovního stolu (viz. obr. 16), která zajišťuje stabilitu vůči pootočení diferenciálního kola. Poté nasadí utahovačku na již předšroubované šrouby a přednastaveným momentem je po jednom dotáhne.
Kvůli pracnosti a namáhavosti této činnosti je požadována úprava stanoviště pro ruční dotahování šroubů diferenciálního kola. Dalším požadavkem je zachování ruční utahovačky Bosch.

Utahovačka Bosch rexroth má parametry podle tabulky:

<table>
<thead>
<tr>
<th>označení</th>
<th>číslo objednávky</th>
<th>kroutící moment [Nm]</th>
<th>délka utahovačky [mm]</th>
<th>hmotnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA005S</td>
<td>608841018</td>
<td>1 - 5</td>
<td>1000</td>
<td>1,3</td>
</tr>
<tr>
<td>ESA013S</td>
<td>608841019</td>
<td>2,6 - 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESA030S</td>
<td>608841020</td>
<td>6 - 30</td>
<td>800</td>
<td>1,6</td>
</tr>
<tr>
<td>ESA040S</td>
<td>608841021</td>
<td>8 - 40</td>
<td>1000</td>
<td>1,7</td>
</tr>
<tr>
<td>ESA056S</td>
<td>608841022</td>
<td>11 - 56</td>
<td>710</td>
<td>1,9</td>
</tr>
<tr>
<td>ESA065S</td>
<td>608841023</td>
<td>13 - 65</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>ESA075S</td>
<td>608841024</td>
<td>15 - 75</td>
<td>530</td>
<td>2</td>
</tr>
<tr>
<td>ESA100S</td>
<td>608841025</td>
<td>20 - 100</td>
<td>630</td>
<td>3,1</td>
</tr>
<tr>
<td>ESA150S</td>
<td>608841026</td>
<td>30 - 150</td>
<td>380</td>
<td>3,8</td>
</tr>
<tr>
<td>ESA220S</td>
<td>608841027</td>
<td>44 - 220</td>
<td>260</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabulka 3: Parametry utahovačky Bosch Rexroth ESA150S

Utahovačka bude proti lidské ruce působit silou \(F_{\text{max}} \) podle výpočtu:

\[
M_{\text{max}} = 150 \ \text{Nm} \\
l = 425 \ \text{mm} \\
F_{\text{max}} = \frac{M_{\text{max}}}{l} = \frac{150}{0,425} = 352,942 \ \text{N}
\]

31
8. Návrh řešení

K zadržení síly použiji rám, který bude uchycen k původnímu pracovnímu stolu. Tento rám bude zkonstruován z normalizovaných hliníkových profilů Item a utahovačku bude výškově stabilizovat pružinový balancér od firmy Gison s těmito parametry:

<table>
<thead>
<tr>
<th>Parametry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nosnost</td>
<td>3 - 5 kg</td>
</tr>
<tr>
<td>hmotnost balancéru</td>
<td>0,81 kg</td>
</tr>
<tr>
<td>zdvih</td>
<td>1,5 m</td>
</tr>
<tr>
<td>průměr lana</td>
<td>3,2 mm</td>
</tr>
</tbody>
</table>

Tabulka 4: Parametry balancéru

Obr. 17: Pružinový balancér
Výsledná montáž rámu bude vyžadovat odstranění jednoho z montážních stolů. Dále budeme muset koupit příslušenství k utahovačce BOSCH pod katalogovým číslem REXROTH 3608875921 (jedná se o závěsný kroužek viz. obr. 18) a Item profil 8 40x40. K tomuto profilu krycí lištu pod katalogovým číslem Item 0.0.422.77.

Obr. 18: Závěsný kroužek BOSCH
Výsledná sestava rámu s přidanými komponenty bude vypadat takto:

Obr. 19: Upravený montážní stůl
Takto vzniklý rám z profilů Item bude sešroubován a přichycen k rámu stolu. Balancér s utahovačkou bude umístěn na tyči \(\varnothing 8 \text{ mm} \). Zde hrozí nebezpečí průhybu tyče, tudíž provedu kontrolu výpočtem.

Rozměrové hodnoty:

- Materiál tyče: 11 600 (\(R_m = 590 – 705 \text{ MPa} \))
- Průměr tyče: \(d = 8 \text{ mm} \)
- Délka vyložení tyče: \(l = 80 \text{ mm} \)
- Zatížení tyče: \(m = 5 \text{ kg} \)
- Modul pružnosti v tahu: \(E = 2,5 \times 10^5 \text{ MPa} \)

\[
M_{\text{Omax}} = \frac{mg}{l} = \frac{5 \times 9,81}{0,02} = 1960 \text{ N.m}
\]

\[
W_o = \frac{\pi d^3}{32} = 5,02655 \times 10^{-8} \text{ m}^3
\]

\[
\sigma_o = \frac{M_o}{W_o} = \frac{1960}{5,02655 \times 10^{-8}} = 38,993 \text{ MPa}
\]

\[
I_k = \frac{\pi d^4}{64} = 2,01062 \times 10^{-10} \text{ m}^4
\]

\[
y_{\text{max}} = \frac{mg \times l^3}{48 \times E \times I_k} = \frac{5 \times 9,81 \times 0,08^3}{48 \times 2,5 \times 10^5 \times 2,01062 \times 10^{-10}} = 10,34 \text{ mm}
\]

Z vypočtených hodnot vyplývá, že tyč je nevyhovující. Můžeme volit mezi jiným uchycením, nebo konstrukčními úpravami. Já volím konstrukční úpravu změnou délky vyložení tyče. K tomu použiji po obou stranách 30 mm dlouhý Item, který bude zespod opřen o krycí lištu kvůli pootočení a rozpěřeným kroužkem z plastu zajištění vůči podélnému posunutí. Takto upravená tyč (obr. 20) bude mít délku 14 mm. Přepočítám tedy výsledky s nově upravenou délkou. Hodnoty poté budou takovéto:
Rozměrové hodnoty:

Materiál tyče: $11\ 600\ R_m = 590 – 705\ MPa$
Průměr tyče: $d = 8\ mm$
Délka vyložení tyče: $l = 14\ mm$
Zatížení tyče: $m = 5\ kg$
Modul pružnosti v tahu: $E = 2,5 \times 10^5\ MPa$

\[M_{O_{\max}} = \frac{m \times g}{l^2} = \frac{5 \times 9,81}{0,14^2} = 0,343\ N.m \]
\[W_o = \frac{\pi \times d^3}{32} = 5,02655 \times 10^{-8}\ m^3 \]
\[\sigma_o = \frac{M_o}{W_o} = \frac{0,343}{5,02655 \times 10^{-8}} = 6,824\ MPa \]
\[I_k = \frac{\pi \times d^4}{64} = 2,01062 \times 10^{-10}\ m^4 \]
\[y_{\max} = \frac{m \times g \times l^3}{48 \times E \times I_k} = \frac{5 \times 9,81 \times 0,014^3}{48 \times 2,5 \times 10^5 \times 2,01062 \times 10^{-10}} = 0,056\ mm \]

Obr. 20: Upravení vyložení tyče
Takto vypočtený průhyb je skoro zanedbatelný, takže tyč je vyhovující. Dalším krokem bude kontrola šroubů, kterými je rám přichycen ke stolu (podle [URL 8]), jestli vydrží takový utahovací moment. Je tedy důležité spočítat působící sílu z momentu utahovačky. Sila vyvinutá utahovačkou vůči rámu bude:

\[M_{\text{max}} = 150 \text{ Nm} \]
\[l = 250 \text{ mm} \]

\[F_{\text{max}} = \frac{M_{\text{max}}}{l} = \frac{150}{0,25} = 600 \text{ N} \]

Pevnostní kontrola šroubu na otlačení:
Šroub M8x70 ISO 4762
\[P = 1,25 \text{ mm} \]
\[d_1 = 6,647 \text{ mm} \]
\[d_2 = 7,188 \text{ mm} \]
\[d_3 = 6,466 \text{ mm} \]

\[p = \frac{F}{z \cdot \pi \cdot d_2 \cdot H_1} \leq p_D \]

\(p \) (MPa) – napětí (otlačení)
\(p_D \) (MPa) – dovolené napětí (otlačení)
\(z \) – počet aktivních závitů
\(H_1 \) (mm) – nosná výška závitu
\[H_1 = (d - d_1) / 2 \]
\(d_1 \) (mm) – malý průměr závitu
délka aktivních závitů: \(m = z \cdot P = 28 \text{ mm} \)

\[p = \frac{600}{\frac{2\pi \cdot 7,188 \cdot (8 - 6,647) / 2}{1,25}} = 1,753 \text{ MPa} \]
Tlak na závitech je zcela vyhovující pro celou škálu pevnostních tříd šroubů (viz. Tabulka 5).

<table>
<thead>
<tr>
<th>Materiál vnitřního závitu</th>
<th>Třídy pevnosti materiálů šroubů</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4A</td>
</tr>
<tr>
<td></td>
<td>3,6</td>
</tr>
<tr>
<td>Materiál vnitřního závitu</td>
<td>pD (MPa)</td>
</tr>
<tr>
<td>Ocel</td>
<td>40</td>
</tr>
<tr>
<td>Litina</td>
<td>25</td>
</tr>
<tr>
<td>Hliníkové slitiny</td>
<td>18</td>
</tr>
</tbody>
</table>

Tabulka 5: Dovolené tlaky v závitech spojovacích šroubů

<table>
<thead>
<tr>
<th>Třída pevnosti šroubu</th>
<th>podle ISO</th>
<th>3,6</th>
<th>4,6</th>
<th>4,8</th>
<th>5,6</th>
<th>5,8</th>
<th>6,8</th>
<th>8,8</th>
<th>> M16</th>
<th>10,9</th>
<th>12,9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>podle ČSN</td>
<td>4A</td>
<td>4D</td>
<td>4S</td>
<td>5D</td>
<td>5S</td>
<td>6G</td>
<td>8G</td>
<td>8E</td>
<td>10K</td>
<td>12K</td>
</tr>
<tr>
<td>Označení šroubů bez zatižení podle tvrdosti</td>
<td>11H</td>
<td>11H</td>
<td>11H</td>
<td>14H</td>
<td>14H</td>
<td>32H</td>
<td>22H</td>
<td>22H</td>
<td>33H</td>
<td>45H</td>
<td></td>
</tr>
<tr>
<td>Mez pevnosti Rm (MPa)</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>800</td>
<td>1000</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Mez kluzu Re (MPa) popř. Rp 0,2 (MPa)</td>
<td>180</td>
<td>240</td>
<td>320</td>
<td>300</td>
<td>480</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Třída pevnosti matice: a)plně zatížené</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>b) s omezenou zatížitelností</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>c) bez zatižení</td>
<td>11H</td>
<td>11H</td>
<td>11H</td>
<td>11H</td>
<td>14H</td>
<td>14H</td>
<td>17H</td>
<td>17H</td>
<td>22H</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Zkušební napětí σp (MPa)</td>
<td>180</td>
<td>225</td>
<td>310</td>
<td>280</td>
<td>380</td>
<td>440</td>
<td>580</td>
<td>600</td>
<td>830</td>
<td>970</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 6: Mechanické vlastnosti ocelových šroubů a matic (ČSN EN 20898-1)
<table>
<thead>
<tr>
<th>Způsob zatížení a namáhání</th>
<th>Dovolené napětí σ_D</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zatížení silou v ose šroubu:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Spoj bez předpěti utahovaný v nezatíženém stavu</td>
<td>$\sigma_D \approx 0,8 , R_e$</td>
<td>Mijivé zatížení $\sigma_D \approx 0,6 , R_e$
Strídavé zatížení $\sigma_D \approx 0,45 , R_e$</td>
</tr>
<tr>
<td>2. Spoj bez předpěti utahovaný v zatíženém stavu</td>
<td>$\sigma_D \approx 0,6 , R_e$</td>
<td>Mijivé zatížení $\sigma_D \approx 0,45 , R_e$
Strídavé zatížení $\sigma_D \approx 0,35 , R_e$</td>
</tr>
<tr>
<td>3. Spoj s předpětím zatížený klidně</td>
<td>$\sigma_D \approx (0,3 , až , 0,15) , R_e$</td>
<td>Větší hodnoty pro nižší mechanické vlastnosti a velké průměry</td>
</tr>
<tr>
<td>4. Spoj s předpětím zatížený mijivě</td>
<td>$\sigma_D \approx (0,3 , až , 0,15) , R_e$</td>
<td>Větší hodnoty pro nižší mechanické vlastnosti a malé průměry</td>
</tr>
<tr>
<td>Zatížení silou kolmou k ose šroubu:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Silový spoj</td>
<td>$\sigma_D \approx (0,3 , až , 0,15) , R_e$</td>
<td>Větší hodnoty pro nižší mechanické vlastnosti a velké průměry</td>
</tr>
<tr>
<td>6. Tvarový spoj (licované šrouby)</td>
<td>$\tau_D \approx 0,4 , R_e$</td>
<td>Zatížení rázy $\tau_D \approx 0,3 , R_e$</td>
</tr>
</tbody>
</table>

Tabulka 7: Dovolená napětí pro výpočet šroubů

Pevnostní podmínka v tahu:

$$\sigma = \frac{F}{A_S} \leq \sigma_D \quad ; \quad A_S = \frac{\pi}{4} \cdot \left(\frac{d_2 + d_3}{2}\right)^2$$

σ (MPa) - napětí

σ_D (MPa) - dovolené napětí

A_s (mm2) - jmenovitý výpočtový průřez

F (N) - zatěžující síla

d$_2$ (mm) - střední průměr závitu

d$_3$ (mm) - malý průměr závitu (průměr jádra)

$$A_S = \frac{\pi}{4} \cdot \left(\frac{7,188 + 6,466}{2}\right)^2 = 36,606 \, \text{mm}^2$$

$$\sigma = \frac{600}{36,606} = 16,4 \, \text{MPa}$$
Jestliže zvolím třídu pevnosti šroubu 3.6, pak bude Re = 180 MPa z Tabulky 6. Poté z Tabulky 7 zvolím spoj zatížený mějivě, takže \(\sigma_D = 0,15 \cdot R_e = 27 \) MPa. Šroub tedy plně vyhovuje.

Jako další krok úprav by bylo vhodné vyřešit otáčení diferenciálu, abychom snížili pracnost montáže. K tomuto účelu odstraníme i zbývající montážní stůl a diferenciál umístíme na hřídel, která bude uložena v přírubě a ta bude přichycena k desce stolu. Diferenciál bude pokládán na gumovou podložku a konec hřídele bude upraven jako středící čep. Výpočty provedeme podle kapitoly 3.3.3 a upravená montážní stanice bude vypadat jako obr. 21.

Obr. 21: Montážní stůl s rámem pro utahovačku
Rozměrové hodnoty:

Průměr díry \(D = 55^{+15}_{-0} \) mm

Vůle \(\Delta = 0,25 \) mm

Úhel \(\alpha \) volím 20°

Vzdálenost od osy výrobku k opěrnému bodu O, \(R = 70 \) mm

Nejmenší průměr otvoru \(d = 55 \) mm

\[
D_1 = D - \Delta = 55 - 0,25 = 54,75 \text{ mm}
\]

\[
b = \sqrt{2D\Delta} = \sqrt{2 \times 55 \times 0,25} = 5,244 \text{ mm}
\]

\[
D_2 = D \left[1 - \frac{2\tan^2\alpha(2 - \sqrt{3} - \tan^2\alpha)}{\tan^2\alpha + 1} \right]
\]

\[
= 50 \times \left[1 - \frac{55 \times \tan^2 20°(2 - \sqrt{3} - \tan^2 20°)}{\tan^2 20° + 1} \right] = 54,272 \text{ mm}
\]

\[
H = \frac{R + 0,5d}{d} \sqrt{2D\Delta} = \frac{70 + \frac{55}{2}}{55} \times \sqrt{2 \times 55 \times 0,2} = 9,296 \text{ mm}
\]

Z vypočítaných hodnot volím rozměry čepu:

\(D_1 = 54,7 \) mm

\(b = 5,3 \) mm

\(D_2 = 54 \) mm

\(H = 9,5 \) mm

Obr. 22:Detail středícího čepu
9. Finální řešení

Jako výborné řešení daného problému volím použití stojanu pro vrtačky (obr. 23) od dodavatele *GM Electronic*, který nám po menších úpravách poskytne dokonalou stabilizaci utahovačky.

Do základní desky stojanu je třeba vyvrtat díru (viz. Příloha 17), do které se umístí kluzné pouzdro, ve kterém se bude točit přípravek k ustavení kola diferenciálu.

Přípravek bude hřidel zakončená středícím čepem (viz. Příloha 14), který bude mít rozměry z předchozích výpočtů. Otáčení přípravku bude zajišťovat kyvný pohon *DRQD* od firmy Festo, který bude připevněný ke spodní straně desky stolu a přenos kroutícího momentu na hřidel bude realizován pomocí pera.
Dále je potřeba upravit desku stolu pro umístění konstrukce přípravku (Příloha 3) a vyrobit podpěru pod utahovačku (viz. Příloha 15). Po úpravách bude výsledné pracoviště vypadat jako obr. 24.

Obr. 24 : Upravený pracovní stůl

Obr. 25: Přípravek s diferenciálem
Celý pracovní proces bude spočívat v tom, že obsluha umístí diferenciál na gumovou podložku přípravku (obr. 25) a středící čep zajistí ustavení. Sjede dolů stojanem tak, aby ořech dosedl na hlavu šroubu a spustí utahovačku.

Po zašroubování zvedne stojan, stiskne tlačítko a kyvný pohon pootočí diferenciál na další utahovací polohu (45°). Můžeme také umístit indukční čidlo na stojan do koncové polohy, ve které se automaticky sepne pohon otočného válce. Toto řešení již nebylo úkolem mé práce.

Obr. 26: Detail přípravku
10. Technicko-ekonomické zhodnocení

<table>
<thead>
<tr>
<th>Název</th>
<th>délka/ množství (m, ks)</th>
<th>cena/ m (ks)</th>
<th>cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 8 40x40</td>
<td>1,430</td>
<td>131,00</td>
<td>187,33</td>
</tr>
<tr>
<td>TECAST Ø16</td>
<td>0,015</td>
<td>54,00</td>
<td>0,81</td>
</tr>
<tr>
<td>TECAST Ø110</td>
<td>0,012</td>
<td>1436,40</td>
<td>17,24</td>
</tr>
<tr>
<td>ČSN 42 5510, Tyč Ø10</td>
<td>0,200</td>
<td>244,00</td>
<td>48,80</td>
</tr>
<tr>
<td>ČSN 42 5510, Tyč Ø115</td>
<td>0,115</td>
<td>303,30</td>
<td>34,88</td>
</tr>
<tr>
<td>ČSN 42 5510, Tyč Ø130</td>
<td>0,750</td>
<td>52,04</td>
<td>39,03</td>
</tr>
<tr>
<td>Guma t10</td>
<td>0,140</td>
<td>82,80</td>
<td>11,59</td>
</tr>
<tr>
<td>Balancér Gison</td>
<td>1</td>
<td>4420,00</td>
<td>4420,00</td>
</tr>
<tr>
<td>Objimka Bosch</td>
<td>1</td>
<td>1246,00</td>
<td>1246,00</td>
</tr>
<tr>
<td>Matice M8 4032</td>
<td>2</td>
<td>1,83</td>
<td>3,67</td>
</tr>
<tr>
<td>Podložka DIN 127 A8</td>
<td>14</td>
<td>0,42</td>
<td>5,88</td>
</tr>
<tr>
<td>ŠROUB ISO 4762 M8x30</td>
<td>4</td>
<td>3,60</td>
<td>14,40</td>
</tr>
<tr>
<td>ŠROUB ISO 4762 M8x55</td>
<td>2</td>
<td>3,19</td>
<td>6,38</td>
</tr>
<tr>
<td>ŠROUB ISO 4762 M8x70</td>
<td>2</td>
<td>1,61</td>
<td>3,23</td>
</tr>
</tbody>
</table>

| **6039,23** | | | |

Tabulka 8: Součet komponentů prvního řešení
<table>
<thead>
<tr>
<th>Název</th>
<th>délka/ množství (m,ks)</th>
<th>cena/ m (ks)</th>
<th>cena</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECAST Ø90</td>
<td>0,006</td>
<td>945,00</td>
<td>5,67</td>
</tr>
<tr>
<td>Guma t10</td>
<td>0,140</td>
<td>82,80</td>
<td>11,59</td>
</tr>
<tr>
<td>ČSN 42 5510, Tyč Ø90</td>
<td>0,125</td>
<td>312,24</td>
<td>39,03</td>
</tr>
<tr>
<td>ČSN 42 5510, Tyč Ø140</td>
<td>0,090</td>
<td>433,67</td>
<td>39,03</td>
</tr>
<tr>
<td>Stojan 80369</td>
<td>1</td>
<td>401,00</td>
<td>401,00</td>
</tr>
<tr>
<td>Nástrčná hlavice TONA ½“</td>
<td>1</td>
<td>31,00</td>
<td>31,00</td>
</tr>
<tr>
<td>Kluzné ložisko PCM 556030E</td>
<td>1</td>
<td>204,00</td>
<td>204,00</td>
</tr>
<tr>
<td>Podložka DIN 126 A 6,6</td>
<td>2</td>
<td>1,16</td>
<td>2,32</td>
</tr>
<tr>
<td>Šroub ISO 4762 M6x30</td>
<td>1</td>
<td>2,16</td>
<td>2,16</td>
</tr>
<tr>
<td>Kyvný válec DRQD Festo</td>
<td>1</td>
<td>5249,00</td>
<td>5249,00</td>
</tr>
<tr>
<td>Podložka DIN 127 A6</td>
<td>3</td>
<td>0,38</td>
<td>1,15</td>
</tr>
<tr>
<td>Podložka DIN 127 A14</td>
<td>2</td>
<td>1,27</td>
<td>2,54</td>
</tr>
<tr>
<td>Šroub ISO 4762 M6x60</td>
<td>2</td>
<td>1,08</td>
<td>2,16</td>
</tr>
<tr>
<td>Šroub ISO 4018 M14x35</td>
<td>2</td>
<td>2,91</td>
<td>5,81</td>
</tr>
</tbody>
</table>

5996,47

Tabulka 9: Součet komponentů druhého řešení

K těmto cenám musíme také započítat lidské zdroje, energie potřebné k jejich výrobě a správní režie. Tudíž se cena může výrazně lišit v závislosti na výběru dodavatele. Podle součtů v jednotlivých tabulkách vidíme, že druhá možnost je i přes umístěný kyvný pohon levnější.
11. Závěr

Mým úkolem byl návrh, rozkreslení a zhodnocení přípravku pro utahování šroubů diferenciálního kola pomocí utahovačky *Bosch Rexroth ESA150S*. Jako nejlepší a nejschůdnější variantu jsem zvolil použití stojanu na vrtačky spolu s kombinací kyvného pohonu *DRQD* od firmy Festo, který zajistí plynulé otáčení diferenciálu na pracovním stole.

Tato varianta usnadní obsluhe práci v tom, že nemusí pokaždé odkládat utahovačku, vzniklý kroutící moment nepůsobí vůči lidské ruce, dále je zde realizováno otáčení diferenciálu a je i cenově příznivá.

K modelování a rozkreslení výkresů jsem použil program od společnosti *Autodesk Inventor 2010*, který mi umožnil simulace navrhovaných dílců.
12. Seznam použité literatury

URL:
13. Seznam příloh

<table>
<thead>
<tr>
<th>Číslo přílohy</th>
<th>Název</th>
<th>Číslo výkresu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příloha 1</td>
<td>RUČNÍ ŠROUBOVACÍ STANICE</td>
<td>P-3110028A-00000A</td>
</tr>
<tr>
<td>Příloha 2</td>
<td>ŠROUBOVACÍ STANICE</td>
<td>P-3110028A-00000B</td>
</tr>
<tr>
<td>Příloha 3</td>
<td>ZÁKLADNÍ DESKA 2</td>
<td>P-3110028A-02002</td>
</tr>
<tr>
<td>Příloha 4</td>
<td>NOSNÁ TYČ</td>
<td>P-3110028A-04006</td>
</tr>
<tr>
<td>Příloha 5</td>
<td>ROZPĚRNÝ KROUŽEK</td>
<td>P-3110028A-04007</td>
</tr>
<tr>
<td>Příloha 6</td>
<td>item 8 40x40 - 30</td>
<td>P-3110028A-04008</td>
</tr>
<tr>
<td>Příloha 7</td>
<td>item 8 40x40 - 170</td>
<td>P-3110028A-04009</td>
</tr>
<tr>
<td>Příloha 8</td>
<td>item 8 40x40 - 600</td>
<td>P-3110028A-04010</td>
</tr>
<tr>
<td>Příloha 9</td>
<td>HŘÍDEL</td>
<td>P-3110028A-05001</td>
</tr>
<tr>
<td>Příloha 10</td>
<td>GUMA</td>
<td>P-3110028A-05002</td>
</tr>
<tr>
<td>Příloha 11</td>
<td>SPODNÍ PŘÍRUBA</td>
<td>P-3110028A-05003</td>
</tr>
<tr>
<td>Příloha 12</td>
<td>OPĚRNÝ KROUŽEK</td>
<td>P-3110028A-05004</td>
</tr>
<tr>
<td>Příloha 13</td>
<td>SESTAVA STOJANU</td>
<td>P-3110028A-06000</td>
</tr>
<tr>
<td>Příloha 14</td>
<td>HŘÍDEL</td>
<td>P-3110028A-06002</td>
</tr>
<tr>
<td>Příloha 15</td>
<td>PODPĚRA</td>
<td>P-3110028A-06003</td>
</tr>
<tr>
<td>Příloha 16</td>
<td>OPĚRNÝ KROUŽEK</td>
<td>P-3110028A-06004</td>
</tr>
<tr>
<td>Příloha 17</td>
<td>DESKA</td>
<td>P-3110028A-06005</td>
</tr>
</tbody>
</table>
14. Seznam tabulek

Tabulka 1: Značky rovin a opěrných ploch ... 14
Tabulka 2: Přehled materiálů používané pro přípravky .. 29
Tabulka 3: Parametry utahovačky Bosch Rexroth ESA150S 31
Tabulka 4: Parametry Balancéru ... 32
Tabulka 5: Dovolené tlaky v závitech spojovacích šroubů .. 38
Tabulka 6: Mechanické vlastnosti ocelových šroubů a matic (ČSN EN 20898-1) 38
Tabulka 7: Dovolena napětí pro výpočet šroubů ... 39
Tabulka 8: Součet komponentů prvního řešení ... 45
Tabulka 9: Součet komponentů druhého řešení ... 46
15. Seznam obrázků

Obr. 1: Zadání ... 3
Obr. 2: Komplexní obrobek .. 8
Obr. 3: Přemisťovací prvky přípravku... 10
Obr. 4: Kvádr v kartézském souřadném systému .. 11
Obr. 5: Odebírání stupně volnosti ... 12
Obr. 6: Správné ustavení při frézování drážky .. 12
Obr. 7: Ustavení podle tří na sebe kolmých rovin ... 16
Obr. 8: Plošná opěra .. 16
Obr. 9: Ustavení pomocí dvou kolmých ploch .. 17
Obr. 10: Ustavení do prizmatu ... 18
Obr. 11: Ustavení do kleštin .. 18
Obr. 12: Středící čep .. 19
Obr. 13: Schéma výpočtu středícího čepu ... 20
Obr. 14: Schéma výpočtu středícího čepu 2 ... 21
Obr. 15: Výpočet výšky středícího čepu ... 23
Obr. 16: Stávající montážní stůl .. 30
Obr. 17: Pružinový balancér ... 32
Obr. 18: Závěsný kroužek BOSCH ... 33
Obr. 19: Upravený montážní stůl .. 34
Obr. 20: Upravení vyložení tyče ... 36
Obr. 21: Montážní stůl s rámem pro utahovačku ... 40
Obr. 22: Detail středícího čepu ... 41
Obr. 23: Stojan pro vrtáčky .. 42
Obr. 24: Upravený pracovní stůl .. 43
Obr. 25: Přípravek s diferenciálem .. 43
Obr. 26: Detail přípravku .. 44