Analysis of the Transportation of Excessive Loads

Student: Bc. Lucie Hejdová

Vedoucí diplomové práce: Ing. Leo Tvrdoň, Ph.D.

Ostrava 2012
VŠB - Technická univerzita Ostrava
Ekonomická fakulta
Katedra podnikohospodářská

Zadání diplomové práce

Student: Bc. Lucie Hej dová

Studijní program: N6208 Ekonomika a management
Studijní obor: 6208T020 Ekonomika podniku
Specializace: 00 Ekonomika podniku
Téma: Analýza přepravy nadměrných nákladů
 Analysis of the Transportation of Excessive Loads

Zásady pro vypracování:
1. Úvod
2. Představení společnosti
3. Teorie přepravy nadměrného nákladu
4. Praktické řešení přepravy nadměrného nákladu
5. Závěr
Seznam použité literatury
Seznam zkratek
Prohlášení o využití výsledků diplomové práce
Seznam příloh
Přílohy

Seznam doporučené odborné literatury:

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce: Ing. Leo Tvr doň, Ph.D.

Datum zadání: 25.11.2011
Datum odevzdání: 27.04.2012

Ing. Josef Kašík, Ph.D. prof. Dr. Ing. Daniela Dluhošová
vedoucí katedry děkanka fakulty
Místopřísežně prohlašuji, že jsem celou diplomovou práci, včetně všech příloh, vypracovala samostatně pod vedením vedoucího diplomové práce. Uvedla jsem všechny použité podklady a literaturu.

V Ostravě dne 27. 4. 2012

podpis
Na tomto místě bych ráda poděkovala vedoucímu diplomové práce panu Ing. Leo Tvrdoňovi, Ph.D. za odborné vedení, užitečné rady, věcné připomínky a projevenou ochotu a velkou trpělivost při vedení této diplomové práce.

Poděkovat bych dále chtěla panu PhDr. Mgr. Jaromíru Radkovskému, MBA, řediteli oddělení lidských zdrojů a oddělení zaměstnaneckých vztahů a BOZP společnosti HMMC, že mi umožnil přístup k využití interních materiálů společnosti. Dále bych chtěla poděkovat Ing. Zuzaně Víchové, specialistce lidských zdrojů společnosti HMMC, a Ing. Tomáši Poláčkovi, manažerovi oddělení nákupu společnosti HMMC, za jejich trpělivost a ochotu spolupracovat na této diplomové práci. Všem patří velké poděkování i za vytvoření příjemného zázemí pro tvorbu této diplomové práce.
OBSAH

1 ÚVOD .. 3
2 PŘEDSTAVENÍ SPOLEČNOSTI .. 5
 2.1 Historie mateřské společnosti HMC ... 5
 2.2 Představení společnosti HMMC .. 5
 2.2.1 Modely automobilů společnosti HMMC a modely Blue Drive 6
 2.3 Hyundai ve světě .. 7
 2.4 Filozofie a strategie společnosti HMMC ... 8
 2.4.1 Filozofie společnosti HMMC ... 8
 2.4.2 Strategie společnosti HMMC ... 9
 2.5 Interní informační systém .. 9
 2.6 Dostupnost areálu v Nošovicích ... 9
 2.6.1 Nákladní automobilová doprava ... 9
 2.6.2 Nákladní železniční doprava ... 10
 2.6.3 Letecká a lodní doprava ... 10
3 TEORIE PŘEPRAVY NADMĚRNÉHO NÁKLADU .. 11
 3.1 Pojem logistiky, vývoj logistiky, logistický systém a logistické řetězce 11
 3.2 Logistické prvky a klasifikace přepravovaného materiálu 15
 3.2.1 Pasivní prvky .. 15
 3.2.2 Aktivní prvky ... 18
 3.3 Logistika v dopravě .. 22
 3.3.1 Vybrané termíny z oblasti dopravy .. 22
 3.3.2 Význam logistiky v dopravě ... 24
 3.3.3 Mezioborové srovnání přepravních výkonů nákladní dopravy z roku 2002 . 25
 3.4 Nákladní náklad .. 26
 3.4.1 Doprovody nadměrných nákladů ... 26
 3.5 Manipulační a přepravní jednotky ... 27
 3.6 Dokumentace při mezinárodní přepravě .. 27
 3.7 Různé druhy přepravy a jejich podmínky ... 29
 3.7.1 Silniční doprava ... 29
 3.7.2 Kolejová/železniční doprava ... 32
 3.7.3 Říční a námořní (lodní) doprava ... 36
 3.7.4 Letecká doprava ... 38
 3.7.5 Potrubní doprava ... 39
 3.8 Globalizace přepravy .. 39
 3.9 Legislativa a různá legislativní omezení ... 41
 3.9.1 Vybrané termíny s odkazem na českou legislativu 42
 3.10 Cena a náklady za dopravu ... 44
 3.11 Volba přepravy .. 45
 3.11.1 Rozhodování o volbě způsobu přepravy a dopravci 45
4 PRAKTICKÉ ŘEŠENÍ PŘEPRAVY NADMĚRNÉHO NÁKLADU 48
 4.1 Jedna z prvních realizací dovozu technologií a dílů do společnosti HMMC v
 Nošovicích ... 48
 4.2 Dovoz nadměrného nákladu z Jižní Koreje do ČR ... 49
 4.2.1 Parametry přepravovaného zboží ... 49
 4.2.2 Trasa a způsob realizované přepravy (zvolený druh přepravy) 50
 4.2.3 Druh manipulační jednotky ... 53
 4.3 Další možné trasy a varianty přepravy nadměrného nákladu 54
4.3.1 Omezení a využití jednotlivých druhů dopravy ... 55
4.3.2 Další možné varianty přepravy nadměrného nákladu .. 60
4.3.3 Kritéria pro výběr nejvhodnějšího typu dopravy ... 60

4.4 Analýza a srovnání nových možných variant přepravy nadměrného nákladu 61
 4.4.1 Rozdělení nových variant přepravy do skupin dle vzájemných podobností 61
 4.4.2 Detailní analýza nových variant přepravy a jejich hodnocení 64
 4.4.3 Výsledky analýz a posouzení správnosti realizované přepravy 68

4.5 Závěrečné hodnocení a návrhy na zlepšení ... 68
 4.5.1 Doporučení pro příští přepravu nadměrného nákladu 69

5 ZÁVĚR .. 70
SEZNAM POUŽITÉ LITERATURY .. 71
SEZNAM ZKRATKEK .. 74
PROHLAŠENÍ O VyuŽITÍ VÝSLEDKŮ DIPLOMOVÉ PRÁCE
PŘÍLOHY
1 ÚVOD

S vývojem světové ekonomiky v druhé polovině 20. století se v tržní ekonomice objevil pojem logistika, který postupem času nabýval na síle a důležitosti. Za období své existence logistika prošla několika vývojovými stupněmi. V současnosti je základním logistickým cílem dodávat zboží včas, na správné místo, v odpovídající jakosti a s kvalitními službami.

Jedním z důležitých úkolů, které v dnešní době logistika řeší, je přeprava nákladů a to jak normovaných, tak i nadměrných. V této diplomové práci se zaměříme právě na problematiku transportu nadměrných nákladů, který by měl být vždy řešen individuálně a precizně, aby nedocházelo k tragickým scénářům. Poslední dobou se setkáváme s případy, že přepravní společnosti nepřiznávají skutečné parametry přepravovaného nákladu nebo nedodrží legislativu a následkem toho jsou uvízlé kamiony pod mosty, rovněž dochází k poškozování silničních povrchů (zvrásnění vozovky a jiná poškození pozemních komunikací).

Diplomová práce je rozdělena do pěti kapitol, kterými jsou úvod, představení společnosti, teorie přepravy nadměrného nákladu, praktické řešení přepravy nadměrného nákladu a závěr.

Druhá kapitola se zaměřuje na společnost HMMC, která se zabývá výrobou osobních automobilů a která patří do celosvětové skupiny Hyundai. Odkryjeme její filozofii, strategii řízení a další důležité informace. Podíváme se detailně do areálu v Nošovicích, abychom zjistili, jak tento výrobní závod funguje a jaký má význam pro celosvětovou značku Hyundai.

Třetí kapitola obsahuje vybraná teoretická východiska přepravy nadměrného nákladu. Seznamíme se s obecným pojetím logistiky a jejím významem pro přepravu nákladu. Součástí třetí kapitoly je detailní rozdělení materiálů do jednotlivých kategorií dle různých kritérií. Zaměříme se i na jednotlivé druhy přepravy a s nimi spojenými legislativními omezeními napříč světovým spektrem.

Ve čtvrté kapitole zanalysujeme současný stav dovozu technologií a dílů do společnosti HMMC. Zanalysujeme již realizovanou přepravu nadměrného nákladu a pokusíme se navrhnout nové varianty přepravy. Nové možnosti přepravy by měly přinést podniku úspory z hlediska zkvalitnění služeb, nákladů na přepravu a času potřebného pro její realizaci. Po zanalysování všech nových variant přepravy nadměrného nákladu vyneseme návrhy na zlepšení.
V závěru shrneme veškeré důležité informace, včetně podrobností o splnění či nesplnění cílů této diplomové práce a jejího využití v praxi.

V diplomové práci budeme analyzovat jednotlivé formy přepravy a následně metodou srovnání zjistíme rozdíly mezi realizovanou přepravou a dalšími možnými variantami přepravy nákladu s podobnými parametry.

Cílem této diplomové práce je zanalyzovat realizovanou přepravu nadměrného nákladu, vytvářet nové modelové situace přepravy nadměrného nákladu, zvážit jejich možnosti a následně posoudit správnost realizované přepravy.

Cílem vytvoření nových modelových situací přepravy nadměrného nákladu je možnost úspory finančních prostředků společnosti HMMC při budoucí realizaci nadměrného nákladu.
2 PŘEDSTAVENÍ SPOLEČNOSTI

Společnost HMMC je člen skupiny Hyundai, která patří k největším a nejvýznamnějším výrobce osobních automobilů na světě. V rámci této diplomové práce máme možnost odkrýt její filozofii, strategii řízení a další důležité informace. Detailně se podíváme do celého výrobního závodu, ve kterém následně budeme analyzovat přepravu nadměrného nákladu v podobě výrobního zařízení.

2.1 Historie mateřské společnosti HMC

Na konci 20. století čelila řada asijských společností a asijský trh krizi. Společnost Kia Motors neměla dostatek prostředků k dalšímu provozu, čehož využila společnost HMC a v roce 1998 tuto automobilku odkoupila a vytvořila skupinu HKMG. Úspěšná HKMG se v roce 2012 přejmenovala na Hyundai Group (dále HG). HG je pátou největší automobilkou na světě, neustále zvyšuje své tržní podíly a výrobní kapacity po celém světě.

2.2 Představení společnosti HMMC

Společnost HMMC byla založena 7. 7. 2006 se sídlem v Nošovicích jako společnost stoprocentně vlastněná společnost HMC. Společnost HMMC se zabývá výrobou osobních automobilů, přičemž její výrobní závod je považován odbornou veřejností za nejmodernější automobilku v Evropě.

Společnost HMMC sídlí na ploše 200 ha v průmyslové zóně Nošovice, kde zastavěná plocha činí 28,3 ha. Společnost k 7. 2. 2012 zaměstnávala 2 500 kmenových a 900 agenturních zaměstnanců, z nichž 96 % zaměstnanců jsou občané ČR, tzn. společnost HMMC zaměstnává maximálně možný počet zaměstnanců, který si stanovila za cíl při spuštění sériové výroby v listopadu 2008. Společnost HMMC splňuje plánovanou cílovou kapacitu produkce ve výši

1 Interní dokumenty společnosti HMMC
2 Interní dokumenty společnosti HMMC
300 000 vozidel za rok ve třísměnném provozu. Společnost produkuje výrobkové modely s označením osobní auto segmentu C a MPV.

2.2.1 Modely automobilů společnosti HMMC a modely Blue Drive

Modely osobních automobilů vyráběných v závodě v HMMC byly vybrány tak, aby odpovídaly vysokým požadavkům evropských zákazníků na kvalitu, bezpečnost a atraktivní design. Vybrané modely jsou na obrázku 2.1.

Modely, které se vyráběly nebo vyrábí v HMMC jsou tyto:

- Hyundai i30 hatchback (*listopad 2008 – prosinec 2011*),
- New Hyundai i30 hatchback (*leden 2012 – dosud*),
- Hyundai i30cw (*únor 2009 – dosud*),
- Kia Venga (*září 2009 – květen 2011*),
- Hyundai ix20 (*říjen 2010 – dosud*),
- Hyundai ix35 (*červenec 2011 – dosud*).

Obrázek 2.1 – Některé z modelů automobilů vyráběných v HMMC

3 Interní dokumenty společnosti HMMC
Výroba v HMMC je dále soustředěna na převodovky, které dodává sesterským závodům Kia na Slovensku a HMMR v Rusku. Naopak sesterský závod Kia v Žilině dodává do společnosti HMMC motory.

Zastavěnou plochu nošovického areálu, který je podrobně zmapován na obrázku 2.2, tvoří pět výrobních hal, které jsou hlavní částí výroby společnosti HMMC, budova administrativy a několik dodavatelských společností, které jsou se značkou Hyundai úzce spojeny. Podrobnější informace o výrobních halách, jsou v příloze č. 3 a v příloze č. 4 najdeme informace o dodavatelských společnostech.

Obrázek 2.2 – Detailní pohled do areálu HMMC⁴

2.3 Hyundai ve světě⁵

Společnost HMMC je prvním výrobním závodem Hyundai v Evropě. Všechny výrobní závody jsou vyjmenovány v tabulce 2.1 a některé znázorněny na obrázku 2.3.

Tabulka 2.1 – Umístění výrobních závodů ve světě⁶

<table>
<thead>
<tr>
<th>Severní a Jižní Amerika</th>
<th>Asie</th>
<th>Evropa</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (1 závod)</td>
<td>Jižní Korea (3 závody)</td>
<td>Česká republika (1 závod)</td>
</tr>
<tr>
<td>Brazílie (1 závod)</td>
<td>Čína (3 závody)</td>
<td>Rusko (1 závod)</td>
</tr>
<tr>
<td></td>
<td>Indie (2 závody)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turecko (1 závod)</td>
<td></td>
</tr>
</tbody>
</table>

⁴ Interní dokumenty společnosti HMMC
⁵ Interní dokumenty společnosti HMMC
⁶ Interní dokumenty společnosti HMMC
2.4 Filozofie a strategie společnosti HMMC

Každá společnost má svoji vizí, ke které se ubírá a ani společnost HMMC není výjimkou. Podnikovou vizí označuje myšlenky a hlavní cíle společnosti v horizontu deseti a více let, které musí mít motivující charakter. Druhým důležitým prvkem, který na společnost HMMC v této kapitole prozradíme, je její strategie, která nás informuje o připravenosti podniku na budoucnost (dlouhodobé cíle, jednotlivé strategické operace, reakce na změny v okolí atd.)

2.4.1 Filozofie společnosti HMMC

Filozofie společnosti HMMC vychází z filozofie mateřské společnosti HMC, která zní: „Zrealizovat sen lidstva vytvořením nové budoucnosti, jejíž základem je neutuchající vynalézavost a neustálé posouvání dosažených hranic.”

Níže uvedená firemní hesla a slogany jsou pro společnost HMMC ambiciózní vizí, obchodní strategii a akční plánem, které musí být přesně dodržovány všemi zaměstnanci společnosti.

▪ „Společně pro lepší budoucnost“ je hlavní vizí společnosti HMMC.
▪ „Celoživotní partner nejen v oblasti automobilů.“ vyjadřuje vizí společnosti HMMC do roku 2020.

7 Interní dokumenty společnosti HMMC
8 Interní dokumenty společnosti HMMC
Výklad vize společnosti HMMC zní následovně: „Abychom se stali důvěryhodným celoživotním partnerem našich zákazníků, dáváme automobilům novou perspektivu řadou pokrokových mobilních řešení, která jsou založena na technologiích a službách orientovaných na člověka a šetrných k životnímu prostředí“.

2.4.2 Strategie společnosti HMMC

Jednou z hlavních strategií společnosti HMMC je stanovená politika GQ 3-3-5-5, která znamená dostat se během tři let mezi trojici nejlepších hodnocení skutečné kvality v průzkumu spolehlivosti J.D. Power, a během pěti let se v hodnocení vnímané kvality zařadit mezi nejlepší pětici.

2.5 Interní informační systém

Ve společnosti HMMC používají SAP systém, který je robustní systém celosvětově uznávaný a používaný v řadě významných firem. V HMMC se systém SAP používá pro plánování a řízení všech klíčových podnikových procesů, jako jsou výroba, nákup a sklady, prodej, údržba, personalistika, účetnictví a evidence majetku, controlling.

Využití SAPu v oddělení logistiky:
- systém importu – pracují s nimi oddělení přepravy a cla,
- systém podpory nákupu – pracují s nimi pracovníci nákupu coil a bulk materiálu (ocel, chemikálie, barvy pro výrobu aj.).

2.6 Dostupnost areálu v Nošovicích

Výrobní závod společnosti HMMC se nachází v Moravskoslezském kraji, okres Frýdek-Místek. Dopravní obslužnost je možná prostřednictvím kamionové a vlakové dopravy.

2.6.1 Nákladní automobilová doprava

Sériová výroba byla zahájena v listopadu 2008, kdy byl areál plně dostupný kamionové dopravě. Prostřednictvím kamionů byl dovážen veškerý potřebný materiál pro sériovou výrobu automobilů a následně i zabezpečen vývoz automobilů z areálu v Nošovicích do celého světa.
2.6.2 Nákladní železniční doprava

2.6.3 Letecká a lodní doprava

Průmyslová zóna v Nošovicích není přímo napojena na letecké či lodní dopravní sítě. Pro případné využití letecké nebo lodní dopravy je nutné náklad nejprve přemístit do terminálu či přístavu a to za pomocí silniční či železniční dopravy, která je v nošovickém areálu dostupná.
3 TEORIE PŘEPRAVY NADMĚRNÉHO NÁKLADU

V této kapitole se seznámíme s vybranými teoretickými východisky přepravy nadměrného nákladu. Mimo řešenou problematiku nadměrného nákladu najdeme v kapitole 3 obecně pojetí logistiky a její význam pro přepravu nákladu. Obsahem bude i rozdělení přepravovaného nákladu (materiálu) do skupin dle různých kritérií. Zaměříme se i na jednotlivé druhy přepravy a s ní spojené legislativní omezení napříč světovým spektrum.

3.1 Pojem logistika, vývoj logistiky, logistický systém a logistické řetězce

Pojem logistika je nejčastěji odvozován z řeckého slova logos, které znamená slovo či pochopení. Avšak najdeme i publikace, ve kterých se logistika odvozuje od francouzského slova logir, které znamená bydlení. Logistika je v hospodářské sféře poměrně mladou disciplínou, kterou se lidé teprve začínají učit správně využívat. Pokud se však zaměříme na vojenství, zjistíme, že logistika má v této oblasti dlouholetou historii. Logistika byla ve vojenství využívána zejména pro přesuny vojáků či celých armád, pro přesuny potravy a dalších věcí důležitých pro úspěšné vedení války.

Začátkem a prvotním rozvíjením logistiky jsou označována 60. léta 20. století, kdy v USA byla poprvé využita logistika a logistické přístupy jako plánování a realizování distribuce zboží od výrobce ke spotřebiteli. V Evropě se logistika začala využívat až po roce 1970, přičemž se nejvíce využívala pro transport, zásobování a distribuci. Následná zkušenost vedla k tomu, že logistika se neobejde bez svých neoddělitelných částí, kterými jsou informační systém a komplexní ekonomický přehled.

Začátky využívání logistiky nebyly nijak nárazové, ale postupem času vývoj nabral na dynamice a v 80. letech 20. století byl vývoj až natolik silný, že docházelo k separaci hlavních částí logistického řetězce (odběratelé, dodavatelé, zákazníci). Na základě separace jednotlivých částí logistického řetězce se začaly přiostřovat konkurenční vztahy na celosvětových trzích a od 90. let je logistika chápána jako nástroj strategického řízení podniku

11 HORÁKOVÁ, Helena a Jiří KUBÁT. Řízení zásob.
12 VANĚČEK, Drahoš. Logistics.
13 VANĚČEK, Drahoš. Logistics.
Jak tvrdí Petr Pernica 14: „Logistika je disciplína, která se zabývá celkovou optimalizací, koordinací a synchronizací všech aktivit v rámci samoorganizujících se systémů, jejichž zřetězení je nezbytné k pružnému a hospodárnému dosažení daného konečného (synergického) efektu.”

Logistika v průběhu času získává na důležitosti a stává se nejenom nástrojem, ale i součástí řídícího systému podniku. Podnikatelé si začínají uvědomovat, že i nejlepší marketingová strategie musí být podpořena správným logistickým systémem a naopak. Stupeň důležitosti se liší od spotřeby a intenzity přemisťování materiálu či zboží v jednotlivých podnicích, proto nemůžeme požadovat stejnou úroveň logistických služeb v různých podnicích.

Jak tvrdí Helena Horáková 15: „Obecně lze konstatovat závislost stupně důležitosti logistiky pro podnik na počtu a objemu potřebných surovin, materiálů, polotovarů a součástek, na počtu a objemu hotových výrobků, na počtu výrobních míst a na počtu míst spotřeby nebo užití.”

Logistické systémy nemůžeme zcela jednoduše rozdělit a následně izolovaně řídit. Systém musíme chápat jako soubor procesů, které na sebe navazují a navzájem se ovlivňují. Pro rozlišení jednotlivých částí systému použijeme princip dekompozice logistického systému, který je znázorněn na obrázku 3.1.

Obrázek 3.1 – Princip dekompozice logistického systému

14 PERNICA, Petr. Logistický management. Teorie a podniková praxe. (s. 80)
15 HORÁKOVÁ, Helena a Jiří KUBÁT. Řízení zásob. (s. 13)
16 MACUROVÁ, Pavla a Naděžda KLABUSAYOVÁ. Praktikum z logistického managementu.
Logistický řetězec si můžeme představit jako posloupnost navazujících a navzájem se ovlivňujících sladěných logistických podsystémů, kterými prochází materiálový a informační tok. Procesy v jednotlivých článkách logistického řetězce jsou plánovány a řízeny podle společných hledisek, tak zvaně „integrálně“. Při měření výkonu celého řetězce se řídíme nejslabším článkem, protože právě ten určuje celkový výkon řetězce. Při snaze zvýšit výkon celého řetězce nebo snížit celkové náklady na něj nám nepomůže ani izolovaná racionalizace jednotlivých článků.

Obrázek 3.2 – Tok materiálu v logistickém řetězci

Tok materiálu v logistickém řetězci se skládá z těchto subjektů:

- suppliers = dodavatelé,
- stocking of raw materials = sklad surovin a materiálu,
- production = výroba,
- stocking of finished good = sklad hotových výrobků,
- clients = zákazník.

Přičemž oznámuje zásoby rozpojovací a označuje zásoby v logistickém kanálu.

Logistický (dodavatelský) řetězec je vícestupňový systém, který se skládá z těchto subjektů:

- dodavatelé,
- výrobců,
- distributoři,
- prodejců,
- zákazníků.

17 MACUROVÁ, Pavla a Naděžda KLABUSAYOVÁ. *Praktikum z logistického managementu.*
18 VANĚČEK, Drahoš. *Logistics.*
19 FIALA, Petr. *Modelování dodavatelských řetězců.*
Na obrázku 3.3 můžeme vidět, že spojnicí mezi jednotlivými subjekty dodavatelského řetězce je dopravce. Dopravci a doprava všeobecně je důležitou součástí a spojnicí mezi subjekty v celém řetězci.

Základní vlastností dodavatelsko-odběratelského řetězce je, že propojuje všechny činnosti mezi dodavateli, odběrateli a spotřebitelem v přiměřeném časovém horizontu. Struktura dodavatelsko-odběratelského řetězce je dána jeho subjekty a vazbami mezi nimi, přičemž je organizován a funguje dle souboru dynamických pravidel.

Vztahy v dodavatelsko-odběratelském řetězci jsou zjednodušeně zachyceny na obrázku 3.4, kde jsme schopni rozlišit jednotlivé druhy toků, které jimi v obou směrech proudí. Jsou to tyto:

- materiálové toky,
 - dodavatel → zákazník: toky surovin, meziproduktů a hotových produktů
 - zákazník → dodavatel: vrácení, servis, recyklace a likvidace produktů
- finanční toky,
 - různé platby, toky plynoucí z vlastnických vztahů, apod.
- informační toky,
 - podporuje systém informacemi o objednávkách, dodávkách a plánech
- rozhodovací toky.
 - posloupnost rozhodnutí účastníků ovlivňující celkovou výkonnost řetězce

20 MACUROVÁ, Pavla a Naděžda KLABUSAYOVÁ. Praktikum z logistického managementu.
21 EMMETT, Stuart. Řízení zásob. Jak minimalizovat náklady a maximalizovat hodnotu.
Na hranicích mezi jednotlivými články řetězce vznikají logistická místa styku, která jsou důsledkem právních, ekonomických, organizačních, informačních a fyzických rozdílů sousedních článků. Logistika se snaží o vzájemné slaďování jednotlivých článků (subjektů) v řetězci.

3.2 Logistické prvky a klasifikace přepravovaného materiálu

Logistika rozlišuje pasivní a aktivní prvky, které jsou podrobněji specifikovány v kapitolách 3.2.1 a 3.2.2. Pasivní prvky spolu s aktivními prvky umožňují uvést do praxe netechnologické operace jako např. balení, montáž, dopravní a manipulační zařízení, nakládka, překládka, vykládání, přeprava, ovládání, sběr, přenos a zpracování informací a následně jejich ukládání.

3.2.1 Pasivní prvky

S pasívními prvky můžeme manipulovat, jsou převáženy, skladovány, apod. Všeobecně jsou tyto operace považovány za netechnologické, operace mají netechnologický charakter. Operace jsou netechnologické, protože se při nich nemění základní fyzikální a chemické vlastnosti původního materiálu. Za pasivní prvky můžeme označit:

- základní a pomocný materiál,
- rozpracované výrobky,
- díly pro montáž finálního výrobku,
- obaly, odpady,
- informace, které doprovází výše uvedené materiály.

22 HORÁKOVÁ, Helena a Jiří KUBÁT. Řízení zásob.
23 VANĚČEK, Drahoš. Logistics.
Klasifikace materiálu

Pro pojem pasivní prvek se v české terminologii používá označení „materiál“. Materiál může být v pevném, kapalném nebo plynném skupenství. Můžeme s ním manipulovat jako s volně loženým, kusovým nebo prostřednictvím manipulačních či přepravních jednotek. Klasifikace materiálu pro logistické účely je z hlediska vytváření podobných skupin, v rámci kterých se používají stejné techniky a technická zařízení pro manipulaci, přepravu nebo skladování. Jedna z možností je rozlišovat materiály dle skupenství:

- **pevné materiály**,
 - jednotlivé kusy – díly, tyče, plechy, apod.
 - manipulační jednotky – palety, kontejnery, krabice, apod.
 - sypký materiál – písek, uhlí, apod.

- **kapalné materiály**,
 - manipulační jednotky – barely, tanky, nádrže, apod.
 - sypký (volně ložený) materiál – kapaliny tekoucí v potrubích, apod.

- **plynné materiály**,
 - manipulační jednotky – tlakové láhve, tlakové tanky, apod.
 - volně ložený materiál - plyny proudící v potrubích

Hlavní význam pojmů *manipulace* je fyzikálně přemisťování materiálů. Materiálem mohou být suroviny, polotovary, díly a hotové výrobky. Současně však vnímáme manipulaci jako soubor operací zabývající se nejen přemisťováním, ale i skladováním, balením, vážením, měřením, počítáním, tříděním hmotných částí apod.⁴

Manipulační skupina představuje materiál rozdělený do skupin na základě principu schopnosti pracovat s materiály v rámci logistického řetězce stále stejným způsobem a se stejným typem technického zařízení a vybavení.

Tok pasivních prvků logistickým řetězcem je obvykle velice složitý proces. Představte si, že logistický řetězec se skládá ze tří článků, kterými jsou výrobce, velkoobchodník a maloobchodník. V každé tomto článku řetězce distribuční logistiky, je výrobek vyložen, zkontrolován, vybaven elektronickými daty, uložen na sklad, vyskladněn a přidán k jiným produktům, které jsou následně naloženy a převezeny do následujícího článku řetězce. Každý článek řetězce má specifické požadavky na manipulaci, přepravu nebo skladování a obvykle

⁴ HLAVENKA, Bohumil. *Manipulace s materiálem. Systémy a prostředky manipulace s materiálem.*
má každý článek své specifické technické vybavení pro tyto operace. I manipulační a přepravované množství se může lišit, proto rozlišujeme velké množství od malého a také rozlišujeme dopravní prostředky s velkou kapacitou (kamióny) až po malá a lehká vozidla (dodávky, osobní automobily).

Unifikace rozměrů přepravních a manipulačních jednotek vychází ze standardů ISO. Tim dochází k lepšímu využití kapacity skladů, kapacity dopravních prostředků, ke snížení počtu manipulačních prostředků a následnému snížení logistických nákladů.\(^{25}\)

Manipulační jednotka\(^{26}\) představuje všechn materiál, který je možno odborně přemisťovat (tzv. s ním manipulovat) bez nutnosti další úpravy. S manipulační jednotkou je manipulováno jako s jedním kusem.

Jednou z nejvíce využívaných manipulačních jednotek na vzdálené trasy jsou kontejnery. Kontejnery jsou obvykle 2,438 m (8 stop) vysoké a 2,438 m (8 stop) široké, mají různou délku a jsou kompatibilní s běžnými dopravními prostředky (nákladní automobily nebo železniční vozy). Kontejnery jsou důležitým prvkem globalizace obchodu. Použitím kontejnerů v intermodální logistice se snižují požadavky na pracovní síly, minimalizují se poškození a ztráty (krádeže) během přepravy, zkracuje se doba přepravy vzhledem k rychlejší obrácení kontejnerů v přístavech a přepravci mohou používat výhodnější sazeb za přepravu velkých objemů. Intermodální logistikou máme na mysli kombinovanou dopravu, která se uskutečňuje v jednom jediném přepravním prostředku nebo silničním vozidle. Převážná část trasy se uskutečňuje po železnici, vnitrozemskou vodní cestou nebo po moři bez manipulace se samotným zbožím, přičemž počáteční (svoz) nebo závěrečná (rozvoz) přeprava probíhá zpravidla po silnici.

Manipulační jednotky dělíme do pěti následujících skupin:\(^{27}\)

- **Manipulační jednotka nultého řádu**

 je zboží ve spotřebitelském obalu, které i pro ruční manipulaci je soustředováno do manipulačního obalu nebo přepravního prostředku.

- **Manipulační jednotka prvního řádu**

 je uzpůsobena k ruční manipulaci. Jednotka musí procházet všemi navazujícími články logistického řetězce, aniž by byla dělena na menší jednotky.

\(^{25}\) VANĚČEK, Drahoš. *Logistika*.

\(^{26}\) PERNICA, Petr. *Logistický management. Teorie a podniková praxe*.

\(^{27}\) VANĚČEK, Drahoš. *Logistics*.

17
• Manipulační jednotka druhého řádu
 je odvozená jednotka, uzpůsobená k mechanizované nebo automatizované manipulaci a k ukládání do skladů. K manipulaci se používají nízko nebo vysokoždvižné vozíky, regálové zakladače, jeřáby aj.
 Jednotka určená výhradně pro manipulaci ve skladech se nazývá skladová jednotka. Jednotka určená pro distribuci zboží se nazývá expediční jednotkou.

• Manipulační jednotka třetího řádu
 je odvozená jednotka, která slouží výhradně k dálkové přepravě. S tím souvisí i nutnost mechanizované nebo automatizované manipulace.

• Manipulační jednotka čtvrtého řádu
 je odvozená jednotka, která slouží pro dálkovou kombinovanou dopravu vnitrozemskou vodní a námořní. Neslouží pro přepravu po souši.

Přepravní jednotka je taková jednotka materiálu, která může být použita bez dalších potřebných úprav k přepravě. Nejrychlejší přeprava je, když se manipulační jednotka rovná přepravní jednotce a není tedy nutné jednotky jakkoliv upravovat. Jen malé manipulační jednotky o hmotnosti do 15 kg, které jsou uzpůsobeny pro běžnou manipulaci, nelze používat jako přepravní jednotky, jinak by každý karton musel být ručně vložen do auta a na místě určení znovu ručně vyložen. V takových případech jsou největší jednotky tvořeny z menších manipulačních jednotek např. pomocí palet, které následně slouží jako manipulační i přepravní jednotka.

3.2.2 Aktivní prvky

Pod pojmem aktivní prvek si můžeme představit jakýkoliv technický přepravní prostředek, který spoluvytváří a usnadňuje manipulaci a přepravu materiálu. Aktivní prvky zahrnují také balení, skladování stejně jako technické zařízení pro zpracování informací. Manipulace a doprava se v logistických systémech provádí pomocí aktivních prvků, které jsme pro lepší přehled rozdělili do několika skupin dle podobnosti funkcí, viz. tabulka 3.1. Podrobnější informace k vybraným dopravním vozíkům a jeřábům z tabulky 3.1 jsou k nahlédnutí v příloze č. 6.

28 VANĚČEK, Drahoš. Logistics.
29 VANĚČEK, Drahoš. Logistics.
<table>
<thead>
<tr>
<th>Skupina</th>
<th>Konkrétní příklady</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technická zařízení pro zdvih</td>
<td>zdvižná čela, kladky a kladkostroje, podvěšené jednonosnikové dráhy, mostové jeřáby, konzolové jeřáby, portálové jeřáby, hydraulické otočné jeřábové výložníky (hydraulická ruka), stavební (věžové) jeřáby, mobilní jeřáby, ruční plošinové vozíky, akumulátorové plošinové vozíky, tahače se spalovacím motorem, vozy a vozíky se zdvižnou plošinou, paletové vozíky nízkozdvižné, boční překladače aj.</td>
</tr>
<tr>
<td>Prostředky pro skladování</td>
<td>regálové zakladače, vysokozdvižné vozíky a vozíky, čelní překladače aj.</td>
</tr>
<tr>
<td>Dopravníky</td>
<td>podvěšené dopravníky s vlečnými vozíky, podlahové vozíkové dopravníky, pásové dopravníky, žlabové dopravníky, pneumatické dopravníky, produktovou, hnané válečkové tratě, šroubové dopravníky a eleváty, mechanické lopaty, šnekové vykladače,</td>
</tr>
<tr>
<td>Dopravní prostředky určené pro přepravu</td>
<td>silniční vozidla železniční voz plavidla letadla lanovky a vznášedla</td>
</tr>
</tbody>
</table>

Silniční vozidla

- Malá silniční vozidla
 se využívají pro servisní účely, pro přepravu ve firmě nebo pro přepravu malých nákladů. Nakládání a vykládání probíhá manuálně nebo za pomocí paletových jednotek.

- Nákladní automobily
 jsou vyráběny buď jako univerzální vozidla (vhodné pro přepravu materiálu v kusech nebo na paletách), nebo jako speciální vozidla (zvláštní mrazničky, nádrže vhodné pro přepravu kapalin).

\[30\] VANĚČEK, Drahoš. Logistika.
Přívěsy (připojné vozidla za nákladní automobily)
napomáhají dodržovat a plně využívat přepravní limity pro nákladní dopravu
a území EU. Přívěs má svá vlastní kola, nikoli však pohon.31

Tahač a návěs
vytvoří přepravní jednotku uzpůsobenou zvlášť pro meziměstskou a
mezinárodní dopravu s maximálním využitím limitů EU, které upravují
maximální možnou délku nákladního automobilu na 17 metrů. Tahač má
vlastní motor, ale bez návěsu není schopen náklad přepravit. Návěsy či přívěsy
však nejsou schopny samostatného pohybu, neboť nemají vlastní motor.32

\section*{Železniční nákladní vozy}

Železniční nákladní vozy jsou přizpůsobeny jako manipulační jednotky druhého a
třetího řádu, tedy pro přepravu těžkých a velkých materiálů. Podle jejich technického zařízení
je můžeme rozdělit do následujících skupin:

- Kryté vozy
 jsou určeny pro kusový materiál a palety, které jsou ve vozech chráněny proti
šípatým povětrnostním vlivům. Nakládání se provádí prostřednictvím bočních
dveří za pomocí pásových dopravníků nebo ručně na rampě. Další variantou
nakládky je otevření střechy vozu a vsypání materiálu do něj. Speciální kryté
vozy jsou používány např. pro přepravu obilí nebo jiného sypkého materiálu.

- Otevřené vysokostěnné vozy
 jsou určeny pro sypký nebo kusový materiály. Nakládka a vykládka lze provést
buď jeřábem shora, nebo pásovými dopravníky v případě sypkých materiálů.
Boční desky jsou vysoké nejméně 800 mm.

- Otevřené nízkostěnné vozy
 jsou používány pro přepravu objemných materiálů dodávaných ve svazcích
jako např. hutní materiály, dřeva, zemědělské stroje a další. Na těchto vozech
jsou po obou stranách vertikálně připevněné kovové tyče (klanice), které jsou
spojené řetězy, aby se přepravovaný materiál nemohl posouvat.

31 SEDLÁČEK, Petr. Úmluva CMR. Mezinárodní silniční nákladní doprava.
32 SEDLÁČEK, Petr. Úmluva CMR. Mezinárodní silniční nákladní doprava.
Plošinové vozy
jsou vyhrazeny výhradně pro přepravu manipulačních jednotek třetího řádu, tzn. velkých objektů. Některé z vozů mají také vertikální kovové hole s řetězy, aby se dalo lépe zabezpečit přepravované zboží. Nakládka a vykládka probíhá za pomoci jeřábů.

Speciální vozy
jsou např. nádržkové vozy nebo chladicí vozy. Můžeme zde zařadit vozy typu ACTS (Technologie systému dopravy kontejnerů Abroll), pro které je charakteristické jednoduchá nakládka / vykládka kontejnerů a to pouze za přítomnosti jednoho muže.

Plavidla
Motorová nákladní plavidla a nákladní čluny
jsou především používány pro přepravu uhlí a stavebních materiálů na kontinentu. Lodě jsou konstruovány tak, aby odpovídaly limitovaným parametrům vodních cest (hloubka a šířka vodních cest a velmi často omezení výšky nad plavební dráhou).

Tyto dopravní prostředky jsou výhodné pro přepravu materiálu druhého a třetího řádu. Přepravují se jimi manipulační jednotky, ale i sypký a objemný materiál. Materiál jen na palubě buď odkrytý, nebo zakrytý s možností snadného odkrytí. Manipulační zařízení může být přímo na lodi (jeřáby) nebo jsou využívány speciální jeřáby. Lodě jsou upraveny pro přepravované materiály.

Rozlišujeme čtyři skupiny:
- konvenční (obecně užívané) loď,
- přepravní loď (bulk carriers),
- říční kontejnerová loď,
- námořní kontejnerová loď.
Letadla

Letadla nejsou speciálně upravená pro přepravu zvláštních druhů materiálu, jsou uzpůsobena pouze na přepravu palet a letadlových kontejnerů. Letadlové kontejnery jsou upraveny pro manipulaci v letadlech (jsou menší).

Letadla dělíme do následujících skupin:

- AC (All Cargo)
 nepřepravuje vůbec osoby, ale jen náklad.

- UC (Universal Convertible) a QC (Quick-Change)
 má přestavitelné vnitřní prostory. Letadla jsou uzpůsobena pro přepravu nákladů, ale v případě potřeby jsou 4 pracovníci schopni předělat nákladní prostor na přepravu osob.

- Letadla pro osobní přepravu
 přepravují náklad jen v malých nákladových (zavazadlových) prostorech v zadní části letadla.

3.3 Logistika v dopravě

Abychom byli schopni pochopit význam logistiky v dopravě, je nutné znát potřebnou terminologii. V této části diplomové práce se seznámíme nejen s vybranými pojmy, ale i s činnostmi, které logistika zabezpečuje v průběhu toku materiálu logistickým řetězcem.

3.3.1 Vybrané termíny z oblasti dopravy

V souvislosti s dopravou se potkáváme také s termínem „přeprava“. Oba tyto termíny se často zaměňují. Pod pojmem doprava budeme chápat širší okruh činností, jimiž se uskutečňuje pohyb (tzn. jízda, plavba, let aj.) dopravních prostředků po dopravních cestách a přemísťování věcí nebo osob dopravními prostředky či zařízeními. Pod pojmem doprava si představujeme i činnosti jako nakládka, vlastní přeprava a vykládka.

Přeprava

je součástí dopravy, pomocí které se přímo uskutečňuje přemístění materiálu, zboží a osob dopravními prostředky či zařízeními.

33 VANĚČEK, Drahoš. Logistika.
Dopravce

je provozovatel dopravy pro cizí potřebu. Dopravce je fyzická či právnická osoba, která vykonává souhrnné činnosti, potřebných pro pohyb dopravních prostředků po dopravních cestách.

Přepravce

je příjemce a odesílatel zboží, který si objednává dopravní výkony od dopravce.

Zasílatelem

je fyzická nebo právnická osoba, která se zavazuje přepravci, že mu na základě zasílatelecké smlouvy na jeho účet vlastním jménem zajistí přepravu zboží nebo věcí mezi určitými místy. Za tuto službu přepravce zasílateli zaplatí. Zasílatelem je specializovaná firma, která:

▪ zprostředkovává dopravní výkony a překládku zásilek včetně vystavení příslušných dokladů pro přepravce,
▪ zajišťuje dopravu a ložné operace vlastními technickými prostředky a pracovníky,
▪ provádí konsolidaci zásilek
▪ zprostředkovává nebo ve vlastních skladech provádí skladování zásilek,
▪ poskytuje další služby přepravcům, jako balení, označování zásilek, zajišťování celních operací, zprostředkovávání dopravního pojištění.

Zásilka

je každý jednotlivý kus materiálu, přepravní jednotka nebo jejich soubor, podaný k přepravě u veřejného dopravce. Rozlišujeme zásilky kusové nebo vozové. Podle naléhavosti přepravy se dělí zásilky na rychlé a obyčejné zboží.

Dopravní prostředek

je konkrétní technický prostředek, jehož přemístěním se doprava zboží nebo osob uskutečňuje (např. automobil, železniční vagón).

Přepravní prostředek

je konkrétní technický prostředek, který slouží pro kompletování většího počtu zásilek (kontejner, paleta).
Dopravní infrastruktura

označuje souhrn všech prvků (technických a lidských - dopravní cesty, komunikační sítě pro přenos zpráv, stanic, překladíšť, budov, dílen), které jsou nutné k tomu, aby se mohl uskutečňovat pohyb dopravních prostředků včetně zajištění bezpečnosti a jejich provozuschopnosti.

Základní pracovní prostředky v dopravě jsou:

dopravní prostředky, dopravní cesty a zařízení, zabezpečující údržbu a opravy dopravních prostředků.

3.3.2 Význam logistiky v dopravě

Logistika v dopravě koordinuje, synchronizuje a optimalizuje pohyby zásilek po dopravní síti a to od místa vstupu zásilek do sítě až po místo jejich výstupu ze sítě. V praxi tento proces začíná převzetím zásilky od odesilatele (odesilatel → přepravce), až po předání příjemci (přepravce → příjemce) a to za účasti jednoho nebo několika druhů dopravy (např. ve formě kombinované dopravy).

Pohyb každé zásilky jde ruku v ruce s pohybem manipulačního, přepravního a dopravního prostředku či zařízení a přenosem informací. Z těchto důvodů se logistika v dopravě musí zabývat také koordinací, synchronizací a optimalizací prostorového rozmístění kapacit a pohybů všech prostředků a zařízení. Jejich zkoordinovaná součinnost je nutná k uskutečnění přepravy určitého druhu zásilky v určité relaci. Podobně tomu je i u přepravy osob.

Při hodnocení různých dopravních systémů (silnice, železnice, voda atd.) převažuje hledisko nákladů a přepravních tarifů, které v současné době v Evropě zvýhodňují silniční dopravu. Důvodem výhodnosti silniční dopravy je fakt, že v jejich nákladech není započtena plná úhrada podílu nákladů na budování a udržování cest. Totéž můžeme říci i o dopravě vodní, kde není dosud kalkulováno s náklady na vodní cestu (např. vytvoření jezů, přehrad apod.) a špatnými vlivy na okolní krajinu, které vznikají upravováním původního toku.

Zahrnuje všech výše uvedených hledisek a položek do nákladů povede ke značnému přehodnocení výhodnosti jednotlivých druhů dopravy. Je to však vývoj dlouhodobý, který musí týt řešen současně v celém evropském prostoru.
3.3.3 Mezioborové srovnání přepravních výkonů nákladní dopravy z roku 2002

Tabulka 3.2 – Přeprava zboží (tis. tun)\(^{34}\)

<table>
<thead>
<tr>
<th>Druh přepravy</th>
<th>tis. tun</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přeprava zboží celkem</td>
<td>577 322</td>
<td>100,0</td>
</tr>
<tr>
<td>z toho: železniční</td>
<td>92 005</td>
<td>15,9</td>
</tr>
<tr>
<td>silniční</td>
<td>474 883</td>
<td>82,3</td>
</tr>
<tr>
<td>vnitrozemská vodní</td>
<td>1 602</td>
<td>0,3</td>
</tr>
<tr>
<td>letecká</td>
<td>18</td>
<td>0,0</td>
</tr>
<tr>
<td>ropovody</td>
<td>8 815</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tabulka 3.3 srovnává přepravní výkony jednotlivých druhů dopravy, kde se ukazuje skutečnost, že i nejvýkonnějším druhem dopravy je doprava silniční, tzn. po silnici se přepravuje největší množství tun na kilometr ujeté trasy.

Tabulka 3.3 – Přepravní výkony (mil. tkm)\(^{35}\)

<table>
<thead>
<tr>
<th>Druh přepravy</th>
<th>mil. tkm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přeprava zboží celkem</td>
<td>63 168</td>
<td>100,0</td>
</tr>
<tr>
<td>z toho: železniční</td>
<td>15 810</td>
<td>25,0</td>
</tr>
<tr>
<td>silniční</td>
<td>45 059</td>
<td>71,4</td>
</tr>
<tr>
<td>vnitrozemská vodní</td>
<td>550</td>
<td>0,9</td>
</tr>
<tr>
<td>letecká</td>
<td>32</td>
<td>0,6</td>
</tr>
<tr>
<td>ropovody</td>
<td>1 717</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Tabulka 3.4 obsahuje informace o průměrné přepravní vzdálenosti, tzn. průměrnou délku trasy, kterou zboží urazí při využití daného druhu přepravy.

Tabulka 3.4 – Průměrná přepravní vzdálenost (km)\(^{36}\)

<table>
<thead>
<tr>
<th>Druh přepravy</th>
<th>mil. tkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přeprava zboží celkem</td>
<td>109,4</td>
</tr>
<tr>
<td>z toho: železniční</td>
<td>171,8</td>
</tr>
<tr>
<td>silniční vleťová</td>
<td>94,9</td>
</tr>
<tr>
<td>vnitrozemská vodní</td>
<td>343,3</td>
</tr>
<tr>
<td>letecká</td>
<td>1 765,3</td>
</tr>
<tr>
<td>ropovody</td>
<td>194,8</td>
</tr>
</tbody>
</table>

\(^{34}\) VANĚČEK, Drahoš. Logistika.

\(^{35}\) VANĚČEK, Drahoš. Logistika.

\(^{36}\) VANĚČEK, Drahoš. Logistika.
3.4 Nadměrný náklad

Nadměrným nákladem lze nazvat jakékoli zboží (polotovar, hotový výrobek, stroj nebo jeho část apod.) přepravované po silnici, železnici, řece, moři (či kombinaci výše uvedených druhů přeprav), které svými parametry (rozměry a hmotností) překračuje limity běžného nákladu. U silniční dopravy jsou limity stanoveny vyhláškou č. 341/2002 Sb., o schvalování technické způsobilosti a technických podmínkách provozu silničních vozidel na pozemních komunikacích, ve znění pozdějších předpisů, která určuje rozměry vozidel takto: šířka 2,55 m, výška 4 m, délka 16,5 m u návěsu a 18 m u přívěsu, hmotnost 48 t un.

Přeprava nadměrného nákladu se od běžných přeprav liší v mnoha faktorech. Rozdíly můžeme vidět nejen v použití speciální techniky, v uložení a upevnění nákladu, ale také v nutnosti technického doprovodu, odlišných tras a časových termínů pro uskutečnění přepravy. Navíc nesmějí chybět příslušná povolení a rozhodnutí.

Údaje potřebné k vydání potřebného povolení jsou stanoveny § 40 vyhlášky č. 104/1997 Sb., kterou se provádí zákon o pozemních komunikacích, ve znění pozdějších předpisů. Vzor tiskopisu žádosti je v příloze č. 11.

3.4.1 Dopravody nadměrných nákladů

Zákon č. 361/2000 Sb., o provozu na pozemních komunikacích a o změnách některých zákonů, ve znění pozdějších předpisů, dává orgánům Policie ČR za povinnost dohlížet na bezpečnost silničního provozu, s tím souvisí i povinnost pro dopravci provádět v rámci výkonu služby dopravu zvlášť těžkým nebo nadměrným nákladům či vozidlům. Povinnost provádět dopravod nadměrným nákladům platí v situacích, kdy rozměry nebo hmotnost přepravovaného nákladu přesahují zákonem stanovené míry, a to zejména v případech, kdy by jízda s tímto nákladem mohla negativně ovlivnit bezpečnost a plynulost silničního provozu. Zároveň jsou tyto dopravody realizovány v souladu s příslušnými ustanoveními § 25 zákona č. 13/1997 Sb., o pozemních komunikacích, ve znění pozdějších předpisů. Realita je taková, že dopravní policie v současné době dbá důsledně na to, aby Policii ČR byly doprovázeny skutečně ty nejproblémovější přepravy nadměrných nákladů. Čeští dopravní policisté zajišťují
doprovody soukromým subjektům na rozdíl od policistů jiných států v rámci své činnosti bez finanční úhrady.

3.5 Manipulační a přepravní jednotky

Dostupné manipulační a přepravní jednotky a prostředky jsou detailně popsány v kapitole 3.2.1 této diplomové práce. I přesto, že variabilita jednotek je obrovská, mohou nastat situace, kdy dostupné manipulační a přepravní jednotky nejsou dostačující a je nutné vyvinout novou přepravní či manipulační jednotku pro přepravu specifického nákladu. Většinou se jedná o přepravu speciálního nadměrného nákladu, kterým může být např. výrobní linka, část mostní konstrukce, komponent pro elektrárny apod.

3.6 Dokumentace při mezinárodní přepravě

Mezinárodní dokumentace je mnohem složitější než dokumentace pro tuzemské dodávky, neboť každý stát má své vlastní předpisy a požadavky, které se musí dodržovat. Chyby v dokumentaci mohou být příčinou dlouhých a nákladných zpoždění dodávek. Niže je uvedeno devět nejvíce používaných dokumentů.

Nejrozšířenější vývozní dokumenty:

- **Letecký nákladní list (Air waybill)**: Dokument vystavuje letecká dopravní společnost (sdružovatel dodávek). Každá letecká dopravní společnost má vlastní typ formuláře pro letecký nákladní list, ale formát a systém čislování formulářů jsou v rámci odvětví letecké přepravy standardizované. Důvodem standardizace je sjednocení dat a jejich možné zpracovávat počítačově. Podobně jako náložní list (námořní konosament) slouží i letecký nákladní list jako smlouva o přepravě mezi přepravcem a dopravcem.

- **Osvědčení o původu (Certificate of origin)**: Dokument vystavuje vývozce nebo zasílatel jménem vývozce. Některé země tento doklad vyžadují, aby byl potvrzen původ součástek a dílů výrobku. Používá se pro statistické účely nebo pro vyměření cla a to zejména na základě obchodních dohod.

- **Obchodní faktura (Commercial invoice)**: Dokument vystavuje prodejce zboží, na jehož základě je prováděna platba za prodej zboží. Dokument je vyžadován při proclení zboží v zemi určení.

- **Potvrzení přijetí zboží k přepravě** (*Dock receipt, D/R*): Dokument vystavuje vývozce nebo zasílatel jménem vývozce. Potvrzení o přijetí zboží nemá standardní formu, musí však obsahovat popis dodávky, fyzické údaje (počty, hmotnost apod.) a dodací údaje. Informace z tohoto dokumentu využívá jak přepravce, tak dopravce, aby potvrdili kompletnost dodávky, stav dodávky a dodání zboží dopravci.

- **Námořní konosament/náložní list** (*Ocean bill of lading, BL*): Dokument vystavuje lodní dopravce. Každý dopravce může mít jinou (vlastní) formu konosamentu. Dokument slouží jako smlouva o přepravě mezi dopravcem a přepravcem, který vymezuje rozsah právní zodpovědnosti a odpovědnostní limity pro všechny zúčastněné strany. Konosament obsahuje informace o dodávce, jako je počet kusů, váha, místo určení atd.

- **Balící list** (*Packing list*): Dokument vystavuje vývozce. Balící list poskytuje podrobné informace o obsahu každého balíku v rámci dodávky. Tyto informace používají celní úřady v zemi určení při proclívání a kontrole zboží. Balící list je rovněž nepostradatelný v momentech, kdy se podává reklamace z důvodu poškození nebo chybějícího zboží.

- **Prohlášení přepravce o vývozu** (*Shipper’s export declaration, SED*): Dokument vystavuje vývozce nebo zasílatel jménem vývozce. Např. v USA vyžaduje federální zákon, aby toto prohlášení bylo vystaveno na každé zboží s hodnotou nad 2 500 USD nebo na každou dodávku, která vyžaduje potvrzenou vývozní licenci.

- **Potvrzené vývozní licence** (*Validated export licences*): Dokument vystavuje převážně ministerstvo obchodu země vývozu. Dokument je vyžadován u komodit, které se považují za důležité z hlediska národní bezpečnosti, cílů zahraniční politiky nebo ochrany domácích zdrojů strategických materiálů. Potvrzená vývozní licence prokazuje povolení k vývozu konkrétního produktu do konkrétní země.
Dodací podmínky

Součástí každé vývozní dokumentace by měla být informace o obchodních či dodacích podmínkách. Pro mezinárodní operace platí dvojnásobná důležitost těchto dokumentů, protože se zahraničními přesuny zboží je spojena mnohem větší míra nejistoty a problémů s kontrolou. Dodací podmínky vymezují, kdo je zodpovědný za různé fáze dodávky, kdo nese která rizika a kdo platí za jednotlivé složky přepravy.

3.7 **Různé druhy přepravy a jejich podmínky**

Klíčovou činností logistiky je přemísťování materiálů a zboží z místa vzniku do místa spotřeby, popř. až do konečného města, kde dochází k jejich likvidaci. Zajištění přepravy zahrnuje výběr způsobu přepravy, výběr přepravní trasy, dodržení legislativních předpisů té dané země, kde doprava probíhá a konečně výběr dopravce. V porovnání s ostatními logistickými aktivitami doprava často představuje největší samostatnou nákladovou položku.

Pro přepravu výrobků lze zvolit kterýkoliv z pěti základních způsobů přepravy, kterými je nákladní automobilová doprava (silniční doprava), železniční doprava (kolejová doprava), letecká doprava, lodní nebo potrubní doprava. Pro přepravu výrobků lze použít i různé intermodální kombinace výše uvedených druhů přepravy: např. kolejová-silniční, silniční-lodní, silniční-letecká nebo kolejová-lodní. Intermodální kombinace dopravy nabízejí specializované či levnější služby, které nejsou obecně dostupné, při využití pouze jednoho druh dopravy.

3.7.1 **Silniční doprava**

Silniční doprava nabízí rychlou a spolehlivou přepravu většiny spotřebitelského zboží s malou pravděpodobností poškození či ztráty. Silniční doprava je velmi flexibilní a univerzální. Pružnost autodopravců je dána hustotou silničních sítí (hustota síť pozemních komunikací je až 10x větší než u síť železniční), která jim umožňuje poskytovat přepravní služby „z místa na místo“ prakticky pro jakoukoliv kombinaci místa původu a místa určení. Silniční doprava ve srovnání s ostatními druhy dopravy poskytuje nejširší pokrytí trhu. Silniční dopravou lze přepravovat i takové produkty, které vyžadují speciální modifikace dopravního prostředku.

Silniční doprava dominuje trhu s menšími zásilkami. Silniční doprava přímo konkuruje železniční dopravě v oblasti velkých zásilek, které se přepravují na velké vzdálenosti. Pokud velikost zásilky přesáhne maximální možnou přepravovanou hmotnost, kterou jsou dopravci schopni přepravit na svých kamionech, je již převládajícím druhem přepravy železnice.

Silniční doprava\(^{39}\) je nejen v ČR, ale i v ostatních evropských zemích nejrozšířenější, s dynamickým rozvojem. Silniční doprava v ČR vyžaduje především urychlené dobudování silničních sítí (dálnic) a jejich napojení na hlavní mezinárodní dopravní tahy. Pro mezinárodní silniční dopravu je důležité vytvořit rovné podmínky pro podnikání v dopravě pro naše i cizí dopravce a regulace počtu příjízdících a vyjíždějících kamionů prostřednictvím bilaterálních smluv mezi jednotlivými státy a uplatňování systému TIR. Operací TIR se rozumí přeprava zboží od celnice odeslání k celnici určení, podle režimu zvaného „režim TIR“. Podrobnější informace o systému jsou v příloze č. 8.

Silniční síť ČR měla k 1. 1. 2003 518 km dálnic a 55 919 km silnic. Hustota dálniční sítě byla 0,70 km/km\(^2\), při zahrnutí místních komunikací pak 1,44 km/km\(^2\). Podrobnější informace jsou k nahlédnutí v příloze č. 7.

Obrázek 3.5 – Silniční a dálniční síť České republiky\(^{40}\)
Mezinárodní zahraniční povolení

Možnosti dopravního trhu v mezinárodní kombinované dopravě (dále MKD) jsou závislé na technickém vybavení dopravní firmy a na reálných možnostech přepravy do různých států, které ve většině případů podléhají státní regulaci. Nejvýznamnějším restriktivním opatřením v MKD je uplatňování tzv. kontingentů. Kontingentní zahraniční přepravní povolení umožňují kromě přepravy zboží také podnikání v samotných dopravních službách i bez vazby na naše hmotné zboží (tzn. umožňují našim přepravcům podnikat v cizí zemi a prodávat tam svoji volnou dopravní kapacitu na volném trhu). Povolení a obchody tohoto druhu nejsou ze strany jednotlivých států příliš podporovány.

Množství a druh zahraničních povolení, ale i vzájemné vztahy se zeměmi, do kterých jsou tato povolení vydávána, vycházejí z rámcových mezinárodních bilaterálních dopravních dohod. Těmito dohodami se upravuje vztah mezi ČR a většinou evropských států. Výše uvedená povolení dnes ovlivňují konkrétní podnikatelské aktivity našich i zahraničních silničních dopravců, ale i možnosti přepravovat naše i cizí výrobky po silnici do ciziny a do ČR. Státní opatření či regulace v této oblasti tedy do značné míry ovlivňují export i import zboží.

Druhy zahraniční povolení

Je několik možností jak členit bilaterální zahraniční povolení, níže jsou uvedena dvě nejčastější členění.

Členění podle **druhů přepravy**:

- **Loco povolení** je nejčastější povolení, sloužící pro jednu plnou dopravu MKD ve směru export a jednu import, tzv. povolení jednorázové.
- **Tranzitní povolení** slouží pro realizaci jedné dopravy MKD přes území státu výdávajícího toto povolení ve směru tam i zpět.
- **Třetizemi** umožňuje realizovat dopravu MKD vozidlem jednoho státu ze země druhého státu do třetí země. Tato povolení jsou značně omezena.
Příhraniční povolení vychází ze základních principů povolení loco, avšak s tím omezením, že platí jen do určité vzdálenosti od státní hranice na území druhého státu. Pro naše dopravce je vystavuje např. Rakousko.

Členění podle jejich časové platnosti:

- **Jednorázová povolení** opravňují dopravce k jedné plné jízdě do země určení a k jedné plné jízdě ze země určení.

- **Trvalá povolení** jsou platná pro omezený počet doprav v předem daném časovém období (zpravidla jeden kalendářní rok).

- **Nadkontingentní povolení** jsou určena dopravcům cizích států, které mají eminentní zájem na přepravách přes naše území. Tato povolení vydává ČR a jsou určena pro dopravce z Turecka, Řecka, Bulharska apod. Dopravci zaplatí za každé použití tohoto povolení na našich státních hranicích (při vstupu) 5000 Kč. Tato povolení jsou určena pro přepravu komerčního zboží.

- **Mimokontingentní povolení** se přidělují dodatečně nad sjednaný kontingent zahraničních povolení na základě dodatečného ujednání mezi smluvními stranami. Tato povolení jsou určena pro přepravu nekomerčního zboží a jsou vzájemně akceptována mezi ČR a Belgií, Rakouskem a Španělskem.

Můžeme potvrdit, že rozsah MKD každým rokem stoupá. Přičinou tohoto růstu je zvyšující se objem mezinárodního obchodu a fakt, že převážná část dopravy surovin i zboží se uskutečňuje po silnici. Tento trend se však negativně promítá do ekologie a to je hlavním důvodem, proč si státy bilaterálními dohodami regulují počty projíždějících kamionů po svém území.

3.7.2 Kolejová/železniční doprava41

Železniční síť na území dnešní ČR měla původně vyhovovat potřebám Rakouska-Uherska. V dnešní době se však jedná především o její napojení na důležité evropské cesty, které by měly protinat naši republiku a urychlit tak přepravu osob i dopravu zboží.

V Rakousku, Číně nebo republikách bývalého Sovětského svazu převládá železniční doprava nad ostatními způsoby nákladní dopravy. V USA se velká část zboží, které se původně přepravovalo po železnici, přesunula na silniční dopravu.42

41 VANĚČEK, Drahoš. *Logistics.*

42 LAMBERT, Douglas M., STOCK, James R. a Lisa M. ELLRAM. *Logistika.*
Železniční doprava postrádá pružnost silniční dopravy, neboť se omezuje na pevně dané tratě. I přesto, že je železniční doprava dostupná téměř ve všech velkých světových městech a i v mnoha menších obcích, není železniční síť zdáleka tak rozsáhlá (hustá) jako síť silniční. Kvůli pevně daným železničním tratím se převážně jedná o přepravu „terminal-terminál“, nikoliv přepravu „z místa na místo“ jako u silniční dopravy. Výjimkou jsou případy, kdy podniky mají zřízenou kolejovou připojku přímo do svých zařízení, pak by se mohlo jednat i o přepravu „z místa na místo“.

Letecká, lodní, potrubní i železniční doprava většinou využívá přepravu z terminálu (místa nakládky) do terminálu (místa vykládky). Terminál se jen výjimečně shoduje s počátečním či konečným místem přepravy výrobku. Ve většině případů je jen jedním z překladišť v rámci kombinované přepravy.

Přeprava po železnici nevychází moc příznivě ve srovnání s jinými druhy dopravy, co se týče procenta poškození či ztrát a doby přepravy s frekvencí služeb. Výhodou železnice ve srovnání s jinými dopravními prostředky je šetrný vztah k životnímu prostředí. Železnice se může podílet na dopravě téměř u všech druhů zboží a dokonce u některých druhů je jedinou přípustnou variantou přepravy, např. přeprava nebezpečných látek jako žlutý fosfor či etylen. Tyto nebezpečné látky je z bezpečnostních důvodů zakázáno přepravovat po pozemní komunikaci. Železnice naráží ale na konkurenci jiných specializovaných dopravních prostředků, které mají výraznější přednosti, např. letadla mají výhodu velké rychlosti, nákladní automobily jsou schopny dopravovat kusové zásilky z domu do domu a lodní doprava může dopravovat velká množství zboží.

Železniční doprava se využívá zejména při dopravě odtěžených surovin, kapalných produktů, paliv, stavebních materiálů, ale také při přepravě zboží, kde příliš nezáleží na rychlosti dopravy. Je potřeba vztáh v úvahu, že v méně hustě obydlených lokalitách, kde nevede železnice, je nutné kombinovat dopravu s ostatními druhy dopravy.

Nové technologie napomáhají většímu využití železnice. Jedná se zejména o:

- počítačové směřování a plánování přepravy,
- modernizaci dopravních zařízení, železničního podloží a terminálů,
- zdokonalení systémů identifikace železničních vozů aj.
- použití ucelených / kyvadlových vlaků (přeprava pouze jednoho druh produktu jedním směrem)

Největší konkurencí železniční dopravy je nákladní silniční doprava, která vede především tam, kde se jedná o přepravu na kratší vzdálenosti. V evropských poměrech se považuje za optimální vzdálenost pro železniční přepravu 400 km. Do této vzdálenosti je konkurenceschopnější silniční doprava, nad vzdálenost 400 km je výhodnější přeprava po železnici a v určitých případech i doprava letecká. Při přepravě po železnici vznikají velké časové ztráty v místech nakládky a vykládky, které se promítají do nákladů přepravy. Mimo tyto náklady se musí počítat i s většími náklady na zabalení zboží přepravovaného po železnici. Balení zboží v železniční dopravě je často nákladnější než u dopravy automobilové, protože u železniční dopravy je třeba zabezpečit zboží proti nárazům na seřizovacích nádražích.

Skroz řídkou železniční síť v porovnání se síti silniční se doprava po železnici často může provádět jen ve spojení s nákladní autodopravou. Vznikají zde však dodatečné náklady na přečekávání zboží, které jsou v rámci kombinované dopravy minimalizovány. V dopravě na větší vzdálenosti (400 km a více) se výhody i nevýhody železniční a silniční dopravy vyrovňávají. Nákladní automobilová doprava má výhody při dopravě kusového zboží nebo pro zásilky, které zaújmu jeden celý vagón či auto. Neplatí to však pro dopravu hromadných substrátů, pro jejichž přepravu se výhodněji několik vagónů či celý vlak. V takových případech je železniční doprava prakticky nenahraditelná.

Česká republika má nej hustší železniční síť v Evropě a měla by toto dědictví úspěšně využít pro své potřeby. Provozní délka železniční sítě ČR (2002) činí 9 430 km a má hustotu 0,12 km/km². Přibližně 3 000 km nejdůležitějších tratí přenáší asi 70 % výkonů osobní dopravy a 90 % výkonů nákladní dopravy. ČD disponuje 5 149 vozy pro osobní dopravu a 49 150 nákladních železničních vozů. Podíl regionálních tratí, které tvoří přibližně jednu třetinu železniční sítě, se na celkových výkonech podílí asi 15 %.

Většina tratí vznikla před 100 lety a železniční síť již neodpovídá současnému rozmístění průmyslu a potřebám obchodu. Zachování provozu na současně dělece 9 430 km železničních tratí je pro daňové poplatníky i pro stát neefektivní, zvláště když jejich využití je
velmi rozdílné, proto je v některých případech nevyhnutným řešením zrušení některých neefektivních tratí. Pouze na 23 % z celkové délky železniční sítě ČD se realizuje 80 % výkonů v nákladní a 84 % výkonů v osobní přepravě.

Rozsah železniční nákladní dopravy bude vždy limitován objemem produkce v přepravně rozhodujících oborech, jako jsou doly, hutě a stavebnictví. Naopak přeprava dražšího dřevě zboží se orientuje spíše na silniční dopravu, protože je zde menší riziko poškození zboží, přestože je ve srovnání se železnici dražší. Naproti tomu přeprava hromadných substrátů a ostatních přeprav z vlečky na vlečku je výhodná po železnici.

Pro území ČR byly vybrány čtyři hlavní železniční koridory vyznačené na obrázku 3.6, které jsou pro nás rozhodující:

- Rakousko – Břeclav – Přerov - Petrovice u Karviné – Polsko
- Německo – Cheb – Plzeň – Praha – Olomouc - Petrovice u Karviné – Polsko (popř. odbočka u Mostů u Jablunkova směr na Slovensko)
- Německo – Děčín – Praha - Veselí nad Lužnicí - Horní Dvořiště – Rakousko

Dosažení evropské úrovně železničních koridorů je technicky, ekonomicky i termínově náročný proces. Po technické stránce spočívá modernizace železniční sítě především ve zhutnění a izolaci železničního spodku, výměně železničního svršku, generální údržbě nebo výměně sdělovacího a zabezpečovacího zařízení apod. Cílem je především zvýšení rychlostí tratí do 160 km/hod.

Obrázek 3.6 – Hlavní železniční koridory v České republice

44 VANĚČEK, Drahosl. Logistika.
3.7.3 Říční a námořní (lodní) doprava

Lodní doprava se soustřeďuje na produkty s relativně nízkou hodnotou (např. železná ruda, obilí, dřevo, uhlí, vápenec nebo ropa), kde rychlost přepravy není kritickým faktorem. Lodní doprava je časově nejnáročnějším druhem přepravy, ale přepravní náklady se mohou jevit jako výhodné v porovnání s ostatními dopravními prostředky. Nevýhodou však je, že přístavy jsou jen na pobřeží nebo na velkých řekách, takže doprava zboží od výrobce do těchto přístavů může cenu dopravy značně prodražit. Lodní doprava je pravděpodobně nejlevnějším způsobem přepravy hromadných substrátů s relativně nízkou hodnotou.

Lodní přepravu můžeme rozdělit do několika odlišných kategorií:

▪ doprava po vnitrozemských vodních cestách (řeky, kanály),
▪ lodní doprava po jezerech,
▪ přípobřežní námořní doprava,
▪ mezinárodní námořní doprava.

Česká republika provozuje prakticky pouze říční dopravu, o své námořní lodě přišla v průběhu privatizace. Česká republika využívá především severoněmecký Hamburk, holandský Rotterdam a přilehlé přístavy, kam dopravci zboží dopraví buď po silnici, nebo po železnici.

Pro vodní dopravu se využívají i vnitrozemské přirozené nebo umělé kanály. V České republice se pro přepravu využívá pouze Labsko-vltavská vodní dopravní cesta dlouhá celkem 303 km, která je přímo napojena na evropské vodní cesty. Česká republika má 76 motorových nákladních lodí, 224 vlečných a tlačných člunů a 133 vlečných a tlačných remorkérů (2002). Podrobnější informace o Labi a dalších evropských vodních cestách jsou v příloze č. 12.

Vnitrozemské vodní cesty jsou závislé na stavu vody a na době zamrzání hladiny. Podíl nákladní přepravy na přepravním trhu na území ČR se v letech 1989-1995 pohyboval okolo 0,6 %. Na Labsko-vltavské vodní cestě je vybudováno 9 veřejných přístavů a 21 závodových překladišť. Nárůstu zájmu o lodní dopravu brání současný stav vodní cesty mezi Ústí nad Labem a Magdeburkem, kde jsou nespolehlivé plavební hloubky. Výhledově se předpokládají úpravy toku, které umožní větší splavnost. Úpravami toku bude garantována plavební hloubka 1,6 m po 345 díl v roce a plavební hloubka 2,5 m po dobu zhruba půl roku. Perspektivně se těž uvažuje o splavnění Labe už od Pardubic.

46 VANĚČEK, Drahoš. Logistika.
Význam lodní dopravy se ve světě různí.

Lodní doprava je omezena dostupností jezer, řek, kanálů nebo přípobřežních vodních cest (samozřejmě mimo zaoceánské dopravy). Použití lodní dopravy závisí do značné míry na geografické poloze konkrétního území. V severní a střední Evropě má lodní doprava mnohem větší význam než v např. v USA, protože zde existuje rozsáhlý systém splavných vodních cest. V Nizozemí, Belgii a Lucembursku se po vodních cestách představuje 20 % veškerého přepravovaného nákladu.

Supertankery

Díky vývoji supertankerů (obří tankové lodě) získala námořní doprava životně důležitou úlohu při přepravě ropy mezi zeměmi produkující ropu a zeměmi kupujícími ropu. Vzhledem k významu energetických zdrojů pro průmyslově vyspělé země bude lodní doprava i nadále hrát důležitou roli při transportu těchto zdrojů. K růstu lodní dopravy přispívají i kontejnerové lodě, které jsou schopné převést až 6 000 normovaných kontejnerů.

Většina mezinárodních zásilek zahrnuje použití kontejnerů. Přepravce z jedné země naloží náklad do vlastního nebo pronajatého kontejneru přímo v rámci svého zařízení nebo v místě původu/odeslání. Kontejner se následně přepraví prostřednictvím železniční nebo silniční dopravy do přístavu, kde se naloží na kontejnerovou loď. Po příjezdu do přístavu určení se kontejner vyloží a předá železničnímu či silničnímu dopravci, který kontejner dopraví zákazníkovi nebo příjemci.

47 VANĚČEK, Drahoš. Logistika.
3.7.4 Letecká doprava

Letecká doprava zboží a nákladů patří mezi nejmladší druhy dopravy. Až do 2. světové války se letectou dopravou přepravovaly výhradně osoby a poštovní zásilky. Později se začala konstruovat letadla typu „kombi“, která umožňovala za oddíly pro cestující uložit kontejnerové a paletové jednotky se zbožím a přepravit je spolu s cestujícími.

Letecká doprava je nejvhodnější v případě, že je nutné určitou položku dodat velmi rychle na nějaké vzdálené místo určení. V tu chvíli nabízí letecká doprava nejkratší dobu přepravy ze všech druhů dopravy, a proto je nejvýhodnějším řešením. Při dodávkách typu „z místa na místo“ na kratší vzdálenosti však může silniční doprava dosáhnout stejných nebo i kratších celkových dob přepravy. A proto je pro přepravce víc důležitá celková doba přepravy, nikoli pouze přeprava „z terminálu do terminálu“.

Přednosti letecké dopravy jsou vysoká dopravní rychlost, bezpečnost přepravy, jednoduchost odbavení, hustota dopravní sítě a přehlednost dopravních cest. Naproti tomu je tento druh dopravy nejnákladnější. Výhoda velké rychlosti letecké přepravy se projevuje pozitivně až při dostatečně velké vzdálenosti tím, že se zkracují dodací lhůty. Při použití letecké dopravy na krátkych tratích, zvláště když dodavatel nebo příjemce není v blízkosti letiště a musí zboží dovést (odvést) na letiště, je možné časovou úsporu snadno ztratit.

Dopravci a speditéři aktivně spolupracují s leteckými společnostmi a celními úřady, aby odbavování zásilek bylo jednodušší a rychlejší. Na letištích jsou budovány nákladové terminály s dostatečnou kapacitou a vybavené moderní technikou pro překládku a skladování.

Pro většinu komerčních leteckých společností představuje přeprava zboží pouze vedlejší činnost k přepravě osob a provádí se podle možností nákladního prostoru, který je právě k dispozici. Rovněž ČSA se zabývají nákladní dopravou, a i zde je veškerá přeprava

48 VANĚČEK, Drahoš. Logistika.

3.7.5 Potrubní doprava

Potrubní dopravou lze přepravovat pouze omezený počet produktů, kterými jsou zemní plyn, ropa, ropné produkty, voda, chemikálie nebo zkapalněné produkty. Převážná část potrubní dopravy se týká zemního plynu a ropy. Obecně můžeme říci, že pokud je určitý produkt povahy kapalné, plynné, případně jej lze zkapalnit, pak jej lze transportovat potrubní dopravou.

Potrubní doprava zajišťuje vysokou úroveň servisu při relativně nízkých nákladech na přepravu. Potrubní doprava je schopna dodávat produkty včas díky následujícím faktorům:

- Tok produktů uvnitř potrubního systému je monitorován a řízen počítači.
- Ztráty a poškození kvůli trhlinám nebo prasklinám potrubí nastávají jen zřídka.
- Klimatické podmínky mají na přepravu produktů v potrubí minimální vliv.
- Potrubní doprava není náročná na pracovní síly.

V USA představuje potrubní doprava ropných produktů cca 18,4 % veškeré vnitrostátní nákladní dopravy. V Evropě a Japonsku je podíl potrubní dopravy relativně nevýznamný, ovšem mimo USA i v zemích bývalého Sovětského svazu je touto formou přepravováno velké množství produktů.

3.8 Globalizace přepravy

Mezinárodní nákladní přeprava může využívat kterýkoliv z pěti základních druhů dopravy. Za nejdůležitější mezikontinentální dopravu lze ovšem považovat dopravu leteckou a lodní. Silniční a železniční doprava jsou nejdůležitějšími způsoby přepravy zboží po kontinentu a uvnitř jednotlivých států.

50 LAMBERT, Douglas M., STOCK, James R. a Lisa M. ELLRAM. Logistika
51 LAMBERT, Douglas M., STOCK, James R. a Lisa M. ELLRAM. Logistika
Manažeři zabývající se mezinárodním obchodem, musí mít potřebné znalosti o službách mezinárodních dopravců, o nákladech a dostupnosti různých druhů dopravy v rámci a mezi zeměmi, do kterých jsou jejich produkty dodávány.

Při rozhodování o způsobu dopravy a přepravy zboží musí řídící pracovník logistiky dobře rozumět rozdílům mezi domácím a mezinárodním trhem. Dostupnost jednotlivých druhů dopravy, dopravní tarify, regulační omezení, úroveň dopravního servisu a další faktory ovlivňující přepravu v dané zemi se mohou v různých zemích velmi odlišovat.

Mezinárodní přeprava je nákladnější než přeprava vnitrostátní

V různých zemích mohou existovat různě požadavky na přepravu a to v oblastech daní, subvencí, předpisů, státního vlastnictví některých dopravců, geografických a dalších faktorů. Např. v Evropě, kde existuje státní vlastnictví železnice nebo subvence železnice ze strany státu, je železniční přeprava ve výhodě. V Japonsku a v Evropě se v porovnání s USA a Kanadou využívaná v mnohem větší míře lodní doprava, neboť jsou zde rozsáhlejší vnitrozemské lodní cesty a příhodnější charakter pobřeží.

V mezinárodní přepravě je nejběžnější formou přepravy intermodální přeprava. I když náklady na manipulaci s přepravními prostředky jako např. kontejnery mohou být vyšší než při použití jednoho druhu dopravy, celkovým efekt kombinované přepravy může být úspora nákladů a rovněž vyšší úrovně servisu. Existují tři základní formy mezinárodní intermodální přepravy:

- **Landbridge (transit):** přepravní systém, kdy zahraniční náklad projíždí zemí na cestě do jiné země.
- **Minilandbridge (minibridge):** je zvláštním případem výše uvedeného systému landbridge, kdy zahraniční náklad má místo svého odeslání nebo místo svého určení v rámci jedné země (např. převoz pouze po USA).
- **Microbridge:** je poměrně nový druh dopravního servisu, který poskytují přístavy např. na západním pobřeží USA. Tato forma přepravy má spíše povahu rozvážkového servisu (door-to-door), než jen povahu přepravy „z přístavu do přístavu“. Systém microbridge má velkou výhodu v tom, že poskytuje kombinovanou sazbu, která v jednom tarifu zahrnuje železniční i námořní dopravu a která je celkově nížší, než by byl součet jejich samostatných položek.
3.9 Legislativa a různá legislativní omezení

Nejstabilnější a snad i nejrespektovanější mezinárodní úmluva v oblasti přepravy je Úmluva CMR, podrobnosti o úmluvě jsou součástí přílohy č. 5. Úmluva CMR je široce aplikovatelná na poli mezinárodní přepravy zboží po silnici. Přestože se projevily určité výkladové potíže a dochází k rozdílné aplikaci jejích ustanovení ve smluvních státech, má stále značný význam a nesporný regulační charakter.

Jak tvrdí Pavel Sedláček: „Všeobecně lze říct, že smlouva o přepravě se týká smluvního vztahu mezi dvěma stranami, na jejímž základě jedna ze smluvních stran (dopravce) přejímá na sebe povinnosti přepravit zboží z určitého místa do určitého jiného místa na základě dohody s odesílatelem, a to k rukám příjemce, přičemž druhá smluvní strana (odesílatelem) se zavazuje zaplatit přepravné. Tuto definici přepravní smlouvy lze vztáhnout též na úpravu v rámci Úmluvy CMR.“

Přepravu věci v mezinárodním měřítku upravují zejména tyto úmluvy:

- Varšavská úmluva – úmluva o sjednocení některých pravidel o mezinárodní letecké dopravě z 12. 9. 1929.
- Montrealská úmluva – úmluva o sjednocení některých pravidel o mezinárodní letecké přepravě z 28. 5. 1999.
- COTIF – úmluva o mezinárodní železniční přepravě z 9. 5. 1980
- Haagská pravidla – mezinárodní úmluva o sjednocení některých pravidel ve věci konosamentů z 25. 8. 1924.

52 VANĚČEK, Drahoš. Logistika.
53 SEDLÁČEK, Pavel; Úmluva CMR.
54 SEDLÁČEK, Pavel; Úmluva CMR. (s. 23)
• Haagsko-Visbyská pravidla – protokol o změně mezinárodní úmluvy o sjednocení některých pravidel ve věci konosamentů, podepsané v Bruselu dne 25. 8. 1924, přijatý dne 23. 2. 1968.
• Hamburská pravidla – úmluva Organizace spojených národů o námořní přepravě zboží z 31. 3. 1978.
• CMNI – Budapešťská úmluva o přepravě zboží po vnitrozemských vodních cestách z roku 2005.

České právní předpisy, ustanovení obchodního a občanského zákoníku, se použijí na jakoukoliv formu dopravy, ať už se jedná o přepravu silniční, železniční, leteckou či lodní (námořní či říční).

3.9.1 Vybrané termíny s odkazem na českou legislativu

Náklad

V originálním anglickém znění publikace Úmluva CMR se hovoří o nákladu jako o „goods“, v překladu – zboží, (osobní) majetek, věci. Dle Úmluvy CMR musí mít přepravovaná zásilka určitou hodnotu. Co přesně může být přepravovanou věcí, je specifikováno v české legislativě, kterou je v rámci českého právního řádu občanský a obchodní zákoník.

Jak tvrdí Pavel Sedláček: „Občanský zákoník hovoří o přepravě zásilek jako o přepravě movitých věcí. Dle §119 Občanského zákoníku se věci dělí na věci movité a nemovité. Nemovitostmi jsou pozemky a stavby spojené se zemí pevným základem, jen stěží proto mohou být přepravovanou zásilkou. Věci movité již definovány nejsou a tradičně se jimi označují věci přemisťitelně z místa na místo bez narušení jejich podstaty. Ani zboží není právně v Obchodním zákoníku nebo Občanském zákoníku definováno, lze však za něj považovat věci, které mají obchodní povahu.“

Výkony za úplatu

Úplata za provedení přepravy se sjednává před uskutečněním přepravy, v jejím průběhu, nebo i po jejím uskutečnění. Její sjednání však není nutnou podmínkou pro uskutečnění přepravy. Při stanovení obvyklé ceny se přihlédne k povaze zásilky, délce přepravní trasy, použitému dopravnímu prostředku i ke zvláštním okolnostem.

55 SEDLÁČEK, Pavel. Úmluva CMR.
56 SEDLÁČEK, Pavel. Úmluva CMR. (s. 45)
Dopravní cesty

Dopravní cestou nemusí být pouze pozemní komunikace ve smyslu zákona o pozemních komunikacích č 13 / 1997 Sb. Tento zákon hovoří o pozemních komunikacích jako o dopravní cestě k užití silničními i jinými vozidly a chodci. Komunikace můžeme rozdělit na dálnice, silnice, místní komunikace a účelové komunikace. Dopravní cestou však může být i polní komunikace, kopec, průsmyk aj. Lze říci, že přeprava může být provedena i sněžným skútrem, který je schopný silniční přepravy, např. z Krkonoš na území Polska. Anglický termín „road“ nehovoří přímo o tom, že by se muselo jednat o určitou zákonem vymezenou silnicí.

Silniční vozidlo

Multimodální přeprava

Úmluva CMR se vztahuje i na kombinovanou přepravu, ale pouze za situace, kdy by přeprava po silnici představovala rozhodující úsek přepravní cesty. Nepředstavuje-li však silniční či železniční přeprava rozhodující část cesty, bude se otázka odpovědnosti dopravce, náhrady škody a rozsah nároků řídit předpisy toho druhu přepravy, který byl v daném případě rozhodující. Toto pravidlo vychází z dosud mezinárodně nekodifikovaných zásad multimodální přepravy.

Přeprava mezi dvěma státy

Úmluva CMR se nedá aplikovat na přepravu, kde se místo odeslání a místo určení nacházejí na území téhož státu, i kdyby při cestě dopravce projížděl jiným státem. Úmluva CMR se tedy aplikuje pouze tam, kde místo odeslání a místo určení leží ve dvou různých státech, z nichž oba jsou členy Úmluvy CMR, nebo z nichž alespoň jeden je smluvním státem, tzn. Úmluva CMR byla tímto státem převzata do vnitřního zákonodárství a je tedy veřejně právně závazná. Tímto způsobem se přeprava dle Úmluvy CMR rozšířila také na Střední a Blízký Východ, do severní Afriky a Turecka.
3.10 Cena a náklady za dopravu

Faktory ovlivňující přepravní náklady a cenu přepravy můžeme rozdělit do dvou hlavních kategorií: faktory související s charakterem výrobku a faktory související s charakterem trhu.

Faktory související s povahou výrobku existuje celá řada, ale těmi hlavními čtyřmi jsou:

- **Hustota**

 se týká poměru hmotnosti a objemu daného výrobku. U položek jako ocel, stavební materiály či papírenské suroviny je hustota vysoká tj. vzhledem k velikosti jsou výrobky relativně těžké. Na druhé straně známe produkty jako elektronika, oblečení nebo hračky, které mají hustotu nízkou, tj. vzhledem ke svým velikostem jsou relativně lehké. Obecně můžeme říct, že přeprava výrobků s nízkou hustotou má tendenci stát více (při přepočtu na kg zboží) než přeprava výrobků s vysokou hustotou.

- **Skladovatelnost výrobku**

- **Snadnost či obtížnost manipulace**

 s výrobkem úzce souvisí s jeho skladováním. Přeprava výrobků, se kterými se obtížně manipuluje, je dražší. Výrobky, které jsou co do svých fyzických charakteristik stejnorodé (např. výrobky balené v kartonech, plechovkách či sudech) nebo se kterými můžeme manipulovat pomocí standardních manipulačních zařízení, vyžadují nižší náklady na manipulaci, a jejich přeprava je tedy relativně levnější.

Hodnota výrobku a ručení spolu úzce souvisí. U výrobků, které mají vysoký poměr hodnoty vzhledem k objemu, existuje větší pravděpodobnost poškození a krádeží. Z těchto důvodů stojí přeprava výrobků s vyšší finanční hodnotou více.

Další faktory

K dalším faktorům souvisícím s charakterem výrobku patří rizikovost přepravy výrobku a potřeba odolného ochranného balení. Tyto faktory jsou obzvláště důležité v chemickém průmyslu.

Faktory souvisící s povahou trhu jsou vedle vlastností daného výrobku druhou složkou, která ovlivňuje přepravní náklady a cenu přepravy. Mezi nejdůležitější faktory patří:

- Míra konkurence v rámci určitého dopravního odvětví a mezi jednotlivými druhy dopravy.
- Rozmístění trhů, které určuje, na jaké vzdálenosti se musí zboží přepravovat.
- Povaha a rozsah vládních regulačních opatření, která se týká dopravy.
- Rovnováha/nerovnováha dopravy směrem na určitý trh a směrem ven z určitého trhu.
- Sezónnost přesunů výrobků.
- Zda je výrobek přepravován pouze vnitrostátně, nebo mezinárodně.

3.11 Volba přepravy

Výběr dopravy a dopravce se stává stále důležitějším aspektem logistického řízení, neboť přepravní společnosti se obecně snaží snižovat počet dopravců, se kterými obchodují, a snaží se vytvářet systém několika klíčových dopravců, se kterými následně spolupracují. Větší přepravované objem a kvalitnější dopravní servis dává totiž přepravcům možnost snížit přepravní náklady.

3.11.1 Rozhodování o volbě způsobu přepravy a dopravci

Podniky jsou tlačeny a nuceny různými ekonomickými omezeními, konkurenčními tlaky a požadavky zákazníků k tomu, aby přijímaly co nejefektivnější a nejproduktivnější rozhodnutí ve volbě způsobu přepravy a výběru dopravců. Přeprava ovlivňuje nejen zákaznický servis, ale i dobu přepravy zboží, spolehlivost servisu, zásoby, balení, skladování, spotřebu energie, míru znečištění způsobené přepravou aj. Podniky svým výběrem (způsob

přepravy a dopravce) musí vytvořit co nejkvalitnější strategii, která by pro ně měla znamenat úsporu v oblasti nákladů a růst konkurenční pozice na trhu.

Při rozhodování o výběru druhu dopravy/dopravce rozlišit čtyři samostatné fáze: rozpoznání problému, proces zkoumání možností, proces volby, následné zhodnocení.

Rozpoznání problému

Rozpoznání problému je prvním stádiem procesu rozhodování o výběru druhu dopravy a dopravce. Problém může vzniknout na základě různých faktorů: požadavky zákazníků, nespokojenost s existujícím způsobem přepravy nebo změny v distribučním modelu podniku. Nejdůležitější faktory mají obvykle nějakou souvislost se zákaznickým servisem. Pokud zákazník netrvá na určitém způsobu přepravy, lze po rozpoznání problému zahájit fázi zkoumání možných alternativ.

Proces zkoumání

V rámci procesu zkoumání posuzují příslušní manažeři různé informace, které jim pomůžou přijmout optimální rozhodnutí ve věci volby druhu dopravy a dopravce. Zdrojem informací mohou být minulé zkušenosti, obchodní zástupci dopravců, podnikové záznamy o uskutečněných dodávkách či zákaznici podniku. Jakmile mají manažeři shromážděno dostatek relativních informací, je možno přistoupit k volbě optimální alternatyvy přepravy zboží.

Proces volby

Proces volby se zabývá výběrem jedné z prozkoumaných alternativ přepravy, které jsou manažerům k dispozici. Řídící pracovníci úseku dopravy na základě dříve shromážděných informací určí, která z dostupných možností nejlépe vyhovuje požadavkům zákazníků na servis, a to za přijatelné náklady. Obecně platí, že nejdůležitějším faktorem při výběru dopravy a dopravce jsou faktory související s úrovní zákaznického servisu.

Všeobecně důležitá a nejčastěji používaná kritéria při výběru a hodnocení dopravců jsou včasná vyzvednutí a dodání zboží, rychlá odezva na dotazy zákazníků, spolehlivé doby přepravy a konkurenční sazby, bez ohledu na uvažovaný druh dopravy nebo dopravce.

Řídící manažeři vyberou ten druh dopravy a následně dopravce, který nejlépe vyhovuje rozhodovacím kritériím. Zásilka je odeslána prostřednictvím této formy přepravy. Když se v budoucnu objeví podobná rozhodovací situace, např. opakovaná objednávka nějakého zákazníka, může management zavést rutinní postup, aby podnik v budoucnu mohl
ušetřit peníze, které by jinak musel vynaložit na opakování celého výběrového procesu. Rutinní postup při určitém typu objednávky eliminuje neefektivnost, která je spojená s opakovaným konáním stejného rozhodování.

Následné vyhodnocení

Poté co management zvolí druhu dopravy a dopravce, musí ustanovit určité hodnotící postupy, pomocí kterých bude v budoucnu určovat úroveň výkonu zvoleného druhu dopravy. Tento následný hodnotící proces může být extrémně podrobný anebo také nemusí vůbec existovat. U většiny firem se rozsah následného hodnotícího procesu pohybuje někde mezi těmito dvěma extrémy.

Podniky obvykle při následném hodnocení používají následující metody: analýzu nákladů, audity, přezkoumání včasných vyzvednutí zboží a dodávkového výkonu. Některé podniky provádějí statistickou analýzu ukazatelů kvality přepravního servisu, poskytované dopravcem, např. včasnost dodání nebo míry ztráty a poškození.
4 PRAKTICKÉ ŘEŠENÍ PŘEPRAVY NADMĚRNÉHO NÁKLADU

Ve čtvrté kapitole zanalyzujeme jeden z prvních realizovaných dovozů technologií do společnosti HMMC. Provedeme detailní analýzu již zrealizované přepravy nadměrného nákladu. Po jejím vyhodnocení se pokusíme navrhnout nové možné varianty přepravy. Nové možnosti přepravy by měly podniku přinést úspory z hlediska zkvalitnění služeb, nákladů na přepravu a času potřebného pro její realizaci. Po zanalyzování všech nových variant provedeme srovnání i s již realizovanou přepravou a posoudíme správnost realizované přepravy. Závěrem této kapitoly vznese návrhy na zlepšení.

4.1 Jedna z prvních realizací dovozu technologií a dílů do společnosti HMMC v Nošovicích

Součástí nákupního oddělení je šestičlenná sekce Transportation & Customs (Přeprava & cla) zabývající se celní problematikou u technologie a dílů dovážených ze zemí mimo Evropskou unii.

Obrázek 4.1 - Vykládání jednotlivých částí lisu v přístavu v Hamburku

59 Interní dokumenty společnosti HMMC

Kromě dovozu technologie a zařízení spadá do kompetence této sekce také dovoz náhradních a výrobních dílů ze zemí mimo EU. I zde se jedná z velké většiny o dovoz z Korejské republiky. Jak u dovážených zařízení tak i dílů platí, že problematiku proclení zařizuje přímo toto oddělení. Samotnou dopravu pak zajišťuje dodavatelská společnost Glovis KR (dále jen Glovis).

4.2 Dovoz nadměrného nákladu z Jižní Koreje do ČR

Vzhledem ke skutečnostem, že mateřská společnost působí v Jižní Koreji a dceřiná společnost HMMC sídlí v ČR, se nám naskytla jedinečná možnost analyzovat mezinárodní přepravu nákladu mezi výrobními závody. Ne často se však setkáváme s nadměrným nákladem přepravovaným mezinárodně a dokonce mezikontinentálně, častějším jevem je mezinárodní a mezikontinentální přeprava normovaných nákladů. Podrobnější informace o parametrech přepravovaného nákladu, zvolené trase a druhu přepravy jsou obsahem této kapitoly.

4.2.1 Parametry přepravovaného zboží

Nadměrným nákladem přepravovaným v této práci je část strojního zařízení potřebného k zahájení sériové výroby nového modelu automobilu. Vzhledem k tomu, že se nejedná o normovaný náklad (viz. kapitola 3.4), bude přeprava nákladu vyžadovat speciální podmínky a individuální přístup k jednotlivým částem realizované přepravy.

Společnost HMMC potřebovala přepravit z Jižní Koreje část strojního zařízení potřebného ve výrobě. Specifický nadměrný náklad byl přepraven v několika etapách po jednotlivých částech.

Strojní zařízení bylo rozděleno na jednotlivé části, které byly zabaleny do velkých dřevěných přepravních beden. Dřevěný obal zabezpečuje jednoduší manipulaci a přepravu s nákladem za menší pravděpodobností poškození jejího obsahu. Musíme však počítat s tím,
že dřevěné bedny mají rozdílné vlastnosti např. v porovnání s kontejnery, které zaručují daleko větší odolnost přepravovaného nákladu proti poškození či ztrátě (krádeži).

Dřevěné bedny obsahující strojní zařízení mají následující parametry:

- 10 dřevěných beden o rozměrech 4,4 x 4 x 4,4 (uvedeno v m),
- hmotnost dřevěné bedny činí 28 562 kg,
- tedy hmotnost přepravovaného nákladu činí 285 620 kg.

4.2.2 Trasa a způsob realizované přepravy (zvolený druh přepravy)

Vzhledem k výše uvedeným parametřům přepravovaného zboží bylo nutné zvolit specifickou trasu přepravy. V této části diplomové práce se seznáme s jednotlivými druhy přepravy, které byly zvoleny v jednotlivých částech trasy.

Podstatnou informací je, že celou přepravu nadměrného nákladu zaštiťuje společnost Glovis (podrobnější informace o společnosti jsou v příloze č. 4). Vzhledem ke skutečnosti, že se jedná o deset beden nadměrných rozměrů, bude situace ještě o něco komplikovanější. V některých úsecích realizované trasy bude muset být povoláno více dopravních prostředků daného druhu dopravy, která bude pro transport využita (např. nákladní automobilová doprava).

Realizovaná trasa

Místem nakládky je výrobní závod mateřské společnosti HMC v Ulsanu (Korejská republika). Ze závodu v Ulsanu je náklad převezen pomocí nákladních automobilů do přístavu Busan (Korejská republika). V přístavu proběhne naložení nákladu na námořní nákladní loď. Po naložení a v průměru třicetí denní trase po moři je náklad dopraven do přístavu v Hamburku (Německo). Zde je náklad přeložen na podstatně menší nákladní loď, která je uzpůsobena pro přepravu nákladu po splavných řekách v Evropě, a následně z Hamburku přemístěn do Mělníku (Česká republika). Z Mělníku je náklad převezen pomocí nákladní automobilové dopravy do místa finální vykládky v Nošovicích.

Přeprava byla realizována v období listopad a prosinec 2010 a trvala 45 dní, což vzhledem ke vzdálenosti není tak dlouhá doba. Cena dopravy se vyšplhala k částce 130 000 €.
Průběh realizované přepravy od prvního impulsu

V technologicko-inovačním centru mateřské společnosti HMC neustále přemýšlí nad tím, jak udělat automobily značky Hyundai lepší, atraktivnější a bližší zákazníkovi. I přesto, že vývoj nového modelu vozu je komplikovaný proces, se Korejci díky svoji píli a usilovné práci nenechají jen tak odradit. Jejich pečlivá práce je na konci právem oceněna úspěchem u zákazníků.

Počáteční impuls naší přepravy vznikl v mateřské společnosti HMC, která přidělila českému výrobnímu závodu v Nošovicích nový úkol. Aby HMMC mohla začít plnit svůj úkol, bylo nezbytně nutné přemístit potřebné výrobní zařízení do nošovického výrobního závodu. Tímto impulsem se odstartoval celý proces nadměrného nákladu.

Samotný průběh přepravy si detailně popíšeme. Společnost HMC objedná pro společnost HMMC všechny potřebné díly a části u dodavatelů. V momentě, kdy díly jsou nachystány pro přepravu (popř. HMC zná termín, kdy budou nachystány), tak HMC kontaktuje dodavatele zajišťujícího dopravu, kterým je společnost Glovis. Společnost Glovis sice sama nezabezpečuje přepravu, ale je nejdůležitějším článkem celého přepravního řetězce. Glovis koordinuje celý proces a zajišťuje společnosti HMC, že průběh přepravy z místa nakládky (Jižní Korea – viz. obrázek 4.3) do místa finální vykládky (České republika – viz. obrázek 4.4) proběhne pod jejich takto využitím, bez zbytečných komplikací, zbytečně vynaložených prostředků, se všemi potřebnými povoleními apod. Společnost Glovis komunikuje a informuje o celém průběhu přepravy jak společnost HMC, tak i HMMC, která čeká na díly, které mají do výrobního areálu v Nošovicích dorazit.

Před tím, než se samotná realizace cesty rozběhla, Glovis jako společnost koordinující přepravu nákladu kontaktoval své dodavatele a subdodavatele a dal jim potřebné informace o přepravovaném nákladu. Na základě předaných informací o přepravovaném strojním zařízení a získaných cenových nabídkách, společnost Glovis vybrala nejatráaktivnější cenové nabídky, ze kterých (vy)poskládala kompletní cestu z Ulsanu do Nošovic. Následná koordinace byla samozřejmě na společnosti Glovis a jejím správném načasování dopravy. Počáteční místo nakládky je vyznačeno na obrázku 4.3 a místo finální vykládky na obrázku 4.4, mimo to je celá trasa přepravy vyznačena červenou linkou na obrázku 4.2 a detailně popsána na s. 50 této diplomové práce. Modrá linka na obrázku 4.2 představuje další možnou variantu přepravy, kterou se budeme zabývat v kapitole 4.3.
Po ukončení výběrového řízení na přepravu nadměrného nákladu, Glovis oznámil společnostem HMC a HMMC termín přepravy a její cenu. Společnost Glovis spolupracuje se svými prověřenými dodavateli, tzn. nemělo by dojít k nějakému selhání při přepravě.

Obrázek 4.2 – Trasa přepravy nadměrného nákladu námořní dopravou

Výběrovým klíčem byla cena a čas přepravy. Vzhledem ke specifickým rozměrům nadměrného nákladu bylo v některých částech trasy zcela jasné, jaký druh přepravy bude vybrán, a porovnávaly se tedy pouze ceny zaslaných nabídek a zkušenosti s dopravcem. Vzhledem k tomu, že společnost Glovis je členem HG, je i v jejím zájmu, aby celá doprava byla co nejméně náročná a to jak finančně tak časově. Trasa byla tedy rozdělena do několika částí a zadána jednotlivým dopravcům, kteří projevili zájem o přepravu nadměrného nákladu. Společnost Glovis nepoptávala pouze samotný převoz, ale veškeré sounáležitosti s tím spojené, jako jsou např. získání přepravního povolení, celní odbavení, včetně zajištění všech potřebných dopravních dokumentů, pojištění zásilek pro mezinárodní přepravu, zajištění trasování většího nákladu, zajištění doprovodného vozidla popř. i policie při samotném transportu, apod.

Obrázek 4.3 – Jižní Korea

Obrázek 4.4 – Česká republika

61 Dostupný z: <http://www.conservapedia.com/Category:Maps_of_Asia>
Na základě výběrového řízení byla naplánovala následující trasa:

- **Ulsan → Busan** - nákladní kamionová doprava (délka přepravy 4 dny)
- **Busan → Hamburk** - námořní (lodní) doprava (délka přepravy 30 dní)
- **Hamburk → Mělník** - říční (lodní) doprava (délka přepravy 7 dní)
- **Mělník → Nošovice** - nákladní kamionová doprava (délka přepravy 4 dny)

Z uhrazené částky 130 000 € bylo 60 000 € vynaloženo pouze na námořní dopravu z Busanu do Hamburku, která trvala 30 dní. Zbylých 70 000 € společnost HMMC zaplatila za nákladní automobilovou dopravu po Korejském poloostrově, za nákladní lodní dopravu po Labi a za nákladní kamionovou dopravu po České republice. Cena nezahrnuje pouze samotnou přepravu, ale samozřejmě i vykládku a nakládku zboží, zajištění speciálních strojních zařízení pro manipulaci s nákladem, zajištění potřebných povolení, zajištění silničního doprovodu pro transport po pozemní komunikaci apod.

4.2.3 Druh manipulační jednotky

Pokud se bavíme o nadměrném nákladu, je nutné přemýšlet nejen nad tím, jak náklad přepravíme z místa A do místa B, ale také jak s ním můžeme manipulovat. V kapitole 3.2.1 jsme rozdělili manipulační jednotky do pěti základních skupin, do kterých se pokusíme zapasovat náš nadměrný náklad.

Vzhledem k parametrům nákladu můžeme rovnou vyloučit, že by se jednalo o manipulační jednotku nultého, prvního nebo druhého řádu. Důvodem pro vyřazení prvních tří skupin je skutečnost, že pouze manipulační jednotky třetího a čtvrtého řádu slouží výhradně k dálkové přepravě. Na základě zvolené trasy a druhu realizované dopravy můžeme jednoznačně říci, že náš náklad spadá do kategorie manipulační jednotka třetího řádu. S tím souvisí i nutnost mechanizované nebo automatizované manipulace, která je při daných rozměrech nákladu samozřejmostí. Důležitým rozdílem mezi jednotkami třetího a čtvrtého řádu je, že manipulační jednotka čtvrtého řádu slouží pouze pro dálkovou kombinovanou dopravu vnitrozemskou vodní a námořní, nikoli pro přepravu po souši.

Na základě výše uvedených skutečností můžeme konstatovat, že dřevěné obaly obsahující strojní zařízení spadají do skupiny manipulační jednotka třetího řádu.
4.3 Další možné trasy a varianty přepravy nadměrného nákladu63

Když se podíváme na přepravu nadměrného nákladu z pohledu přepravce, bude nás určitě zajímat, jestli existuje v přepravě nadměrných nákladů obecný postup, nebo je každá zakázka originál.

Společnosti, které mají velkou historii a fungují v dopravě nadměrných nákladů desítky let, často čerpají ze svých zkušeností a z dovedností týmu svých zaměstnanců. Za dobu svého působení na trhu dopravy si firmy vypracují určité obecně platné a opakující se postupy. Vytvoří si i vlastní nenahraditelné firemní databáze podjezdnicích výšek, projedných tras, omezujících míst v ČR i v zahraničí. Firmy archivují i databáze vyřízených povolení, databáze vlastních partnerů, zákazníků a dodavatelů. Díky těmto databázím dokážou aplikovat dříveji poznané na nové zakázky a celý proces se tím urychlí. Přesto se mohou objevit nové situace, které firma musí řešit operativně.

Postup při zpracování zakázky nadměrného nákladu

Každá požadavka po nadměrné přepravě je zpracována obchodním zástupcem, který již v první fázi konzultuje možnost přepravy nákladu s trasovacím oddělením. Následně dochází k návrhu způsobu uložení nákladu za použití nejvhodnější techniky. Poté je navržena trasa umožňující cenově a časově nejprůčelnejší způsob přepravy. Cenová kalkulace je nakonec předložena zákazníkovi.

Většina firem uvádí v cenových nabízkách tzv. cenu „all in“, tzn. cena za dopravu obsahuje veškeré platby a včenáklyd, které u přepravy mohou vzniknout. U složitých relací předchází předložení ceny zákazníkovi také prověrka zamýšlené trasy nebo jednání s konstruktéry nad výkresem či plánem výrobku. Zákazník by měl být upozorněn na možné způsoby uložení, dělení apod.

Pro přepravce je velice důležité včas zajistit veškeré legislativní úkony, rezervovat techniku, dohodnout přesné termíny nakládek a vykládek a ověřit sjízdnost trasy. Všichni zaměstnanci přepravní firmy, kteří se podílí na realizaci přepravy nadměrného nákladu, musí počitat s možnými dodatečnými změnami od zadavatele – např. změny rozměrů nákladu, posuny termínů, změny stanovených tras, změny konkrétních lokalit pro dodání zboží či nenadálé climatické změny.

63 Dostupný z: <http://www.svetbaleni.cz/logistika/sb-4-2010-logistika-nadrozmerny-naklad--kazdy-je-original.htm>
4.3.1 Omezení a využití jednotlivých druhů dopravy

Při výběru přepravy je nutné se zamyslet nad rentabilitou konkrétní přepravy, nad možnostmi každé konkrétní přepravy a nad dostupností destinací, protože např. ne každý náklad, který je přepravitelný po silnici, musí být vhodný pro přepravu po železnici. Každá přeprava je jinak časově a především finančně náročná.

V kapitole 3.7 jsme se seznámil s možnostmi přepravy nákladů. Avšak pro přepravu nadměrného nákladu je možné využít pouze přepravu po silnici, železnici, řece či moři. Letecká doprava není uzpůsobena pro přepravu nadměrných nákladů.

Letecká doprava

Letecká doprava je nejrychlejším druhem přepravy na velké vzdálenosti, využívaná hlavně pro mezikontinentální přepravu nákladů, ale vzhledem k limitovaným rozměrům nákladního prostoru letadel je tento druh přepravy pro přepravu nadměrných nákladů nevyhovující.

Doplňujícím důvodem, proč bychom nevyužili pro přepravu nákladů leteckou dopravu, je její vysoká cena. Předností letecké dopravy je její vysoká rychlost, která je kompenzována vysokou cenou za přepravu a vzhledem k tomu, že o přepravě nadměrného nákladu víme s dostatečným časovým předstihem, nejsme nuceni hledat a následně i vybrat nejrychlejší variantu přepravy. Jsme schopni si vše dopředu naplánovat a zorganizovat, a proto rychlost přepravy a faktor času není v našem případě rozhodující aspekt.

Vzhledem k výše uvedeným skutečnostem nebudeme a ani nemůžeme pro přepravu přes moře využit nákladní leteckou dopravu. Další možný způsob přepravy nákladů mezi Asií a Evropou je námořní (lodní) doprava, nákladní železniční doprava nebo nákladní automobilová doprava.

Námořní (lodní) doprava

Největší předností námořní (lodní) dopravy, kterou velmi oceníme, je možnost dopravy těžkých i nadměrných zásilek a ekologičnost dopravy. Výhodou lodní dopravy je transport značného množství zboží při nízkých nákladech. Lodní dopravu využíváme tam, kde není rychlost přepravy prvořadým kritériem. Rychlost je jednou z nevýhod lodní dopravy, mezi další patří nepřizpůsobivost a závislost na přírodních podmínkách.
Vzhledem ke skutečnosti, že faktor času (délka transportu) není rozhodující, můžeme námořní dopravu označit za jednu z možných variant přepravy nadměrného nákladu.

Na obrázcích 4.5 a 4.6 jsou na mapách vyznačeny nejvýznamnější přístavy v Asii a v Evropě. V příloze č. 12 jsou stručné informace o čtyřech nejdůležitějších tocích z pohledu ČR (Labe, Odra, Dunaj, Rýn), které využijeme v následující analýze.

Obrázek 4.5 – Nejvýznamnější přístavy v Asii

Obrázek 4.6 – Nejvýznamnější přístavy v Evropě

Nákladní železniční doprava a průjezd Transsibiřskou magistrálou

Železniční doprava je rentabilní při dopravě velkého množství na obrovské vzdálenosti, což přeprava našeho nákladu rozhodně je. Finanční nároky na zabezpečování přepravních cest, na modernizaci vozového parku a terminálů jsou obrovské, ale zadavatel přepravy je rozhodně nehradí, pouze na ně přispívá skrytou částkou obsaženou v ceně dopravy za transport po železnici.

V současné době dochází k útlumu železniční dopravy z důvodu vysokých nákladů na přepravu a intenzivnímu rozvoji automobilové dopravy (rozvoj dálniční sítě), který sebou přináší zkrácení doby přepravy. K útlumu jistě přispívá i fakt, že železniční doprava postrádá pružnost a univerzálnost automobilové dopravy a to z důvodu váznosti na pevně vedené tratě. V našem případě však faktor času není prioritou, proto pro nás železnice představuje v porovnání s automobilovou a leteckou dopravou stále atraktivní a relativně levný způsob dopravy a to za předpokladu, že nadměrný náklad půjde naložit na železniční vozy.

64 Dostupné z: <http://www.herber.webz.cz/www_ocean/09-doprava.html>
65 Dostupné z: <http://www.herber.webz.cz/www_ocean/e-learning/ocean-08.pdf>
Transsibiřská magistrála (Транссибирская магистраль) představuje hlavní dopravní tepnu Ruska, která je nejdelší železniční tratí na světě. Trať o délce 9 288 km vede z Moskvy do Vladivostoku a je viditelná i z vesmíru (viz. obrázek 4.7). Tento světový unikát nabízí projížďku, kde překonáte dva kontinenty, minete 14 ruských oblastí, 90 měst a překročíte 16 velkých řek. I když po celé délce magistrály platí moskevský čas, její náročnou trasou překonáte přes osm časových pásem.

Obrázek 4.7 - Transsibiřská magistrála

Počátky existence transsibiřské magistrály jsou spojeny s nákladní dopravou a potřebou lepšího a rychlejšího dopravního spojení Vladivostoku, přístavu na pobřeží Tichého oceánu, s evropskou částí Ruska. Dnes je Transsibiřská magistrála velmi důležitá hlavně z obchodního hlediska, nejen pro přepravu cestujících. Přes ní směřuje do Evropy z Japonska 8 300 kontejnerů se zbožím, což je asi třetina z celkového vytížení trasy, ročně se přepraví asi 20 000 kontejnerů.

Pro přepravu nákladu z Asie do Evropy bychom mohli využít Transsibiřskou magistrálu a minimalizovat tak náklady na manipulaci, skladování, prostoje apod., ale vzhledem k rozměrům našeho přepravovaného nákladu je to bohužel nemožné. Rozměry železničních vozidel a obrysy nákladů přepravovaných po železnicí jsou omezeny do šířky i do výšky nad temenem kolejí průjezdným obrysem pro vozidla. Průjezdní obrys musí být dodržen, aby vozidla mohla jezdit po trati bezpečně, nedotýkala se předmětů nebo staveb umístěných vedle kolejí a nad koleji. Omezení jsou na různých trasách různá, ale všeobecně můžeme říct, že max. možná šířka a výška nákladu se pohybuje kolem 3,5 m. Maximální rozměry u některých železničních vozů jsou v tabulce 4.1.

66 Dostupné z: <http://www.irucz.ru/foto1/Transsib_map2100_1251.jpg>
Tabulka 4.1 – Maximální rozměry přepravovaného nákladu po železnici\(^6^7\)

<table>
<thead>
<tr>
<th>Typ přepravního vozu</th>
<th>Max. šířka</th>
<th>Max. výška</th>
<th>Max. délka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vozy intermodální přepravy</td>
<td>2 438 mm</td>
<td>3 695 mm</td>
<td>27 640 mm</td>
</tr>
<tr>
<td></td>
<td>2 780 mm</td>
<td>3 610 mm</td>
<td>18 680 mm</td>
</tr>
<tr>
<td>Nízkostěnné vozy</td>
<td>2 710 mm</td>
<td>3 600 mm</td>
<td>18 680 mm</td>
</tr>
<tr>
<td></td>
<td>2 820 mm</td>
<td>3 600 mm</td>
<td>12 520 mm</td>
</tr>
<tr>
<td>Plošinové vozy</td>
<td>2 600 mm</td>
<td>2 610 mm</td>
<td>18 792 mm</td>
</tr>
<tr>
<td></td>
<td>3 100 mm</td>
<td>3 597 mm</td>
<td>14 000 mm</td>
</tr>
<tr>
<td>Speciální vozy</td>
<td>2 400 mm</td>
<td>3 895 mm</td>
<td>12 000 mm</td>
</tr>
<tr>
<td></td>
<td>2 900 mm</td>
<td>3 884 mm</td>
<td>9 000 mm</td>
</tr>
</tbody>
</table>

Železnice tedy není uzpůsobena pro přepravu nadměrného nákladu 10 dřevěných beden o rozměrech 4,4 m (výšku) x 4,00 m (šířka) x 4,4 m (délka), tzn. tento druh dopravy nemůžeme při našem transportu využít.

Nákladní automobilová doprava

Nákladní automobilovou přepravu můžeme rozdělit dle velikosti nákladu na přepravu normovanou a nadměrnou. Normovaná přeprava je méně komplikovaná a platí pro náklad, který je široký maximálně 2,55 m a jehož výška (včetně návěsu) nepřevyšuje 4,00 m. Dalším důležitým parametrem a zároveň omezením je délka dopravního prostředku (včetně nákladu), který nesmí přesáhnout délku 16,50 m (viz. obrázek 4.8). Mimo rozměry je kontrolováno i zatížení náprav. Za dodržení výše uvedených podmínek se bavíme o normovaném nákladu, který nepotřebuje žádná povolení od ministerstva dopravy, doprovodná vozidla ani nic podobného. Jednoduše náklad naloží v místě odeslání a vyrazí na trasu.

Námi přepravovaný náklad evidentně nesplňuje výše uvedené limity, proto jej označujeme jako nadměrný. Po zajištění potřebných povolení a dalších náležitostí bude možné náklad pomocí nákladní automobilové dopravy přepravit tam, kam budeme potřebovat. Z toho vyplývá, že můžeme využít nákladní automobilovou dopravu pro přepravu našeho nákladu.

Cena za nákladní automobilovou přepravu se pohybuje mezi sazbami železniční a letecké dopravy.

\(^6^7\) Dostupný z: <http://vozy.cdcargo.cz/>
Co všechno je nutné z hlediska předpisů ještě před zahájením (nákladní automobilové) přepravy zajistit? Jedná se o potřebná povolení, souhlasy majetkových správců či vyjádření příslušných orgánů a institucí. Dopravce musí zajistit asistence třetích organizací, kterými mohou být energetické a telekomunikační firmy zabezpečující demontáže nadzemních vedení, dráhy zajíždějící výluky na kříženích s železničními tratěmi nebo např. povolat k asistenci Policii ČR. Vybraná trasa musí v každém případě odpovídat stavu silnic a dálnic v dané destinaci. Hodnotí se stav mostů, v úvahu je potřeba vzít omezení z hlediska délky, šířky, výšky a celkové hmotnosti soupravy.

Srovnání všech druhů přepravy

Závěrečné hodnocení jednotlivých druhů přeprav učiníme za pomocí tabulky 4.2, ve které najdeme jednotlivá kritéria a bodové hodnocení pro jednotlivé druhy přeprav: dopravu železniční, silniční, vodní, potrubní a leteckou.

| Tabulka 4.2 – Srovnání druhů přepravy dle různých kritérií|
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Kritérium** | **Doprava** |
| nejmenší→největší | železniční | silniční | vodní | potrubní | letecká |
| Rychlost | ★★★ | ★★★★ | ★ | ★ | ★★★★★★ |
| Frekvence | ★★ | ★★★★ | ★ | ★★★★★ | ★★★ |
| Spolehlivost | ★★★ | ★★★★ | ★★ | ★★★★★ | ★ |
| Univerzalnost | ★★★★ | ★★★ | ★★★★★ | ★ | ★★ |
| Dostupnost | ★★★★ | ★★★★ | ★★ | ★ | ★★ |

4.3.2 Další možné varianty přepravy nadměrného nákladu

Na základě informací o omezení a dostupnosti jednotlivých druhů dopravy pro náš transport, které jsou podrobně zanaložovány v kapitole 4.3.2, se pokusíme v této části vytvořit nové trasy. Nové varianty by mohly ušetřit společnosti HMMC finanční prostředky nebo zajistit menší míru rizika poškození přepravovaného nákladu, což by přispělo ke zlepšení zákaznického servisu.

Mimo realizovanou přepravu, která je zanalýzována v kapitole 4.2.2, by mohl být náklad přepraven i jiným způsobem či jinou kombinací různých druhů přeprav.

Další možné varianty přepravy

Var. 1	Ulsan → Busan → Hamburk* → Mělník → Nošovice
Var. 2	Ulsan → Busan → Constanta → Bratislava → Nošovice
Var. 3	Ulsan → Busan → Hamburk → Nošovice
Var. 4	Ulsan → Busan → Hamburk* → Nošovice
Var. 5	Ulsan → Busan → Koper → Nošovice
Var. 6	Ulsan → Busan → Constanta → Nošovice
Var. 7	Ulsan → Nošovice

Podrobnější informace k jednotlivým variantám přepravy nadměrného nákladu jsou součástí přílohy č. 10.

4.3.3 Kritéria pro výběr nejvhodnějšího typu dopravy

Víme, že cílem dopravy je zajistit přesun výrobku na trh (místo určení) včas, nepoškozený, v požadovaném množství a kvalitě. Aby bylo možné splnit cíle dopravy, je nutno brát v úvahu následující důležitá kritéria: délka přepravní trasy, množství přepravy (hmotnost), rychlost přepravy, druh přepravovaného materiálu, skladovatelnost výrobku, ručení apod. V některých případech je potřeba zvážit i snadnost a použitelnost dopravy, obzvláště při mezinárodní dopravě s uvažováním celních poplatků.

Výběr uvedených kritérií má zásadní vliv na konečnou volbu způsobu dopravy zboží.
Nejdůležitějšími kritérii pro výběr vhodného způsobu přepravy nadměrného nákladu jsou cena za realizaci a míra rizika (pravděpodobnost) poškození přepravovaného nákladu.

Kritérium: míra rizika poškození přepravovaného nákladu

V našem případě přepravujeme v dřevěných obalech unikátní výrobní zařízení vysoké hodnoty a z pohledu opakované manipulace a navazujících operací je velká pravděpodobnost vzniku poškození, zaviněná mechanickým nebo lidských faktorem. Z těchto důvodů je pro nás důležitější faktor míra rizika poškození přepravovaného nákladu než faktor času. Nemůžeme však říci, že nás nezajímá, jak dlouho bude trvat přeprava nákladu, protože čím déle bude přeprava trvat, tím větší bude pravděpodobnost poškození či ztráty přepravovaného nákladu. Stejně tak i cena je oválněná faktorem času, protože čím déle přeprava trvá, tím je nákladnější. Při extrémně časově dlouhých přepravách se totiž nebabíme jen o ceně za dopravu, potřebná povolení, manipulaci s nákladem, ale také za skladování a další operace. Zde platí přímá úměra: čím je transport delší (čas), tím nákladnější je 1 km realizované přepravy. Na základě těchto kritérií vybereme nejvhodnější způsoby dopravy pro náš nadměrný náklad.

4.4 Analýza a srovnání nových možných variant přepravy nadměrného nákladu

Kvůli rozměrům nadměrného nákladu jsme nuceni pro přepravu využít pouze nákladní lodní a nákladní automobilovou dopravu. Ostatní varianty přepravy nejsou pro tento druh dopravy dostupné.

4.4.1 Rozdělení nových variant přepravy do skupin dle vzájemných podobností

Var. 1 a 4

Ulsan → Busan → Hamburk* → Mělník → Nošovice (var. 1)
Ulsan → Busan → Hamburk* → Nošovice (var. 4)

U varianty 1 a 4 námořní doprava vede tzv. Severní cestou. Trasa začíná v námořním přístavu Busan v Jižní Koreji a pokračuje na sever skrze Beringovu úžinu, přes východní část Severního ledového oceánu, kolem ruského pobřeží až do německého Hamburku.

Výhodou „Severní cesty“ je, že je velmi malá pravděpodobnost přítomnosti pirátů v chladných a pustých arktických oblastech a že mimo Beringovu úžinu neexistuje po celé její délce žádné výrazné zúžení. Trasa navíc zkracuje cestu mezi oběma regiony (vzdálenost mezi
Busanem a Hamburkem je touto cestou asi 7 000 km. Severní trasa je znázorněna na obrázku 4.2 umístěným v kapitole 4.2.2 této diplomové práce.

Severní cesta má i své nedostatky, kterými jsou nedostatečná infrastruktura podél ruského pobřeží, náročná ruská administrativa a nevyzpytatelnost ruské politiky, která je však stejně vážná jako v případě Egypta a Suezského průplavu. Ale asi tím největším problém jsou náročné klimatické podmínky, které v severní oblasti panují, a proto je nutné lodě popř. i přepravovaný náklad upravit tak, aby byly schopny odolávat těmto náročným zátěžím.

(var. 1) – využívá co nejdelší možnou přepravu lodí do samotného nitra Evropy (Mělníka), aby následná trasa nákladní automobilovou dopravou byla co nejkratší. Překládka z námořní lodě na nákladní říční loď probíhá v námořním přístavu v Hamburku, na západním pobřeží Evropy. V průběhu dopravy nadměrného nákladu do ČR je s nákladem celkem desetkrát manipulováno. Nákladní automobilová doprava je využita na vzdálenost 470 km (70 km na území KR, 400 km z Mělníka do Nošovic).

(var. 4) – využívá pouze námořní dopravu (Severní cestou). V Hamburku je náklad přeložen na nákladní automobilovou dopravu směrem do Nošovic. V průběhu dopravy nadměrného nákladu do ČR je s nákladem celkem osmkrát manipulováno. Nákladní automobilová doprava je využita na vzdálenost 940 km (70 km na území KR, 870 km z Hamburku do Nošovic).

Var. 2 a 6

\[\text{Ulsan} \rightarrow \text{Busan} \rightarrow \text{Constanța} \rightarrow \text{Bratislava} \rightarrow \text{Nošovice} \ (\text{var. } 2) \]

\[\text{Ulsan} \rightarrow \text{Busan} \rightarrow \text{Constanța} \rightarrow \text{Nošovice} \ (\text{var. } 6) \]

Varianty 2 a 6 využívají odlišnou trasu námořní dopravy. Poté, co nákladní loď vyjede z **Busanu** a dostane se **Suezským průplavem** do **Středozemního moře**, odchýlí se od původní trasy (směr Hamburk) a zamíří do **Černého moře** (**námořní přístav Constanța** v **Rumunsku**).

(var. 2) – využívá co nejdelší možné přepravy nákladní lodí, přičemž překládka z námořní lodě na říční loď probíhá v přístavu Constanța v Černém moři. V průběhu dopravy nadměrného nákladu do ČR je s nákladem celkem desetkrát manipulováno. Nákladní automobilová doprava je využita na vzdálenost pouze 340 km (70 km na území KR, 270 km z Bratislav do Nošovic).

(var. 6) – využívá z námořního přístavu přímou nákladní automobilová doprava, která urazí vzdálenost 1 580 km (70 km na území KR, 1 510 km z Constanța do Nošovic).
V průběhu dopravy nadměrného nákladu do ČR je s nákladem celkem osmkrát manipulováno, o dvě manipulace méně než u varianty 2, tzn. menší pravděpodobnost poškození nadměrného nákladu při manipulaci.

Var. 3

Ulsan ➔ Busan ➔ Hamburk ➔ Nošovice (var. 3)

Var. 5

Ulsan ➔ Busan ➔ Koper ➔ Nošovice (var. 5)

Var. 7

Ulsan ➔ Nošovice (var. 7)

(var. 7) – využívá jako jediná varianta pouze jeden druh dopravy a to nákladní automobilovou. Trasa z Ulsanu do Nošovic je dlouhá okolo 9 500 km, při tomto zvoleném způsobu dopravy nedochází k žádné překládce, tzn. s nákladem je manipulováno pouze čtyřikrát, což je úplné minimum, které mohlo nastat. V tomto případě je zajištěna nejmenší možná míra rizika poškození přepravovaného nákladu při manipulaci s ním. Kdyby tato obrovská výhoda byla doplněna o přiměřenou cenu, představuje pro nás varianta 7 nejlepší možné řešení.
4.4.2 Detailní analýza nových variant přepravy a jejich hodnocení

Stojí za povšimnutí, že ve všech případech trasy Ulsan – Busan je využita nákladní automobilová doprava. Hlavním důvodem, proč je využita pouze nákladní automobilová doprava, je vzdálenost mezi městy, která je pouhých 70 km. Tzn. bylo by zbytečné v rámci této krátké trasy překládat náklad z kamionu naloženého v Ulsanu na jiný druh dopravy. Po méně jak tři hodinové trase je náklad přeložen na námořní (nákladní) loď a vypraven směr Evropa. Z těchto důvodů jsme si dovolili určit, že na trase Ulsan – Busen bude využita pouze nákladní automobilová doprava.

Var. 1

| Ulsan | Busan | Hamburk | Mělník | Nošovice |

Cenu za trasu Ulsan → Busan odhadujeme na 7 000 €.

Náklady na námořní dopravu na trase Busan → Hamburk přes „Severní cestu“ by měly být menší o necelou třetinu, protože trasa oproti již realizované přepravě je zhruba o jednu třetinu kratší, což ji činí levnější, ale nesmíme zapomenout připočítat přirážku za delší časovou náročnost zapříčiněnou drsnými klimatickými podmínkami na severu zeměkoule. Dovolujeme si odhadnout cenu přepravy na 45 000 €.

Cenu za nákladní (říční) dopravu na trase Hamburk → Mělník převezmeme z již realizované přepravy, kde za přepravu bylo zaplaceno 29 000 €.

Nákladní automobilová doprava je využita na vzdálenost 400 km po Evropě, tzn. její cena se bude pohybovat okolo 3 400 € za jeden nadměrný náklad (bednu s výrobním zařízením). Tzn. cena za dopravu 10 beden na trase Mělník → Nošovice bude kolem 34 000 €.

Manipulace s nákladem se extrémně neodchyluje od ostatních variant, nebudeme ji brát v potaz.

Celková cena za dopravu je 115 000 €.
Var. 2
Ulsan ➔ Busan ➔ Constanta ➔ Bratislava ➔ Nošovice

Cenu za trasu Ulsan ➔ Busan odhadujeme na 7 000 €.

U této varianty bude cena za námořní přepravu (trasa Busan ➔ Constanta) o dost menší u realizované trasy. Cenu odhadneme na 50 000 €. Důvodem menší ceny za přepravu je kratší trasu námořní lodě zhruba o 4 500 km. Na této trase bychom sice ušetřili 10 000 € za námořní dopravu, ale zaplatili bychom daleko víc jak ušetřených 10 000 € za přepravu z námořního přístavu Constanta do přístavu v Bratislavě. Cena za přepravu nákladu na nákladních (říčních) lodích by byla obrovská, protože bychom museli zaplatit vysoké poplatky za průjezd jednotlivými stavidly na Dunaji. Druhým omezením a komplikací v jednom je limit pro maximální hmotnost nákladních lodí na Dunaji, která je stanovena na 500 tun (včetně nákladu). Tato skutečnost by pro případnou realizaci znamenala objednání dvou nákladních lodí, které by byly schopné přepravit náklad do Bratislavy, což by znamenalo dvojnásobné náklady na trase Constanta ➔ Bratislava. Z těchto důvodů variantu 2 zavrhujeme jako příliš drahou a komplikovanou.

Var. 3
Ulsan ➔ Busan ➔ Hamburk ➔ Nošovice

Cenu za trasu Ulsan ➔ Busan odhadujeme na 7 000 €.

Náklady na námořní dopravu na trase Busan ➔ Hamburk (přes Suezský přeriv a Středozemní moře) známe, protože se shodují s realizovanou přepravou. Cena za námořní dopravu je 60 000 €.

Manipulace s nákladem se extrémně neodchyluje od ostatních variant, nebudeme ji brát v potaz.

Cena za dopravu by byla o 18 200 € dražší než realizovaná přeprava, ale k tomu by ještě bylo nutné zajistit potřebná povolení na projetí Německem. Takové povolení stojí okolo 2 000 € za jeden nadměrný náklad, což při našem počtu 10 beden znamená vynaložit pouze 20 000 € na získání povolení pro Německé území. Tzn. Tato varianta by se nám prodražila přibližně o 38 200 €. Z těchto důvodů variantu 3 zavrhujeme jako příliš drahou a zbytečně komplikovanou.
Var. 4
Ulsan → Busan → Hamburk → Nošovice

Cenu za trasu Ulsan → Busan odhadujeme na 7 000 €.

Náklady na námořní dopravu na trase Busan → Hamburk přes „Severní cestu“ by měly být menší o necelou třetinu, protože trasa oproti již realizované přepravě je zhruba o jednu třetinu kratší, což ji činí levnější, ale nesmíme zapomenout připočítat přirážku za delší časovou náročnost zapříčiněnou drsnými klimatickými podmínkami na severu zeměkoule. Dovolujeme si odhadnout cenu přepravy na 45 000 €.

Nákladní automobilová doprava je využita na trase Hamburk → Nošovice, která je dlouhá 870 km po Evropě. Cena za tuto trasu bude 81 200 € za všech deset kusů nadměrného nákladu. **Celková cena za dopravu je 133 200 €.**

Manipulace s nákladem se extrémně neodchyluje od ostatních variant, nebudeme ji brát v potaz.

Cena za dopravu by byla o 3 200 € dražší než realizovaná přeprava, ale k tomu by ještě bylo nutné zajistit potřebná povolení na projetí Německem. Jedno takové povolení stojí okolo 2 000 € za jeden nadměrný náklad, což při našem počtu 10 beden znamená vynaložit pouze 20 000 € na získání povolení pro Německé území. Tzn. Tato varianty by se nám prodražila přibližně o 23 200 €. Z těchto důvodů **variantu 4 zavrhujeme jako příliš drahou a zbytečně komplikovanou.**

Var. 5
Ulsan → Busan → Koper → Nošovice

Cenu za trasu Ulsan → Busan odhadujeme na 7 000 €.

U této varianty bude cena za námořní přepravu (trasa Busan → Koper) o něco málo menší než u realizované trasy. Cenu odhadneme na 54 000 €. Důvodem menší ceny za přepravu je kratší trasa námořní lodě. Na této trase bychom sice ušetřili 6 000 € za námořní dopravu.

Cena za přepravu 10 nadměrných beden po trase Koper → Nošovice, která je dlouhá 810 km, byla okolo 75 700 €. Dále by bylo potřebné na této trase zaplatit za povolení pro přejezd Rakouskem, kde jsou velice přísné podmínky stejně jako v Německu. Cena za povolení by byla zhruba 20 000 €.

Tato varianty by stála přibližně 156 700 €, což je o 26 700 € dražší než původní realizovaná trasa. Z těchto důvodů **variantu 5 zavrhujeme jako příliš drahou.**
Var. 6
Ulsan ➔ Busan ➔ Constanta ➔ Nošovice

Cenu za trasu **Ulsan ➔ Busan** odhadujeme na 7 000 €.

U této varianty bude cena za námořní přepravu (trasa **Busan ➔ Constanta**) menší než u realizované trasy. Cenu odhadneme na 50 000 €. Důvodem menší ceny je kratší trasa námořní lodě zhruba o 4 500 km. Na této trase bychom sice ušetřili 10 000 € za námořní dopravu.

I u této varianty by nastaly komplikace a to na zbývající trase **Constanta ➔ Nošovice**, kdy nadměrný náklad by měl urazit 1 510 km po území čtyř států. Bylo by velice komplikované a neuvážené trasovat 1 510 km, když máme i jiné možnosti přepravy. Další nelichotivou zprávou je, že by dopravce musel vyřídit přepravní povolení a zajistit doprovodná vozidla atd. ve všech čtyřech státech. Mimo to i cena za nákladní automobilovou dopravu by byla extrémně vysoká, okolo 140 000 € za celý náklad. Celková cena za tuto trasu by byla 197 000 €, což znamená o 67 000 € dražší. Z výše uvedeného je tedy zřejmé, že **variantu 6 zavrhujeme z důvodu extrémně vysokých cen.**

Var. 7
Ulsan ➔ Nošovice

Poslední nezmíněnou a zároveň jedinou variantou, která využívá pouze nákladní automobilovou dopravu, je varianta 7. V průběhu trasy o délce okolo 9 500 km nedochází k překládce, což je obrovskou výhodou, ale v porovnání s enormně vysokou cenou okolo 875 000 € bohužel nedostačující, a proto i **variantu 7 musíme zamítnout z důvodu extrémně drahé přepravy nadměrného nákladu.**

69 Z důvodu menšího rizika poškození nákladu během přepravy.
4.4.3 Výsledky analýz a posouzení správnosti realizované přepravy

Výsledky analýz:

(1) Ulsan → Busan → Hamburk* → Mělník → Nošovice
 cena 115 000 €

(2) Ulsan → Busan → Constanta → Bratislava → Nošovice
 drahé a komplikované

(3) Ulsan → Busan → Hamburk → Nošovice
 dražší o 38 200 € a komplikované

(4) Ulsan → Busan → Hamburk* → Nošovice
 dražší o 23 200 € a komplikované

(5) Ulsan → Busan → Koper → Nošovice
 dražší o 26 700 €

(6) Ulsan → Busan → Constanta → Nošovice
 dražší o 67 000 €

(7) Ulsan → Nošovice
 dražší o 745 000 €

Po srovnání nových možných variant s realizovanou přepravou nadměrného nákladu jsme došli k zjištění, že pouze (var.1) je tou nejlépe vyhovující v daných podmínkách a v daném čase. Rozdíl mezi novou (var.1) a realizovanou je 15 000 €.

4.5 Závěrečné hodnocení a návrhy na zlepšení

Lodní doprava v šesti případech ze sedmi představuje jedinou reálnou nízko nákladovou variantu, jak dopravit náklad z Jižní Koreje do Evropy. Také se prokázalo, že čím delší trasa je přepravena nákladní lodí, tím levnější je celková přeprava nadměrného nákladu. Jak jsme měli možnost zjistit, letecká ani železniční doprava není užitná pro přepravu tak velkého nadměrného nákladu, který je specifikován v kapitole 4.2.1. Důvodem neúspěchu nákladní automobilové dopravy je komplikovaný postup a finančně i časově nákladná realizace přepravy. Z těchto důvodů pro přepravu nadměrného nákladu využijeme výhradně lodní dopravu (námořní i říční).

Varianty 1 je jedinou přípustnou variantou pro případnou realizaci přepravy nadměrného nákladu. I přesto, že tato varianta má jistá omezení v podobě nepříznivých klimatických podmínek na severu Ruska, kudy nákladní loď proplouvá, je nejvýhodnější pro přepravu nadměrného nákladu.

Trasa: Ulsan → Busan → Hamburk* → Mělník → Nošovice
Cíl přepravy: dopravit výrobek nepoškozený

Naším hlavním cílem dopravy bylo dopravit výrobek do místa určení nepoškozený. Jak už bylo několikrát zmíněno, přepravovaný nadměrný náklad je strojní zařízení, se kterým se musí nakládat velice opatrně, protože při případném poškození by společnosti HMMC vznikla nenahraditelná ztráta. Přepravou po vodě a silnici nijak závažně neriskujeme znehodnocení výrobního zařízení, ale jak už víme z předchozích kapitol, riziko poškození je vysoké hlavně při manipulaci s nadměrným nákladem. Musíme proto při jednotlivých nakládkách a vykládkách být extrémně opatrní a předvídaví.

4.5.1 Doporučení pro příští přepravu nadměrného nákladu

Lodní doprava jako nejdůležitější druh přepravy nadměrného nákladu byla vhodně zvolenou variantou. Doporučení společnosti HMMC zní, aby příští přepravu nadměrného nákladu o podobných parametrech (rozměrech, hmotnosti, hustotě, apod.) nechala zkusit přepravit přes stejně tak námořní (lodní) dopravou, ale přes Severní cestu. Důležité však bude dopředu ohlídat termín přepravy a vysledovat klimatické podmínky v této oblasti, aby náhodou nedošlo k poškození přepravovaného nákladu z důvodu klimatických změn (extrémně nízké teploty, velké vlhkost vzduchu, apod.)

Musíme však uznat, že společnost nijak nepochybila, když realizovala přepravu přes Rudé a Středozemní moře.
5 ZÁVĚR

V současných tvrdých konkurenčních podmínkách v automobilovém průmyslu hrají jednu z nejdůležitějších rolí inovace a nové technologie, které výrazně ovlivňují konkurenční schopnost podniku. Každý podnik, ať už výrobní či nevýrobní, se snaží udržet si svoji pozici na trhu. I společnost HMMC by nerada tuto pozici ztratila, a proto se musí neustále snažit pronikat na nové trhy, inovovat technologie, zdokonalovat své služby apod. V této diplomové práci jsme mohli být svědkem komplikované přepravy strojního zařízení pro společnost HMMC, která zajistí již zmínovanou inovaci technologií v automobilovém výrobním závodě v Nošovicích.

Na základě teoretických poznatků získaných studiem na Vysoké škole báňské – Technické univerzitě Ostrava, s využitím odborné literatury a po seznámení se s existujícím stavem v oblasti přepravy nadměrného nákladu v podobě části výrobního zařízení jsme zkompletovali tuto diplomovou práci.

Cílem této diplomové práce bylo zanalyzovat proces přepravy nadměrného nákladu v podobě části výrobní lininky z mateřské společnosti v Jižní Koreji do dceřiné společnosti na území České republiky. Na základě zjištěné situace v oblasti přepravy jsme se pokusili navrhnout a doporučit nové varianty přepravy za účelem minimalizace všech nákladů na transport a s ohledem na mírú rizika poškození přepravovaného nákladu. Nová možná varianta přepravy by měla v budoucnu ušetřit společnosti HMMC její finanční prostředky.

Při stanovení optimální trasy a způsobu přepravy nadměrného nákladu jsme zohlednili míru rizika poškození přepravovaného nákladu, množství finančních prostředků investovaných do realizované přepravy a s nimi propojený faktor času. Tyto tři aspekty jsou natolik provázané, že nemůžeme ani uvažovat o působení jen některého z nich. Faktorem času myslíme termín dodání nákladu (výrobní linky) od dodavatele, který je pro nás směrodatný.

Na základě návrhů a doporučení určených pro společnost HMMC lze konstatovat, že cíl diplomové práce byl splněn.

I přesto, že návrhy byly sepsány, je směrodatné, jestli je společnost HMMC přijme za své a pokusí se je použít v praxi při podobné přepravě nadměrného nákladu.
SEZNAM POUŽITÉ LITERATURY

Odborné publikace:

Internetové zdroje:

3. Vývoj automobilu v automobile Mercedes Benz [online] Dostupný z : <http://www.youtube.com/watch?v=8tZqDlDFcOo&feature=related>

 <http://www.conservapedia.com/Category:Maps_of_Asia>
 <http://www.svetbaleni.cz/logistika/sb-4-2010-logistika-nadrozmeny-naklad--kazdy-je-original.htm>
 <http://www.irucz.ru/foto1/Transsib_map2100_1251.jpg>
 <http://vozy.cdcargo.cz/>

Ostatní podklady:

1. Interní dokumenty společnosti HMMC
<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Znění</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj.</td>
<td>a jiné</td>
</tr>
<tr>
<td>apod.</td>
<td>a podobně</td>
</tr>
<tr>
<td>atd.</td>
<td>a tak dále</td>
</tr>
<tr>
<td>č.</td>
<td>číslo</td>
</tr>
<tr>
<td>ČD</td>
<td>České dráhy</td>
</tr>
<tr>
<td>ČR</td>
<td>Česká republika</td>
</tr>
<tr>
<td>ČSA</td>
<td>České aerolinie</td>
</tr>
<tr>
<td>€</td>
<td>Euro (měna eurozóny)</td>
</tr>
<tr>
<td>EU</td>
<td>Evropská unie</td>
</tr>
<tr>
<td>ha</td>
<td>hektar</td>
</tr>
<tr>
<td>HG</td>
<td>Hyundai Group</td>
</tr>
<tr>
<td>HKMG</td>
<td>Hyundai - Kia Motor Group</td>
</tr>
<tr>
<td>HMMC</td>
<td>Hyundai Motor Manufacturing Czech</td>
</tr>
<tr>
<td>HMMR</td>
<td>Hyundai Motor Manufacturing Rus</td>
</tr>
<tr>
<td>ISO</td>
<td>Internacional Organisation for Standardisation</td>
</tr>
<tr>
<td>IT</td>
<td>informační technologie</td>
</tr>
<tr>
<td>Kč</td>
<td>Koruny české</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram (základní jednotka hmotnosti)</td>
</tr>
<tr>
<td>km</td>
<td>kilometry</td>
</tr>
<tr>
<td>KMR</td>
<td>Kia Motors Slovakia</td>
</tr>
<tr>
<td>KR</td>
<td>Korejská republika</td>
</tr>
<tr>
<td>ks</td>
<td>kus</td>
</tr>
<tr>
<td>m</td>
<td>metr (míra)</td>
</tr>
<tr>
<td>m²</td>
<td>metry čtverečné</td>
</tr>
<tr>
<td>max.</td>
<td>maximální</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Význam</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>mil.</td>
<td>milion</td>
</tr>
<tr>
<td>mj.</td>
<td>mimo jiné</td>
</tr>
<tr>
<td>MKD</td>
<td>mezinárodní kombinovaná doprava</td>
</tr>
<tr>
<td>mm</td>
<td>milimetr (míra)</td>
</tr>
<tr>
<td>např.</td>
<td>například</td>
</tr>
<tr>
<td>popř.</td>
<td>popřípadě</td>
</tr>
<tr>
<td>s.</td>
<td>stránka</td>
</tr>
<tr>
<td>TIR</td>
<td>Transport Internationaux Routiers</td>
</tr>
<tr>
<td>tis.</td>
<td>tisíc</td>
</tr>
<tr>
<td>tj.</td>
<td>to je</td>
</tr>
<tr>
<td>tkm</td>
<td>tunokilometr (přeprava nákladu o hmotnosti 1 tuny na vzdálenost 1 km)</td>
</tr>
<tr>
<td>tzn.</td>
<td>to znamená</td>
</tr>
<tr>
<td>tzv.</td>
<td>tak zvaný</td>
</tr>
<tr>
<td>USA</td>
<td>Spojené státy americké</td>
</tr>
<tr>
<td>var.</td>
<td>varianta</td>
</tr>
<tr>
<td>vyd.</td>
<td>vydání</td>
</tr>
<tr>
<td>Sb.</td>
<td>sbírky</td>
</tr>
</tbody>
</table>
PROHLÁŠENÍ O VYUŽITÍ VÝSLEDKŮ DIPLOMOVÉ PRÁCE

Prohlašuji, že

- jsem byla seznámena s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo;

- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB – TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou práci užít (§ 35 odst. 3);

- souhlasím s tím, že diplomová práce bude v elektronické podobě archivována v Ústřední knihovně VŠB – TUO a jeden výtisk bude uložen u vedoucí diplomové práce. Souhlasím s tím, že bibliografické údaje o diplomové práci budou zveřejněny v informačním systému VŠB – TUO;

- bylo sjednáno, že s VŠB – TUO, v případě zájmu její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona;

- bylo sjednáno, že užít své dílo, diplomovou práci, nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB – TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB – TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne 27. 4. 2012

...

Bc. Lucie Hejdová

Adresa trvalého pobytu:
Západní 769/20
779 00 Olomouc
PŘÍLOHY

Příloha č. 1 Historie osobních automobilů
Příloha č. 2 Modely Hyundai vyráběné v Nošovicích
Příloha č. 3 Detailní seznámení s 5 výrobními halami společnosti HMMC
Příloha č. 4 Dodavatelé společnosti HMMC
Příloha č. 5 Podrobnější informace o Úmluvě CMR
Příloha č. 6 Dopravní vozíky a jeřáby
Příloha č. 7 Podrobnější informace k silniční síti v ČR
Příloha č. 8 Tranzitní systém TIR
Příloha č. 9 České dráhy a.s.
Příloha č. 10 Nové varianty přepravy nadměrného nákladu
Příloha č. 11 Žádost o povolení přepravy nadměrného nákladu (§40 vyhlášky č. 104/1997 Sb.)
Příloha č. 12 Důležité vodní cesty z pohledu ČR
Příloha č. 1 – Historie osobních automobilů

V současnosti si většina lidí život bez osobního automobilu ani nedovedeme představit. Právě proto jsem si pro svoji diplomovou práci vybrala společnost HMMC, která je specialistou ve výrobě osobních automobilů a s výrobní linkou v České republice.

Vlastní vývoj automobilů, jak je známe dnes, se datuje od roku 1886, kdy v Německu u Karla Benze došlo k patentování jeho motorové tříkolky. První dálkovou jízdu automobiltem absolvovala manželka Karla Benze Berta Benzová 5. srpna 1888. Dalším zlomovým okamžikem byl rok 1897, kdy Rakušan Rudolf Diesel jako první sestrojil a představil provozuschopný vznětový motor.

70 http://www.youtube.com/watch?v=5D8Y4j0Rs_Y&feature=related
71 http://knol.google.com/k/milo%C5%A1-havl%C3%AD%C4%8Dek/historie-automobilismu/7ngiocdfyqb/62#
Příloha č. 2 – Modely Hyundai vyráběné v Nošovicích

Hyundai i30

Hyundai i30 Blue Will
Kia Venga

Hyundai ix20
Hyundai ix35
Lisovna

Ze skladů společnosti Hysco, výrobce ocelových svitků, jsou do HMMC dodány svitky, které jsou umístěny do úložných boxů ve skladovém prostoru v hale. Kapacita tohoto prostoru je asi 45 svitků. Odtud svitky putují k předpřípravné lince, tzv. „blanking line“. Součástí této linky je myčka, rovnačka, vyrovnávací smyčka a finální nástřihová linka pro střihání svitku dle požadované velikosti a tvaru pro požadovaný výrobní program. Po těchto úpravách jednotlivé kusy procházejí přes myčku na centrovací stůl do hlavního lisu. Odtud se přenášejí do samotných lisovacích forem. Lisovací formy se v lisu mění pomocí čtyř posuvných vozíků, kterým se říká „bolstery“. Lis je plně automatizovaný a veškeré činnosti probíhají dle předem nastaveného programu. Tlak lisu může dosahovat až 5 400 tun. Výlisky z hlavních lisů jsou přemístěny k robotům, kteří je skladají do palet a ty se následně umisťují do skladu hotových kusů. Bočnice jsou skladovány v rozsáhlém automatickém zakladači. Na konci linky je také inspekční stůl, kde pracovníci lisovny kontrolují v určitém intervalu vybrané kusy. Částí výrobní haly je také rozsáhlý sklad forem. Tam se formy kontrolují, čistí, různě brousí a připravují k výrobě. K úpravám forem slouží i dva zkušební lisy, které jsou určeny k testování a zkušení forem. Poblíž najdete i prostor k čištění, ve které jsou jednotlivé formy oplachovány. Lisovna má téměř 20 000 m² a do budoucna bude zaměstnávat asi 70 pracovníků na 3 směny.

72 Interní dokumenty společnosti HMMC
V současné době lisovna produkuje 54 různých dílů pro tři typy automobilů - Hyundai i30 ve verzích hatchback i kombi, Hyundai ix20 a Kia Venga.

A co o novém (druhém) hlavním lisu řekli zaměstnanci společnosti HMMC?

„Druhý lis je stejný jako ten první. Kapacita i výkonnost je úplně stejná. Tím pádem jsme na lisovně dnešním dnem dosáhli výrobní kapacity 400 tisíc kusů ročně. Nový lis je modifikován podle úprav na prvním lisu během předchozích tří let s tím, že jsou použity nové materiály a všechna vylepšení, která byla použita na prvním lisu”, řekl Vratislav Labuda, manažer Oddělení lisovny HMMC.
Převodovkárna

V areálu HMMC jsou dvě výrobní haly tohoto typu. V hale se obrábí hřídele a ozubená kola převodových systémů a také skříně převodovek, jejichž hliníkové odlitky HMMC odebírá od společnosti Nemak z Polska.

Převodovky, které se v HMMC vyrábí, jsou dodávány kromě výrobních linek společnosti HMMC také do sesterské KMS v Žilině, HMMR v Petrohradu. Převodovky, které se vyváží do smluvních výrobních závodů, jsou baleny vždy po deseti kusech ve speciálních vratných ocelových paletách. Nakládka na jeden kamion vychází na 300 kusů. HMMC dodává do Ruska převodovky pro benzinové motory 1,4 a 1,6 litru.

Dlouho očekávaná druhá hala převodovkárny v závodě HMMC pomůže společnosti s plánovaným rozjezdem třetí směny a zvýšením výrobní kapacity ze stávajících 200 tisíc na 300 tisíc automobilů ročně. Nová hala zabírá plochu zhruba dvou hektarů a je v provozu od 1. srpna 2012. Celková kapacita obou hal dosáhne při třísměnném provozu objemu 530 tisíc převodovek ročně.
Svařovna

Produktem této haly je karoserie auta (tzv. B.I.W. – Body in White), která je svařována z panelů dodaných z lisovny a z dodavatelské firmy Sungwoo Hitech. Výrobní proces na svařovně se odehrává na několika linkách, na nichž probíhají souběžné procesy. Po prořezení kompletní podlahy, bočnic a drobných komponentů patřících pod střechu auta se tyto části setkávají na tzv. Body Build lince, kde spolu vytvoří základní kostru auta. K této se přidá střecha a vše se prořeze na Body Respot lince. Na Body Complete lince se pak ke kostře přidají pohyblivě části auta, tedy dveře, kapota a víko kufru. Na konci linky je ještě prostor k drobným opravám a úpravám na kompletní karoserii, která poté opouští halu spojovacím mostem a míří na lakovnu.

V případě pozastavení provozu na lakovně má svařovna povoleno vyrábět až do naplnění povolených skladových zásob. Celkem má na hale při zavedení třísměnného provozu pracovat na 280 zaměstnanců, kteří budou obsluhovat mj. asi 300 robotů. Roboti jsou z velké části svařovací, ale najdeme zde i roboty, kteří slouží k přesunu a manipulaci s materiálem. Jejich výrobcem je Hyundai Heavy Industries.
Předposlední výrobní halou je lakovna. Tato budova v HMMC je vysoká 27 metrů a jako jediná má tři podlaží – přízemí, 1. patro ve výšce 6,5 m, mezipatro ve výšce asi 11 m a 2. patro ve výšce 17 m, kam už ovšem zaměstnanci HMMC nemají běžně přístup – nachází se tam ventilační systém a jiné technické zázemí.

Poté, co svařené vozy dorazí spojovacím tunelem na lakovnu, dochází k jejich očištění, odmaštění a k nanesení fosfátové vrstvy a dalších chemikálií. Tyto procesy probíhají postupně na tzv. předpřípravné lince (pretreatment) a electro-deposition lince (ED). Poté karoserie putuje do ED pece, ve které se vypaluje asi 15 minut v maximální teplotě 140°C. Takto upravené karoserie jsou částečně skladovány na místě zvaném ED buffer – je to v podstatě „parkoviště“ pro několik desítek aut pro případ nenadálého problému na některých částech lakovny. Ještě než je na auto nanesena první vrstva laku, jeho jednotlivé sváry jsou utěsněny s cílem ochrany proti korozí. Utěsňování probíhá na dvou utěsňovacích linkách (sealer line), částečně automatizovaně (pomocí robotů) a částečně manuálně (díky zaměstnancům lakovny), z jejichž celkového počtu pracuje na utěsnění až jedna čtvrtina. Nanášení laku probíhá v několika etapách, nejprve na primer lince (linka pro první vrstvu) a dále na top coat linkách (linky pro svrchní vrstvy). Mezi nánosy putuje karoserie opět do pecí, aby došlo k usušení laku a vytvrzení nátěru, a také probíhá oplachování a ofukování nečistot. Nanášení laku probíhá jak manuálně, tak automaticky pomocí robotů. Posledním procesem je voskování. Mezi jednotlivými procesy probíhá také měření a kontrola vozů v místech pro toto určených. Stejně tak jsou vyhrazena místa, která slouží k opravám menších i větších nedostatků, tedy např. pro suché i mokré broušení, finální inspekce apod. Zaměstnanci pracují ve speciálních antistatických oděvech, aby se zamezilo nečistotám, které mohou snadno poškodit lakované karoserie.
Montážní hala

Nejrozsáhlejší ze všech výrobních hal v automobilce je vždy hala montážní. Práce odvedená na montáži je tím, co zákazník vidí nejdříve, a proto patří z jeho pohledu mezi to nejpodstatnější. Montážní hala v Nošovicích má přes 100 000 m² a práce v ní probíhající lze rozdělit na montážní a testovací.

Montáž probíhá dle daných zákaznických požadavků na lince, která je schopna flexibilně montovat až tři typy vozu. Jakmile dorazí nalakovaná karoserie na montáž, proběhne demontáž dveří, které jsou později na finální lince namontovány zpět. Samotné montážní práce probíhají na „trim“ lince (elektrické svazky, vnitřní izolace, ABS, přístrojová deska atd.), „chassis“ lince (přední náprava s pohonnou jednotkou, zadní náprava atd.) a finální lince (sedadla, kola, skla, volant, plnění kapalin atd.).

Po montáži přichází práce testovací, které mají za úkol nastavit a otestovat vůz a jeho kvalitu, připadně opravit potřebné části. Nastavuje se řízení, úhly kol, seřizuje se sbíhavost a testuje se těsnost motoru a převodovky. Všechna vozidla pak také prochází testem na zkušební dráze, aby nedocházelo k omylům u dodávky komponentů, celý proces je řízen online systémem A.L.C.73. Takových kontrolních systémů se používá celkem pět.

73 Assembly Line Control System
Energocentrum v HMMC

Kompresory (vlevo) a sušičky stlačeného vzduchu

V areálu HMMC stojí řada různých objektů, ale jen o jednom se ale říká, že je srdečm závodu. Mluvíme o energocentru, bez kterého by žádné z procesů nemohly vůbec fungovat, protože se zde tvoří veškerá potřebná energie pro jejich provoz.

V budově energocentra je několik stěžejních částí. Patří mezi ně parní kotelná, ve jejíchž dvou kotlích se vyrábí technologická pára pro lakovnu. Dále je zde kompresorová stanice, ve které je celkem deset různých kompresorů, které jsou určeny pro výrobu stlačeného vzduchu (využití u různých technologií po celém areálu HMMC).

Kotelna i kompresorová stanice spadají do kompetencí jedné ze čtyř sekcí oddělení výstavby, která se zabývá instalací, provozem a údržbou různých zařízení. Další a velmi důležitou částí energocentra je hlavní elektrorozvodna, která přirozeně disponuje také záložním diesel agregátem pro případ výpadku proudu. Sekce elektro oddělení výstavby provozuje elektrická zařízení a zajišťuje jejich údržbu.

Další sekce oddělení výstavby se soustředí na ochranu životního prostředí a ochranu zdraví a bezpečnosti při práci a požární ochranou. Ze zařízení v energocentru patří do jejích kompetencí čistička odpadních vod, úpravna vod a čerpací stanice požární vody pro hašení sprinklery v celém areálu HMMC.

Oddělení výstavby zajišťuje s podporou externí společnosti Ryvola provoz a údržbu veškerých zařízení v energocentru. Odpovídá za distribuci energií pro veškeré technologie v HMMC, stará se o vzduchotechnické jednotky na všech halách a také o vytápění hal a kanceláří.
Příloha č. 4 – Dodavatelé společnosti HMMC

GLOVIS Czech Republic s.r.o.

Glovis poskytuje společnosti HMMC kompletní logistické služby, které zahrnují dodávku automobilových dílů do HMMC z Jižní Koreje (CKD díly) i ze zemí Evropské unie (LP díly) včetně veškerých operací a řízení konsolidačního centra. Mezi zmíněné operace patří vykládka, příjem materiálu, kontrola kvality, uskladnění materiálu, jeho rozbalení, nakládáka na JIS/74/JIT/75 linku, sběr prázdních krabic a inventura. V rámci podpory výrobní linky Glovis řídí tire & wheel proces (montáž pneumatik na kola a jejich dodání na linku). Glovis také odpovídá za procesy na VPC (Vehicle process center – centrum pro mytí a opravy), provádí práci na inspekční a antikorozní lince a podílí se na opravách vozů. V její kompetenci je také uskladnění hotových vozů a jejich přeprava k zákazníkům.

V současné době Glovis zaměstnává asi sto kmenových zaměstnanců a řadu agenturních pracovníků. Plánem společnosti je mít asi 700 lidí včetně agenturních zaměstnanců.

Dymos Czech Republic s.r.o.

74 Just in sequence
75 Just in time
Daewoo Bus, Ssangyong Motors. Česká dceřiná společnost Dymos v Nošovicích bude vyrábět sedačky výhradně pro společnost HMMC.

Cílová skupina vozů, pro niž jsou sedačky určeny, zahrnuje jak osobní auta (Hyundai Grandeur, Hyundai Sonata, Kia Opirus), tak SUV modely (Hyundai Tucson, Kia Sportage, Hyundai Veracruz).

Hysco Czech s.r.o.

Mateřská společnost Hyundai Hysco, člen skupiny Hyundai-Kia Automotive Group, byla založena v roce 1975 pod názvem Kyung- il Industrial Company, Ltd. Po dokončení továrny na ocelové potrubí v roce 1980 se její název změnil na Hyundai Pipe Company, Ltd. Teprve v roce 2001 došlo k přejmenování na současný název Hyundai Hysco. Toto přejmenování už souviselo s ambiciózními plány společnosti stát se přední ocelářskou společností na světovém trhu, které vyplývaly z dosažených úspěchů. V dnešní době je Hyundai Hysco předním výrobcem ocelových produktů pro automobilový průmysl v Koreji, a její úspěšnost stoupá i na světových trzích.

Hysco Czech s.r.o. bude společnosti Hyundai dodávat karosářský plech. V současnosti společnost Hysco zaměstnává asi 60 zaměstnanců. Mezi hlavní zákazníky společnosti Hysco ve světě patří společnost HMC a Kia Motors. Pobočky má Hysco po celém světě, např. v Číně, Indii, USA a domovské Koreji. V Evropě sídlí závody Hysco ve slovenské Žilině.

Mobis Automotive Czech s.r.o.

Největší společnost v nošovické průmyslové zóně je Mobis Automotive Czech s.r.o. Mateřská společnost založena v červenci 1977 pod názvem Hyundai Precision Industry se prosadila jako výrobce kontejnerů a během pouhých prvních tří let předstihla dosavadní špičky tohoto oboru. V průběhu devadesátých let se Mobis přeorientoval na automobilový průmysl a vyráběl vozy Hyundai Galloper a Hyundai Santamo, jejichž produkci v roce 1999 předal společnosti HMC. Ke konci roku spustil výrobu modulů náprav a v listopadu 2000 proběhla formální transformace společnosti včetně změny názvu na Hyundai Mobis. Mobis po celou dobu své třicetileté existence zlepšuje svou konkurenceschopnost na světovém trhu a věnuje maximální pozornost kvalitě svých výrobků tak, aby uspokojil náročné potřeby svých
základně, kterými jsou automobilky HMC a KIA Motors. Společnost patří mezi nejvýznamnější výrobce modulů v Koreji. Své závody i vývojová centra má společnost po celém světě (Korea, USA, Čína, Německo, Slovensko, Indie) a využívá v nich špičkové technologie a nejmodernější přístroje, které jsou samozřejmě instalovány na výrobních linkách v Nošovicích.

Příloha 5 – Podrobnější informace o Úmluvě CMR76

Mezinárodní institut pro sjednocení soukromého práva (UNIDROIT) dal v březnu 1948 impuls a rozpoutal diskuzi o soukromoprávních otázkách v souvislosti s mezinárodní nákladní přepravou zboží. V prosinci 1952 UNIDROIT předložil spolu s dalšími institucemi prvotní návrh právní úpravy pro mezinárodní nákladní přepravu, který se stal společně s nejrůznějšími připomínkami předmětem dalšího projednávání a vyústil v konečné znění Úmluvy o přepravní smlouvě v mezinárodní silniční nákladní dopravě. Úmluva CMR byla dne 19.5.1956 předložena na zvláštním zasedání Evropské hospodářské komise a podepsána ze strany Spolkové republiky Německo, Francie, Jugoslávie, Lucemburska, Holandska, Rakouska, Polska, Švédská a Švýcarska.

V dnešní době platí Úmluva CMR v těchto zemích:

- Albánie, Arménie, Azerbájdžán
- Bělorusko, Belgie, Bosna a Hercegovina, Bulharsko
- Černá hora, Česká republika
- Dánsko
- Estonsko
- Finsko, Francie
- Gruzie
- Chorvatsko
- Írán, Irsko, Itálie
- Jordánsko, bývalá Juroslávská republika Makedonie
- Kazachstán, Kypr, Kyrgyzstán
- Lotyšsko, Libanon, Litva, Lucembursko
- Maďarsko, Malta, Maroko, Moldavsko, Mongolsko

76 Sedláček, Petr. Úmluva CMR
Předmětem úpravy mezinárodního silniční přepravy zboží jsou pravidla pro přepravu zboží silničním dopravním prostředkem tam, kde místo odeslání nebo místo určení leží v odlišných zemích. Jedná se o úpravu smluvního práva civilního, nikoli o úpravu smluvního práva veřejnoprávního. Úmluva CMR také neupravuje samotnou přepravní smlouvu, ale předpokládá, že tato bude uzavřena v souladu s příslušným národním právním řádem.
Příloha č. 6 – Dopravní vozíky a jeřáby

Ruční nízkozdvižný vidlicový vozík

Technické parametry:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost (kg)</th>
<th>Zdvih (mm)</th>
<th>Délka (mm)</th>
<th>Šířka ramen vidlice (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosnost</td>
<td>2000</td>
<td>115 ± 5</td>
<td>1595 ± 10</td>
<td>170 ± 5</td>
</tr>
</tbody>
</table>

Ruční vysokozdvižný vidlicový vozík

Technické parametry:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost (kg)</th>
<th>Délka (mm)</th>
<th>Šířka (mm)</th>
<th>Výška (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosnost</td>
<td>630</td>
<td>1755 ± 10</td>
<td>1206 ± 10</td>
<td>1985 ± 10</td>
</tr>
<tr>
<td>Délka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Šířka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zdvih</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ruční hydraulický jeřábový vozík

Technické parametry:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hmotnost (kg)</th>
<th>Délka (mm)</th>
<th>Šířka (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nosnost</td>
<td>1000</td>
<td>2025 ± 10</td>
<td>1600</td>
</tr>
<tr>
<td>Délka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Šířka</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plošina pojízdná typu SINUS 400A, 600A

Dvoukolka universální typu DVU

Akumulátorový plošinový vozík typ EP 011.2

Akumulátorový tahač typ ET 506.3
Vysokozdvižný vozík typ BVHM 1321

Hydraulická lopata HL 05

Otočné chapadlo CH 15

Jeřábové rameno JR 15

Technické parametry:

Nesoucí (kg) 2250
Hmotnost pohonování (kg) 2850 ± 130
Výška těžiště hmoty (mm) 950
Výška závěru max. (mm) 2500
Výška volného závěru (mm) 1250
Málo vzdálené zdičovací zařízení vseob. (°) 1,5
Málo vzdálené zdičovací zařízení vzad (°) 1,0

Ocelové rozměry vozíku:

Délka (bez vidlice) (mm) 1850
Šířka (mm) 1055

Průměrný výška se zdičovací zařízení (mm) 1800
Průměrná výška se zdičovací zařízení (mm) 3100
Minimální pološtěná otáčení (mm) 1600

Zůstav cižky pro provozních stacionář (mm) 343

Hlavní vidlice (mm) 800
Síťová vidlice (mm) 1000

Rychlost jízdy bez zatížení (km/h) 20
Rychlost jízdy se zatížením (km/h) 11

Rychlost zvětšení bez zatížení (km/h) 35 ± 50
Rychlost zvětšení se zatížením (km/h) 25 ± 35

Stoupavost bez zatížení (°) 13
Stoupavost se zatížením (°) 15

Prodložená vidlice PV 15
Portálový obkročný vůz typ PDOV 220

Jeřábový vozík typ DJHM 5022-3

Konzolové jeřáby a mostové jeřáby v hale
Věžový stavební jeřáb typ MB 88

Technické parametry:

<table>
<thead>
<tr>
<th>Název</th>
<th>Min.</th>
<th>1800</th>
<th>3500</th>
<th>5000</th>
<th>7500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Námořnictví (m)</td>
<td>11</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Výška (m)</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Rychlost (m/min)</td>
<td>(58-19)</td>
<td>(38-19)</td>
<td>(10-13)</td>
<td>(26-13)</td>
<td>(36-13)</td>
</tr>
<tr>
<td>Rychlost pojezdů (m/min)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rychlost otáčení (1/min)</td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rozchod kolejnic (mm)</td>
<td>4600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. položka vnitřní</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celková hmotnost (kg)</td>
<td>41 840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pozn.:

* Hodnoty platí při trojitěm závěsu kladnice.

++/ Rychlost 36 m/min do 2500 kg (dvojitý závěs).

++/ Rychlost 26 m/min do 3750 kg (trojitý závěs).
Příloha č. 7 – Podrobnější informace k silniční sítě v ČR

<table>
<thead>
<tr>
<th>Délka silnic a dálnic celkem</th>
<th>55 422 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>z toho evropská silniční sítě typu E</td>
<td>2 082</td>
</tr>
<tr>
<td>Dálnice v provozu</td>
<td>518</td>
</tr>
<tr>
<td>Rychlostní komunikace</td>
<td>305 *</td>
</tr>
<tr>
<td>Silnice</td>
<td>54 904</td>
</tr>
<tr>
<td>v tom silnice 1. třídy</td>
<td>6 102</td>
</tr>
<tr>
<td>II. třídy</td>
<td>14 664</td>
</tr>
<tr>
<td>III. třídy</td>
<td>34 134</td>
</tr>
<tr>
<td>Místní komunikace</td>
<td>72 300</td>
</tr>
</tbody>
</table>

* Rychlostní komunikace jsou započteny v silnicích I. třídy

Obrázek – Délka silnic a dálnic v ČR (2002)

<table>
<thead>
<tr>
<th>stát</th>
<th>km dálnice</th>
<th>stát</th>
<th>km dálnice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rakousko</td>
<td>1 633</td>
<td>Francie</td>
<td>9 766</td>
</tr>
<tr>
<td>Česká republika</td>
<td>499</td>
<td>Spojené království</td>
<td>3 612</td>
</tr>
<tr>
<td>Německo</td>
<td>11 712</td>
<td>Nizozemsko</td>
<td>2 289</td>
</tr>
<tr>
<td>Španělsko</td>
<td>9 049</td>
<td>Švédsko</td>
<td>1 505</td>
</tr>
</tbody>
</table>

Pramen: Ročenka dopravy ČR 2002

Obrázek – Délka dálnice ve vybraných evropských zemích v roce 2000

<table>
<thead>
<tr>
<th>druh vozidla</th>
<th>počet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osobní automobily</td>
<td>3 647 067</td>
</tr>
<tr>
<td>Mikrobusy + autobusy</td>
<td>21 340</td>
</tr>
<tr>
<td>Nákladní vozidla</td>
<td>323 434</td>
</tr>
<tr>
<td>Silniční tahače registrované v ČR</td>
<td>36 021</td>
</tr>
<tr>
<td>Návěsy</td>
<td>26 809</td>
</tr>
<tr>
<td>Přívěsy</td>
<td>128 419</td>
</tr>
</tbody>
</table>

Pramen: Ročenka dopravy ČR 2002

Obrázek – Početní stavy vozidel (včetně přívěsů)
Příloha č. 8 – Tranzitní systém TIR

Jestliže je operace TIR prováděna silničním vozidlem nebo jízdní soupravou, umístí se vpředu i vzadu na vozidle (soupravě) obdélníkové tabulky s nápisem TIR.

Pro stabilizaci trhu s rostoucí poptávkou po mezinárodní automobilové dopravě bylo nevyhnutelné vytvořit jednotný systém, který by především urychlil celní odbavování na hranicích a zároveň poskytl celní bezpečnost a záruky tranzitním zemím, přes jejichž území dovážejí automobily zboží do míst určení.

Pro řádné fungování tranzitního systému je nutné, aby celní formality nebyly příliš obtížné ani složité ani pro celní úředníky, ani pro dopravce a jejich zástupce. Je tedy žádoucí, aby byla mezi požadavky celních orgánů na straně jedné a požadavky dopravců na straně druhé nastolena rovnovaha.

Cíle Celní úmluvy TIR

Systémy celního tranzitu vznikly proto, aby v co největší míře usnadnily mezinárodní obchod s přepravou zboží pod celní závěrou a poskytly celní bezpečnost a záruky tranzitním zemím.

Principy TIR

Pro zaručení přepravy zboží s minimálními potížemi při přepravě a s minimálními zárukami pro celní správy ve všech tranzitních zemích, jsou v systému TIR zakotveny 4 základní zásady:

- Zboží se přepravuje v celně bezpečných vozidlech nebo kontejnerech.
- Ohrožená cla a daně budou po dobu přepravy zajištěna mezinárodně platnou zárukou.
- Zboží bude doprovázeno mezinárodně uznávaným karnetem, který vstupuje v platnost v zemi odeslání a který slouží jako kontrolní doklad v zemích odeslání, tranzitu a zemích určení.
- Kontrolní opatření celních úřadů, uskutečněná v zemi odeslání, budou uznávána v tranzitních zemích i v zemi určení.
Základní prvky systému TIR

Schvalování silničních vozidel a kontejnerů

Celní úmluva TIR stanovuje, že zboží musí být přepravováno v kontejnerech nebo silničních vozidlech, jejichž nákladový prostor je zkonstruován tak, aby po zajištění celní závěry nebyl možný přístup dovnitř, popř. aby jakýkoliv pokus o vniknutí dovnitř byl jasně patrný. Když kontejner či nákladová jednotka splňuje požadavky úmluvy, vydá příslušný národní schvalovací nebo inspekční orgán schvalovací osvědčení nebo schvalovací štítěk.

Mezinárodní záruční systém

Druhým základním prvkem dopravního režimu TIR je jeho mezinárodní záruční systém. Tento systém byl vyvinut, aby ohrožená cla a poplatky byly zabezpečeny v kterémkoli okamžiku přepravní operace. Záruku nabízí národní záruční sdružení pro případ, že by nemohl být činěn odpovědným příslušným přepravcem TIR.

Každé sdružení, které reprezentuje dopravce určité země, ručí v dané zemi za úhradu veškerých cel a poplatků. Poplatky jsou splatné, dojde-li v průběhu operace TIR k porušení stanovených předpisů. V případě porušení předpisů existuje v každé zemi parter, na kterého se mohou celní orgány obracet. V České republice je tímto záručním sdružením ČESMAD BOHEMIA.

Všechna národní záruční sdružení tvoří dohromady mezinárodní záruční řetěz, který spojuje všechny smluvní strany Celní úmluvy TIR z roku 1975. Tento jediný záruční řetěz je spravován a udržován Svazem mezinárodní silniční dopravy (IRU) se sídlem v Ženevě.

Co se stane, když dojde k porušení předpisů?

Po zjištění nedostatku by měly celní orgány nejdříve vymáhat platby přímo od odpovědných osob, v případě neúspěchu se celní orgány obrátí na záruční sdružení.

Protože žádná záruba nemůže být neomezeně vysoká, jsou pro každou zemi stanoveny individuální finanční limity záruky. Maximální výše, kterou v současnosti ručí IRU, je 50 000 USD na jeden karnet TIR. V případě zvláštního karnetu TIR s vysokým rizikem a zárukou (např. alkohol a tabák) je maximální výše záruky ve výši 200 000 USD. Řádně vyplněný karnet TIR je důkazem platnosti záruky.
Karnet TIR

Třetí a nejvíce viditelný prvek systému TIR je kromě tabulek TIR na vozidlech karnety TIR, který tvoří tzv. páteř celého systému. Karnet TIR je soubor několika tiskopisů, které jsou v současné době vydávány organizací IRU. Distribuce karnetů TIR probíhá za pomoci národních záručních sdružení za podmínek stanovených smlouvami, které dopravce podepíše danému národnímu sdružení.

Karnet TIR má titulní stranu a sérii dvojic útržkových a kmenových listů. V každé zemi, kde se uskutečňuje operace TIR, se použije soubor dvou útržkových a dvou kmenových listů. Současné karnety obsahují 14 nebo 20 útržkových a kmenových listů, tzn. platí maximálně v sedmi nebo deseti státech.

Mezinárodní uznávání celních kontrol

Tento čtvrtý princip stanovuje, že celní kontroly provedené v zemi odeslání budou uznány tranzitními zeměmi a zeměmi určení. Tzn. že prohlídka provedená celním úřadem odeslání bude uznána všemi dalšími celními úřady v rámci tranzitní operace TIR. Tzn. zboží přepravované v rámci režimu TIR nemá být kontrolováno tranzitními celníci, protože silniční vozidla či kontejnery jsou pod celní závěrou. Avšak celní úřady mají právo provádět namátkové kontroly v případech, kdy mají podezření na porušení předpisů, ale takové prohlídky by měly být výjimečné.

Je důležité, aby celní kontrola na celním úřadu odeslání byla přísná a důkladná, neboť právě na tom závisí řádná funkce celního režimu TIR. Přitom je třeba zabránit falešné deklaraci zboží, která umožňuje záměnu zboží v průběhu cesty (např. naloži se cigarety, ale deklarují se papírové tapety, cigarety se později vyloží a tapety naloží). Aby nemohlo dojít k záměně zboží bez porušení závěry, musí celní úřad odeslání přiložením závěr zkontrolovat stav silničního vozidla či kontejneru. V případě vozidel či kontejnerů pokrytých plachtou se kontroluje i stav placht a jejich upevňovacích prvků, a to z důvodu, že toto vybavení není zahrnuto do schvalovacího osvědčení.
Hlavní výhody systému TIR

- vyloučení fyzických prohlídek v tranzitních zemích (kromě kontroly závěr a vnějškového stavu vozidla),
- vylučuje se nutnost jiných záruk než od ČESMAD Bohemia prostřednictvím karnetu TIR,
- mezinárodní přepravní operace se uskutečňuje na podkladě jediného tranzitního dokladu (karnetu TIR), což snižuje nebezpečí, že celním správám budou předkládány nesprávné informace,
- snižuje se zpoždění dopravců na hranicích, což vede k úsporám v dopravních nákladech.

Budoucnost systému TIR

Na základě zájmu mimoevropských zemí by mohlo dojít k zavedení jediného tranzitního režimu, platného na celém světě. V současnosti probíhá budování systému TIR nebo podobného systému v jižní Americe, a to mezi Argentinou, Brazílií, Chile a Uruguaí. Rovněž určitý počet západoafričkých a středoafrických zemí nyní uvažuje o možnosti zavedení systému TIR. V rámci EU není systém TIR aplikován, tzn. že po zrušení všech hranic uvnitř společenství jsou celní kontroly nezbytné jen na vnějších hranicích EU.

Systém TIR a elektronické zpracování dat

Postupně se papírová dokumentace nahrazuje elektronickým zpracováním dat. Tento trend bude nabývat na významu a ovlivňovat celní služby a jimi používané doklady. Vezmeme-li v úvahu omezené možnosti celních úřadů co do počtu pracovníků a stále důmyslnější metody celních podvodníků a pašeráků, zdá se, že nezbývá než zvyšovat produktivitu prostřednictvím elektronického zpracování dat.

Systém TIR vytvořený před 40 lety a Celní úmluva TIR z roku 1975 prokázaly, že představují zatím stálé vysoce efektivní režim mezinárodní dopravy. Mimo to můžeme říci, že sehrály důležitou roli při rozvoji mezinárodního obchodu a dopravy, nejprve v Evropě a později i mezi Evropou a sousedními kontinenty.
Příloha č. 9 – České dráhy a.s.

České Dráhy a.s.

vznikly 1. 1. 2003 jako jedna z nástupnických společností po státní organizaci České dráhy. Akciová společnost je ve 100 % vlastnictví státu. ČD a.s. se zabývají železniční dopravou. Zaměstnávají více jak 80 000 lidí, čímž se stávají z tohoto hlediska největším podnikem v ČR.

Správa železniční dopravní cesty

je státní organizací, která vznikla 1. 1. 2003 jako druhá z nástupnických společností po Českých drahách. Tato organizace bude obhospodařovat železniční cesty (tzv. železniční spodek - koleje, nádraží aj.).

Charakteristika Českých drah

ČD a.s. vypravují denně 1 800 nákladních a 7 000 osobních vlaků. Denně s nimi cestuje přes 500 000 osob a přepraví 250 000 tun nákladů. V rámci zemí EU se ČD svým výkonem řadí na 4. místo za Německo, Francii a Polsko.

Stav železniční infrastruktury u ČD je v současné době na nižší úrovni než u železnic německých nebo rakouských, které pro ČD představují bránu do Evropu. Úroveň povolených rychlostí na území ČR je poměrně nízká a jen na několika málo úsecích je možno dosahovat rychlosti přes 100 km/h. Rovněž stav ostatní části železniční infrastruktury, jako např. železničního sdělovacího a zabezpečovacího zařízení, neodpovídá technickému standardu západoevropských železnic.

Z výše uvedených faktů a charakteristik vyplývá, že je nezbytná modernizace technické základny Českých drah. Spolu s modernizací parku železničních vozidel by mělo být hlavním cílem odstranění disproporci mezi kvalitou a rychlostí v kvalitě a rychlosti přepravy u klíčových koridorů, aby ČD na těchto úsecích dosáhla srovnatelné úrovni s evropskými železnicemi. Na mezinárodních koridorech by měly vlaky dosahovat rychlosti 160 km/h.
Příloha č. 10 – Nové varianty přepravy nadměrného nákladu

Varianta č. 1

Ulsan → Busan → Hamburk* → Mělník → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Hamburk* - námořní (lodní) doprava
* (přes Severní ledový oceán - viz. obrázek 4.2)
Hamburk* → Mělník - říční (lodní) doprava
Mělník → Nošovice - nákladní kamionová doprava

Varianta č. 2

Ulsan → Busan → Constanta → Bratislava → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Constanta - námořní (lodní) doprava
Constanta → Bratislava - říční (lodní) doprava
Bratislava → Nošovice - nákladní kamionová doprava

Varianta č. 3

Ulsan → Busan → Hamburk → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Hamburk - námořní (lodní) doprava
* (přes Středozemní moře – viz. obrázek 4.2)
Hamburk → Nošovice - nákladní kamionová doprava

Varianta č. 4

Ulsan → Busan → Hamburk* → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Hamburk* - námořní (lodní) doprava
* (přes Severní ledový oceán - viz. obrázek 4.2)
Hamburk* → Nošovice - nákladní kamionová doprava

Varianta č. 5

Ulsan → Busan → Koper → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Koper - námořní (lodní) doprava
Koper → Nošovice - nákladní kamionová doprava

Varianta č. 6

Ulsan → Busan → Constanta → Nošovice

Ulsan → Busan - nákladní kamionová
Busan → Constanta - námořní (lodní) doprava
Constanta → Nošovice - nákladní kamionová doprava

Varianta č. 7

Ulsan → Nošovice

Ulsan → Nošovice - nákladní automobilová doprava
Příloha č. 11 – Žádost o povolení přepravy nadměrného nákladu (§40 vyhlášky č. 104/1997 Sb.)

MINISTERSTVO DOPRAVY

žadatel (uživatel):

V zastoupení:

Datum: ____________________________

čj: ____________________________

(vyplní žadatel)

Věc: Žádost o povolení k přepravě nadměrného nákladu (vozidla)

Na základě ust. § 25 odst. 6 písm. a) zákona č. 13/1997 Sb. o pozemních komunikacích ve znění pozdějších předpisů, žádám o vydání povolení k přepravě nadrozměrného nákladu (vozidla), jejichž rozměry nebo hmotnost přesahují míru stanovenou vyhl. č. 341/2002 Sb. o schvalování technicky způsobilosti a o technických podmínkách provozu vozidel na pozemních komunikacích.

Údaje o předmětu přepravy:

Náklad (druh, hmotnost): ____________________________ t

Podvozek (typ, SPZ, hmotnost): ____________________________ t

Tahač (typ, SPZ, hmotnost): ____________________________ t

Soupraha - částečná délka: ____________________________ m včetně postrádek: ____________________________ m

max. šířka: ____________________________ m

max. výška: ____________________________ m

celková hmotnost: ____________________________ t včetně postrádek: ____________________________ t

zářídlení jedn. náprav: ____________________________ t

rozvor náprav: ____________________________ m

počet náprav/kol: ____________________________ ks min.počet otáčení: ____________________________ m

Požadovaný termín přepravy: od ____________________________ do ____________________________

Preprava z ____________________________ do ____________________________ okres ____________________________

Návrh přepravní trasy: (vyplní žadatel):

Pozn.: • Náklad o celkové hmotnosti nad 60 t nebo nadměrných rozměrech lze povolit jen výjimečně, pokud žadatel prokáže, že není technicky reálně možné hmotnost nebo rozměry přepravy ani použít jiného způsobu přepravy a že zatížitelnost mostu a umístění vozevek ovšem státním posouzením umožnila realizaci přepravy.

• U vozidla (souprahy) nad 60 t uvedte obrysový nákres vozidla (souprahy) s vyzařením všech rozměrů a umístění nákladu v příloze (formát A 4).

Doklady potřebné k vydání povolení:

• Výpis z obchodního rejstříku + zpomocnění v případě že žadatel není současně statutární zástupce nebo jednatel společnosti.

• Doklad prokazující technickou způsobilost k provozu na pozemních komunikacích (technický průkaz silničního vozidla nebo zvláštního motorového vozidla, příp. technické ověření zvláštního vozidla nebo silničního vozidla).

Vyzývá: ____________________________ razítko a podpis žadatele
Příloha č. 12 – Důležité vodní cesty z pohledu ČR

Odra

Západní rameno delty je využívané pro vodní dopravu, která je možná až k ústí Opavy. Pro velké lodě je řeka splavná k městu Kozle. Regulace toku probíhá za pomocí jezů. Odra ústí do štětínského zálivu, který spadá pod Baltské moře.
Dunaj

Labe

Labe je jedinou spojnici českých vodních cest vltavsko-labského systému se sítí evropských vodních cest. Labe je naší jedinou svobodnou spojnicí s mořem a prakticky celým světem. Díky tomu je možno z Čech vyvážet a do Čech dovážet zboží nezatížené přepravními poplatky cizích států, na jejichž výši nemá Česká republika vliv. Tím labská plavba pouhou svou existencí funguje jako regulátor ceny českého exportu a importu a tím přispívá ke konkurenceschopnosti české ekonomiky.
Rýn

Rýn patří k nejdůležitějším mezinárodním vodním cestám Západní Evropy. Pravidelná lodní doprava je provozována do Basileje, který leží 886 km od ústí, pro menší lodě až do Laufenburgu a také po Bodamském jezeře. Řeka je spojena kanály s Dunajem, Rhönou, Marnou, Vezerou, Labem a Emží. Největší přístavy na řece jsou Rotterdam s vnějším přístavem Hoek van Holland (Nizozemsko), Duisburg-Ruhrort, Kolín nad Rýnem, Mohuč, Ludwigshafen, Mannheim (Německo), Štrasburg (Francie), Basilej (Švýcarsko).