Zadání diplomové práce

Tomáš Kaznica

Student:

Studijní program: M2109 Metalurgické inženýrství

Studijní obor: 2109T016 Metalurgie železa a oceli

Téma: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO

Analysis of Technological Factors Influencing Heat Thermal State before Casting on CCM

Zásady pro vypracování:
1. Úvod.
2. Vytypování značek ocelí, které budou sledovány.
3. Metody rafinace oceli v páni a jejich význam.
4. Hodnocení podstatných parametrů ovlivňujících pokles teploty oceli v páni (struska, technologické operace, vyzdvíka páni).
5. Statistické hodnocení podílu parametrů na pokles teploty oceli v páni.

Seznam doporučené odborné literatury:

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Datum zadání: 15.12.2008

Datum odevzdání: 30.04.2010

[Signatures]
prof. Ing. Karel Michalek, CSc. vedoucí katedry
prof. Ing. Ludovít Dobrovský, CSc., Dr.h.c. děkan fakulty
Zásady pro vypracování diplomové práce

I.

Diplomovou prací (dále jen DP) se ověřuje vědomost a dovednost, které student získal během studia, a jeho schopnost využívat je při řešení teoretických i praktických problémů.

II.

Uspořádání diplomové práce:
1. Titulní list + zásady pro vypracování DP
2. Prohlášení + místopřízežné prohlášení
3. Abstrakt + klíčová slova česky a anglicky
4. Obsah DP
5. Textová část DP
6. Seznam použité literatury
7. Přílohy

ad 1) Titulním listem je originál zadání DP, který student obdrží na své oborové katedře. Za titulním listem následují tyto „Zásady pro vypracování diplomové práce“.

ad 2) Prohlášení + místopřízežné prohlášení napsané na zvláštním listě (student jej obdrží na své oborové katedře) a vlastnoručně podepsané studentem s uvedením data odezvádání DP. V případě, že DP vychází ze spolupráce s jinými právnickými a fyzickými osobami a obsahuje cílové údaje, je na zvláštním listě vloženo prohlášení spolupracující právnické nebo fyzické osoby o souhlasu se zveřejněním DP.

ad 3) Abstrakt a klíčová slova jsou uvedena na zvláštním listě česky a anglicky v rozsahu max. 1 strany pro obě jazykové verze.

ad 4) Obsah DP se uvádí na zvláštním listě. Zahrnuje názvy všech očíslovaných kapitol, podkapitol a statí textové části DP, odkaz na seznam příloh a seznam použité literatury, s uvedením příslušné stránky. Předpokládá se desetinné číslování.

ad 5) Textová část DP obvykle zahrnuje:
- Úvod, obsahující charakteristiku řešeného problému a cíle jeho řešení v souladu se zadáním DP;
- Vlastní rozpracování DP (věcné obrázky, tabulky, výpočty) s dílčími závěry, vhodné členěné do kapitol a podkapitol podle povahy problému;
- Závěr, obsahující celkově hodnocení výsledků DP z hlediska stanoveného zadání.

DP bude zpracována v rozsahu min. 45 stran (včetně obsahu a seznamu použité literatury). Text musí být napsán vhodným textovým editorem počítače po jedné straně bílého nelesklého papíru formátu A4 při respektování následující doporučené úpravy - písmo Times New Roman (nebo podobné) 12b; řádkování 1,5; okraje – horní, dolní – 2,5 cm, levý – 3 cm, pravý 2 cm. Fotografie, schématy, obrázky, tabulky musí být očíslované a musí na ně být v textu poukázáno. Budou zařazeny průběžně v textu, pouze je-li to nezbytně nutné, jako přílohy (viz ad 7).

Odborná terminologie práce musí odpovídat platným normám. Všechny výpočty musí být přehledně uspořádány tak, aby každý odborník byl schopen přezkoušet jejich správnost. U
Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO

Diplomová práce, VŠB-TU Ostrava 2010

Obsah

ad 6) DP bude obsahovat alespoň 15 literárních odkazů, z toho nejméně 5 v některém ze světových jazyků.
Seznam použité literatury se piše na zvláštním listě. Citaci literatury je nutno uvádět důsledně v souladu s ČSN ISO 690. Na práce uvedené v seznamu použité literatury musí být uveden odkaz v textu DP.

ad 7) Prílohy budou obsahovat jen ty části (speciální výpočty, zdrojové texty programů aj.), které nelze vhodně včlenit do vlastní textové části např. z důvodu ztráty srozumitelnosti.

III.

Diplomovou práci student odevzdá ve dvou knihašky svázaných vyhotoveních, pokud katedra garantující studijní obor neurčí jiný počet. Vnější desky budou označeny takto:

nahoře: Vysoká škola báňská - Technická univerzita Ostrava
Focusa metaurgie a materiálového inženýrství
Katedra

uprostřed: DIPLOMOVÁ PRÁCE

dole: Rok

Jméno a příjmení

Kromě těchto dvou knihašky svázaných výtisků odevzdá student kompletní práci také v elektronické formě do IS EDISON včetně abstraktu a klíčových slov v češtině a angličtině.

IV.

Ostrava 30. 11. 2009

Prof. Ing. Ludovít Dobrovský, CSc., Dr.h.c.
děkan fakulty metalurgie a materiálového inženýrství
VŠB-TU Ostrava
Prohlašuji, že

- jsem byl seznamán s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. - autorský zákon, zejména §35 - užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 - školní dílo.

- beru na vědomí, že Vysoká škola báňská - Technická univerzita Ostrava (dále jen VŠB - TUO) má právo nevýdělečně ke své vnitřní potřebě diplomovou práci užít (§35 odst. 3).

- souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB - TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci budou zveřejněny v informačním systému VŠB-TUO.

- bylo sjednáno, že s VŠB - TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.

- bylo sjednáno, že užit své dílo - diplomovou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB - TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB - TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

- beru na vědomí, že odevzdáním své diplomové práce souhlasím s jejím zveřejněním podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (Zákon o vysokých školách) bez ohledu na výsledek její obhajoby.

- Místopřísežně prohlašuji, že jsem celou diplomovou práci vypracoval samostatně.

V Ostravě 16. 10. 2010

Kaznica Túdal
jméno a příjmení studenta

Trnitec F, teploová ABC
adresa trvalého pobytu studenta
Obsah

Abstrakt .. 2
Abstract ... 2
1. Úvod .. 3
2. Vysokouhlíkaté dráty .. 4
3. Rafinace oceli v pánvi .. 6
 3.1 Dezoxidace oceli .. 6
 3.1.1 Dezoxidace oceli manganem ... 6
 3.1.2 Dezoxidace oceli křemíkem ... 7
 3.2 Mimopěcní rafinace oceli argonem ... 8
 3.3 Strusky ... 9
 3.4 Teorie odsíření oceli ... 11
 3.5 Vliv chemického složení a teploty strusky na proces odsíření 12
 3.6 Mimopěcní odsířování oceli dmýcháním prachových odsířovacích částic 13
4. Charakteristika provozu KKO .. 15
 4.1 Vyzdívka licí pánve ... 18
 4.1.1 Chemické složení vyzdívky ... 19
5. Žáruvzdorné materiály ... 21
 5.1 Vlastnosti žáruvzdorných materiálu ... 21
 5.2 Druhy materiálů .. 23
 5.3 Keramické tvárnice ... 24
6. Technologie výroby a rafinace kordové oceli ... 26
 6.1 Dezoxidace a tvorba pánrové strusky při odjezdu z LD konvertoru 26
 6.2 Argonování oceli v pánvi ... 26
 6.3 Rafinace oceli na pánrové peci LF ... 26
 6.4 Odlévání oceli na ZPO ... 27
 6.5 Závěry ke kapitole 6 ... 27
Cíl práce: .. 27
7. Statistické zhodnocení podílu parametrů na pokles teploty oceli 28
 7.1 Závislé proměnné veličiny (y) ... 28
 7.2 Nezávislé proměnné veličiny (x, z) ... 29
 7.2.1 Parametry ochlazující ocel (x): ... 29
 7.2.2 Parametry udržující resp.zvyšující teplotu oceli v pánvi (z): 29
 7.3 Korelační tabulka .. 30
 7.4 Teplota oceli na argonoovací stanici minus První teplota oceli na ZPO 31
 7.5 Teplota přehřátí oceli v MP .. 37
 7.6 První teplota oceli v MP minus Poslední teplota MP .. 43
 7.7 Teplota oceli na argonoovací stanici minus Teplota oceli na výjezdu z LF 49
 7.8 Teplota oceli na výjezdu z LF minus První teplota oceli na ZPO 54
 7.9 Vícenásobná regrese .. 59
8. Závěr ... 63
Seznam tabulek ... 64
Seznam obrázků ... 65
Literatura ... 67

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
Abstrakt

V teoretické části práce je proveden rozbor faktorů ovlivňujících výrobu oceli posuzované následně v experimentální části. Jsou zdůrazněna specifika výroby kordové oceli, a ukázán postup její výroby. V experimentální části práce jsou sledovány faktory ovlivňující tepelný režim tavby, a to jednak ty, které teplo procesu ubírají, a jednak ty, které teplo do procesu přinášejí. Volba těchto faktorů je provedena na základě zkušeností s procesem výroby oceli.

Klíčová slova: kordové oceli, tepelný režim, dezoxidace oceli, vyzdívka licí pánve, rafinace oceli

Abstract

In theoretical section of the paper analysis of factors influencing the steel production is made and then examine in experimental section. There are highlighted particulars of production of tire-cord steel a showed method of its production. In experimental section of the paper two groups of factors influencing the melt treatment regime are monitored. First, factors that take away the heat from the process and the second, factors that that brings the heat into the process. Selection of these factors is done on the bases of experience with the process of production of steel.

Key words: tire-cord steel, heat treatment regime, deoxidation of steel, refractory line of ladle, refining process of steel
1. Úvod

Celosvětovým trendem je v dnešní době vyrábět ocel té největší kvality, a dále snižování energetické náročnosti výroby. Přitom je třeba rozšiřovat nabídku hutních produktů, které svým chemickým složením a vlastnostmi nabízejí vysokou užitnou hodnotu. To znamená zajistit co největší životnost oceli v závislosti na způsobu jejího využití pro určitý druh výrobu. Toho lze dosáhnout v kyslíkovém konvertoru a po odpichu takzvanou rafinací oceli v pánvi, přičemž při výrobě v kyslíkovém konvertoru je důležité hlavně dosažení nízkého obsahu fosforu v kovu. Při mimopecní rafinaci v pánvi určujeme složení a kvalitu oceli před výjezdem na plynulé odlévání.

Výroba oceli je složitý fyzikálně chemický proces v oblasti vysokých teplot. Zákonnostmi, které řídí jeho průběh, se zabývali metalurgové od prvopočátku ocelářství. V minulosti ale vědecké výzkumy a technické možnosti nedovolovaly víc než pečlivé pozorování, registraci jevů, empirické zkoušení. Rozvoj metalurgie a technologie však jde stále kupředu, a tak již v dnešní době můžeme zajišťovat téměř dokonalou výrobu oceli díky akceptaci fyzikálněchemických zákonů při rozvoji metalurgie. Přesným vyjádřením a objasněním principů, kterými se řídí metalurgické pochody, se vyhýbáme nečekaným událostem, a také dostáváme možnost objektivně a kvalitně posuzovat účinky metalurgický pochodů, a tím dále zkvalitňovat jejich průběh.

Pro sledování těchto metalurgických pochodů byly zvoleny podmínky Třineckých Železáren, a.s., na které se v následujícím textu zaměříme.
2. Vysokouhlíkaté dráty

V Třineckých Železárnách se vyrábí celá škála značek a jakostí např. konstrukční ocel, betonářská ocel, ložisková ocel, ocel pro kolejnice či vysokouhlíkaté dráty, které musí splňovat předepsané rozmezí prvků obsažených v kovu. Cílem této diplomové práce je sledovat a analyzovat faktory, které ovlivňují teplotní stav v pánvi. Sledovanou značkou v oceli jsou vysokouhlíkové dráty s označením kord. Důvodem výběru této značky oceli je, že se sleduje přesně limitované přehřátí oceli v mezipánvi na ZPO, a kromě toho je kladem důraz i na nekovové vměstky. Chemické složení „kordové“ oceli je uvedeno v tabulce 1.

Tab. 1: Chemické složení oceli H09C070 v hm. %

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>Cr</th>
<th>Ni</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0,72</td>
<td>0,50</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>0,74</td>
<td>0,55</td>
<td>0,30</td>
<td>0,012</td>
<td>0,015</td>
<td>0,008</td>
<td>0,08</td>
<td>0,08</td>
<td>0,004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mo</th>
<th>As</th>
<th>Sn</th>
<th>N</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>0,02</td>
<td>0,003</td>
<td>0,01</td>
<td>0,007</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Při výrobě kordové oceli využíváme kyselou wolastonitovou rafinační strusku, kdy ocel je dezoxidována křemíkem (bezhliníková technologie založená na minimalizaci obsahu Al v oceli, s cílem vyrábět ocel bez vměstek na bází Al₂O₃). Pro dosažení maximální čistoty jsou u bezhliníkové technologie používány čisté legovací přísady, což vede v konečném výsledku dosahování nižších obsahů doprovodných prvků v oceli. Dalším opatřením je používání licích pánví po tavbách, které byly vyráběny bez Al technologie (pružinová ocel, kolejnicové a další skupiny oceli). Jednotlivé sekvence kordových značek odlévaných na ZPO jsou vyhodnocovány a přijímána technologická opatření k dosažení maximálního počtu taveb odlévaných v sekvenci při limitovaném přehřátí oceli v mezipánvi, a to v rozmezí 20 až 35 °C nad likvidem. U kordové oceli je limitujícím faktorem její čistota, a tudíž je sledováno množství a chemický charakter nekovových vměstek.
Nekovové vměstky

Exogenní vměstky vznikají korozivním a erozivním působením oceli na žáruvzdorný keramický materiál, s nímž ocel přichází do styku.

Endogenní vměstky (patří sem oxidy, sulfidy, oxysulfidy a jiné nekovové sloučeniny) v oceli vznikají následkem fyzikálně chemických reakcí během výroby a lití.

Vměstky při výrobě kordové oceli jsou následující dva typy:

Vměstky typu SiO₂
Oxid křemičitý je křehký v celé oblasti tvářecích teplot. K charakteristickým vlastnostem křemičitanových vměstků proto patří jejich nízký stupeň tvářitelnosti při nízkých teplotách, který se v závislosti na chemickém složení vměstků se zvyšující se teplotou zvyšuje (za zvýšenou teplotu považujeme teplotní interval 800 až 1300 °C) [3]. Při dezoxidaci oceli silikokalciem vznikají komplexní křemičitanové vměstky, které jsou tvářitelné v širokém spektru teplot.

Vměstky typu Al₂O₃
Veškeré tyto vměstky jsou při teplotách tváření tvrdé, jejich deformací index je rovná nule. Při velkém stupni tváření je nepoddajná korundová fáze často mechanicky oddělována od více tvářitelné základní hmoty.
3. Rafinace oceli v pánvi

Důležitým krokem při výrobě oceli je její zpracování v pánvi, jinak řečeno pánrová či mimopécní metalurgie. V následujících podkapitolách budou uvedeny její možnosti se zaměřením na procesy spojené s výrobou kordové oceli.

3.1 Dezoxidace oceli

Během metalurgických procesů při oxidaci nežádoucích nebo doprovodných prvků přítomných v lázni kyslíkem zkujňovacích rud nebo plynným kyslíkem se rozpouští přebytečný kyslík v tavenině. Úkolem dezoxidace je právě převést uvedený přebytečný kyslík na neaktivní formu.

Podle způsobu provedení lze rozdělit dezoxidaci na několik metod

- srážecí dezoxidace
- difuzní dezoxidace
- vakuová uhlíková dezoxidace
- dezoxidace syntetickými struskami

Pro potřeby výroby kordového drátu je vhodná pouze níží rozebíraná srážecí dezoxidace.

3.1.1 Dezoxidace oceli manganem

Mangan se zpravidla přidává ve formě feromanganu se 75 hm. % manganu.

Pro nízký obsah manganu v roztaveném železe lze dezoxidační reakci vyjádřit rovnicí:

\[x \cdot \text{Mn}^2+ + \text{O}^2- + (1-x)\text{Fe}^0 = x \cdot \text{MnO} + (1-x)\cdot \text{FeO} \] (1)

Při vyšším obsahu manganu kdy je ve zplodinách dezoxidace velký obsah MnO vyjádříme rovnicí zjednodušeně:

\[\text{Mn}^2+ + \text{O}^2- = \text{MnO}_2(s) \] (2)
Mangan je slabým dezoxidačním prvkem. S kyslíkem se slučuje na oxid manganatý, který má zásaditý charakter a tvoří s oxidem železnatým neomezený tuhý roztok. Teplota roztavené oceli bývá kolem 1600 °C. Vměstky FeO-MnO vznikající při reakci mohou být kapalné nebo tuhé. To vše záleží podle poměru FeO: MnO. Vliv vzájemné rozpustnosti oxidu železnatého a manganatého je důležitý a činí při nízkém obsahu manganu v železe dezoxidaci účinnější, než kdyby při stejném obsahu manganu vznikal čistý [2], tuhý oxid manganatý. Za teplot ocelářských pochodů nelze předpokládat odsiřující působení manganu. Mangan má však výrazný vliv na tvar a složení sulfidických vměstků, které vznikají v oceli při jejím tuhnutí. Rozpustnost síry v roztaveném železe se sice s růstem obsahu manganu snižuje, avšak samostatná sulfidická fáze se v roztaveném železe nevylučuje, neboť ji poté je rozpustnost síry v roztaveném železe větší, než jsou běžné obsahy síry v oceli [2].

3.1.2 Dezoxidace oceli křemíkem

Křemík se přidává jako ferosilicium se 75 hm. % křemíku. Křemík je silnějším dezoxidovadlem než mangan. Při obsahu křemíku do 0,05 hm. % se tvoří v lázní křemičitany.

Reakce probíhají podle rovnic:

\[
\begin{align*}
/Si/ + 4/O/ + 2Fe(0) &= (Fe_2SiO_4) \\
/Si/ + 3/O/ + Fe(0) &= (FeSiO_3) \\
/Si/ + 2/O/ &= (SiO_2)
\end{align*}
\]

Při vyšším obsahu křemíku vzniká oxid křemičitý:

Při vyšší teplotě je v rovnováze se stejným obsahem křemíku vyšší obsah kyslíku. Je to proto, že dezoxidace křemíkem je exotemická reakce, u které klesá dezoxidační působení křemíku s rostoucí teplotou. Obsah kyslíku se při zvyšování obsahu křemíku nejprve prudce snižuje, nad 0,5 hm. % Si klesá již nepatrně. Aby se využila dezoxidační schopnost křemíku, je jeho obsah u nelegovaných ocelí 0,3 až 0,5 hm. %. Při obsahu nad 0,5 hm. % se již počítá mezi legovací prvky. Při vysokém obsahu křemíku se jeho dezoxidační schopnost opět snižuje, protože se mění vazba oxidu. Pravděpodobně mizí postupně SiO₂ a objevuje se oxid SiO, který je v tavenině částečně rozpustný [2]. Obsah kyslíku v lázní se tím zvyšuje. Za přítomnosti uhlíku nebo manganu se dezoxidační schopnost křemíku v tavenině železa zvyšuje. Při dezoxidaci uhlíkových ocelí pouze křemíkem a manganem nelze vyloučit...
možnost vzniku bublin oxidu uhelnatého v tuhonicí oceli, a to následkem oxidace uhlíku vyvolané sklonem oceli k likvací uhlíku a kyslíku.

Dezoxidace hliníkem není zmiňována, protože se při výrobě kordové oceli nepoužívá.

3.2 Mimopěcní rafinace oceli argonem

Vhánění jemně rozptýlených bublin argonu do ocelové lázně se usnadňuje přechod plynů rozpuštěných v tavenině do plynné fáze, a vyvozuje se flotační účinek na nekovové vměstky v tavenině. Tyto vměstky se usazují na plynových bublinkách a jsou jimi vynášeny do strusky. Kromě uvedeného fyzikálního vlivu argonu lze jeho vháněním vyvodit mechanické účinky, které dosáhnou co nejdůkladnější homogenizace lázně po stránce chemického složení i rozložení teplot [3]. Vliv vhánění do rozたavené ocelové lázně na jednotlivé faktory (odplynění, snížený obsah nekovových vměstků) vychází v podstatě ze dvou základních účinků:

- přechodu plynů rozpuštěných v oceli do bublin argonu (v souladu se Sievertsovým zákonem)
- pohybem lázně vyvolaného pohybem vystupujících bublin plynu

Podstatou odplynění rozたavené lázně argonem je rozdíl parciálních tlaků nežádoucích plynů (vodíku a dusíku), které se mají odstranit z lázně, v lázní a v argonu. Tento rozdíl umožňuje difuzi rozpuštěných plynů do bublin argonu, kterým jsou vynášeny na povrch rozたavené lázně.

To lze vyjádřit vztahem:

\[
\frac{dX}{dt} = \frac{S}{D} \frac{dc}{dx} \tag{6}
\]

kde je \(dX/dt \) množství plynu odstraněného za jednotku času /mol.s\(^{-1}\)/

S plocha mezifázového rozhraní mezi plynem a kovem /cm\(^2\)/

D difuzní součinitel plynu v oceli /cm\(^2\).s\(^{-1}\)/

\(dc/dx \) koncentrační spád mezi kovem a plynnou fází /mol.cm\(^3\).cm\(^{-1}\)/
Dosažení rychlého a účinného odplynění oceli závisí na:

- vytvoření maximálního koncentračního spádu plynu mezi kovem a plynnou fázi, tedy použití inertního plynu s minimální koncentrací složek, které se mají z oceli odstranit

- vytvoření co největší styčné plochy mezi kovem a plynnou fázi, a tedy vytvoření podmínek pro co nejrovnovážnější rozptýlení plynné fáze (zpravidla argonu) v kovu v podobě bublin o nejmenším průměru

Odstraňování nekovových vměstků z roztavené oceli závisí na možnosti jejich zvětšení. Za reálných podmínek ocelářského pochodu je však doba potřebná ke zvětšování rozměru nekovových vměstků omezena a celý pochod závisí na kinetických činitelích. Rychlost koagulace (tuhé vměstky) a koalescence (kapalné vměstky) bude u nekovových vměstků urychlována pohybem roztaveného kovu [4], taktéž vhánění argonu do roztavené oceli bude mít příznivý účinek na růst rozměru nekovových vměstků, a tím i na jejich rychlejší vyplouvání do strusky [3].

Vháněním argonu prodyšnými tvárnicemi umístěnými ve dně licí pánve se vytvářejí podmínky pro příznivější rozdělení argonu v lázní. Z hlediska proudění argonu se dosahuje optimálního účinku při umístění prodyšné tvárnice v poloviční vzdálenosti od středu pánve[3]. Prodyšná tvárnice určená pro rafinaci roztavené lázně argonem musí vyhovovat těmto požadavkům:

- pro dosažení maximální účinnosti rafinace musí argon do roztavené lázně proudit v podobě velkého počtu bublinek malých rozměrů

- prodyšná tvárnice musí za určitý časový usek umožnit vhánění požadovaného množství argonu

Podle prodyšnosti tvárnice a požadovaného množství argonu pro rafinaci je možno do dna licí pánve zabudovat větší počet prodyšných tvárníc[3].

3.3 Strusky

Jestliže výše zmíněné argonování umožnilo (mimo jiné) snížení počtu vměstků v oceli, bude třeba zajistit, aby se zpět do oceli nedostávaly, což bude jednou z úloh strusky.
Hlavními funkcemi strusky jsou:

- izolační funkce - chrání taveninu před naplyněním
- pohlcování nekovových vměstků
- teplotní funkce - chrání kov před unikem tepla do atmosféry
- zabezpečení odsílení a odfosfoření, tedy snížení obsahu škodlivých prvků (rafinační funkce)

Má také negativní vliv, protože způsobuje korozii vyzdívky. Čím je kyselejší a tekutější, tím je toto působení výraznější.

Vlastnosti strusky určují:

- chemické složení
- teplota

Tyto vlastnosti strusek určují především viskozitu, povrchové napětí (mezifázové napětí mezi struskou a oceli), zásaditost a oxidační schopnost strusky.

Strusky dělíme podle vzniku:

- pecní - jsou oxidační (obsahují FeO) a dělíme je na zásadité (větší poměr CaO/SiO₂) nebo kyselé (menší poměr CaO/SiO₂)
- pánové - jsou redukční a závislosti na vyráběné jakosti buď zásadité nebo kyselé

Bazicita (zásaditost) strusky:

Je definována

\[B = \frac{\%CaO}{\%SiO_2} \] \hspace{1cm} (7)

Dá se říci, že je to poměr zásaditých a kyselých oxidů ve strusce. Existuje i jiné vyjádření bazicity pro vysoký obsah P₂O₅:

\[B = \frac{\%CaO}{\%SiO_2 + \%P_2O_5} \] \hspace{1cm} (8)
Strusky pak dělíme na kyselé, středně zásadité a zásadité následovně

\[B \leq 0,5 \quad \text{kyselé strusky} \]
\[1,5 \leq B \leq 2,5 \quad \text{středně zásadité strusky} \]
\[B \geq 2,5 \quad \text{zásadité strusky} \]

3.4 Teorie odsíření oceli

Pro popis rafinačních procesů se nejčastěji používají molekulární a iontová teorie strusek. Odsířování roztaženou zásaditou struskou probíhá na mezifázovém rozhraní kov-struska.

Molekulárně je možno tento děj vyjádřit takto:

\[
\text{S} + \text{Fe} + \text{(CaO)} = \text{(CaS)} + \text{(FeO)}
\]
(9)

Podle iontové teorie se přes hranici kov-struska přemísťují nabité částice. Při oxidaci uhlíku, křemíku a fosforu přecházejí ze strusky do kovu anionty kyslíku, při odsíření v opačném směru anionty síry.

Iontová teorie vyjadřuje odsíření tímto vztahem:

\[
\text{S} + (\text{O}^-) = (\text{S}^2-) + \text{O}/
\]
(10)

Přechod aniontů síry do strusky je doprovázen opačným přechodem aniontů kyslíku ze strusky do kovu, a výše uvedená rovnice je vlastně součtem dvou rovnic:

\[
\text{S} + 2\text{e} = (\text{S}^2-) \]
(11)
\[
(\text{O}^-) = \text{O}/ + 2\text{e} \]
(12)

Rovnovážnou konstantu pro reakci můžeme vyjádřit vztahem:

\[
K_0^\text{S} = \frac{x_{(\text{S}^2-)} \gamma_{(\text{S}^2-)} w_{\text{O}/} f_{\text{O}/}}{x_{(\text{O}^-)} \gamma_{(\text{O}^-)} w_{\text{S}/} f_{\text{S}/}}
\]
(13)

kde je \(x_i\) molární zlomek aniontu i ve strusce
\(\gamma_i\) aktivní součinitel aniontu i ve strusce
\(w_i\) hmotnostní zlomek prvku i v kovu
\(f_i\) aktivní součinitel prvku i v kovu
Čistě iontová teorie procesu odsíření je přibližná, protože nevyjadřuje odsířovací vlastnosti jednotlivých oxidů (CaO, MgO, FeO, MnO aj.). Vápenatý kationt Ca$^{2+}$ přednostně váže sulfidový aniont S$^{2-}$, a součinitel aktivity γ S se zmenšuje a tím vzrůstá rozdělovací součinitel síry. Oxidy snížující aktivitu CaO ve strusce zhoršují odsířovací schopnost strusky (např. SiO$_2$). Do 25 hm. % SiO$_2$ ve strusce může být rovnice použita bez zavedení součinitelů aktivit, tj. ve tvaru [2]:

$$K_0 S = \frac{x_{(S^{2-})} w_{/O} \cdot f_{/O}}{x_{(O^{2-})} w_{/S} \cdot f_{/S}}$$ \hspace{1cm} (14)

Rozdělovací součinitel síry za předpokladu, že $f_{/O} = 1$ a $f_{/S} = 1$ lze vyjádřit vztahem

$$L'_S = \frac{w_{/O}}{w_{/S}} = \frac{K_0 S \cdot x_{(O^{2-})}}{w_{/O}}$$ \hspace{1cm} (15)

Velikost L_S je přímo úměrná hodnotě rovnovážné konstanty a její zvýšení znamená zlepšení podmínek pro odsíření oceli. Ze vztahu dále vyplývá, že všechny dezoxidační prvky budou podporovat odsíření oceli. Na hodnotu rozdělovacího součinitelů síry má vliv řada činitelů a jejich vliv je nutno posuzovat komplexně vzhledem ke kinetice odsíření[8]. Proces odsíření je podporován nízkou aktivitou kyslíku v železe a současně vysokou aktivitou síry. Dále je odsíření podporováno přítomností prvků schopných tvořit v tavenině železa se sírou samostatnou sulfidickou fázi, která bude předcházet do strusky. Přítomnost dalších prvků v železe má vliv na aktivitu síry v různém stupni [2].

3.5 Vliv chemického složení a teploty strusky na proces odsíření

Základní vliv na průběh odsíření a na dosahovaný stupeň odsíření má chemické složení odsířovací strusky. Ocelářské strusky jsou tvořeny zásaditými, kyselými a amorfními oxidy, struskotvornými přísadami a zplodinami vzniklými reakcí mezi struskou, roztaveným kovem a žáruvzdornými materiály. V závislosti na teplotě a vzájemném poměru složek jsou disociovány na jednoduché anionty a kationty popř. vázány na komplexní anionty. Nejdůležitější kationty přítomné v ocelářských struskách tvoří dvě skupiny:

- kationty s většími rozměry a poměrně malými náboji, k nímž patří

$$Ca^{2+}, Mn^{2+}, Mg^{2+}, Fe^{2+},$$

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavy před odléváním na ZPO Diplomová práce, VŠB-TU Ostrava 2010
- kationty s poměrně malými rozměry a velkými náboji, schopné tvořit s anionty kyslíku stále komplexní anionty, kam patří kationty \(S^{4+}, P^{5+}, Al^{3+} \)

Z aniontů důležitých z hlediska odsíření mají největší význam jednoduché anionty \(SiO^{4+}, PO^{3+}, AlO^{2-} \) a stabilní komplexní anionty \(S^{2-}, O^{2-} \). Z rozdílu iontových poměrů vyplývá přednostní vazba sulfidového aniontu na největší kationt \(Ca^{2+} \).

Z kinetického hlediska má teplota na celkový výsledek odsíření struskami kladný vliv. Zvýšení teploty napomáhá ke snížení povrchového napětí, a tím vede k urychlení procesu odsíření a rychlejšímu přiblížení reakce k rovnovážnému stavu. Vysoká teplota umožňuje použití strusek silně a těžce tavitelných, vyžadujících k dosažení potřebné tekutosti vyšší teplotu[2].

3.6 Mimopecné odsiřování oceli dmýcháním prachových odsiřovacích částic

Odsiřovací účinek prachových látek závisí na jejich fyzikálněchemických vlastnostech. Prachové odsiřovací látky můžeme rozdělit do dvou skupin:

Do první skupiny lze zařadit některé oxidy alkalických zemin, jejich směsi, popřípadě směsi s některými dalšími oxidy, což jsou v podstatě vysoce zásadité strusky. Jejich odsiřovací účinek je založen na tom, že se vytvoří silně nerovnovážný stav mezi oxidickými a sulfidickými sloučeninami. Za přítomnosti některého ze silných dezoxidačních prvků dochází k vazbě alkalických zemin se sírou:

\[
(CaO, MgO) + S/ + R/ \rightarrow \gamma aS, MgS) + RO)
\] \(16\)

Do druhé skupiny se zařazují slitiny kovů alkalických zemin, které se při styku s roztavenou ocelí rozkládají na jednotlivé složky, jež se dále rozpouštějí nebo tavi -popřípadě zplyňují. Odsiřující účinek je vytvořen přímo reakcí mezi sírou a kyslíkem rozpuštěnými v oceli a plynovou bablinkou reakčního činidla.

\[
Ca_{(e)}, Mg_{(e)} + S, O/ \rightarrow \gamma a, Mg)O + Ca, Mg)S
\] \(17\)

Reakce jsou usnadněny povrchovou aktivitou síry a kyslíku a jsou limitovány pouze difuzí z objemu ocelové taveniny k mezifázovému rozhraní tavenina- plynová bablinka reakčního činidla. Turbulentní pohyb ocelové taveniny lze dosáhnout volbou dmýchacích podmínek, urychluje difuzní děje, a tím celý proces. Při praktické aplikaci jsou důležité další činitele.
Musí se dodržet poměr mezi množstvím prachové odsiřovací látky a nosným plynem, a prachová látky musí mít určitou optimální zrnitost. U procesu dmýchání prachových látek mají významnou úlohu povrchové děje. Velmi jemně podíly reakčního činidla mohou být uzavřeny bublinou nosného plynu, a v tomto případě bez účinku vyplavou z ocelové taveniny na její hladinu. Reakční zplodiny obsahující síru, vázanou na některý prvek alkalických zemin, by měly mít vysokou schopnost koagulace a koalescence, malou smáčivost ocelovou taveninou a nízkou hustotou, což je předpokladem jejich vyplouvání a rychlého odstranění z kovové taveniny. Zlepšení mechanických vlastností je vedle snížení obsahu kyslíku a síry vyvoláno také změnou tvaru a velikosti nekovových vmišteků. Prokázalo se, že tvarem sulfidy manganu se nevytváří při poklesu obsahu síry pod 50 ppm a nejlepším výsledky mechanických vlastností oceli bylo dosaženo právě při obsahu síry a kyslíku pod 50 ppm. Maximálního účinku při dmýchání prachových látek se dosahuje při těchto technologických opatřeních [3]:

- odsiření lze dosáhnout jen v ocelích uklidněným silným dezoxidovadlem.
- roztavenou ocel je nutno chránit před veškerými zdroji kyslíku (jako sekundární zdroj kyslíku je třeba uvažovat pecní strusku, vyzdvíku pánve, vnější atmosféru)
- částice dmýcháné látky musí mít takovou velikost, aby během vyplouvání z ocelové taveniny došlo k úplné látkové výměně
- nosný plyn musí být dmýchán v takovém množství, aby vnesl v krátkém časovém údobí do ocelové taveniny prachové látky a umožnil plné pohlcení prachových částí taveninou, neochlazoval neúměrně taveninu a nevnášel do taveniny nežádoucí příměsi

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
4. Charakteristika provozu KKO

V této kapitole bude charakterizována kyslíkokonvertorová ocelárna Třineckých železáren, a.s., kde výroba sledované kordové oceli probíhá.

Obr. 1: Schéma provozu KKO

Kyslíkový konvertor

Konvertor je ocelová nádoba hruškovitého tvaru vyzděná žáruvzdorným materiálem na bázi MgO-C. V současné době je trendem vyzdívání konvertor tzv. sférickým vyzdíváním, přičemž v oblasti struskové čáry je vrstva vyzdívky zesílená oproti ostatním částem konvertoru z důvodu vyšší agresivity strusky na vyzdívku. Na dně konvertoru je umístěno 8 dmyšných elementů, přes které se provádí dmýchání inertního plynu do oceli [23]. Jako médium může být argon nebo dusík. Ke zkušťování se používá vysoce čistý kyslík.
Pánvová pec LF

Obr. 2: Schéma pánvové pece

Další zpracování probíhá nejčastěji na zařízení LF(Ladle Furnace). V TŽ jsou v současné době dvě pánvové pece s označením LF1 a LF2. Tento způsob zpracování s přihřevem oceli je rozšířen v mnoha ocelárnách. Principiálně se jedná o ohřev oceli elektrickým proudem třemi elektrodami, které vedou přes víko pánvové pece se současnou možností dolegování nebo injektáže přímo do oceli. Rychlost ohřevu oceli o průměrné hmotnosti 185 t je 4-5 °C za minutu, celkový ohřev zpravidla nepřekračuje 50 °C. Výhoda tohoto zpracování je v přesnosti legování a teploty [23] (dosažení velmi přesného chemického složení oceli a přesné výjezdové teploty, která je nezbytná pro kvalitu kontislitků odlévaných na ZPO).

Vakuovací stanice RH
Obr. 3: Schéma zařízení RH

Pánvová pec IRUT

Nastane-li situace, že porézní kužel ve dně licí pánve, přes který se provádí homogenizace inertním plynem, je nefunkční, nebo z nějakých jiných příčin (např. oprava LF pece), může se tavba, pokud to dovolí technologická cesta, zpracovávat na stanici IRUT. Jedná se o chemický příhřev oceli, který je založen na principu využívání tepla exotermických reakcí a je navíc vybaven homogenizační tryskou, kterou je možno spustit do oceli přes snorkel umístěný nad licí pánvi [23], a tak tavbu bez větších problémů dohotovit.

Obr. 4: Schéma zařízení IRUT

Všechny stanice na MPZ jsou kromě argonovací stanice vybaveny tzv. podavačem plněných profilů, kterým je možno vstřelovat profil přímo do oceli. Nejčastěji se jedná o materiály modifikující vmeštky (např. silikokalcium) nebo přísady určené pro mikrolegování (např. ferotitan, ferober, síra). Na všech stanovištích je také zařízení na odběr vzorků a měření teploty oceli zvané sublance. Podmínkou zpracování na MPZ je neustálá

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
homogenizace inertním plynem, nejčastěji argonem [23], přes porézní kámen umístěný ve dlně licí pánve.

Odlévání oceli

Po zpracování tavby na MPZ je ocel odlévána podle značek buď na ZPO1, nebo na ZPO2 nebo do kokil. Na ZPO1 se odlévá do čtvercového průřezu o rozměrech 300 a 350 mm nebo do kruhového průřezu o průměru 320, 410 a 525 mm, a to v pěti proudech. ZPO2 je osmiproudé a rozměry krystalizátorů jsou 150 x 150 mm. Způsob lití na ZPO2 je dvojího charakteru, a to uzavřené a otevřené lití. Od lití do kokil se v dnešní době prakticky upustilo pro jejich zvýšené náklady a nutnost udržovat nákladné zařízení pro manipulaci s ingoty, kokilami a vyzdívání licích desek. Nicméně některé kvality oceli odlévané do kokil jsou zákazníkem požadovány [23], a proto se tento způsob odlévání v TŽ zachovává.

Obr. 5: Schéma zařízení ZPO1, ZPO2 a lití do kokil

4.1 Vyzdívka licí pánve

Po popisu zařízení kyslíkokonvertorové ocelárny se v této podkapitole věnuje pozornost vyzdíváků licích pánev, neboť se dá předpokládat jejich výrazný vliv na tepelný stav tavby.

Základní funkce vyzdívky licí pánve:

- vymezuje prostor pro průběh technologických operací a odděluje ocel od okolního prostředí
- snižuje tepelné ztráty

Vyzdívka licí pánve bývá zpravidla provedena jako vícevrstvá z různých materiálu. Na pracovní vrstvu vyzdívky, která bezprostředně obklopuje pracovní prostor, jsou kladeny
jiné požadavky než na další vrstvy vyzdívky, které mají za úkol snižovat tepelné ztráty. Na pracovní žáromateriál pracovní vrstvy vyzdívky působí různorodé technologické vlivy: chemické a mechanické působení zpracovaného materiálu v tekutém stavu, legovací přísady, strusky, změny teploty a tlaku [9].

Důležitá je žáruvzdornost, což je schopnost nezatíženého materiálu odolávat působením vysokých teplot, aniž by se roztavil.

4.1.1 Chemické složení vyzdívky

Chemické složení vyzdívky je určeno hmotnostním podíl jednotlivých složek, ze kterých se materiál skládá. Chemický charakter žáruvzdorného materiálu je dán převládajícími složkami, např. u křemičitých materiálů obsahem SiO₂, u hlinítkřemičitých obsahem Al₂O₃, u magnezitchromitových obsahem MgO a Cr₂O₃. Kromě těchto složek obsahují žáruvzdorné materiály další složky, jejichž podíl závisí na požadovaných vlastnostech materiálu.

V Třineckých železárnách a.s. se používají dva druhy vyzdívek různého chemického složení: na dno licí pánve + stěny (tab. 2) a na struskovou čáru (tab. 3).

Tab. 2: Chemické složení a vlastnosti materiálu dna a stěn licí pánve

<table>
<thead>
<tr>
<th>Dno + Stěny LP</th>
<th>Materiál: Dolomitové tvárnice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemické složení (hm. %)</td>
<td>MgO 37,5</td>
</tr>
<tr>
<td>Objemová hmotnost (g/cm³)</td>
<td>2,93</td>
</tr>
<tr>
<td>Pevnost v tlaku za studena (MPa)</td>
<td>36</td>
</tr>
<tr>
<td>Zdánlivá pórovitost (%)</td>
<td>4,2</td>
</tr>
</tbody>
</table>
Tab. 3: Chemické složení a vlastnosti materiálu struskové čáry licí pánve

<table>
<thead>
<tr>
<th>Materiál: MgO-C</th>
<th>(\text{MgO})</th>
<th>98 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{CaO})</td>
<td>1,3 (%)</td>
</tr>
<tr>
<td></td>
<td>(\text{SiO}_2)</td>
<td>0,4 (%)</td>
</tr>
<tr>
<td></td>
<td>(\text{Fe}_2\text{O}_3)</td>
<td>0,4 (%)</td>
</tr>
<tr>
<td></td>
<td>(\text{Al}_2\text{O}_3)</td>
<td>0,2 (%)</td>
</tr>
<tr>
<td></td>
<td>(\text{Zbytkový C})</td>
<td>13 (%)</td>
</tr>
<tr>
<td>Objemová hmotnost (g/cm(^3))</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>Pevnost v tlaku za studena (MPa)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Zdánlivá pórovitost (%)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Následující kapitola bude věnována žáruvzdorným materiálům, aby mohly být lépe pochopeny údaje uvedené v kapitole 4.1.1.
5. Žáruvzdorné materiály

5.1 Vlastnosti žáruvzdorných materiálu

Při posuzování chování žáruvzdorných materiálu ve vyzdívkách, zejména v souvislosti s intenzifikací technologických postupů a při vývoji postupů nových, je nutno se zaměřit na stanovení přesně definovaných fyzikálních veličin [9].

Hustota

Je poměr hmotnosti a objemu vysušeného vzorku materiálu u půrovitých a zrnitých látek se počítá objem skutečně materiálem výplně, tzn. do objemu se nezahrnuje póry a dutiny.

Hustota se stanoví ze vztahu:

$$\rho = \frac{m_s}{V_v}$$ \hspace{1cm} (18)

m_s hmotnost suchého vzorku /kg/

V_v objem vzorku bez dutin a póru /m3/

Objemová hmotnost

Je poměr hmotnosti vysušeného vzorku materiálu k jeho objemu včetně objemu uzavřených i otevřených póru a dutin.

- pro tvarové výrobky

$$OH = \frac{m_s}{V}$$ \hspace{1cm} (19)

objem vzorku se stanoví

$$V = \frac{m_{n_s} - m_n}{\rho}$$ \hspace{1cm} (20)

m_s hmotnost vzorku nasyceného kapalinou, váženého na vzduchu /kg/

m_{n_s} hmotnost vzorku nasyceného kapalinou, váženého v kapalině /kg/

ρ hustota kapaliny použité pro hydrostatické vážení /kg.m$^{-3}$/

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
- pro zrnité výrobky

\[OH = \frac{n_0}{V} \]

\[m_0 \] hmotnost vzorku pro konečněm vysušení /kg/

\[V \] objem vzorku, který se stanoví se vztahu /m³/

\[V = \frac{m_v - \eta_v}{\rho} \]

\[m_v \] hmotnost vzorku nasyceného kapalinou a povrchově osušeného, váženého na vzduchu /kg/

\[m_{v-} \] váženého v kapalině /kg/

Skutečná pórovitost

Skutečná pórovitost je poměr objemu otevřených i uzavřených pórů a dutin zkušebního vzorku k jeho objemu včetně pórů a dutin. [9]

Stanoví se takto:

\[PS = \frac{\eta_h - \eta}{\rho} .100 = 1 - \frac{\eta_h}{\rho} .100 \]

%/%

Zdánlivá pórovitost

Je poměr objemu otevřených pórů a dutin zkušebního vzorku k jeho objemu včetně pórů a dutin a stanoví se [9]:

- **pro tvarové výrobky dle vztahu**

\[PZ = \frac{m_n - \eta_n}{m_n - \eta_{v-}} .\rho .100 \]

%/%

\[\rho \] hustota kapaliny pro sycení vzorku /kg.m⁻³/

- **pro zrněné výrobky dle vztahu**

\[PZ = 1 - \frac{\eta_h}{\rho} .(1 - \frac{\eta_{v-}}{m_{v-}})/.100 \]

%/%

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
5.2 Druhy materiálů

Magnezit

Žáruvzdorná složka magnezitu je MgO. Žáruvzdornost snižují oxidy CaO, SiO₂, Al₂O₃. Magnezit má vysokou teplotní roztažnost, objemově je nestálý. Má vysokou pevnost v tlaku.

Zvýšené odolnosti proti změnám teploty se docituje:

- úpravou zrnitosti
- přidávkem chromové rudy k magnetitovému slinku při výrobě

Zvyšováním obsahu MgO a magnezitu dostáváme materiály s vyšší odolnosti proti deformaci. Magnezit má ze zásaditých žáruvzdorných materiálů nejvyšší odolnost proti působení roztažené oceli a strusky[9].

Hořččnatovápenaté materiály

Magnezito dolomitové výrobky

Základním výrobkem je tvarové stavivo vyrobené ze slinitě páleného dolomitu. Pokud zvýšíme obsah MgO pomocí magnezitu, vzniká nám řada výrobků magnezito-dolomitových. Dolomit, podvojný uhličitan hořččnatovápenatý MgCa(CO₃)₂, je horninotvorný minerál. Obsahuje 30,41 % CaO, 21,86 % MgO a 47,78 % CO₂. Žiháním se dolomit rozkládá ve dvou stupních.
Výpal dolomitu

Hrubě krystalický dolomit s nízkým obsahem doprovodných minerálů se dá vypálit na hutný slinutý produkt jen při teplotách nad 2000 °C. V drobně krystalickém typu nám stačí teplota okolo 1600 °C.

Tvarové výrobky z dolomitu

Dolomit se zpracovává hlavně na výrobu nepálené tvarovky vázané černouhelnou smolou s obsahem zbytkového uhlíku do 7%. V posledních je tato metoda nahrazovaná fenolovými živicemi a to hlavně z důvodu hygieny práce. U pálených výrobků z dolomitu je specifikem technologie opatření k zamezení hydratace CaO ve výliscích. Výrobky z dolomitu a z magnezitodolomitu se používají při výrobě oceli na vyzdívaní pánví a nádob pánvové metalurgie [9].

5.3 Keramické tvárnice

Míchání oceli v licí pánvi je základní pracovní postup pánvové metalurgie a využívá se v širokém spektru metod zpracování a konfigurace licí pánve. Mezi nejdůležitější cíle míchání patří podpora a intenzifikace reakcí odsíření při použití syntetických strusek, intenzifikace dezoxidačních reakcí v objemu taveniny, zvyšování čistoty oceli vyplouvaním vtměstků vznikajících jako zplošiny reakcí při dezoxidaci, injektážní odsíření, urychlení rozpouštění přidávaných legur a dezoxidovadel a teplotní a chemická homogenita v celém objemu taveniny [2].

K zajištění dobré průchodnosti žáruvzdorné tvárnice plynem se vyžaduje 25-40% pórovitost. Pórovitost je ovlivňována chemickým složením použitého materiálu, jeho strukturou a způsobem zpracování. Z hrubozrnějšího materiálu lze zhotovit prodyšnější
záruvzdornou tvárnici. Pórovitější tvárnice má nižší hustotu, nižší tlakovou ztrátu při průchodu plynu, ale také nižší pevnost.

Porézní tvárnice slouží k dmýchání inertního plynu do lázně keramickou tvárnici (prodyšný kámen), která je umístěna ve dně licí pánve [9]. Podstata pochodu spočívá v tom, že plyn se pod tlakem dmýchá přes záruvzdorné tvárnice zabudované do dna licí pánve. Uspořádaní keramické prodyšné tvárnice je buď ve tvaru komolého kužele, nebo ve tvaru válce [2].
6. Technologie výroby a rafinace kordové oceli

V této kapitole budou popsány charakteristické fáze výroby kordové oceli pro podmínky TŽ, a.s.

6.1 Dezoxidace a tvorba pánové strusky při odjezdu z LD konvertoru

Pro zabránění vniku pecní strusky do pánve je v průběhu odpichu umísťuje ve strusce zátka ze žáruvzdorného materiálu, která umožní na konci odpichu zacpat odpichový otvor a tím zamezi úniku pecní strusky do pánve.

Předchozí tavba na použité pánvi musela být s použitím wollastonitové strusky.

Dezoxidace se v pánvi provádí pomocí rafinačního ferosilicia s 90 % křemíku a feromanganu affiné umístěnými na dno pánve, na dno pánve se dává i koks. Pro tvorbu strusky se dává výhradně wollastonit.

6.2 Argonování oceli v pánvi

Argonování začíná chvíli po dokončení odpichu a probíhá po dobu asi deseti minut na argonovací stanici. Provádí se spodem přes porézní tvárnici a horem přes monolitovou tyč. Na konci zpracování se změří teplota a odebere vzorek kovu a strusky na chemickou analýzu. Další argonování probíhá na pánové peci.

6.3 Rafinace oceli na pánové peci LF

Zde je zákaz používání kazivce CaF₂ a karbidu vápníku CaC₂. Ocel se dohřívá a teplotně a chemicky homogenizuje prodmýcháváním argonu. Před ukončením zpracování se přidává na tekutou strusku insumol, což je izolační materiál. Výjezdová teplota se určuje tak, aby přehřátí oceli v mezipánvi nad teplotou likvidu bylo 20 až 30 °C.
6.4 Odlévání oceli na ZPO

Jak bylo zmíněno v předchozí kapitole, teplota oceli v mezípánvi je 20 až 30 °C nad teplotou likvidu. Pro omezení tepelných ztrát je v mezípánvi použita krycí struska z rýžových plev. Ocel je odlévána na ZPO č. 2 do rozměrů 150 x 150 mm nebo 200 x 200 mm.

6.5 Závěry ke kapitole 6

Při výrobě kordové oceli se objevují následující specifika:

- dezoxidaci není možno provádět hliníkem
- pro dosažení nízkého podílu vměsteků je třeba velkou pozornost věnovat argonování
- kvůli tomu, aby ocel neobsahovala vměstky Al₂O₃, je třeba při rafinaci používat kyselou strusku
- odsíření oceli je třeba vyřešit ještě před použitím kyselé strusky, nejlépe dmýcháním prachových přísad do surového železa

Cíl práce:

Minimalizovat pokles teploty oceli v mezípánvi než je povolené rozmezí.

- Analyzovat faktory, které ovlivňují tepelný stav oceli během zpracování na mimopecní zpracování.

Cílem předložené práce je: Na základě této analýzy formulovat podmínky zajišťující požadovanou teplotu oceli v mezípánvi minimálním rozmezí teplot.
7. Statistické zhodnocení podílu parametrů na pokles teploty oceli

Pro statistické zhodnocení byly zvoleny závislé proměnné veličiny (y) a nezávislé proměnné (x), které ochlazující ocel a nezávislé proměnné (z), které udržující teplotu oceli pánvi.

7.1 Závislé proměnné veličiny (y)

\[y = kx(z) + q \] \hspace{1cm} (26)

- \(k \) směrnice přímky
- \(x, z \) nezávislé proměnné, které udržují nebo ochlazují teplotu oceli v pánvi

Jako závislé proměnné byly určeny parametry (y):

- \(y_1 \) Teplota oceli na argonovací stanici minus První teplota oceli na ZPO
 (pokles teploty mezi argonovací stanicí a ZPO ve °C)
- \(y_2 \) Teplota přehřátí nad teplotou likvidu oceli v MP
 (první teplota přehřátí oceli ve °C)
- \(y_3 \) První teplota oceli v MP minus Poslední teplota MP
 (pokles teploty v mezipánvi mezi prvním a posledním měřením ve °C)
- \(y_4 \) Teplota oceli na argonovací stanici minus Teplota oceli na výjezdu z LF
 (pokles teploty v pánvi během mimopěcního zpracování oceli ve °C)
- \(y_5 \) Teplota oceli na výjezdu z LF minus První teplota oceli na ZPO
 (pokles teploty během přepravy na ZPO ve °C)
7.2 Nezávislé proměnné veličiny \((x, z)\)

7.2.1 Parametry ochlazující ocel \((x)\):

- \(x_1\) teplota oceli na argonovací stanici - poslední teplota oceli na LF \(/{\degree C}/\)
- \(x_2\) hmotnost feroslitin vsazených na LF \(/{kg}/\)
- \(x_3\) doba dmychání inertního plynu (argonu) do pánve \((\tau_{wrt} = \cdot t_{RG} - \cdot t_{FK})\)
 (celkový čas foukání inertního plynu na MPZ) \(/{s}/\)
- \(x_4\) věk pánve (počet taveb na pánvi) \(/{1}/\)

7.2.2 Parametry udržující resp. zvyšující teplotu oceli v pánvi \((z)\):

- \(z_1\) spotřeba elektrické energie na LF \(/{kW}/\)
- \(z_2\) entalpie vyzdívky pánve před odpichem \(/{J}/\)
- \(z_3\) teplota oceli na vstupu na argonovací stanoviště
 (1. změřená teplota na argonovací stanici) \(/{\degree C}/\)
- \(z_4\) poslední teplota na LF - první teplota na ZPO
 (pokles teploty při přepravě oceli z LF na ZPO) \(/{\degree C}/\)
- \(z_5\) entalpie vyzdívky před odpichem - entalpie vyzdívky na konci zpracování
 na MPZ (rozdíl entalpii vyzdívky pánve odpichem a na konci zpracování na LF) \(/{J}/\)
7.3 Korelační tabulka

Pro zjištění míry závislosti mezi závislými a nezávislými proměnnými byla vytvořena korelační tabulka (viz tab. 4). Pro lepší přehlednost jsou v následujících podkapitolách kapityly 6 značeny závislé i nezávislé proměnné velkými písmeny.

Tab. 4: Korelační koeficienty R mezi závislými a nezávislými proměnnými

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>Z1</th>
<th>Z2</th>
<th>Z3</th>
<th>Z4</th>
<th>Z5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>0,948</td>
<td>-0,121</td>
<td>-0,111</td>
<td>0,133</td>
<td>-0,508</td>
<td>0,043</td>
<td>0,958</td>
<td>0,078</td>
<td>0,122</td>
</tr>
<tr>
<td>Y2</td>
<td>-0,159</td>
<td>0,137</td>
<td>0,166</td>
<td>-0,079</td>
<td>0,316</td>
<td>0,167</td>
<td>-0,046</td>
<td>-0,476</td>
<td>-0,040</td>
</tr>
<tr>
<td>Y3</td>
<td>0,008</td>
<td>-0,055</td>
<td>-0,095</td>
<td>0,060</td>
<td>0,004</td>
<td>0,130</td>
<td>0,076</td>
<td>-0,100</td>
<td>-0,109</td>
</tr>
<tr>
<td>Y4</td>
<td>1</td>
<td>-0,170</td>
<td>-0,015</td>
<td>0,113</td>
<td>-0,413</td>
<td>0,107</td>
<td>0,956</td>
<td>-0,244</td>
<td>0,101</td>
</tr>
<tr>
<td>Y5</td>
<td>-0,244</td>
<td>0,165</td>
<td>-0,289</td>
<td>0,052</td>
<td>-0,254</td>
<td>-0,204</td>
<td>-0,078</td>
<td>1</td>
<td>0,054</td>
</tr>
</tbody>
</table>

Pro vysvětlení získaných hodnot je třeba objasnit význam korelačního koeficientu. Korelační koeficient nabývá hodnot od -1 do 1, a čím je jeho absolutní hodnota bližší jedné, tím je závislost mezi sledovanými veličinami silnější. Záporná hodnota znamená, že s růstem jedné veličiny druhá veličina klesá, je-li R kladné, pak s růstem jedné veličiny druhá roste.

Z korelační tabulky mezi závislými i nezávislými proměnnými se ukazují dvě velmi silné závislosti a další tři závislosti hodné pozornosti. Všech pět těchto vazeb je vyznáno zvýrazněním korelačního koeficientu R tučně.

V následujících třech podkapitolách je ukázáno v obrázcích všech 43 vazeb mezi závislými a nezávislými proměnnými (řazeno postupně pro závislé proměnné Y1, Y2, Y3, Y4 a Y5) s uvedením důvodů, proč se veličiny ovlivňují či neovlivňují.
7.4 Teplota oceli na argonová stanice minus První teplota oceli na ZPO

Parametry ochlazující ocel (X):

\[y = 0,9221x + 28,588 \]
\[R^2 = 0,8985 \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Závislost poklesu teplot mezi ARG a ZPO na poklesu teplot mezi ARG a LF}
\end{figure}

\textbf{Obr. 6:} Závislost poklesu teplot mezi ARG a ZPO na poklesu teplot mezi ARG a LF

Stupeň závislosti sledovaných veličin je vysoký. Je to dáno tím, že se sledované rozdíly teplot se liší jen o přesun oceli ze zařízení LF na ZPO. Z toho také vyplývá, že zvýšení hodnoty jedné veličiny způsobuje zvýšení veličiny druhé.
Zanedbatelnou míru závislosti mezi sledovanými veličinami lze objasnit tím, že teplo potřebné k ohřátí feroslitin na teplotu oceli dodá obloukový ohřev na LF, který zde není vůbec zahrnut.

I mezi veličinami porovnávanými na obr. 8 je malá míra závislosti. Je to dáno tím, že zvýšení množství foukaného argonu se kompenzuje větším příhřevem, který není v závislosti zahrnut.
Obr. 9: Závislost poklesu teplot mezi ARG a LF na věku pánve

Věk vyzdívky licí pánve určitým způsobem ovlivňuje pokles teploty oceli v licí pánvi, neboť s růstem věku pánve dochází k větším ztrátám tepla vyzdivkou do okolí. To je v souladu s obr. 9.
Parametry udržující, resp. zvyšující teplotu oceli v páni (Z):

\[
y = -0,0045x + 68,862 \\
R^2 = 0,2582
\]

Obr. 10: Závislost poklesu teplot mezi ARG a ZPO na spotřebě elektrické energie na LF

Čím větší je spotřeba elektrické energie, tím menší je pokles teploty oceli v lici páni. Toto zjištění není překvapením, to, že stupeň závislosti není ještě větší, je dáno různou mírou argonování a různým množstvím přidaných feroslitin.
Obr. 11: Závislost poklesu teplot mezi ARG a ZPO na entalpii licí pánve před odpichem

Hodnota entalpie vyzdívej licí pánve před odpichem je v průběhu zpracování oceli na LF zastíněna teplem, které se do taveniny dostane díky elektrickému oblouku. Proto nevycházejí mezi veličinami na obr. 11 prakticky žádná závislost.

Obr. 12: Závislost poklesu teplot mezi ARG a ZPO na první teplotě na ARG

Uvažovali bychom, že chceme dosáhnout pokaždé v oceli v mezipánvi stejnou teplotu a že na argonovací stanici dojde vždy ke stejněmu poklesu teploty, bylo by $R^2 = 1$. Protože se hodnota R^2 této hodnotě velmi blíží, je tomu téměř úplně tak.
Obr. 13: Závislost poklesu teploty mezi ARG a ZPO na poklesu teploty mezi LF a ZPO

Závislost mezi sledovanými veličinami je mizivá, protože jedna z nich může nabývat velmi variabilních hodnot (Y1), a druhá má celkem striktně vymezený interval hodnot (Z4).

Obr. 14: Závislost poklesu teploty mezi ARG a ZPO na rozdílu entalpii před odpichem a na konci zpracování na LF

Tato závislost vyšla podle předpokladů, i když s dosti malou hodnotou R^2. Bude-li totiž ocel při zpracování relativně studená, bude se muset přihřát, čímž dojde i ke zvýšení entalpie vyzdvíkby.

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
7.5 Teplota přehřátí oceli v MP

Parametry ochlazující ocel (X):

\[y = -0.0456x + 31.018 \]
\[R^2 = 0.0252 \]

Obr. 15: Závislost teploty přehřátí oceli v MP na poklesu teploty mezi ARG a LF

Závislost mezi sledovanými veličinami je malá, protože velikost parametru X1 je dána hlavně odpichovou teplotou oceli, a přehřátí oceli v MP je technologicky stanovená hodnota.
Obr. 16: Závislost teploty přehřátí oceli v MP na množstvích feroslitin přidaných na LF

Provázanost mezi sledovanými veličinami je nízká; to lze vysvětlit tím, že dodané množství tepla potřebné na ohřátí feroslitin na LF bude do fáze přesunu pánve na ZPO využito k dosažení limitem stanovené teploty oceli.

Obr. 17: Závislost teploty přehřátí oceli v MP na čase foukání argonu do lící pánve

Z grafu vychází závěr, že čím déle se fouká argon, tím je nutný větší ohřev lázně. Míra závislosti mezi sledovanými veličinami je ale dosti malá.

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
Obr. 18: Závislost teploty přehřátí oceli v MP na věku licí pánve

Věk vyzdívky licí pánve prakticky neovlivňuje teplotu přehřátí oceli na MP, neboť na zařízení LF je při ohřevu s věkem pánve počítáno.
Parametry udržující, resp. zvyšující teplotu oceli v pánvi (Z):

\[y = 0,0008x + 26,926 \]
\[R^2 = 0,0996 \]

\[Z1: \text{Spotřeba elektrické energie, kW} \]

\[\text{Přehřátí oceli v MP, °C} \]

Obr. 19: Závislost teploty přehřátí oceli v MP na spotřebě elektrické energie na LF

Čím větší je spotřeba elektrické energie, tím je větší přehřátí oceli v mezipánvi. Hodnota \(R^2 \) ukazuje, že tento vztah je relativně významný.
Hodnota entalpie vyzdívky líci pánve před odpichem a teplota přehřátí oceli na ZPO nemají velkou závislost, neboť mezi odpichem a litím na ZPO proběhne spousta operací, které možnou závislost potlačí.

Obr. 21: Závislost teploty přehřátí oceli v MP na první teplotě na ARG

První teplota na ARG a teplota přehřátí oceli na ZPO nemají obdobně jako u obr. 20 prakticky žádnou závislost, neboť i zde proběhne mezi sledovanými veličinami množství operací.

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
Obr. 22: Závislost teploty přehřátí oceli v MP na poklesu teploty mezi LF a ZPO

Podle očekávání ovlivňuje celkem výrazným způsobem doba přepravy oceli z LF na ZPO teplotu přehřátí oceli v MP. Lze z toho usuzovat, že výjezdové teploty z LF mají stabilizovanou hodnotu přehřátí oceli.

Obr. 23: Závislost teploty přehřátí oceli v MP na rozdílu entalpii před odpichem a na konci zpracování na LF

Mezi veličinami porovnávanými na obr. 23 je malá míra závislosti. Je to dáno tím, že entalpie licí pánve před odpichem je kompenzována přihřevem, který není v závislosti zahnut.
7.6 První teplota oceli v MP minus Poslední teplota MP

Parametry ochlazující ocel (X):

\[y = 0,0014x + 9,1322 \]
\[R^2 = 6E-05 \]

Obr. 24: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na poklesu teplot mezi ARG a LF

Závislost mezi sledovanými veličinami je prakticky nulová, protože se jedná o výrazně časově odlišné fáze zpracování oceli.
Obr. 25: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na množství feroslitin přidávaných na LF

Závislost mezi sledovanými veličinami je zanedbatelná, neboť výkyvy teplot způsobené přidáním feroslitin jsou do fáze odlévání vyrovnané ohřevem oceli.

Obr. 26: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na celkové době foukání argonu do licí pánve

U těchto veličin se závislost nepředpokládala a i výsledek je ve shodě s předpokladem. Přece jenom se jedná o veličiny časově dost vzdálené.
Obr. 27: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na věku (neboli též stáří) pánve

Věk vyzdívky licí pánve prakticky neovlivňuje pokles teploty v MP, což je celkem překvapující. Lze to vysvětlit jedině tak, že je s tímto věkem pánve počítáno již na LF, a zde dojde k akumulaci tepla do vyzdívky pánve.
Parametry udržující, resp. zvyšující teplotu oceli v pánvi (Z):

\[y = 7\times 10^{-6}x + 9,1459 \]
\[R^2 = 2\times 10^{-5} \]

\[\text{Obr. 28: Závislost poklesu teplot mezi první a poslední teplotou v MP na spotřebě elektrické energie na LF} \]

Čím větší je spotřeba elektrické energie, tím je větší pokles teploty oceli v mezipánvi. Toto je zapříčiněno způsobem ohřevu, tzn. lidským faktorem. Hodnota \(R^2 \) ale ukazuje, že tento vztah je absolutně nevýznamný.
Obr. 29: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na entalpii pánve před odpichem

Hodnota entalpie vyzdvík cí pánve před odpichem a pokles teploty oceli v MP nemají velkou závislost, neboť mezi odpichem a litím na ZPO proběhne spousta operací, které možnou závislost potlačí.

Obr. 30: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na první teplotě na ARG

První teplota na ARG a pokles teploty oceli v MP nemají obdobně jako u obr. 29 prakticky žádnou závislost, neboť i zde proběhne mezi sledovanými veličinami množství operací.
Obr. 31: Závislost poklesu přehřátí mezi první a poslední teplotou oceli v MP na poklesu teploty mezi ARG a ZPO

Doba přepravy oceli z LF na ZPO ovlivňuje minimálně pokles teplot oceli při lití v MP. Z výše uvedeného obrázku lze konstatovat, že se zde s nárůstem doby přepravy mírně snižuje pokles teplot na MP.

Obr. 32: Závislost poklesu teploty mezi první a poslední teplotou oceli v MP na rozdílu entalpií před odpichem a na LF

Mezi veličinami porovnávanými na obr. 32 je malá míra závislosti. Je to dáno tím, že entalpie lící pánve před odpichem je kompenzována dobou přihřevu, která není v závislosti zahrnuta.

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
7.7 Teplota oceli na argonovací stanici minus Teplota oceli na výjezdu z LF

Parametry ochlazující ocel (X):

\[
y = -0.0077x + 29.811 \\
R^2 = 0.0289
\]

Obr. 33: Závislost poklesu teploty oceli v pávní během mimopecního zpracování na množství feroslitin přidaných na LF

Zanedbatelnou míru závislosti mezi sledovanými veličinami lze objasnit tím, že teplo potřebné k ohřátí feroslitin na teplotu oceli dodá obloukový ohřev na LF, který zde není vůbec zahrnut.
Obr. 34: Závislost poklesu teploty oceli v pánvi během mimopecního zpracování na celkovém čase foukání inertního plynu (argonu) do licí pánve

I mezi veličinami porovnávanými na obr. 34 je malá míra závislosti. Je to dáno tím, že zvýšení množství foukaného argonu se kompenzuje větším příhřevem, který není v závislosti zahrnut.

Obr. 35: Závislost poklesu teploty oceli v pánvi během mimopecního zpracování na věku pánve

Věk vyzdívky licí pánve určitým způsobem ovlivňuje pokles teploty oceli v licí pánvi, neboť s růstem věku pánve dochází k větším ztrátám tepla vyzdívkou do okolí. To je v souladu s obr. 35.
Parametry udržující, resp. zvyšující teplotu oceli v pánvi (Z):

\[
y = -0.0038x + 39.77
\]

\[R^2 = 0.1707\]

Obr. 36: Závislost poklesu teploty oceli v pánvi během mimopěcního zpracování na spotřebě elektrické energie na LF

Čím větší je spotřeba elektrické energie, tím menší je pokles teploty oceli v licí pánvi. Toto zjištění není překvapením, to, že stupeň závislosti není ještě větší, je dáno různou mírou argonování a různým množstvím přidaných feroslitin.
Obr. 37: Závislost poklesu teploty oceli v pánvi během mimopěcního zpracování na entalpii licí pánve před odpichem

Hodnota entalpie vyzdívky licí pánve před odpichem je v průběhu zpracování oceli zastíněna teplem, které se do taveniny dostane díky elektrickému oblouku. Proto nevychází mezi veličinami na obr. 37 prakticky žádná závislost.

Obr. 38: Závislost poklesu teploty oceli v pánvi během mimopěcního zpracování na první teplotě na ARG

Při odlévání oceli na ZPO má ocel vždy prakticky stejnou teplotu. Pokles teploty mezi LF a ZPO je průměrně 25 °C (viz obr. 39). Jelikož se většina hodnot blíží tomuto průměru, je dosaženo u závislosti na obr. 38 vysoké hodnoty R².
Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010

Obr. 39: Závislost poklesu teploty oceli v pánvi během mimoprocího zpracování na poklesu teplot mezi LF a ZPO

Mezi sledovanými veličinami je nezanedbatelná míra závislosti. Je to dáno technologií odlévání, kdy pánvě s ocelí může být přivezena na ZPO při různé hmotnosti oceli v předchozí pánvi. A čím bude v této předchozí pánvi více oceli, tím teplejší ocel bude třeba přivést z LF.

Obr. 40: Závislost poklesu teploty oceli v pánvi během mimoprocího zpracování na rozdílu entalpii před odpichem a na LF

Tato závislost vyšla podle předpokladů, i když s dosti malou hodnotou R². Bude-li totiž ocel při zpracování relativně studená, bude se muset přihráť, čímž dojde i ke zvýšení entalpie vyzdvíhky.
7.8 Teplota oceli na výjezdu z LF minus První teplota oceli na ZPO

Parametry ochlazující ocel (X):

Obr. 41: Závislost poklesu teploty oceli během přepravy na ZPO na pokles teploty mezi ARG a LF

Mezi sledovanými veličinami je nezanedbatelná míra závislosti. Je to dáno technologií odlévání, kdy pánev s ocelí může být přivezena na ZPO při různé hmotnosti oceli v předchozí pánvi. A čím bude v této předchozí pánvi více oceli, tím teplejší ocel bude třeba přivézt z LF.
Obr. 42: Závislost poklesu teploty oceli během přepravy na množství feroslitin přidaných na LF

Zanedbatelnou míru závislosti mezi sledovanými veličinami lze objasnit tím, že feroslitiny se přidávají výrazně dříve, než je ocel přepravována na ZPO.

Obr. 43: Závislost poklesu teploty oceli během přepravy na celkovém čase foukání inertního plynu (argonu) do licí pánve

Mezi sledovanými veličinami je středně vysoká míra závislosti. Je to dáno technologií odlévání, kdy pánev s ocelí může být přivezena na ZPO při různé hmotnosti oceli v předchozí pánvi. A čím bude v této předchozí pánvi více oceli, tím bude u sledované tavby kratší zpracování na LF na větší pokles teploty během přepravy na ZPO.

Kaznica, T.: Analýza technologických faktorů ovlivňujících tepelný stav tavby před odléváním na ZPO
Diplomová práce, VŠB-TU Ostrava 2010
Obr. 44: Závislost poklesu teploty oceli během přepravy na věku pánve

Věk vyzdívky licí pánve určitým způsobem ovlivňuje pokles teploty oceli v licí pánvi, neboť s růstem věku pánve dochází k větším ztrátám tepla vyzdívka do okolí. To je v souladu s obr. 44.
Parametry udržující, resp. zvyšující teplotu oceli v pánvi (Z):

Obr. 45: Závislost poklesu teploty oceli během přepravy na spotřebě elektr. energie na LF

Čím větší je spotřeba elektrické energie, tím menší je pokles teploty oceli během přepravy na ZPO. Hodnota R^2 je u této závislosti relativně vyšší. Při vyšší spotřebě elektrické energie lze předpokládat kratší dobu čekání na začátek lití na ZPO.
Obr. 46: Závislost poklesu teploty oceli během přepravy na entalpii licí pánve před odpichem

Zvýšení hodnoty entalpie vyzdívky licí pánve před odpichem způsobuje zmírnění poklesu teploty oceli během přepravy, což se dalo předpokládat.

Obr. 47: Závislost poklesu teploty oceli během přepravy na první teplotě na ARG

Sledované dvě hodnoty spolu technologicky prakticky nesouvisí, a tím je dána i zanedbatelná míra závislosti mezi nimi.
Obr. 48: Závislost poklesu teploty oceli během přepravy na rozdílu entalpii před odpichem a na konci zpracování na LF

Tato závislost vyšla podle předpokladů, i když s dosti malou hodnotou R^2. Bude-li totiž ocel při zpracování relativně studená, bude se muset přihřát, čímž dojde i ke zvýšení entalpie vyzdvíky, což ovlivní i teplotu oceli v pánvi.

7.9 Vícnásobná regrese

Pro každou ze závisle proměnných Y jsou uvedený celkem tři regrese:
a) Y na všech proměnných X a všech Z (s výjimkou Z4, která je lineární kombinací ostatních funkcí)
b) Y na všech proměnných X
c) Y na všech proměnných Z (včetně Z4)

Pro každou z těchto regresí jsou celkem 2 výstupy:
1) rovnice regrese
2) hodnota R-squared, což odpovídá R^2 a grafická závislost hodnot vypočtených regresním modelem (predicted) a skutečných naměřených hodnot (observed)
Pomocí vícenásobné regrese jsme zjišťovali míru provázanosti mezi závislými proměnnými parametry Y1, Y2, Y3, Y4, Y5 a nezávislými parametry X1, X2, X3, X4 a Z1, Z2, Z3, Z4, Z5. Při zjišťování těsnosti závislosti mezi závislými a nezávislými proměnnými se nám projevila největší míra závislosti mezi závislými proměnnými parametry Y1, Y2, Y3 a nezávislými proměnnými veličinami X1, Z1, Z3, Z4. V následujících podkapitolách tyto nejtěsnější závislosti jsou okomentovány.

1a) Y1 na X1, Z1 a Z3

\[Y1 = -491,884 + 0,527735\times X1 - 0,00120695\times Z1 + 0,345666\times Z3 \]

R-squared = 91,2181 percent

Obr. 49: Závislost poklesu teploty oceli mezi ARG a ZPO na vybraných nezávisle proměnných veličinách

Lití oceli na ZPO vyžaduje konstantní teplotu oceli v mezipánvi. Je tudíž logické, že vyšší odpichová teplota oceli z KK musí být kompenzována přihřevem na pánvové peci. Čím větší bude spotřeba elektrické energie, tím bude menší pokles teploty oceli v liči pánvi. Škutečnost, že stupeň závislosti není ještě větší je dáno tím, že se sledované rozdíly teplot liší jen o přesun oceli ze zařízení LF na ZPO. Z toho také vyplývá, že zvýšení hodnoty jedné veličiny způsobuje zvýšení veličiny druhé.
Y2 na Z1 a Z4

Y2 = 38,0582 + 0,000587237*Z1 - 0,389798*Z4

R-squared = 31,3267 percent

Obr. 50: Závislost přehřátí oceli v mezipánvi na vybraných nezávisle proměnných veličinách

Čím bude větší spotřeba elektrické energie ,tím větší přehřátí oceli v MP. Tento vztah se ukazuje významným. Podle očekávání ovlivňuje doba přepravy oceli mezi LF a ZPO teplotu přehřátí oceli v MP. Lze z toho usuzovat že výjezdové teploty z LF mají stabilizovanou hodnotu přehřátí.
Y4 na Z1 a Z3

\[Y4 = -1356,16 - 0,000642758*Z1 + 0,894876*Z3 \]

R-squared = 83,0229 percent

Obr. 51: Závislost poklesu teploty oceli v pánu během mimopisceňho zpracování oceli na vybraných nezávisle proměnných veličinách

Při odlévání oceli na ZPO má ocel vždy prakticky stejnou teplotu mezi LF a ZPO, průměrně 25°C. Jelikož na většinu hodnot blížících tomuto průměru je dosaženo vysoké R-squared. Čím větší je spotřeba elektrické energie, tím je menší pokles teploty oceli v MP.
8. Závěr

V teoretické části práce byl proveden rozbor faktorů ovlivňujících výrobu oceli posuzované následně v experimentální části. Byla zdůrazněna specifika výroby kordové oceli, a ukázán postup její výroby.

V experimentální části práce byly sledovány faktory ovlivňující tepelný režim tavby v pánové peci, a to jednak ty, které teplo procesu ubírají, a jednak ty, které teplo do procesu přinášejí. Volba těchto faktorů byla provedena na základě zkušeností s procesem výroby oceli.

Na pokles teploty oceli v pánvi má největší vliv spotřeba elektrické energie. Skutečnost, že v tomto případě je hodnota korelačního koeficientu pouze 0,5 ovlivňující další parametry, které nejsou v této závislosti zahrnuty. Jedná se např. o parametry: intenzitu dmychání argonu, hmotnost sázení feroslitin apod.

Z hodnocení faktorů vyplývá, že vzájemná provázanost jak párových tak i vícenásobných regresí je nízká. Přičinou jsou vědomé zásahy taviče plynouvá z jeho zkušeností i také z DTP tavby. Tím je snížená vypovídací schopnost využitých statistických závislostí.
Seznam tabulek

Tab. 1: Chemické složení oceli H09C070 v hm. %... 4
Tab. 2: Chemické složení a vlastnosti materiálu dna a stěn licí pánve 19
Tab. 3: Chemické složení a vlastnosti materiálu struskové čáry licí pánve 20
Tab. 4: Korelační koeficienty R mezi závislými a nezávislými proměnnými........... 30
Seznam obrázků

Obr. 1: Schéma provozu KKO ... 15
Obr. 2: Schéma pánové pece ... 16
Obr. 3: Schéma zařízení RH ... 17
Obr. 4: Schéma zařízení IRUT ... 17
Obr. 5: Schéma zařízení ZPO1, ZPO2 a lité do kokil 18
Obr. 6: Závislost poklesu teplot mezi ARG a ZPO na poklesu teplot mezi ARG a LF ... 31
Obr. 7: Závislost poklesu teplot mezi ARG a LF na množství feroslitin přidávaných na LF ... 32
Obr. 8: Závislost poklesu teplot na ARG a LF na celkovém čase foukání inertního plynu (argonu) do licí pánve ... 32
Obr. 9: Závislost poklesu teplot mezi ARG a LF na věku pánve 33
Obr. 10: Závislost poklesu teplot mezi ARG a ZPO na spotřebě elektrické energie na LF ... 34
Obr. 11: Závislost poklesu teplot mezi ARG a ZPO na entalpii licí pánve před odpichem ... 35
Obr. 12: Závislost poklesu teplot mezi ARG a ZPO na první teplotě na ARG ... 35
Obr. 13: Závislost poklesu teplot mezi ARG a ZPO na poklesu teplot mezi LF a ZPO ... 36
Obr. 14: Závislost poklesu teplot na ARG a ZPO na rozdílu entalpii před odpichem a na konci zpracování na LF ... 36
Obr. 15: Závislost teplot přehřátí oceli v MP na poklesu teplot mezi ARG a LF 37
Obr. 16: Závislost teplot přehřátí oceli v MP na množství feroslitin přidávaných na LF ... 38
Obr. 17: Závislost teploty přehřátí oceli v MP na čase foukání argonu do licí pánve ... 38
Obr. 18: Závislost teploty přehřátí oceli v MP na věku licí pánve ... 39
Obr. 19: Závislost teploty přehřátí oceli v MP na spotřebě elektrické energie na LF ... 40
Obr. 20: Závislost teploty přehřátí oceli v MP na entalpii před odpichem ... 41
Obr. 21: Závislost teploty přehřátí oceli v MP na první teplotě na ARG ... 41
Obr. 22: Závislost teploty přehřátí oceli v MP na poklesu teploty mezi LF a ZPO ... 42
Obr. 23: Závislost teploty přehřátí oceli v MP na rozdílu entalpii před odpichem a na konci zpracování na LF ... 42
Obr. 24: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na poklesu teplot mezi ARG a LF ... 43
Obr. 25: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na množství feroslitin přidávaných na LF ... 44
Obr. 26: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na celkové době foukání argonu do licí pánve ... 44
Obr. 27: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na věku (neboli těž stráž) pánve ... 45
Obr. 28: Závislost poklesu teplot mezi první a poslední teplotou v MP na spotřebě elektrické energie na LF ... 46
Obr. 29: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na entalpii pánve před odpichem ... 47
Obr. 30: Závislost poklesu teplot mezi první a poslední teplotou oceli v MP na první teplotě na ARG ... 47
Obr. 31: Závislost poklesu přehřátí mezi první a poslední teplotou oceli v MP na poklesu teplot mezi ARG a ZPO ... 48
Obr. 32: Závislost poklesu teploty mezi první a poslední teplotou oceli v MP na rozdílu entalpii před odpichem a na konci zpracování na LF ... 48
Obr. 33: Závislost poklesu teploty oceli v pánvi během mimopecního zpracování na množství feroslitin přidávaných na LF ... 49
Obr. 34: Závislost poklesu teploty oceli v páni během mimoečného zpracování na celkovém čase foukání inertního plynu (argonu) do licí pánev

Obr. 35: Závislost poklesu teploty oceli v páni během mimoečného zpracování na věku pánev

Obr. 36: Závislost poklesu teploty oceli v páni během mimoečného zpracování na spotřebě elektrické energie na LF

Obr. 37: Závislost poklesu teploty oceli v páni během mimoečného zpracování na entalpii licí pánev před odpichem

Obr. 38: Závislost poklesu teploty oceli v páni během mimoečného zpracování na první teplopletu na ARG

Obr. 39: Závislost poklesu teploty oceli v páni během mimoečného zpracování na poklesu teplot mezi LF a ZPO

Obr. 40: Závislost poklesu teploty oceli v páni během mimoečného zpracování na rozdílu entalpii před odpichem a na konci zpracování na LF

Obr. 41: Závislost poklesu teploty oceli během přepravy na ZPO na poklesu teplot mezi ARG a LF

Obr. 42: Závislost poklesu teploty oceli během přepravy na množství feroslitin přidaných na LF

Obr. 43: Závislost poklesu teploty oceli během přepravy na celkovém čase foukání inertního plynu (argonu) do licí pánev

Obr. 44: Závislost poklesu teploty oceli během přepravy na věku pánev

Obr. 45: Závislost poklesu teploty oceli během přepravy na spotřebě elektřiny na LF

Obr. 46: Závislost poklesu teploty oceli během přepravy na entalpii licí pánev před odpichem

Obr. 47: Závislost poklesu teploty oceli během přepravy na první teplopletu na ARG

Obr. 48: Závislost poklesu teploty oceli během přepravy na rozdílu entalpii před odpichem a na konci zpracování na LF

Obr. 49: Závislost poklesu teploty oceli mezi ARG a ZPO na vybraných nezávisle proměnných veličinách

Obr. 50: Závislost přehřátí oceli v mezipánu na vybraných nezávisle proměnných veličinách

Obr. 51: Závislost poklesu teploty oceli v páni během mimoečného zpracování oceli na vybraných nezávisle proměnných veličinách
Literatura

