LEGENDA:
1. Průchozí lávky
2. Pojistkou jištěná kompenzovaná předřadníková skříň
3. Připojení svítidla kabelem k předřadníkové skříně
4. Kabelový rošt
5. Svítidlo v.č. 541 19 01
POSOUZENÍ PARAMETRU UMĚLÉHO OSVĚTLENÍ
JEŘÁBŮ HALY - ZPO 1

ARCELOR MITTAL - OSTRAVA a.s. - HALA PLYNULÉHO
ODLÉVÁNÍ OCELI č. 1

PŘÍLOHA - II.

MĚŘIL A ZPRACOVAL: Bc. JAN VILKUS

DATUM A ČAS MĚŘENÍ: 16. 2. 2012, 7:00 – 7:30
1 DŮVOD ZPRACOVÁNÍ

Tento posudek se provádí za účelem výměny osvětlovací soustavy jeřábů haly ZPO 1.

2 POUŽITÉ PODKLADY PRO VYPRACOVÁNÍ

2.1 Legislativní odkazy

- ČSN EN 12464 – 1 Světlo a osvětlení - Osvětlení pracovních prostorů
- ČSN 36 0011 – 1 Měření osvětlení vnitřních prostorů - Část 1: Základní ustanovení
- ČSN 36 0011 – 3 Měření osvětlení vnitřních prostorů - Část 3: Měření umělého osvětlení

2.2 Podkladové materiály

- Technická dokumentace haly
- Foto dokumentace
- Vlastní prohlídka
- Měření osvětlenosti

3 POUŽITÉ MĚŘÍCÍ PŘÍSTROJE

3.1 Digitální luxmetr – Minilux

- Typ: MINILUX
- Výrobce: MX - ELECTRONIC
- Výrobní číslo: 300/373
- Rozsah: 1 mlx ÷ 199,9 klx

3.2_digitální voltmetr DM – 502

- Typ: MS2600 Digital Electrical Tester
- Výrobce: MASTECH
- Výrobní číslo: 20060368940
- Rozsah: AC – V 4/40/400V±0.8%, 700V ± 1.0%
4 CHARakteristika vnitřního prostoru

4.1 Hala zařízení plynulého odlévání oceli ZPO1

Hala ZPO1 o rozměrech (v x š x d) 25, 27, 108 m je určena k výrobě plynule litých předlitků. V severní části haly ZPO1 je umístěn jeřáb který plynule lité předlitky ukládá na vagóny pro transport k dalšímu zpracování. V této hale se nachází dvě osvětlovací soustavy. OsVětlovací soustava centrálního osvětlení na stropní konstrukci haly a druhá místního osvětlení umístěna na konstrukci jeřábu. Tyto osvětlovací soustavy slouží zejména ke zlepšení zrakové pohody a zvětšení zrakového výkonu na místě pracovního úkolu.

4.2 Svítidla a světelné zdroje

Hala ZPO1 je osazena svítidly Elektrosvit Svatobořice výbojového svítidla 541 19 01 a světelným zdrojem OSRAM MT HIT HQI-T 2000W-D. Jeřáb je osazen svítidly KOREX I s výbojovým světelným zdrojem NAV-T 250W a svítidly MERIDIÁN, se žárovkovým světelným zdrojem 500 W. Při použití na jeřábu s krytím IP 23, bez ochrany proti mechanickým nárazům IK00, bez ochranného skla zcela nevyhovují pro použití ve špinavém prostředí a těžkém průmyslu. Stávající osvětlovací soustava na mostovém klešťovém jeřábu je velmi zastaralá. Světelné zdroje jsou pravděpodobně, již za ekonomickou dobou života.

4.3 Stropní osvětlení haly ZPO 1

(Bylo provedeno měření)
20 x Svítidlo vč. 541 19 01, HQI-T 2000W/D

4.4 Osvětlení na jeřábu č. 6:

5 x Svítidlo MERIDIÁN 311 21 01, žárovka 500 W
3 x svítidlo KOREX I 341 19 01, NAV-T 250 W

4.5 Osvětlení na jeřábu č. 7:

(Bylo provedeno měření)
6 x Svítidlo MERIDIÁN 311 21 01, žárovka 500 W
2 x svítidlo KOREX I 341 19 01, NAV-T 250 W

Při měření nesvítila tři svítidla.
5 Požadavky na umělé osvětlení dle normy ČSN EN 12464 – 1

5.1 Výsledky měření celkového osvětlení haly

Tabulka 1: Naměřené a požadované hodnoty osvětlenosti a rovnoměrnosti celkového prostoru haly

<table>
<thead>
<tr>
<th>Celkový prostor haly</th>
<th>E_m (lx)</th>
<th>E_{min} (lx)</th>
<th>E_{max} (lx)</th>
<th>UGR$_L$ (-)</th>
<th>r (-)</th>
<th>R_a (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Požadované hodnoty</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>0,5</td>
<td>40</td>
</tr>
<tr>
<td>Naměřené hodnoty</td>
<td>75,3</td>
<td>48</td>
<td>101</td>
<td>-</td>
<td>0,63</td>
<td>-</td>
</tr>
</tbody>
</table>

Při měření byla teplota okolního vzduchu 5° C.

Udržovaná osvětlenost

$E_m = \frac{\Phi}{A}$ \hspace{1cm} (lx, lm, m2) \hspace{1cm} (1)

$E_m = E_1 \cdot S_1 + E_2 \cdot S_2 + \ldots + E_n \cdot S_n = 75,3 \text{ lx}$

Rovnoměrnost osvětlení

$r = \frac{E_{min}}{E_m}$ \hspace{1cm} (2)

$r = \frac{E_{min}}{E_m} = \frac{48}{75,3} = 0,63$
5.2 Výsledky měření místního osvětlení jeřábu

Tabulka 2.: Naměřené a požadované hodnoty osvětlenosti a rovnoměrnosti pracoviště

<table>
<thead>
<tr>
<th>Celkový prostor haly</th>
<th>E_m (lx)</th>
<th>E_{min} (lx)</th>
<th>E_{max} (lx)</th>
<th>UGR_L (-)</th>
<th>r (-)</th>
<th>R_a (-)</th>
<th>U_n (V)</th>
<th>U_mD (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Požadované hodnoty</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>0,7</td>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Naměřené hodnoty</td>
<td>69,43</td>
<td>45,2</td>
<td>81</td>
<td>-</td>
<td>0,65</td>
<td>-</td>
<td>230</td>
<td>224</td>
</tr>
</tbody>
</table>

Při měření byla teplota okolního vzduchu 5° C.

5.2.1 Vyhodnocení měření: JEŘÁB č. 7

Korekční faktor:

$$K_u = \left[\frac{U_n}{U_m} \right]^c = \left[\frac{230}{224} \right]^{3,6} = 1,1$$

c - Závislý na druhu světelného zdroje – žárovka $c = 3,6$, U_m - Provozní napětí (V), U_s - napětí sítě (V)

Udržovaná osvětlenost

$$E_m = \frac{\Phi}{A} \text{ (lx, lm, m}3)$

$$E_m = \frac{E_1 \cdot S_1 + E_2 \cdot S_2 + ... + E_n \cdot S_n}{S_1 + S_2 + ... + S_n} \cdot K_u = 69,43 \text{ lx}$$

Rovnoměrnost osvětlení

$$r = \frac{E_{min}}{E_m}$$

$$r = \frac{45,2}{69,43} = 0,65$$
6 VYHODNOCENÍ

Při porovnání naměřených hodnot pracovního prostoru jeřábu s hodnotami danými normou ČSN EN 12464 – 1 Světlo a osvětlení - Osvětlení pracovních prostorů - Část 1. vnitřní pracovní prostory bylo zjištěno:

6.1 Osvětlovací soustava haly ZPO 1

Z výsledků měření můžeme konstatovat, že osvětlenost srovnávací roviny na podlaze haly nevyhovuje požadované hodnotě 150 lx.

6.2 Osvětlovací soustava na jeřábu č. 7

Z výsledků měření můžeme konstatovat, že osvětlenost srovnávací roviny na podlaze haly v místě pracovního prostoru jeřábu č. 7 nevyhovuje požadované hodnotě 200 lx.

7 Závěr

Stávající osvětlovací soustavy jeřábů ocelárny, nevyhovují současným požadavkům, tímto doporučuji jejich výměnu. Stávající osvětlovací soustava celkového osvětlení nevyhovuje požadavkům, doporučuji zvýšit její údržbu, popřípadě provést výměnu celé osvětlovací soustavy.
POSOUZENÍ STÁVAJÍCÍHO OSVĚTLENÍ

Popis : HALA PLYNULÉHO ODLÉVÁNÍ OCELI - STÁVAJÍCÍ STAV

Číslo projektu : III
Zákazník : ARCELOR MITTAL - OSTRAVA a.s.
Vypracoval : Bc. JAN VILKUS
Datum : 29.03.2012

Následující hodnoty vycházejí z přesných výpočtů kalibrovaných světelných zdrojů, svítidel a jejich rozmístění. V praxi se mohou projevit určité odchylky. Záruční reklamace na data svítidel jsou vyloučeny.

Relux a výrobci svítidel nepřijímají žádnou odpovědnost za následné škody a škody, které vzniknou uživateli nebo třetím stranám.
STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Popis, STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Plán údržby

Pro danou osvětlovací soustavu mohou být dodrženy intenzity osvětlení dle ČSN EN 12 464 jen díky pravidelně prováděné údržbě.

Prostor

<table>
<thead>
<tr>
<th>Druh prostředí</th>
<th>špinavý</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval údržby</td>
<td>ročně</td>
</tr>
</tbody>
</table>

Elektrosvit Svatobořice, a.s. !541 1901

<table>
<thead>
<tr>
<th>Interval údržby</th>
<th>ročně</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nefunkční zdroje budou neprodleně vyměněny</td>
<td>Ano</td>
</tr>
<tr>
<td>Udržovací činitel</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Elektrosvit Svatobořice, a.s. !311 21 01

<table>
<thead>
<tr>
<th>Interval údržby</th>
<th>0.5 roku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nefunkční zdroje budou neprodleně vyměněny</td>
<td>Ano</td>
</tr>
<tr>
<td>Udržovací činitel</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Poznámky k údržbě:

Světelné zdroje musí být nahrazeny zdroji se shodnými technickými parametry - světelný tok, barva světla, stupeň podání barev. Při výměně světelného zdroje je nutno vyměnit i zapalovače.

Prostor a povrchy je nutno udržovat tak, aby nedošlo ke snížení počátečních činitelů odrazu.

Pokyny výrobce pro údržbu je nutno dodržovat
Objekt: POSOUZENÍ STÁVAJÍCÍHO OSVĚTLENÍ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI Č. 1
Číslo projektu: Č.1
Datum: 29.03.2012

STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Přehled výsledků, STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1
Přehled výsledků, S.R - HALA

Objekt
Použitý algoritmus výpočtu centrální podíl nepřímé složky
Výška hodnotící plochy 0.05 m
Udržovací činitel viz svítidlo/plán údržby
Celkový světelný tok všech zdrojů 3092000 lm
Celkový výkon 38000 W
Celkový výkon na ploše (2592.00 m2) 14.66 W/m2 (2.33 W/m2/100lx)

Intenzity osvětlení
Udržovaná osvětlenost Em 630 lx
Minimální osvětlenost Emin 280 lx
Maximální osvětlenost Emax 890 lx
Rovnoměrnost g1 Emin/Em 1:2.25 (0.44)
Rovnoměrnost g2 Emin/Emax 1:3.18 (0.31)

Typ Č. výrobce

Elektrosvít Svatobořice, a.s.
Objednací č. : 1541 1901
Název svítidla : Průmyslové výbojové svítidlo
Osazení : 1 x HQI-T 2000W/D / 180000 lm
Udržovací činitel : 1.00
STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Popis, STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Plán údržby

Pro danou osvětlovací soustavu mohou být dodrženy intenzity osvětlení dle ČSN EN 12 464 jen díky pravidelně prováděné údržbě.

Prostor
Druh prostředí : špinavý
Interval údržby : ročně

Elektrosvit Svatobořice, a.s. !541 1901
Interval údržby : ročně
Nefunkční zdroje budou neprodleně vyměněny : Ano
Udržovací činitel : 0.13

Elektrosvit Svatobořice, a.s. !311 21 01
Interval údržby : 0.5 roku
Nefunkční zdroje budou neprodleně vyměněny : Ano
Udržovací činitel : 0.13

Poznámky k údržbě:
Světelné zdroje musí být nahrazeny zdroji se shodnými technickými parametry - světelný tok, barva světla, stupeň podání barev. Při výměně světelného zdroje je nutno vyměnit i zapalovače.

Prostor a povrchy je nutno udržovat tak, aby nedošlo ke snížení počátečních činitelů odrazu.

Pokyny výrobce pro údržbu je nutno dodržovat

STÁVAJÍCÍ SOUSTAVA
STÁVAJÍCÍ SOUSTAVA

Přehled výsledků

<table>
<thead>
<tr>
<th>Objev</th>
<th>Popis</th>
<th>Číslo projektu</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSOUZENÍ STÁVAJÍCÍHO OSVĚTLENÍ HALY - ZPO 1</td>
<td>Č.1</td>
<td>29.03.2012</td>
</tr>
</tbody>
</table>

Přehled výsledků, STÁVAJÍCÍ STAV OSVĚTLOVACÍ SOUSTAVY - HALA ZPO 1

Přehled výsledků, S.R - HALA

Obecně

- Použitý algoritmus výpočtu: centrální podíl nepřímé složky
- Výška hodnotící plochy: 0.05 m
- Udržovací činitel: viz svítidlo/plán údržby

- Celkový světelný tok všech zdrojů: 3092000 lm
- Celkový výkon: 38000 W
- Celkový výkon na ploše (2592.00 m²): 14.66 W/m² (17.89 W/m²/100lx)

Intenzity osvětlení

- Udržovaná osvětlenost: Em 82 lx
- Minimální osvětlenost: Emin 36 lx
- Maximalní osvětlenost: Emax 116 lx
- Rovnoměrnost g1: Emin/Em 1:2.25 (0.44)
- Rovnoměrnost g2: Emin/Emax 1:3.18 (0.31)

Typ výrobce

- **Elektrosvit Svatobořice, a.s.**
 - Objednací č.: 1541 1901
 - Název svítidla: Průmyslové výbojové svítidlo
 - Osazení: 1 x HQI-T 2000W/D / 180000 lm
 - Udržovací činitel: 0.13
NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1

Popis : HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ

Číslo projektu : IV
Zákazník : ARCELOR MITTAL - OSTRAVA a.s.
Vypracoval : Bc. JAN VILKUS
Datum : 27.02.2012

Následující hodnoty vycházejí z přesných výpočtů kalibrovaných světelných zdrojů, svítidel a jejich rozmístění. V praxi se mohou projevit určité odchylky. Záruční reklamace na data svítidel jsou vyloučeny.

Relux a výrobci svítidel nepřijímají žádnou odpovědnost za následné škody a škody, které vzniknou uživatelí nebo třetím stranám.

denní osvětlení
DENNÍ OSVĚTLENÍ

Popis, DENNÍ OSVĚTLENÍ

Plán údržby

Pro danou osvětlovací soustavu mohou být dodrženy intenzity osvětlení dle ČSN EN 12 464 jen díky pravidelně prováděné údržbě.

Prostor
Druh prostředí : špinavý
Interval údržby : ročně

Poznámky k údržbě:
Světelné zdroje musí být nahrazeny zdroji se shodnými technickými parametry - světelný tok, barva světla, stupeň podání barev. Při výměně světelného zdroje je nutno vyměnit i zapalovače.

Prostor a povrchy je nutno udržovat tak, aby nedošlo ke snížení počátečních činitelů odrazu.

Pokyny výrobce pro údržbu je nutno dodržovat
DENNÍ OSVĚTLENÍ

Přehled výsledků, DENNÍ OSVĚTLENÍ

Přehled výsledků, SROVNÁVACÍ ROVINA HALA

<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 4</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

![Diagram of illumination levels](image)

Činitel denní osvětlenosti [%]

- **Obecně**
 - Použitý algoritmus výpočtu: nízký podíl nepřímé složky
 - Výška hodnotící plochy: 0.00 m
 - Použitý režim výpočtu: zatažená obloha podle CIE

- **Datum, Čas:** 21.03. 10:28 (WOZ 11:34) SMČ

Zeměpisné údaje:
- Sídlo: Ostrava
- Zeměpisná šířka: 49.47 °
- Zeměpisná délka: 18.18 °
- Úhel vůči severu: 5.00 °

Činitel denní osvětlenosti:
- Průměrný činitel denní osvětlenosti (Dav) : 3.6
- Minimální činitel denní osvětlenosti (Dmin) : 1.11
- Maximální činitel denní osvětlenosti (Dmax) : 7.48
DENNÍ OSVĚTLENÍ

Výsledky výpočtu, DENNÍ OSVĚTLENÍ

3D jasy, Pohled 1

<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 4</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Jas scény
Minimum: 0 cd/m2
Maximum: 408 cd/m2
Objekt: NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ
Číslo projektu: Č. 4
Datum: 27.02.2012

Výsledky výpočtu, DENNÍ OSVĚTLENÍ
3D pseudobarvy, Pohled 5 (E)

<table>
<thead>
<tr>
<th>Intenzita osvětlení [lx]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

[Diagram showing 3D pseudobarvvy with intensity levels from 100 to 500 lux, corresponding to different areas of a hall.]
DENNÍ OSVĚTLENÍ

Hospodárnost

izo

<table>
<thead>
<tr>
<th>Měsíc</th>
<th>Odpracované hodiny za měsíc</th>
<th>Odpracované hodiny za rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leden</td>
<td>176</td>
<td>48.5%</td>
</tr>
<tr>
<td>Únor</td>
<td>160</td>
<td>75.3%</td>
</tr>
<tr>
<td>Březen</td>
<td>184</td>
<td>93.6%</td>
</tr>
<tr>
<td>Duben</td>
<td>160</td>
<td>99.9%</td>
</tr>
<tr>
<td>Květen</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Červen</td>
<td>176</td>
<td>100.0%</td>
</tr>
<tr>
<td>Červenec</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Srpen</td>
<td>168</td>
<td>84.8%</td>
</tr>
<tr>
<td>Září</td>
<td>176</td>
<td>59.1%</td>
</tr>
<tr>
<td>Říjen</td>
<td>176</td>
<td>38.4%</td>
</tr>
<tr>
<td>Listopad</td>
<td>168</td>
<td></td>
</tr>
</tbody>
</table>

Sídlo: Ostrava
Zeměpisná délka: 18.2
Zeměpisná šířka: 49.5
denní pracovní doba: 06:00 - 14:30
1.pracovní přestávky: 09:30 - 10:00

Činitel denní osvětlenosti: 2.00 %
zvolená minimální osvětlenost: 200 Lux
potřebná venkovní osvětlenost: 10000 Lux

Objekt: NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ
Číslo projektu: Č. 4
Datum: 27.02.2012
Hospodárnost

izo: Zatažená obloha

<table>
<thead>
<tr>
<th>Čas</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td>1.1.</td>
<td>1.3.</td>
<td>1.6.</td>
<td>1.9.</td>
<td>1.12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Umělé osvětlení nezbytné

- Křivka A: 2000 Lux
- Křivka B: 5000 Lux
- Křivka C: 10000 Lux
- Křivka D: 15000 Lux
- Křivka E: 19000 Lux
- Hraniční křivka: 10000 Lux

Sídlo: Ostrava
Zeměpisná délka: 18,2
Zeměpisná šířka: 49,5

denní pracovní doba: 06:00 - 14:30
1. pracovní přestávky: 09:30 - 10:00
Letní čas: 28.03. - 31.10.
Objekt: NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ
Číslo projektu: Č. 4
Datum: 27.02.2012

Hospodárnost

izo: Jasná obloha

<table>
<thead>
<tr>
<th>Čas</th>
<th>1.1.</th>
<th>1.3.</th>
<th>1.6.</th>
<th>1.9.</th>
<th>1.12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

- Umělé osvětlení nezbytné
- Hraniční křivka: 10000 Lux
- Křivka A: 10000 Lux
- Křivka B: 20000 Lux
- Křivka C: 30000 Lux
- Křivka D: 50000 Lux
- Křivka E: 70000 Lux

Sídlo: Ostrava
Zeměpisná délka: 18,2
Zeměpisná šířka: 49,5

denní pracovní doba: 06:00 - 14:30
1.pracovní přestávky: 09:30 - 10:00

Letní čas: 28.03. - 31.10.
Hospodárnost

Porovnání nákladů s a bez systému řízení osvětlení

<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - DENNÍ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 4</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Halo dny

<table>
<thead>
<tr>
<th>Ročně</th>
<th>Náklady na energii v Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez Řízení</td>
<td>85904.00</td>
</tr>
<tr>
<td>S Řízením</td>
<td>14397.18</td>
</tr>
<tr>
<td>Úspory</td>
<td>71506.82</td>
</tr>
</tbody>
</table>

Sídlo: Ostrava

Zeměpisná délka: 18.2

Zeměpisná šířka: 49.5

zvolená minimální osvětlenost: 200 Lux

Činitel denní osvětlenosti: 2.00 %

potřebná venkovní osvětlenost: 10000 Lux

denní pracovní doba: 06:00 - 14:30

1. pracovní přestávky: 09:30 - 10:00

Počet svítidel: 20

Celk. výkon/svítidlo: 1000 Watt

Cena el. energie za KWh: 2.06 Kč
NÁVRH OSVĚTLENÍ JEŘÁBŮ H Aly - ZPO 1

Popis : HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ

Číslo projektu : V
Zákazník : ARCELOR MITTAL - OSTRAVA a.s.
Vypracoval : Bc. JAN VILKUS
Datum : 27.02.2012

Následující hodnoty vycházejí z přesných výpočtů kalibrovaných světelných zdrojů, svítidel a jejich rozmístění. V praxi se mohou projevit určité odchylky. Záruční reklamace na data svítidel jsou vyloučeny.

Relux a výrobci svítidel nepřijímají žádnou odpovědnost za následné škody a škody, které vzniknou uživateli nebo třetí stranám.
Údaje o svítidle
MODUS Praha, MODUS CRONO 2 asym. re... (!MODUS CRONO 2 ...)
Specifikace svítidla

Výrobce: MODUS Praha

!MODUS CRONO 2 150 Q MODUS CRONO 2 asym. reflektor

<table>
<thead>
<tr>
<th>Údaje o svítidle</th>
<th>Osazeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Účinnost svítidla</td>
<td>69%</td>
</tr>
<tr>
<td>Luminaire efficacy</td>
<td>66.7 lm/W</td>
</tr>
<tr>
<td>Classification</td>
<td>A50 100.0% ↑0.0%</td>
</tr>
<tr>
<td>CIE Flux Codes</td>
<td>69 96 100 100 69</td>
</tr>
<tr>
<td>Předřadník</td>
<td></td>
</tr>
<tr>
<td>Celkový příkon systému</td>
<td>150 W</td>
</tr>
<tr>
<td>Délka</td>
<td>290 mm</td>
</tr>
<tr>
<td>Šířka</td>
<td>415 mm</td>
</tr>
<tr>
<td>Výška</td>
<td>140 mm</td>
</tr>
</tbody>
</table>
MODUS Praha, MODUS CRONO 2 asym. re... (MODUS CRONO 2 ...)

Křivka svítivosti

Výrobce : MODUS Praha
Objednací číslo : !MODUS CRONO 2 150 Q
Název svítidla : MODUS CRONO 2 asym. reflektor
Osazení : 1 x HCI-TS 150/WDL / 14500 lm
Rozměry : L 290 mm x B 415 mm x H 140 mm

Účinnost : 69%
Luminaire efficacy : 66.7 lm/W (A50)
Rozložení světla : asymetrický
Vyzařovací úhel : 48.3° C0

Výsledky:

<table>
<thead>
<tr>
<th>Úhel</th>
<th>C0</th>
<th>C90</th>
<th>C180</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>390</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>5°</td>
<td>417</td>
<td>385</td>
<td>365</td>
</tr>
<tr>
<td>10°</td>
<td>448</td>
<td>375</td>
<td>318</td>
</tr>
<tr>
<td>15°</td>
<td>484</td>
<td>360</td>
<td>279</td>
</tr>
<tr>
<td>20°</td>
<td>519</td>
<td>336</td>
<td>248</td>
</tr>
<tr>
<td>25°</td>
<td>535</td>
<td>304</td>
<td>218</td>
</tr>
<tr>
<td>30°</td>
<td>545</td>
<td>270</td>
<td>94</td>
</tr>
<tr>
<td>35°</td>
<td>520</td>
<td>220</td>
<td>77</td>
</tr>
<tr>
<td>40°</td>
<td>452</td>
<td>174</td>
<td>61</td>
</tr>
<tr>
<td>45°</td>
<td>347</td>
<td>147</td>
<td>52</td>
</tr>
<tr>
<td>50°</td>
<td>239</td>
<td>119</td>
<td>32</td>
</tr>
<tr>
<td>55°</td>
<td>160</td>
<td>68</td>
<td>23</td>
</tr>
<tr>
<td>60°</td>
<td>101</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>65°</td>
<td>49</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>70°</td>
<td>12</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>75°</td>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>80°</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>85°</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

cd / 1000 lm
Údaje o svítidle

Metasport a. s., DSS 1000W rastrovaná parabola (DSS HQI 1000W)

Specifikace svítidla

<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELÍ - UMĚLÉ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 5</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Výrobce: Metasport a. s.

DSS HQI 1000W

DSS 1000W rastrovaná parabola

<table>
<thead>
<tr>
<th>Údaje o svítidle</th>
<th>Osazeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Účinnost svítidla</td>
<td>58.5271%</td>
</tr>
<tr>
<td>Luminaire efficacy</td>
<td>52.67 lm/W</td>
</tr>
<tr>
<td>Classification</td>
<td>A60 100.0% ↑0.0%</td>
</tr>
<tr>
<td>CIE Flux Codes</td>
<td>72 96 100 100 59</td>
</tr>
<tr>
<td>Předřadník</td>
<td></td>
</tr>
<tr>
<td>Celkový příkon systému</td>
<td>1000 W</td>
</tr>
<tr>
<td>Délka</td>
<td>480 mm</td>
</tr>
<tr>
<td>Šířka</td>
<td>360 mm</td>
</tr>
<tr>
<td>Výška</td>
<td>325 mm</td>
</tr>
</tbody>
</table>

Diagram

[Diagram of the light distribution pattern]
Metasport a. s., DSS 1000W rastrovaná parabola (DSS HQI 1000W)

Křivka svítivosti

<table>
<thead>
<tr>
<th>Vyzařovací úhel (°)</th>
<th>C0</th>
<th>C90</th>
<th>C180</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>344</td>
<td>344</td>
<td>344</td>
</tr>
<tr>
<td>5°</td>
<td>330</td>
<td>354</td>
<td>330</td>
</tr>
<tr>
<td>10°</td>
<td>342</td>
<td>373</td>
<td>342</td>
</tr>
<tr>
<td>15°</td>
<td>326</td>
<td>399</td>
<td>326</td>
</tr>
<tr>
<td>20°</td>
<td>232</td>
<td>413</td>
<td>232</td>
</tr>
<tr>
<td>25°</td>
<td>178</td>
<td>409</td>
<td>178</td>
</tr>
<tr>
<td>30°</td>
<td>117</td>
<td>389</td>
<td>117</td>
</tr>
<tr>
<td>35°</td>
<td>80</td>
<td>355</td>
<td>80</td>
</tr>
<tr>
<td>40°</td>
<td>72</td>
<td>299</td>
<td>72</td>
</tr>
<tr>
<td>45°</td>
<td>68</td>
<td>217</td>
<td>68</td>
</tr>
<tr>
<td>50°</td>
<td>63</td>
<td>126</td>
<td>63</td>
</tr>
<tr>
<td>55°</td>
<td>18</td>
<td>89</td>
<td>18</td>
</tr>
<tr>
<td>60°</td>
<td>8</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td>65°</td>
<td>5</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>70°</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>75°</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>80°</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>85°</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>90°</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Výrobce : Metasport a. s.
Objednací číslo : DSS HQI 1000W
Název svítidla : DSS 1000W rastrovaná parabola
Osazení : 1 x HQI 1000W / 90000 lm
Rozměry : L 480 mm x B 360 mm x H 325 mm
Název souboru : DSS HQI 1000 W 20.ldt

Účinnost : 58.53%
Luminaire efficacy : 52.67 lm/W (A60)
Vyzařovací úhel : symetrický vůči C0-C180 / C90-C270
Vyzařovací úhel : 44.7° C0-C180 / 91.2° C90-C270
NOVÁ OSVĚTLOVACÍ SOUSTAVA

Popis, NOVÁ OSVĚTLOVACÍ SOUSTAVA

Plán údržby

Pro danou osvětlovací soustavu mohou být dodrženy intenzity osvětlení dle ČSN EN 12 464 jen díky pravidelně prováděně údržbě.

Prostor
Druh prostředí: špinavý
Interval údržby: ročně

MODUS Praha !MODUS CRONO 2 150 Q
Vliv odrazů od ploch prostoru: 50% / 30% / 20%
Charakteristika svítidla: přímé
Typ reflektoru: E - prachotěsné IP5X
Typ světelného zdroje: výbojka halogenidová (CIE)
Předřadník: klasický
Provozní hodiny za rok: 8000
Interval údržby: ročně
Nefunkční zdroje budou neprodleně vyměnány: Ano
Udržovací činitel: 0.55

Metasport, a.s. !DSS 1000 W
Vliv odrazů od ploch prostoru: 50% / 30% / 20%
Charakteristika svítidla: přímé
Typ reflektoru: E - prachotěsné IP5X
Typ světelného zdroje: výbojka halogenidová (CIE)
Předřadník: klasický
Provozní hodiny za rok: 8000
Interval údržby: ročně
Nefunkční zdroje budou neprodleně vyměnány: Ano
Udržovací činitel: 0.55

Poznámky k údržbě:
Světelné zdroje musí být nahrazeny zdroji se shodnými technickými parametry - světelný tok, barva světla, stupeň podání barev. Při výměně světelného zdroje je nutno vyměnit i zapalovače.

Prostor a povrchy je nutno udržovat tak, aby nedošlo ke snížení počátečních činitelů odrazu.

Pokyny výrobce pro údržbu je nutno dodržovat

NOVÁ OSVĚTLOVACÍ SOUSTAVA 2
NOVÁ OSVĚTLOVACÍ SOUSTAVA

Popis, NOVÁ OSVĚTLOVACÍ SOUSTAVA

Půdorys

<table>
<thead>
<tr>
<th>Údaje o prostoru:</th>
<th>Činitelé odrazi:</th>
<th>Konstrukční prvky</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 : 27.00</td>
<td>20.3 %</td>
<td>Pi : Pilíř</td>
</tr>
<tr>
<td>W2 : 18.50</td>
<td>20.3 %</td>
<td>Př : Příčka</td>
</tr>
<tr>
<td>W3 : 18.50</td>
<td>20.3 %</td>
<td>Pp : Reálná pracovní plocha</td>
</tr>
<tr>
<td>W4 : 18.50</td>
<td>20.3 %</td>
<td>m : Virtuální měřicí plocha</td>
</tr>
<tr>
<td>W5 : -----</td>
<td>-----</td>
<td>Sv : Světlík</td>
</tr>
<tr>
<td>W6 : -----</td>
<td>-----</td>
<td>Ob : Obráz</td>
</tr>
<tr>
<td>Podlaha: -----</td>
<td>20.1 %</td>
<td>Ok : Okno</td>
</tr>
<tr>
<td>Strop: -----</td>
<td>10.3 %</td>
<td>D : Dveře</td>
</tr>
<tr>
<td>Výška místnosti [m]:</td>
<td>21.00</td>
<td>Ná : Nábytek</td>
</tr>
<tr>
<td>Výška srovnávací roviny [m]:</td>
<td>-----</td>
<td></td>
</tr>
</tbody>
</table>
NOVÁ OSVĚTLOVACÍ SOUSTAVA

Přehled výsledků, NOVÁ OSVĚTLOVACÍ SOUSTAVA

Přehled výsledků, S.R JEŘÁB Č. 7

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Popis</th>
<th>Číslo projektu</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ</td>
<td>Č. 5</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Obecně

- Použitý algoritmus výpočtu: centrální podíl nepřímé složky
- Výška hodnotící plochy: -0.00 m
- Udržovací činitel: viz svítidlo/plán údržby

- Celkový světelný tok všech zdrojů: 1619000 lm
- Celkový výkon: 18800 W
- Celkový výkon na ploše (2592.00 m²): 7.25 W/m²

Intenzity osvětlení

<table>
<thead>
<tr>
<th>Udržovaná osvětlenost</th>
<th>Minimální osvětlenost</th>
<th>Maximální osvětlenost</th>
<th>Rovnoměrnost g1</th>
<th>Rovnoměrnost g2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em</td>
<td>Emin</td>
<td>Emax</td>
<td>Emin/Em</td>
<td>Emin/Emax</td>
</tr>
<tr>
<td>283 lx</td>
<td>201 lx</td>
<td>361 lx</td>
<td>1:1.41 (0.71)</td>
<td>1:1.8 (0.56)</td>
</tr>
</tbody>
</table>

Typ Č. výrobce

<table>
<thead>
<tr>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODUS Praha</td>
<td>MODUS CRONO 2 150 Q</td>
</tr>
<tr>
<td>Objednací č.</td>
<td>Název svítidla</td>
</tr>
<tr>
<td></td>
<td>MODUS CRONO 2 asym. reflektor</td>
</tr>
<tr>
<td>Objednací č.</td>
<td>Osazení</td>
</tr>
<tr>
<td></td>
<td>1 x HCI-TS 150/WDL / 14500 lm</td>
</tr>
<tr>
<td>Udržovací činitel</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Přehled výsledků, NOVÁ OSVĚTLOVACÍ SOUSTAVA

Přehled výsledků, S.R hala

Objekt: NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ
Číslo projektu: Č. 5
Datum: 27.02.2012

Použitý algoritmus výpočtu: centrální podíl nepřímé složky
Výška hodnotící plochy: 0.00 m
Udržovací činitel viz svítidlo/plán údržby

Celkový světelný tok všech zdrojů: 1619000 lm
Celkový výkon: 18800 W
Celkový výkon na ploše (2592.00 m²): 7.25 W/m²

Intenzity osvětlení
Udržovaná osvětlenost: Em 202 lx
Minimální osvětlenost: Emin 104 lx
Maximální osvětlenost: Emax 355 lx
Rovnoměrnost g1: Emin/Em 1:1.95 (0.51)
Rovnoměrnost g2: Emin/Emax 1:3.42 (0.29)

Typ výrobce
1 12 MODUS Praha
Objednací č.: MODUS CRONO 2 150 Q
Název svítidla: MODUS CRONO 2 asym. reflektor
Osazení: 1 x HCI-TS 150/WDL / 14500 lm
Udržovací činitel: 0.55
NOVÁ OSVĚTLOVACÍ SOUSTAVA

Výsledky výpočtu, NOVÁ OSVĚTLOVACÍ SOUSTAVA

3D jasy, Pohled zleva

<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 5</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Jas scény
Minimum: 0 cd/m²
Maximum: 90.3 cd/m²
<table>
<thead>
<tr>
<th>Objekt</th>
<th>NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis</td>
<td>HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ</td>
</tr>
<tr>
<td>Číslo projektu</td>
<td>Č. 5</td>
</tr>
<tr>
<td>Datum</td>
<td>27.02.2012</td>
</tr>
</tbody>
</table>

Výsledky výpočtu, NOVÁ OSVĚTLOVACÍ SOUSTAVA

3D jasy, Pohled zezadu

<table>
<thead>
<tr>
<th>Jas scény</th>
<th>Minimum</th>
<th>Maximum:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 cd/m2</td>
<td>90.3 cd/m2</td>
</tr>
</tbody>
</table>
OBJEKT

Popis: NÁVRH OSVĚTLENÍ JEŘÁBU HALY - ZPO 1
Číslo projektu: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ
Číslo projektu: Č. 5
Datum: 27.02.2012

NOVÁ OSVĚTLOVACÍ SOUSTAVA

Výsledky výpočtu, NOVÁ OSVĚTLOVACÍ SOUSTAVA

3D jasy, Pohled 5

Jas scény
Minimum: 0 cd/m²
Maximum: 90.3 cd/m²
Objekt: NÁVRH OSVĚTLENÍ JEŘÁBŮ HALY - ZPO 1
Popis: HALA PLYNULÉHO ODLÉVÁNÍ OCELI - UMĚLÉ OSVĚTLENÍ
Číslo projektu: Č. 5
Datum: 27.02.2012

Výsledky výpočtu, NOVÁ OSVĚTLOVACÍ SOUSTAVA
3D pseudobarvy, Pohled zleva (E)
POWERSTAR® HQI®-T

Lamp Specifications

<table>
<thead>
<tr>
<th>Lamp</th>
<th>HQI-T</th>
<th>HQI-T</th>
<th>HQI-T</th>
<th>HQI-T</th>
<th>HQI-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Lamp</td>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>lamp reference</td>
<td>HQI-T</td>
<td>HQI-T</td>
<td>HQI-T</td>
<td>HQI-T</td>
<td>HQI-T</td>
</tr>
<tr>
<td>Nominal luminous flux</td>
<td>85000</td>
<td>110000</td>
<td>180000</td>
<td>240000</td>
<td>240000</td>
</tr>
<tr>
<td>Luminous efficacy</td>
<td>81</td>
<td>110</td>
<td>68</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Light colour/Colour appearance</td>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Colour temperature</td>
<td>7250</td>
<td>3500</td>
<td>7250</td>
<td>4400</td>
<td>4400</td>
</tr>
<tr>
<td>Colour rendering index</td>
<td>90</td>
<td>65</td>
<td>90</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Lamp wattage</td>
<td>1050</td>
<td>1000</td>
<td>2050</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Mains voltage</td>
<td>230</td>
<td>230</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Lamp voltage</td>
<td>130</td>
<td>125</td>
<td>230</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Lamp current</td>
<td>8.9</td>
<td>9.1</td>
<td>10.3</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Nominal gear current</td>
<td>9.5</td>
<td>9.5</td>
<td>10.3</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Ignition voltage</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>0.9/1.3</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>E40</td>
<td>E40</td>
<td>E40</td>
<td>E40</td>
<td>E40</td>
</tr>
<tr>
<td>Diameter d</td>
<td>76</td>
<td>76</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Length max. I</td>
<td>345</td>
<td>345</td>
<td>430</td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td>LCL a</td>
<td>220</td>
<td>220</td>
<td>285</td>
<td>265</td>
<td>265</td>
</tr>
<tr>
<td>Burning position</td>
<td>p 30</td>
<td>p 30</td>
<td>p 30</td>
<td>p 60</td>
<td>p 60</td>
</tr>
<tr>
<td>Average lamp life</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
<td>9000</td>
</tr>
<tr>
<td>Max. perm. outer bulb temp.</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Max. perm. base edge temp.</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>PF corr. cap. at 50 Hz</td>
<td>85</td>
<td>85</td>
<td>60</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>EAN</td>
<td>4050300015323</td>
<td>4008321116604</td>
<td>4050300015330</td>
<td>4050300301860</td>
<td>4050300348629</td>
</tr>
<tr>
<td>Standard pack</td>
<td>Qty</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>figure</td>
<td>No.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Circuit (see page 22) Fig. no.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LCDS</td>
<td>MT-1000/72/1A-H-E40-76/345/P30</td>
<td>MT-1000/35/2B-H-E40-76/345/P30</td>
<td>MT-2000/72/1A-E40-100/430/P30</td>
<td>MT-2000/44/2B-E40-100/430/P60</td>
<td>MT-2000/44/2B-E40-100/430/P60</td>
</tr>
</tbody>
</table>

Survival Rate Graphs

- **HQI-T 1000W/D**
- **HQI-T 1000W/N**
- **HQI-T 2000W/D, /N, /E, /N SN SUPER**

Luminous Flux Behaviour Graphs

- **HQI-T 1000W/D**
- **HQI-T 1000W/N**
- **HQI-T 2000W/D, /N, /E, /N SN SUPER**
DSS 600 ST, DSS 1000 MT

Použití svítidla
Reflektorové svítidlo DSS 600 W ST, DSS 1000 W MT je určeno pro osvětlování sportovních a průmyslových hal, venkovních sportovišť, skladišť, železničních koridorů a nádraží, veřejných prostranství apod.

Popis svítidla
Těleso svítidla je kokilový odlitek z hliníku opatřený práškovou polyesterovou barvou. Nástavec pro zapalovač je hliníkový odlitek pevně spojený s tělesem svítidla. V nástavci je kromě zapalovače umístěna také svorkovnice. Těleso svítidla je uzavřeno rámem, v němž je vsazené tvrzené sklo a silikonové těsnění. Rám z Al slitiny je k tělesu svítidla přichycen sponami. Parabolický reflektor je vyroben z vysoce leštěného Al s čistotou 99,85 %. Součástí svítidla je také výkyvná vidlice z pásoviny 40 x 5 mm.

Předřadník ke svítidlu
K provozu svítidla je nutné použít předřadník, který není součástí svítidla a je dodáván v samostatné skříni. Součástí výzbroje předřadníku musí být tlmivka, kompenzační kondenzátor, keramická pojistka (10 A) a svorkovnice. Z důvodu potřeby umístění předřadníku ve větších vzdálenostech od svítidla je zapalovač, který tuto vzdálenost omezuje, umístěn přímo ve svítidle.

Montáž a zapojení svítidla
Svítidlo musí být namontováno tak, aby podélná osa svítidla (shodná s osou výbojky) byla vodorovná, s tolerancí ±5°. Svítidlo se uchytí k nosné konstrukci pomocí ocelového ramene, které je také opatřeno práškovou epoxidovou barvou, šrouby s maximální velikostí M12. Svítidlo se propojuje s předřadníkem pomocí kabelu 3 x 2,5 mm², který se po odejmutí krytu nástavce připojí na svorkovnici svítidla. Po připojení propojovacího kabelu ke svítidlu je nutné utěsnit průchodku

Technické parametry

<table>
<thead>
<tr>
<th>Typ svítidla</th>
<th>DSS 600 W ST</th>
<th>DSS 1000 W MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovité napětí</td>
<td>230 V</td>
<td>230 V</td>
</tr>
<tr>
<td>Jmenovitý proud (předřadníka)</td>
<td>3,1 A</td>
<td>5 A</td>
</tr>
<tr>
<td>Jmenovitý proud (výbojky)</td>
<td>6,2 A</td>
<td>9,5 A</td>
</tr>
<tr>
<td>Příkon světelného zdroje</td>
<td>600 W</td>
<td>1000 W</td>
</tr>
<tr>
<td>Svítidlo třídy</td>
<td>I.</td>
<td>I.</td>
</tr>
<tr>
<td>Provedení reflektoru</td>
<td>Symetrické</td>
<td>Symetrické</td>
</tr>
<tr>
<td>Povrch reflektoru</td>
<td>kladívkovaný nebo hladký</td>
<td>hladký</td>
</tr>
<tr>
<td>Frekvence</td>
<td>50 Hz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Patice</td>
<td>E-40</td>
<td>E-40</td>
</tr>
<tr>
<td>Krytí</td>
<td>IP 44</td>
<td>IP 44</td>
</tr>
<tr>
<td>Doporučený světelný zdroj: OSRAM</td>
<td>NAV-T 600 SUPER</td>
<td>HQI-T 1000/D</td>
</tr>
<tr>
<td>Rozměry</td>
<td>480 x 360 x 350 mm</td>
<td>480 x 360 x 350 mm</td>
</tr>
<tr>
<td>Hmotnost</td>
<td>11 kg</td>
<td>11 kg</td>
</tr>
<tr>
<td>Způsob připojení</td>
<td>Průchodka PG 13,5</td>
<td>Průchodka PG 13,5</td>
</tr>
<tr>
<td>Maximální průřez vodičů</td>
<td>3 x 2,5 mm²</td>
<td>3 x 2,5 mm²</td>
</tr>
</tbody>
</table>
Benefits of OSRAM UV filter technology

- Reduced material load within the luminaire
- Far exceeds the requirements of IEC 61167

• Shopping arcades
• Foyers, reception areas
• Museums, exhibitions
• Exhibition halls and trade fairs
• Factories and workshops
• Buildings, monuments, bridges
MODUS CRONO 1, 2

Světlo:
Černě lakovaný hliníkový odlitek, bezpečnostní krycí sklo
Optický systém:
- symetrický / asymetrický (A) reflektory z vysoce leštěného embosovaného hliníku
El. výstroj:
kompensované, s tlumivkou EEI = B
Q - metalhalidová výbojka (HMQ)
S - vysokotlaká sodíková výbojka (HPS)

Aplikace:
- vnitřní osvětlení sportovišť, hal,..
- venkovní osvětlení fasád, hřišť, reklamních ploch,..

Další informace:
Svítidla jsou dodávána včetně výbojek.

<table>
<thead>
<tr>
<th>Obj. kód</th>
<th>W</th>
<th>Ž</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRONO1 70Q</td>
<td>1x70</td>
<td>HQI</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO1 70Q A</td>
<td>1x70</td>
<td>HQI</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO1 70S</td>
<td>1x70</td>
<td>HPS</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO1 70S A</td>
<td>1x70</td>
<td>HPS</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO2 150Q</td>
<td>1x150</td>
<td>HQI</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO2 150Q A</td>
<td>1x150</td>
<td>HQI</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO2 150S</td>
<td>1x150</td>
<td>HPS</td>
<td>RX7s</td>
</tr>
<tr>
<td>CRONO2 150S A</td>
<td>1x150</td>
<td>HPS</td>
<td>RX7s</td>
</tr>
</tbody>
</table>

- volitelné provedení svítidla
- - zdroj

Technical data

Electrical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal wattage</td>
<td>150 W</td>
</tr>
<tr>
<td>Construction current</td>
<td>1.8 A</td>
</tr>
<tr>
<td>Rated wattage</td>
<td>144 W</td>
</tr>
</tbody>
</table>

Light technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous flux</td>
<td>14500 lm</td>
</tr>
<tr>
<td>Color temperature</td>
<td>3000 K</td>
</tr>
<tr>
<td>Light color</td>
<td>830</td>
</tr>
</tbody>
</table>

Dimensions & weight

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>23.0 mm</td>
</tr>
<tr>
<td>Length</td>
<td>138.0 mm</td>
</tr>
</tbody>
</table>