Anchorage of arrangement for transmission and measurement of expansive forces

Student: Bc. Jiří Lhoták
Vedoucí diplomové práce: Ing. Noga Zdeněk, CSc

Ostrava 2012
Prohlášení studenta

Prohlašuji, že jsem celou diplomovou práci včetně příloh vypracoval samostatně pod vedením vedoucího diplomové práce a uvedl jsem všechny použité podklady a literaturu.

V Ostravě :………………………….………………………….

Jiří Lhoták
Prohlašuji, že

- byl jsem seznámen s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména §35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a §60 – školní dílo.

- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně ke své vnitřní potřebě diplomovou práci užít (§35 odst. 3).

- souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje diplomové práce budou zveřejněny v informačním systému VŠB-TUO.

- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu §12 odst. 4 autorského zákona.

- bylo sjednáno, že užít své dílo – diplomovou práci nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

- beru na vědomí, že odevzdáním své práce souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, bez ohledu na výsledek její obhajoby.

V Ostravě :……………………. …………………………….

Jiří Lhoták

Diplomová práce se zabývá návrhem jednoúčelového měřicího zařízení pro měření rozpínavých sil uhelné vsázky při karbonizačním koksotvorném procesu. V úvodu jsou popsány vlastnosti materiálu mající vliv na přesnost měření. Další částí práce je metodický postup konstruování měřicího zařízení. Poté následuje volba jednotlivých částí konstrukce. Poslední část práce se zabývá vlivem teploty na přesnost měření.

Kotevní zařízení je sestaveno na základě tohoto návrhu. Součástí práce je technický výkres sestaveného zařízení.

ANNOTATION OF DIPLOMA WORK

This thesis deals with the concept of a disposable measuring equipment for measurement of dynamic power of a coal charge during the carbonizing coke-producing process. In the introduction features of a material are described, which effects the accuracy of the measurement. Farther part of the thesis is the systematic description of the construction of a measuring appliance. Following part is a selection of individual parts of the construction process. The last part of the thesis describes the effect of a temperature on the accuracy of the measurement.

The ground tackle is assembled according to this concept. The technical plan is also a part of the thesis.
OBSAH

Seznam použitého značení.. 7
Úvod.. 8
1 Materiálové vlastnosti.. 9
 1.1 Napětí.. 9
 1.2 Deformace.. 10
 1.3 Tuhost ... 11
 1.4 Vliv teploty ... 13
2 Rozpinavý tlak ... 15
 2.1 Laboratorní zkoušení .. 16
 2.2 Poloprovozní pec .. 16
3 Návrh zařízení - Seznam požadavků 17
 3.1 Zadáno ... 17
 3.2 Specifikace .. 17
 3.2.1 Parametry ... 17
 3.2.2 Provoz ... 17
 3.2.3 Ergonomie ... 17
 3.2.4 Předpisy a normy 17
 3.2.5 Výroba ... 17
 3.2.6 Ekonomie ... 17
4 Seznam funkcí.. 18
 4.1 Funkční schéma ... 18
 4.2 Technologie .. 18
5 Konstrukce opěrného sloupu.. 19
 5.1 Hrubá stavební struktura 19
 5.2 Volba profilu .. 20
 5.3 Volba konstrukce .. 22
 5.4 Sestavení sloupu ... 23
 5.4.1 Rozložení síly na sloupy 23
 5.5 Srovnání s provozovaným zařízením 25
6 Návrh tenzometrické tyče ... 26
 6.1 Typ tenzometru .. 26
 6.2 Hrubá stavební struktura 28
 6.3 Přenos síly z pece na tenzometr 29
 6.3.1 Délka profilu ... 29
 6.3.2 Uložení tenzometru 30
 6.3.3 Vymezení vůli 30
 6.4 Možnosti změny délky tyče 31
7 Úplná stavební struktura.. 32
 6.5 Silový rozbor umístění měřicí tyče 33
 6.6 Srovnání s provozovaným zařízením 35
8 Návrh izolace .. 41
 8.1 Skoková změna teploty 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.1</td>
<td>Volba izolace</td>
<td>41</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Plášť konstrukce (izolační desky)</td>
<td>43</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Upravená konstrukce</td>
<td>44</td>
</tr>
<tr>
<td>8.2</td>
<td>Plynulá změna teploty</td>
<td>44</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Změna teploty den/noc</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>Závěr</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Použitá literatura</td>
<td>47</td>
</tr>
</tbody>
</table>
Seznam použitého značení

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Řešení</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>- součinitel tepelné vodivosti</td>
</tr>
<tr>
<td>Bi</td>
<td>- Biotovo kritérium</td>
</tr>
<tr>
<td>c</td>
<td>- tepelná kapacita</td>
</tr>
<tr>
<td>c_p</td>
<td>- tuhost v posunutí</td>
</tr>
<tr>
<td>c_n</td>
<td>- tuhost v natočení</td>
</tr>
<tr>
<td>E</td>
<td>- modul pružnosti</td>
</tr>
<tr>
<td>f</td>
<td>- součinitel valivého odporu</td>
</tr>
<tr>
<td>F</td>
<td>- síla</td>
</tr>
<tr>
<td>Fo</td>
<td>- Fourierovo kritérium</td>
</tr>
<tr>
<td>g</td>
<td>- gravitační zrychlení</td>
</tr>
<tr>
<td>G</td>
<td>- tíha</td>
</tr>
<tr>
<td>L</td>
<td>- délka</td>
</tr>
<tr>
<td>M</td>
<td>- moment síly</td>
</tr>
<tr>
<td>S</td>
<td>- plocha</td>
</tr>
<tr>
<td>t</td>
<td>- teplota</td>
</tr>
<tr>
<td>T</td>
<td>- třetí síla</td>
</tr>
<tr>
<td>u</td>
<td>- přírůstek délky</td>
</tr>
<tr>
<td>v</td>
<td>- zúžení</td>
</tr>
<tr>
<td>w</td>
<td>- zešikmení</td>
</tr>
</tbody>
</table>

α - součinitel teplotní roztažnosti, součinitel přestupu tepla
ε - poměrná tahová deformace
λ - tepelná vodivost
μ - Poissonovo číslo
ν - napětí (výsledné)
ρ - hustota
σ - napětí
σ_D - napětí (dovolené)
τ - smykové napětí
ψ - poměrné zúžení
Úvod

Koks je pevný uhlíkatý zbytek vyrobený z nízkopopelového, nízkosírového černého uhlí, ze kterého jsou odstraněny prachové složky v peci s omezeným přístupem kyslíku při teplotách kolem 1000°C. Koks má vynikající výhřevnost, v metalurgii jsou významné i jeho další vlastnosti, především vysoký podíl uhlíku a málo nečistot. Díky vysoké výhřevnosti, přizpůsoblivému obsahu spalin a nízké prašnosti je koks také jediným povoleným palivem i v centrech měst.[4]

Historie koksárenství sahá do prvních let 17. století. Sir Henry Platt navrhl postup zpracování uhlí, který byl odvozen od pyrolýzy dřeva. Výsledný produkt se z počátku používal pouze při topení nebo v některých potravinářských procesech, protože toto zušlechtěné palivo nevydávalo zplodiny, které by znehodnotily výrobky. Koks byl vyráběn v primitivních milířích.[4]

V roce 1709 zjistil Adam Darby, že koks je výborné redukční činidlo při výrobě železa. Přírodní uhlí se k tomuto účelu nedalo využít mimo jiné i kvůli zplodinám. Jedná se o jeden z objevů umožňujících rozběh průmyslové revoluce, protože tímto postupem se zlevnila cena železa. Z primitivních milířů se přecházelo na důmyslnější pece nejrůznějších konstrukcí. [4]

V 19. století již koks plně nahradil dřevěné uhlí, které se předtím používalo jako zdroj tepla a redukční činidlo. [4]

V roce 1940 byl vyvinut základní prototyp moderních koksovacích pecí. Pec byly asi 12m dlouhé, 4m vysoké a 0,5m široké, vybavené na obou stranách dveřmi. Přívod vzduchu se předehříval horkými spalinami. Rekuperace odpadního tepla umožnila vyšší teploty a zvýšila rychlost koksování. Od roku 1940 se proces mechanizoval a zdokonalily se i konstrukční materiály. [4]

Pec je rozdělena na dvě části, pevnou stěnu a pohyblivou stěnu. Tlak na pohyblivou stěnu se nepřetržitě měří po celou dobu koksovacího cyklu. Konstrukce měřicího zařízení mohou být různě jak provedením, tak i použitými materiály.
1 Materiálové vlastnosti

Deformační chování materiálu výrazně ovlivňuje typ a mohutnost konstrukce. Pojem deformační chování materiálu vyjadřuje chování materiálu při mechanickém namáhání. Chování materiálu za definovaných podmínek mechanického namáhání závisí jak na vlastnostech materiálu tak i na tvaru a rozměrech tělesa vyrobeného z tohoto materiálu. Základní veličiny používané k popisu deformačního chování materiálu jsou napětí a deformace. Je tedy potřeba uvědomit si co tyto veličiny jsou a jaké užitečné hodnoty lze získat vyšetřováním těchto veličin.

1.1 Napětí

Napětí v namáhaném tělese představuje míru vnitřních sil, které v tělese vznikají jako důsledek pružné deformace vyvolané vnějšími silami působícími na těleso. V zatíženém průřezu mohou být dva druhy napětí:

1) normálové (tah/tlak) napětí \(\sigma \) působící kolmo na plochu průřezu
2) smykové (krut) napětí \(\tau \) působící v rovině plochy průřezu

V případě rovnoměrného rozložení sil na plochu se vyšetřuje jen normálové napětí, protože smykové napětí je v tomto případě nulové.

Je-li síla \(F \) rovnoměrně rozložena na plochu \(S \), je napětí dáno vztahem:

\[
\sigma = \frac{F}{S}
\]

Je-li síla \(F \) v obecném směru (smykové napětí již není nulové), je výsledné napětí dáno vztahem plynoucím z Pythagorovy věty:

\[
v^2 = \tau \cos^2 \alpha + \tau \sin^2 \alpha
\]

kde \(\sigma = \frac{F_N}{S} \); \(\tau = \frac{F_T}{S} \)

a pro síly \(F_N \) a \(F_T \) platí:

\[
F_N = \tau \cos \alpha \;
F_T = \tau \sin \alpha
\]

Obr. 1 Síla působící kolmo na plochu [3]

Obr. 2 Síla působící v obecném směru [2]
Má-li součást vyrobená z daného materiálu vydržet stanovené podmínky, je nutné, aby vypočítaná hodnota napětí nepřesáhla hodnotu dovoleného napětí stanoveného materiálovými zkouškami. Tyto zkoušky provádí výrobce materiálu a získané hodnoty uvádí v materiálových listech. Stanovením napětí lze tedy získat tyto hodnoty:

- maximální přípustné zatížení součásti
- minimální průřez součásti

1.2 Deformace

Na rozdíl od napětí, které zatím nikdo neviděl, deformaci vidíme, a tedy ji můžeme i přímo měřit. Těleso podrobené účinkům vnějších sil mění svůj tvar, deformuje se, a to tím víc, čím větší jsou síly, které tuto deformaci způsobují a čím je menší odpor (tuhost), kterým se materiál účinkům vnějších sil brání. Silové účinky způsobují deformaci také v místech, kde vnější síly nepůsobí, přičemž tato místa mohou být i dosti daleko od působišť vnějších sil. Tuto změnu tvaru způsobují právě vnitřní síly, které působí na atomy materiálu a snaží se je přemístit. Proti vnitřním deformačním sílám naopak působí vnitřní síly materiálu, které se snaží zachovat jeho původní tvar.[1]

Jestliže na těleso nepůsobí žádná vnější síla, jsou vnitřní síly ve vzájemné rovnováze a atomy hmoty jsou v „základní“ poloze (obr. 3a). Pokud je však těleso vystaveno působení vnějších sil, atomy hmoty se přesunou do nové polohy, a to tak aby byly opět v rovnováze. Avšak těleso je ve stavu napjatosti (obr. 3b).

Obr. 3 Deformace tělesa [1]

Nepřekročil-li zatěžující síly hranicí pružné oblasti a přestanou na těleso působit, vrátí se atomy hmoty opět do „základní“ polohy. Těleso nabude původní tvar a je opět bez napětí. Tato vlastnost materiálu se nazývá pružnost.

Při překročení hranice pružné oblasti nastávají v materiálu trvalé změny. Když přestanou vnější síly působit atomy hmoty již nejsou schopny vrátit se do „základní“ polohy a dochází k trvalé tvarové změně, případně vzniku trhlin.

Stejně jako u napětí rozeznáváme deformaci tahovou a smykovou. Představme si krychli o hraně délky L zatíženou jen tahovým napětím σ (Obr. 4). Vlivem napětí dojde k prodloužení hrany krychle L o délku u ve směru napětí a zúžení v ve směru kolmém k napětí. Velikost této tvarové změny lze vyjádřit poměrnou tahovou deformací
Vztah mezi poměrnou deformací a poměrným zúžením vyjadřuje konstanta úměrnosti \(\mu \) tzv. Poissonovo číslo.\[3\]

\[
\mu = -\frac{\varepsilon}{\psi}
\]

Pokud je krychle zatížena jen smykovým napětím \(\tau \), dojde k zešikmení hran krychle o úhel \(\beta \) a posun horní hrany proti spodní hraně o délku \(w \). Velikost této tvarové změny vyjadřuje poměrná smyková deformace.

\[
\tan \beta = -\frac{\psi}{\varepsilon}
\]

Protože úhel zkosení je velmi malý, lze předpokládat:

\[
\tan \beta \approx 3
\]

Vyšetřováním deformace lze zjistit jaký tvar bude mít konstrukce po zatížení vnějšími silami a také bude-li schopna po se odlehčení vrátit do původní podoby. Zjistíme tedy, je –li potřeba konstrukci upravit, či nikoliv.

1.3 Tuhost

Celá konstrukce je vystavena působení provozních sil.

Jedná se o:

- tahové/tlakové síly dané vlastní hmotností
- rozpínavé síly vznikající při koksování uhlí
- tepelnou dilataci materiálu

Vyšetřování těchto sil má význam pro dimenzování konstrukce. Navržená konstrukce musí být tak tuhá aby nedocházelo k příliš velkým deformacím, případně poškození zařízení. Vztah mezi působícími silami a konstrukcí se posuzuje odolnosti konstrukce proti deformaci, tzv. tuhostí. Rozlišujeme tuhost v posunutí a v natočení.
\[c_p = \frac{F}{y} \] - tuhost v posunutí

\[c_n = \frac{M}{\phi} \] - tuhost v natočení

F – zatěžující síla [N]
M – moment od zatěžující síly [N.m]
y – posunutí způsobené silou F [m]
\(\phi \) – úhel natočení, daný příslušnými deformacemi [rad]

Při prostém tahu nebo tlaku je až do meze kluzu poměrné prodloužení \(\varepsilon \) úměrné napětí \(\sigma \) (např. dvakrát větší napětí vyvolá dvakrát větší prodloužení). Jako první tuto skutečnost zjistil Robert Hooke roku 1660. Matematicky tuto závislost definoval Thomas Young roku 1807. Na jeho počest se konstanta úměrnosti \(E \) nazývá Youngův modul pružnosti v tahu (někdy jen modul pružnosti v tahu). Hookeův zákon lze vyjádřit vztahem:\[\sigma = E \varepsilon \]

Modul pružnosti charakterizuje materiálovou tuhost, je tudíž materiálovou konstantou a udává kolik kilogramů by muselo teoreticky působit na 1 cm\(^2\) průřezu tyče, aby se prodloužila o celou svou délku. Pro některé materiály jsou moduly pružnosti uvedeny v tabulce 1. [1]
Tab. 1 Moduly pružnosti [1]

<table>
<thead>
<tr>
<th>Materiál</th>
<th>E [MPa]</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocel</td>
<td>$2.1 \cdot 10^5$</td>
<td>0,3</td>
</tr>
<tr>
<td>šedá litina</td>
<td>$(0,75 \pm 1,2) \cdot 10^5$</td>
<td>0,25</td>
</tr>
<tr>
<td>tvárná litina</td>
<td>$(0,75 \pm 1,2) \cdot 10^5$</td>
<td>0,25</td>
</tr>
<tr>
<td>měď</td>
<td>$1,2 \cdot 10^5$</td>
<td>0,35</td>
</tr>
<tr>
<td>mosaz</td>
<td>$1,0 \cdot 10^5$</td>
<td>0,35</td>
</tr>
<tr>
<td>bronz</td>
<td>$1,1 \cdot 10^5$</td>
<td>0,35</td>
</tr>
<tr>
<td>hliník a slitiny</td>
<td>$0,7 \cdot 10^5$</td>
<td>0,34</td>
</tr>
<tr>
<td>hořčík a slitiny</td>
<td>$0,35 \cdot 10^5$</td>
<td>0,3</td>
</tr>
<tr>
<td>olovo</td>
<td>$0,17 \cdot 10^5$</td>
<td>0,45</td>
</tr>
<tr>
<td>sklo</td>
<td>$0,6 \cdot 10^6$</td>
<td>0,23</td>
</tr>
<tr>
<td>polystyren</td>
<td>$0,036 \cdot 10^5$</td>
<td>0,33</td>
</tr>
<tr>
<td>bakelit</td>
<td>$0,49 \cdot 10^5$</td>
<td>0,25</td>
</tr>
<tr>
<td>prýž</td>
<td>$6 \div 8$</td>
<td>0,49</td>
</tr>
<tr>
<td>plexisklo</td>
<td>$0,021 \cdot 10^5$</td>
<td>0,35</td>
</tr>
<tr>
<td>beton</td>
<td>$0,18 \cdot 10^5$</td>
<td>0,13</td>
</tr>
</tbody>
</table>

Pro některé hmoty Hookeův zákon neplatí. Např. u betonu žádný vztah mezi napětím a prodloužením není. Ve strojírenské praxi se používá tzv. mocninový zákon:

$$\sigma^n = \tilde{E}$$

Pro jiné hmoty jako měď, hliník, atd. platí Hookeův zákon jen přibližně. [2]

1.4 Vliv teploty

Obr. 6 Vliv teploty na modul pružnosti [2]
Ohřeje-li se tyč o délce \(L \) z teploty \(t_0 \) na teplotu \(t_1 \), bude její prodloužení
\[
\Delta = L \cdot \alpha (t_1 - t_0)
\]

Jestliže zabráníme roztahování opřením konců vznikne v tyči napětí \(\sigma \), které lze určit ze vztahu:
\[
\sigma = \frac{L \cdot \alpha}{E} (t_1 - t_0)
\]

kde \(\alpha \) je součinitel teplotní roztažnosti. [2]

V grafu na Obr. 6 a Obr. 7 je dobře vidět, že teplota má značný vliv na vlastnosti materiálu a tedy i na výsledný tvar a rozměry součástí. Dalším problémem teploty je její značná nestálost. To vnáší do úloh počítající s teplotou nepředvídatelnou nepřesnost, která u přesných součástí způsobuje velké problémy a ve většině případů i zvýšení nákladů spojených s řešením teplotního vlivu.
2 Rozpínavý tlak

Protože předmětem této práce je konstrukce zařízení pro měření rozpínavého tlaku uhlí při karbonizačním kokosovém procesu, řekněme si, co to vlastně rozpínavý tlak je a jak a kde vzniká.

Při zahřívání uhlí dochází k jeho přeměně na plastickou hmotu ve níž se vytvářejí plynové kapsy, které mají za následek zvětšení objemu uhlí. Pokud zabráníme zvětšování objemu uhlí (např. uzavřením v peci), potom tato hmotu působí na stěny pece určitým tlakem jemuž se říká rozpínavý tlak. Velikost tohoto tlaku závisí na vlastnostech této plastické hmoty, tedy na vlastnostech použitého uhlí. [4]

Rozpínavý tlak se nejvíce projeví v první a v poslední fázi koksování. V první fázi vzniká plastické pásmo a zvětšování jeho objemu blízko stěn ještě vyrovnáno smrštěním hotového koksu, protože v pece ještě není žádný koks vyráběn. V poslední fázi koksování naroste rozpínavý tlak v důsledku spojení obou plastických pásem postupujících od bočních stěn komory k jejímu středu čímž je vývoj plynů koncentrován do úzkého prostoru u hlavní náplni pece. V poslední fázi je velikost tlaku ovlivněna smrštěním již hotového koksu mezi středem a stěnami komory. [4]

Aby nedocházelo k poškození velmi drahého zařízení, jakým koksovací baterie je, určuje se velikost rozpínavého tlaku laboratorními zkouškami nebo v poloprovozní koksovací peci.
2.1 Laboratorní zkoušení

Výhodou laboratorních zkoušek je to, že pro stanovení vlastností uhlí a z něj vyrobeného koksu je potřeba jen malé množství suroviny. Dalším pozitivem jsou podstatně menší finanční náklady na zkoušky než při polaprovozních zkouškách. Také zařízení potřebné pro provedení zkoušek jsou mnohonásobně levnější než zařízení pro polaprovozní zkoušky.

Nevýhodou, jak již bylo zmíněno v úvodu je to, že při zkouškách v laboratorních zařízeních neprobíhají všechny děje, které probíhají ve skutečném provozu. Některé z těchto jevů se při laboratorních zkouškách simulují s různou mírou přesnosti. Na obr.9a je starší typ zkušební laboratorní pícky pro testování rozpínavého tlaku uhlí. Na obr.9b je moderní měřící systém MRS-1 vyráběný firmou DASFOS.

2.2 Polaprovozní pec

Polaprovozní pec je v podstatě zmenšená koksovací komora. Aby bylo v peci možné zkoušet i velmi rozpínavá uhlí bez rizika poškození komory, má pec jednu boční stěnu pohyblivou. Pokud tedy tlak naroste natolik, že by došlo k poškození komory, dojde k posunutí posuvné stěny pece. Na obr.10 je starší typ polaprovozní pece.

Zkouška v polaprovozní koksovací peci je zatím nejspevnější zkouškou rozpínavého tlaku uhlí a její výsledky je možné aplikovat v praxi bez většího rizika poškození komor baterie. [4]
3 Návrh zařízení - Seznam požadavků

3.1 Zadáno
Zkonstruovat kotevní zařízení pro měření rozpínavého tlaku uhlí při koksování.

3.2 Specifikace
Max. velikost rozpínavého tlaku je 100 000 N.
Před ustavením pece ověřit míru nepřesnosti měření a navrhnout její kompenzaci.

3.2.1 Parametry
Max. velikost zařízení D x Š x V – 15m x 5m x 3m
Pec D x Š x V – 3m x 2,3m x 2,5m
Měřicí plocha – 1 m²

3.2.2 Provoz
Pracovní prostředí velmi nečisté.
Prostředí s proměnlivou teplotou.
Četnost použití – čas.
Požadovaná životnost – 10 let.
Minimální údržba.

3.2.3 Ergonometrie
Bezpečnost proti poranění.
Vysoká stabilita.
Vzhled odpovídající typu zařízení.
Snadný odečet měřených hodnot.
Přístupnost částí vyžadující údržbu a nastavení.

3.2.4 Předpisy a normy
Bez porušení patentových práv.
Žádné zvláštní předpisy a normy.

3.2.5 Výroba
1 ks

3.2.6 Ekonomie
Předpokládaná cena – 2 000 000 Kč
Minimální náklady na provoz.
4 Seznam funkcí

4.1 Funkční schéma

![funkční schéma](image)

Obr. 11 Obecná forma blokového schéma technického procesu

4.2 Technologie

Uhelný hranol je zasunut do koksovací pece, jejíž jedna boční stěna je posuvná. Posunutí této stěny se bude v průběhu koksování měřit. Do naměřených hodnot se nesmí promítout deformace konstrukce způsobená teplotou a zatížením.

![technologie](image)

Obr. 12 Měření rozpínávých sil - technický proces

- Nastavení měřidel: umožnit dotlačení měřidel na měřicí plochy, umožnit výměnu a kalibraci měřidel
- Užití musí měřit jen posun pohyblivé stěny
- Do měření nesmí být promítнутa deformace zařízení
- Měřit mezi pohyblivou stěnou a pevnou oporou
- Eliminovat teplotní roztažnost
- Nové použití: dostatek místa pro odjezd pohyblivé stěny
- Umožnit čištění prostoru kolem zařízení
- Umožnit přístup k funkcím částem zařízení
5 Konstrukce opěrného sloupu

5.1 Hrubá stavební struktura

<table>
<thead>
<tr>
<th>PROJEKTEDÉ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VYUŽITÍ ŠTĚN HÁLY</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>induktor, centrála</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>materiál, odliv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zamezit znečištění zábranou</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obr. 13 Morfologická matice
5.2 Volba profilu
Podle pevnostní analýzy má největší tuhost v posunutí profil I. Proto volím tento profil na konstrukci opěrného sloupu.
5.3 Volba konstrukce

Obr. 18 Typy konstrukce

Na základě pevnostní analýzy volím typ konstrukce s oporou nahoře.
5.4 Sestavení sloupu

Protože jeden sloup nemá takovou tuhost, aby jeho deformace nepřekročila měřící rozsah tenzometru, volím sestavení tří sloupů do jedné konstrukce (obr.19). Zde je však nutné zajistit rovnoměrné rozložení síly na všechny tři sloupy.

5.4.1 Rozložení síly na sloupy

Pro rovnoměrné rozložení síly na všechny tři sloupy volím litinovou desku 110 mm silnou s jednostranným žebrováním (obr. 20) přišroubovanou ke konstrukci. Pevnostní analýza desky zatížená osamělou silou je na obr.21a. Na obr.21b je deformační analýza desky s plošným zatížením. Dále pak dva profily U vyztužené žebry a přivařené ke konstrukci. Celková sestavená konstrukce je na obr.22
Z hodnot posunutí je vidět, že zatížení osamělou silou způsobí mnohem větší deformaci desky než plošné zatížení. Z toho plyne, že na straně měřící tyče bude mnohem větší zatížení středního sloupu než na straně kde se pec opírá o celou plochu desky.

Profily pod deskou slouží jako podpora desky, a také pro svázání sloupů k sobě. Toto řešení usnadní přišroubování desky na sloup, eliminuje namáhání šroubů a také usnadní manipulaci se sloupem při jeho ustanovování před zalitím do betonu.
5.5 Srovnání s provozovaným zařízením

![Obr. 23 boční pohled](image1)

![horní pohled](image2)

Můj návrh těmito nedostatkky netrpí. Opěrné sloupy nejsou spojené s konstrukcí haly ve které budou umístěny. Tímto je vyřešen problém s deformací budovy a zároveň hala bude chránit zařízení před povětrnostními vlivy. Je však nutné zmínit, že můj návrh je náročnější na prostor.

Deformace sloupu se dá relativně snadno vypočítat, popř. změřit. Tato deformace bude pro konkrétní velikost zatěžující síly vždy stejná. Pro zvýšení tuhosti jsem použil šikmé podpory. Tato úprava je dostatečná, což dokládá výpočet.

Opěrné sloupy jsou k sobě vázány jen železobetonovým základem ve kterém jsou zalité. Tepelná roztažnost tak masivního základového bloku je zanedbatelná, protože podpovrchová část snadno udržuje teplotu v celém masivu.
6 Návrh tenzometrické tyče

Tenzometrická tyče je vlastně soustava dílů sloužící pro přenos a měření rozpínavé síly mezi pohyblivou stěnou pece a opěrným sloupem. Stejně jako opěrný sloup musí mít i tyče vysokou tuhost. Tenzometrická tyče se skládá z vhodného profilu, který přenáší sílu z pece na tenzometr, tenzometru zajišťujícího měření a dílu pro vymezení vůlí.

Profil je nejdelší částí tyče v důsledku čehož podléhá největší deformaci. A to jak vlivem rozpínavé síly tak vlivem teploty. Z toho plyne, že profil by měl být krátký. Naprosto tomu je potřeba respektovat i nutnost oprav pece a možnost manipulace s tenzometrickou tyčí. To znamená dostatek prostoru mezi pohyblivou stěnou a oporou a tomu i odpovídající délka profilu pro přenos síly. Je tedy potřeba optimalizovat délku tyče, aby vyhovovala jak podmínce vysoké tuhosti, tak i podmínce prostoru.

Tenzometr musí mít dostatečný měřící rozsah a také jeho provedení musí být takové, aby vydržel pracovat v náročném prostředí koksárenského provozu. Díl pro vymezení vůlí slouží pro vymezení všech vůlí mezi jednotlivými díly tenzometrické tyče a vůlí mezi pohyblivou stěnu pece, tyčí a opěrným sloupem. Nutnou podmínkou je, aby díl toto vymezení udržel po celou dobu měření.

Volba jednotlivých částí tenzometrické tyče závisí na počtu tyčí. Čím více tyčí bude použito, tím „menší“ bude jedna tyče těto soustavy, protože síla působící na jednu tyč bude dáná poměrem celkové rozpínavé síly ku počtu tyčí. Nevýhodou soustavy je nutnost rozložení celkové rozpínavé síly v přesném poměru na jednotlivé tyče. Řešením tohoto problému je použití jedné tyče, která však bude mohutnější než jednotlivé tyče soustavy. Podmínkou použití jedné tyče je její přesné umístění do místa výslednice rozpínavých sil.

V případě navrhovaného zařízení je jednodušší nalézt přesné místo výslednice rozpínavých sil než řešení přesného rozložení sil na jednotlivé tyče. Proto volí jedinou tyč umístěnou v místě výslednice rozpínavých sil.

6.1 Typ tenzometru

Pro volbu vhodného tenzometru je potřeba znát tyto parametry:
- Velikost zatěžující síly - 100000 N
- Počet tenzometrů - 1 ks
- Max. rozměr tenzometru - libovolná velikost
- Přesnost měření - ±0,02mm
- Provozní prostředí - koksárna (velmi nečistě)
- Pracovní rozsah - 0 N-100000 N

Těmto parametřům odpovídá tenzometr – RTN 10t, fa. Schenck Procces s.r.o.
Měřicí charakteristika (závislost zatížení snímače na deformaci snímače) zvoleného tenzometru je na obr. 24. Pro stanovení ucelené charakteristiky rozpínavého tlaku uhelné vsázky je nejideálnější měřicí rozsah v lineární části měřicí charakteristiky zvoleného tenzometru. Tedy od zatížení 10 000 N až do max. zatížení 100 000 N. Z grafu je vidět, že ideální měřicí rozsah odpovídá rozsahu deformace asi 0,3 mm.

Podmínka použití snímače
- možnost nastavit předpětí na snímači na 10 000 N a na této hodnotě snímač nastavit nulu
- zajistit takovou tuhost konstrukce aby její vlastní deformace nezpůsobila překročení rozsahu měření
<table>
<thead>
<tr>
<th>Rešený problém</th>
<th>Provedení</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tenzometrická tyč</td>
<td>PEC T RÁM</td>
</tr>
<tr>
<td>2 Profil tyče</td>
<td>plná tyč</td>
</tr>
<tr>
<td>3 Usazení tenzometru</td>
<td>víko na čelo</td>
</tr>
<tr>
<td>4 Kotvení na peci</td>
<td>přivařít</td>
</tr>
<tr>
<td>5 Zpevnění</td>
<td>žádné</td>
</tr>
<tr>
<td>6 Nulování tenzometru</td>
<td>ručně</td>
</tr>
<tr>
<td>7 Kotvení na rám</td>
<td>přivařít</td>
</tr>
<tr>
<td>8 Provedení žeber</td>
<td>navinutá šroubovice</td>
</tr>
<tr>
<td>9 Provedení nulování tenzometru</td>
<td>otočný šroub - pevná matice</td>
</tr>
<tr>
<td>10 Provedení matice</td>
<td>pevný šroub - otočná matice</td>
</tr>
<tr>
<td>11 Provedení matice</td>
<td>2 pevné šrouby - otočná matice</td>
</tr>
</tbody>
</table>

Hrubá stavební struktura
6.3 **Přenos síly z pece na tenzometr**

Volím mezikruhový profil, který má pro danou konstrukci nejvhodnější parametry.

Ø194 mm / Ø 138 mm ČSN 425715

6.3.1 **Délka profilu**

Délku tenzometrické tyče určuje vzdálenost mezi pohyblivou stěnou pece a opěrným sloupem L_M=1 100 mm. Délka profilu je potom dána vztahem:

\[
L_P = L_M - L_T - L_S - V = 100 - 20 - 0 - 6 = 84 \text{ mm}
\]

L_P – délka profilu
L_M – mezera mezi opěrným sloupem a pohyblivou stěnou
L_T – délka tenzometru
L_S – délka sedla tenzometru + distanční podložky
L_V – délka vymezení vůlí

I když samotná trubka vydrží zatížení 100 000 N, aniž by došlo k překročení měřicího rozsahu tenzometru, je vhodné přidat žebrování po obvodu trubky (obr. 27). Tato úprava do jisté míry eliminuje působení dvojice sil, které vzniknou v případě, že osa tyče nebude přesně umístěna do místa výslednice rozpiňavých sil.
6.3.2 Uložení tenzometru

Tenzometr je uložen v patici vymezovače vůlí na straně opěrného sloupu a na straně pece je z části vložen do sedla, které je zalisované do profilu. Tenzometr musí být v případě poruchy snadno vyměnitelný. Konstrukce uložení tenzometru je na obr. 28.

6.3.3 Vymezení vůlí

Pro volbu klínu je potřeba znát jen velikost zatížení, která je 100 000 N. Z katalogu fa. NAROS s.r.o. volím klinovou podložku WL 6E.

6.4 Možnosti změny délky tyče

V průběhu životnosti měřicího zařízení může dojít k neopravitelné poruše pece, kterou bude potřeba nahradit. Tato nová pec nemusí mít stejně rozměry jako pec původní a bude potřeba změnit délku a umístění tenzometrické tyče.

Délku tyče lze v případě použití klinů změnit přidáním nebo odebráním vymezevacích podložek mezi klin a tenzometr nebo pod dosedací plochy na jedné straně tyče (obr. 30), popřípadě na obou jejích stranách. S touto skutečností je potřeba počítat při volbě velikosti připevňovacích šroubů.

Změnu umístění tenzometrické tyče lze provést jen ve svislé ose, a to novým svrtáním litinové desky a patice s klínem. Pokud se tyč posune ve svislé ose, je také potřeba upravit výšku kalibrační části. Ve vodorovné ose nelze tyč posouvat, protože by se tak dostala mimo svislou osu sloupu, což by způsobilo jeho neurčitou deformaci a tím i chybu měření.
Úplná stavební struktura

Obr. 31 Konečná podoba zařízení (bez chlazení-izolace a kalibrace)
6.5 Silový rozbor umístění měřicí tyče

Bude-li osa měřicí tyče umístěna přesně do místa výslednice \(F \) působících rozpínavých sil \(q \), pak bude hodnota změřená tenzometrem skutečnou hodnotou velikosti posunutí posuvné stěny pece. Položme si ale otázku, co se stane, pokud osa měřicí tyče nebude v místě výslednice působících rozpínavých sil. Odpověď na tuto otázku poskytne silový rozbor. Na obr.33 je znázorněn stav kdy je výslednice rozpínavých sil \(F \) pod osou měřicí tyče. Měřicí tyč je zde reprezentována reakcí \(R \).

Obr. 33 Štěně pece

Obr. 32 Schéma zatížení měřicí tyče

R – reakce od měřicí tyče
\(F \) – výslednice rozpínavých sil
\(T \) – třetí síla
\(G \) – hmotnost posuvné stěny
\(M_0 \) – ohybový moment
Protože je součinitel valivého tření ocelového kola a kolejnice velmi malý, můžeme třecí sílu T úplně zanedbat, protože její velikost bude také velmi malá a proto nebude mít vliv na výsledek měření.

Př.: pohyblivá stěna bude vážit $m = 2\ 000\ \text{kg}$. Součinitel valivého tření f je z tabulek 0,0004. Třecí síla T potom bude mít velikost:

$$T = \tau \cdot f = n \cdot g \cdot f = 0009.810.0004 = \cdot8$$

Zanedbáme-li sílu T, zůstane nám jen síla F a reakce R, které spolu vytvoří dvojici sil. Jejich důsledek je vznik ohybového momentu M_o. Protože posuvná stěna není nikde ukořená, nebude ohybový moment stěnu deformovat, ale stěna se bude v jeho směru otáčet se středem otáčení v místě dotyku stěny a tyče (reakce R) a posouvat ve směru tíhy G. Protože měřící tyče je stále kolmo k ploše (přišroubovaná), bude se po náklonu stěny měřit jen jedna složka F_T výslednice rozpínavých sil F, jak je patrné z obr.34. Z toho vyplývá, že čím většší bude náklon (úhel α) pohyblivé stěny, tím větší bude chyba měření.

Obr. 34 Náklon stěny v důsledku špatně umístěné měřicí tyče

Pokud bude tyče umístěna pod výslednici síl vznikne také ohybový moment M_o, který bude mít opačný směr než na obr.34. Stěna se v tomto případě bude naklánět na opačnou stranu. V případě chybného umístění měřicí tyče v jakémkoli dalším směru bude docházet k otáčení stěny ve směru vzniklého ohybového momentu.
6.6 Srovnání s provozovaným zařízením

Současné provozované zařízení analyzované v [6] je na obr. 35 (jen měřicí tyče).

Měřicím prvkem v provozovaném zařízení je tenzometr. Ten je umístěn v dělené tyči, která zajišťuje přenos sily. Měřicí prvek je dobře zvolen, ale jeho parametry už nikoliv. V zařízení jsou totiž použity tři tenzometry (tři tyče), každý s měřicím rozsahem 0 až 100 000 N. Maximální rozpínává síla vsásky je 100 000 N. Tato síla je rozdělena právě na tyto tři tenzometry, takže každý z nich bude zatížen jen maximálním silou 33 333 N. To znamená, že celé měření rozpínává síly v rozsahu 0 až 100 000 N proběhne jen na jedné třetině měřicího rozsahu tenzometru. Tím se zároveň sníží přesnost měření. Protože ideální měřicí rozsah začíná asi na 10 000 N je zřejmé, že při použití třech tenzometrů je potřeba třikrát větší síly (30 000 N) pro dosažení začátku měřicího rozsahu. Takové předpětí je sice možné vytvořit, ale zároveň se také vytvoří větší tlak na všechny komponenty tyče a také na už tak dost zatížené opory (stěny hal). Pro nastavení předpětí a zároveň vymezení vůl je v provozovaném zařízení použito šrouby. Toto řešení je nevhodné, protože celá síla přenáší jen závity jejich tuhost je pro potřeby měřicího zařízení nedostatečná. Dalším problémem použití tří tyčí je nutnost rovnoměrného rozložení rozpínává síly na všechny tři snímače. V analýzovaném zařízení není tento problém nijak řešen. Výhodou použití tří tyčí je nižší hmotnost jednotlivých komponentů a také rovnoměrnější zatížení opory. Všechny výše zmíněné nedostatky vnáší do měření značnou nepřesnost.

Můj návrh počítá jen s jednou tyčí. V tomto případě bude měření rozpínává síly probíhat v celém měřicím rozsahu snímače. Pro nastavení předpětí a vymezení vůl je potřeba umístit tyče co možná nejčástečněji do místa výsledně rozpínávých sil. Použití jedné tyče také způsobí jednobodové zatížení opory. Toto zatížení je potřeba rozložit na všechny tři sloupy opory co možná nejrovnověrnější. Tento problém jsem vyřešil použitím litinové desky.
7 Návrh kalibrace tenzometru

Protože konstrukce není absolutně tuhá, dochází při měření rozpínavých sil ke zkreslení naměřených hodnot. Hodnota naměřená tenzometrem neodpovídá hodnotě posunu pohyblivé stěny pece, protože do hodnoty posunu naměřené tenzometrem se promítne i posunutí (deformace) konstrukce. Tuto nepřesnost je nutné odstranit, tedy zjistit skutečnou hodnotu posunu konstrukce a o tuto zjištěnou hodnotu poté korigovat výsledek provozního měření.

7.1 Postup kalibrace

1) Konstrukci doplnit o kalibrační část (obr. 36) a pomocí zátěže nastavovat hodnoty v rozsahu 10 000 N až 100 000 N.
2) Pomocí přesných optických měřidel změřit skutečnou hodnotu vychýlení sloupů.
3) Stanovit rovnici pro korekci naměřených hodnot.

Z bodů 1 až 3 získám potřebné korekční hodnoty, které lze použít pro korekci naměřených hodnot při provozním měření. (např. pomocí programu EXCEL) Je však nutné poznamenat, že korekce bude platit jen pro konkrétní sestavení délky a umístění tenzometrické tyče a také pro určitý rozsah teploty.

7.2 Úprava konstrukce

Obr. 36 Konstrukce s úpravou pro kalibraci

Obr. 37 Detail kalibrační části

Ze silového rozboru plyne:

$$M_o = \tau_1 L_{p_1} \quad \text{kde} \quad G = \nu g$$

$$M_o = \tau_2 L_{p_2}$$

potom:

$$G L_{p_1} = \tau_1 L_{p_2} \quad \Rightarrow \quad F_T = \frac{G L_{p_1}}{L_{p_2}}$$

Pro uvedené hodnoty délek na obr.37 musí mít závaží hmotnost 51,25 kg, aby vyvolalo velikost síly F_T 10 000 N. V zásadě je však jedno, kolik bude závaží vážit. Důležité je znát jeho přesnou hmotnost pro výpočet velikosti síly F_T, kterou musí tenzometr ukázat. Rozdílná hodnota mezi touto silou a hodnotou změřenou tenzometrem reprezentuje deformaci sloupu a tyče a tedy velikost chyby měření.
7.3 Příklad měření

Pro získání hodnot skutečné deformace opěrných sloupů pomocí optických měřidel je vhodné oslovit některou z firem specializující se právě na tato měření. Výsledek optického měření může být následující:

<table>
<thead>
<tr>
<th>Zatížení [t]</th>
<th>Deformace [mm]</th>
<th>Odečet na [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skutečné zatížení</td>
<td>sloupu</td>
<td>tenzometru</td>
</tr>
<tr>
<td>1</td>
<td>0,005</td>
<td>0,99</td>
</tr>
<tr>
<td>2</td>
<td>0,008</td>
<td>1,968</td>
</tr>
<tr>
<td>3</td>
<td>0,014</td>
<td>2,916</td>
</tr>
<tr>
<td>4</td>
<td>0,023</td>
<td>3,816</td>
</tr>
<tr>
<td>5</td>
<td>0,035</td>
<td>4,65</td>
</tr>
<tr>
<td>6</td>
<td>0,05</td>
<td>5,4</td>
</tr>
<tr>
<td>7</td>
<td>0,068</td>
<td>6,048</td>
</tr>
<tr>
<td>8</td>
<td>0,089</td>
<td>6,576</td>
</tr>
<tr>
<td>9</td>
<td>0,113</td>
<td>6,966</td>
</tr>
<tr>
<td>10</td>
<td>0,14</td>
<td>7,2</td>
</tr>
</tbody>
</table>

Tab. 2 Výsledek optického měření deformace sloupu a jeho vliv na tenzometr

Obr. 39 Graf skutečného zatížení x změřené hodnotě
Na obr. 40 jsou znázorněny průběhy tlaku pro různé sypné hustoty uhelné vsázky změřené v Koppersově poloprovozní peci. Pokud by se do výsledků měření tlaku promítala i deformace sloupu mohla by křivka odpovídající sypné hmotnosti 964 kg.m\(^3\) (plná čára) vypadat jako křivka např. pro 916 kg.m\(^3\) (čárkovaná čára), která má mnohem menší maximální rozpínavý tlak. Na základě takového chybného měření si může kontrolor říci „máme ještě tlakovou rezervu, můžeme přidat do směsi rozpínavější uhlí.“ Následek takové úvahy, založené na chybném měření, by mohl být pro komory baterie fatální.

7.4 Srovnání s provozovaným zařízením

Současné provozované zařízení analyzované v [6] je na obr.41 (tyče + kalibrace)

Pro kalibraci tenzometru je u provozovaného zařízení i u mého návrhu doplněna kalibrační část. Obě zařízení využívají pro nastavení síly působící na tenzometr pákový převod. Problém stávajícího zařízení je v tom, že páka je umístěna na opěrné zdi. Při kalibraci dochází k tomu, že na opěrnou zeď působí síla v opačném směru než při
provozu. Zeď a tenzometr jsou tím stlačovány k sobě, takže kalibrace není kalibrací, ale jen ověření funkčnosti tenzometru.

V mém návrhu je páka umístěna na samostatném sloupku, který není s oporou nijak spojen. Toto řešení zaručuje, že na opěrný sloup působí síla ve stejném směru, jako při koksování v peci. V tomto případě se do hodnoty změřené tenzometrem promítne i deformace sloupu. Její velikost se dá velmi snadno určit, protože znám velikost působící síly na tenzometr. Rozdíl mezi známou silou a hodnotou změřenou tenzometrem reprezentuje deformaci sloupu, tedy kalibrační odchylku.
8 Návrh izolace

Skoková změna teploty nastane např. při otevření dveří do haly ve které je konstrukce umístěna. Vliv této skokové teplotní změny lze snadno eliminovat použitím vhodné izolace konstrukce o patřičné tloušťce.

Plynulá změna teploty je dána střídáním ročních období. Použití izolace jako u skokové změny teploty není v případě plynulé změny teploty řešením, protože izolace nedokáže na tak dlouhou dobu odstínit takový rozdíl teplot. Je tedy zřejmé, že změna teploty mezi jednotlivými ročními obdobími bude mít v každém případě vliv na tuhost konstrukce. Aby bylo měření dostatečně přesné je nutné eliminovat tento vliv teploty ať už mechanickými prostředky (topení/chlazení, změna konstrukce…), nebo matematickou korekcí naměřených hodnot.

Jako plynulou změnu teploty lze považovat také střídání dne a noci.

8.1 Skoková změna teploty

Předpokládám náhlý pokles okolní teploty o 10°C, z teploty 30°C na 20°C, a čas 2 hodiny, po který bude teplota snížená. Bude mít tato změna teploty vliv na konstrukci, pokud tato bude izolována? O kolik stupňů poklesne teplota uvnitř izolačního pláště?

8.1.1 Volba izolace

Jako izolační materiál volím ORSTECH 110 tloušťky 50mm, výrobce Saint-Gobain Isover CZ s. r. o., uzavřenou mezi hliníkové plechy tloušťky 2mm.

<table>
<thead>
<tr>
<th>Vstupní hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vnitřní teplota</td>
</tr>
<tr>
<td>Okolní teplota</td>
</tr>
<tr>
<td>Trávítka izolace</td>
</tr>
<tr>
<td>Čas</td>
</tr>
<tr>
<td>Tepelná vodivost izolace</td>
</tr>
<tr>
<td>Hustota izolace</td>
</tr>
<tr>
<td>Tepelná kapacita izolace</td>
</tr>
<tr>
<td>Součinitel přestupu tepla</td>
</tr>
<tr>
<td>Součinitel přestupu tepla</td>
</tr>
</tbody>
</table>

Tab. 3 Hodnoty pro výpočet změny teploty uvnitř pláště

Prostorový krok

$$\Delta = \frac{\tau}{4} = \frac{0,05}{4} = 0,0125 m$$

Součinitel teplotní vodivosti

$$a = \frac{\lambda}{c:\rho} = \frac{0,041}{800.1800} = 1,85.10^{-7} m^2.s^{-1}$$

Biotovo kritérium

$$Bi = \frac{\alpha}{\lambda} \frac{\Delta x}{\tau} = \frac{0,0125}{0,041} = 0,1$$
Maximální časový krok

\[\Delta t_{\text{max}} = \frac{\Delta^2}{a \cdot \mu^2 i} + \frac{0,0125^2}{2,2.85.10^{-4} \cdot \mu \cdot 1} = 86,6 \ \text{s} \]

Fourierovo kritérium

\[Fo = \frac{a \cdot \Delta t}{\Delta x^2} = \frac{2,85.10^{-4} \cdot 380}{0,0125^2} = 1,069 \]

Teplota povrchové vrstvy (okolí)

\[t' = Fo \cdot \mu t_x + t_y + t_z \]

Teplota vnitřních vrstev

\[t'' = \beta \cdot t_x + \beta \cdot t_y + \beta \cdot t_z \]

Teplota povrchové vrstvy (vnitřní)

\[t''' = Fo \cdot \mu t_x + t_y + t_z \]

Výsledné hodnoty teplot jednotlivých vrstev v časovém průběhu 0s až 7200s.

<table>
<thead>
<tr>
<th>čas [s]</th>
<th>teplota [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_1</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>360</td>
<td>21,56</td>
</tr>
<tr>
<td>760</td>
<td>21,41</td>
</tr>
<tr>
<td>1140</td>
<td>21,33</td>
</tr>
<tr>
<td>1520</td>
<td>21,26</td>
</tr>
<tr>
<td>1900</td>
<td>21,19</td>
</tr>
<tr>
<td>2280</td>
<td>21,14</td>
</tr>
<tr>
<td>2660</td>
<td>21,09</td>
</tr>
<tr>
<td>3040</td>
<td>21,04</td>
</tr>
<tr>
<td>3420</td>
<td>21</td>
</tr>
<tr>
<td>3800</td>
<td>20,96</td>
</tr>
<tr>
<td>4180</td>
<td>20,93</td>
</tr>
<tr>
<td>4560</td>
<td>20,9</td>
</tr>
<tr>
<td>4940</td>
<td>20,88</td>
</tr>
<tr>
<td>5320</td>
<td>20,85</td>
</tr>
<tr>
<td>5700</td>
<td>20,83</td>
</tr>
<tr>
<td>6080</td>
<td>20,81</td>
</tr>
<tr>
<td>6460</td>
<td>20,79</td>
</tr>
<tr>
<td>6840</td>
<td>20,77</td>
</tr>
<tr>
<td>7220</td>
<td>20,75</td>
</tr>
</tbody>
</table>

Tab. 4 Vypočítané hodnoty teploty ve vrstvách

Jak je vidět z tab.4 po uplynutí doby 120 min. (7200 s) klesne teplota uvnitř pláště jen o 0,1°C. To však platí pro ideální případ, kdy teplo prochází jen přes izolační stěnu. Nepočítá se zde s netěsností spojů jednotlivých desek.

Odpověď na otázku: Bude mít tato změna teploty vliv na konstrukci, pokud tato bude izolována? O kolik stupňů poklesne teplota uvnitř izolačního pláště?

Při zvolené izolaci se zvýší teplota uvnitř pláště o 0,1°C. A za předpokladu, že vlivem netěsností spojů desek se zvýší teplota uvnitř pláště o dalších 1,5°C (odhad), celkem tedy o 1,6°C, nebude mít změna teploty okolí o 10°C po dobu trvání 120 min. vliv na tuhost konstrukce.
8.1.2 Plášt' konstrukce (izolační desky)

Vzhledem k malé pevnosti izolačních desek a krycího plechu, navrhoji použití nosně konstrukce (obr. 42), na kterou budou izolační desky kopírující tvar rámu přichyceny. Protože tato konstrukce neponese nijak velké zatížení (izolační desky jsou velmi lehké), může být konstrukce sestavena z běžných tenkostěnných profilů. Dále navrhoji přikotvení nosné konstrukce k betonovému základu, aby nedošlo k posunutí vůči rámu náhodnými vnějšími vlivy.

Obr. 42 Nosný rám izolace z L-profilu

Konstrukce je sestavena z profilu L 30x30x3 ČSN 425541. Navrhoji svařit boční plochy rámu ve výrobním závodu a celkové sestavení provést až na místě montáže. Stejně jako svrtní konstrukce s betonovým základem a izolačními deskami.
8.1.3 Upravená konstrukce

Obr. 43 Celková konstrukce měřícího zařízení

8.2 Plynulá změna teploty

V průběhu roku se teplota vzduchu výrazně mění (obr. 44) a tím se mění i podmínky měření. Řešení tohoto neblahého vlivu okolí je několik:

1) udržovat teplotu v hale ve stanoveném rozsahu
2) udržovat teplotu jen pod izolací zařízení ve stanoveném rozsahu
3) stanovit korekce měření pro každý rozsah teplot

Obr. 44 Graf průměrné měsíční teploty v ČR [7]

ad 1) Udržovat teplotu v hale v rozsahu ±5°C je sice snadno řešitelné, ale vzhledem k typu objektu, ve kterém se takováto zařízení instalují, velice nákladné. Je to především proto, že tyto stavby většinou nejsou tepelně izolovány nebo jsou izolovány
jen velmi málo. Tím v zimních měsících dochází ke značnému úniku tepla přes stěny objektu a v letních měsících teplota uvnitř budovy zase velmi rychle roste.

ad 2) udržování teploty jen pod izolací je mnohem efektivnější řešení než v prvním případě (ad 1), ale toto řešení je stále poměrně drahé.

ad 3) stanovení korekce měření pro každý rozsah teplot se jeví jako nejlepší způsob eliminace vlivu teploty na výsledek měření. Zde není potřeba žádného přidavného zdroje tepla ani chlazení a následné provozní náklady jsou zanedbatelné. Nicméně prováděné měření pro získání těchto korekcí může být také poměrně drahé a přesnost získaných korekció závisí na kvalitě měření.

Navrhuji řešení podle bodu 3., tedy stanovení korekcí měření pro každý rozsah teplot.

8.2.1 Změna teploty den/noc

Rozdíl teploty mezi dnem a nocí je podle statistik českého hydrometeorologického ústavu maximálně 20°C. Při použití izolaci poklesne teplota uvnitř pláště o 0,74°C. Připočtuji-li k tomu ještě vliv netěsnosti pláště odhadem 3°C bude pokles teploty uvnitř pláště celkem cca 4°C. Teplotní změna den/noc nebude mít vliv na přesnost měření.

Tab. 5 Pokles teploty uvnitř pláště po 18-ti hodinách při poklesu teploty z 30°C na 10°C
9 Závěr

Konstrukce je z hlediska pevnosti značně předimenzovaná. Tato konstrukce však není navržena z hlediska tuhosti, ale z hlediska tuhosti. Celé měřící zařízení musí třetí hodnotu posunutí než 0,1 mm (dáno měřicím rozsahem) a to za jakékoliv teploty resp. přetvárná práce snímače musí být mnohem větší než přetvárná práce opor a tyče. Navržené zařízení tuto podmínku splňuje.

Kritériem pro toto tvrzení je poměr přetvárné práce navržené konstrukce a tenzometru při maximálním zatížení 100000[N]

\[W_{\text{PEVNA}} : W_{\text{SNIMAC}} : W_{\text{POHYBLIVA}} \Rightarrow 8 : 82 : 10 \]

takže se z celkové práce 100 [J] přenese na tenzometr 82[J]

Dalším faktorem ovlivňujícím přesnost měření je teplota, protože s její změnou dochází ke změně pevnosti materiálu a také k objemovým změnám.

Vliv náhlé krátkodobé změny teploty jsem vyřešil izolací opěrných sloupů i měřicí tyče. Výpočty ukázaly, že prudký pokles okolní teploty o 10°C způsobí pokles teploty uvnitř izolace jen o 0,1°C. Tak nepatrná změna teploty nebude mít žádný vliv na přesnost měření. Navržená izolace také odstínila vliv plynulé změny teploty způsobené střídáním dne a noči. V tomto případě je pokles teploty asi 3°C, a to v jakémkoliv ročním období. Je to důvod tím, že teplotní změna mezi dnem a nocí je maximálně 20°C.

Vliv dlouhodobé změny teploty střídáním ročních období je řešitelný pouze matematickou korekcí. Při stanoveném postupu v pořadí:

1) Kalibrace deformace sloupů při průměrné teplotě (v hale s měřicím zařízením) v daném ročním období.
2) Stanovení rovnice korekce.
3) Korekce naměřených hodnot.

Tato práce řeší jen návrh opěrných sloupů a měřicí tyče z hlediska tuhosti soustavy. Další strojní vybavení související s provozem poloprovodní koksovací pece, nejsou v práci zmíněny. Na zednické práce a optické měření mající souvislost ustavením sloupů je v práci pouze upozorněno, resp. doporučení na osnování specializovaných firem zabývající se touto problematikou.
Seznam obrázků

Obr. 1 Síla působící kolmo na plochu [3]
Obr. 2 Síla působící v obecném směru [2]
Obr. 3 Deformace tělesa [1]
Obr. 4 Deformace od tahového napětí [3]
Obr. 5 Deformace od smykového napětí [3]
Obr. 6 Vliv teploty na modul pružnosti [2]
Obr. 7 Roztažnost materiálu s rostoucí teplotou (pro L=1m)
Obr. 8 Topná stěna koksovací pece poškozená rozpínavým uhlím [4]
Obr. 9 a) Koppers-Jenknerův přístroj [4] b) měřicí systém MRS-1 [8]
Obr. 10 Koppersova poloprovodní pec [4]
Obr. 11 Obecná forma blokového schéma technického procesu
Obr. 12 Měření rozpínavých sil - technický proces
Obr. 13 Morfologická matice
Obr. 14 Hrubá stavební struktura opěrných sítí
Obr. 15 Pevnostní analýza profil I - posunutí
Obr. 16 Pevnostní analýza profil IPE – posunutí
Obr. 17 Pevnostní analýza profil U – posunutí
Obr. 18 Typy konstrukce
Obr. 19 Sestava sloupu
Obr. 20 Lítinová deska
Obr. 21 a) Zatížení osamělou silou b) Plošné zatížení
Obr. 22 Celková konstrukce sloupu
Obr. 23 boční pohled horní pohled
Obr. 24 Měřicí charakteristika zvoleného tenzometru [6]
Obr. 25 Morfologická matice
Obr. 26 Hrubá stavební struktura zařízení
Obr. 27 Část tenzometrické tyče na straně pece
Obr. 28 Uložení tenzometru
Obr. 29 Vymezočet vůlí
Obr. 30 Tenzometrická tyče
Obr. 31 Konečná podoba zařízení (bez chlazení-izolace a kalibrace)
Obr. 32 Schéma zatížení měřicí tyče
Obr. 33 Silový rozbor, osa tyče nad výslednicí síl F
Obr. 34 Náklon stěny v důsledku špatně umístěné měřicí tyče
Obr. 35 boční pohled horní pohled
Obr. 36 Konstrukce s úpravou pro kalibraci
Obr. 37 Detail kalibační části
Obr. 38 Silový rozbor kalibační části
Obr. 39 Graf skutečného zařízení x změřené hodnotě
Obr. 40 Velikost rozpínavého tlaku v průběhu koksování [4]
Obr. 41 Kalibrace tenzometrů, boční pohled
Obr. 42 Nosný rám izolace z L-profilu
Obr. 43 Celková konstrukce měřicího zařízení
Obr. 44 Graf průměrné měsíční teploty v ČR [7]
Seznam tabulek

Tab. 1 Moduly pružnosti [1]
Tab. 2 Výsledek optického měření deformace sloupů a jeho vliv na tenzometr
Tab. 3 Hodnoty pro výpočet změny teploty uvnitř pláště
Tab. 4 Vypočítané hodnoty teploty ve vrstvách
Tab. 5 Pokles teploty uvnitř pláště po 18-ti hodinách při poklesu teploty z 30°C na 10°C
Seznam příloh

Příloha 1 - Zpráva pevnostní analýzy - SLOUP NA STRANĚ PEVNÉ STĚNY
Příloha 2 - Zpráva pevnostní analýzy - SLOUP NA STRANĚ POHYBLIVÉ STĚNY
Použitá literatura

[1] PRUŽNOST A PEVNOST 1; J. Lenert; VŠB-TU; Ostrava 2005
[2] PRUŽNOST A PEVNOST; B. Dobrovský; Česká grafická unie; Praha 1964
[3] NAUKA O MATERIÁLU 1; L. Ptáček a kolektiv; CERM 2003
[4] KOKSÁRENSTVÍ; A. Kozina, M.Piša, B. Šplichal; SNTL; Praha 1973
[6] Analýza technického stavu a návrh úprav konstrukce poloprovozní koksovací pece pro měření rozpinavého tlaku uhelných vsázek; Z. Noga; Ostrava 2009
[7] Český hydrometeorologický ústav; www stránky
[8] DASFOS v.o.s.; www stránky
Příloha 1
Zpráva pevnostní analýzy

SLOUP NA STRANĚ PEVNÉ STĚNY

Materiály

<table>
<thead>
<tr>
<th>Název</th>
<th>Ocel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Měrná hmotnost</td>
<td>7,85 g/cm³</td>
</tr>
<tr>
<td>Obecné</td>
<td></td>
</tr>
<tr>
<td>Mez kluzu v tahu</td>
<td>207 MPa</td>
</tr>
<tr>
<td>Mez pevnosti v tahu</td>
<td>345 MPa</td>
</tr>
<tr>
<td>Youngův modul</td>
<td>210 GPa</td>
</tr>
<tr>
<td>Napětí</td>
<td></td>
</tr>
<tr>
<td>Poissonova konstanta</td>
<td>0,3 ul</td>
</tr>
<tr>
<td>Modul pružnosti</td>
<td>0 GPa</td>
</tr>
<tr>
<td>Koeficient roztažnosti</td>
<td>0,000012 ul/c</td>
</tr>
<tr>
<td>Tepelné napětí</td>
<td>Tepelná vodivost 56 W/(m K)</td>
</tr>
<tr>
<td>Měrné teplo</td>
<td>460 J/(kg c)</td>
</tr>
<tr>
<td>Názvy součástí</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000003</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000004</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000003</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000004</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000003</td>
<td></td>
</tr>
<tr>
<td>CSN I 500 00000004</td>
<td></td>
</tr>
<tr>
<td>CSN 425570 - 240-1500.ipt</td>
<td></td>
</tr>
<tr>
<td>CSN 425570 - 240-1500.ipt</td>
<td></td>
</tr>
<tr>
<td>pas-1500x85.ipt</td>
<td></td>
</tr>
<tr>
<td>ŽEBRO.ipt</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000001</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000002</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000003</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000004</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000005</td>
<td></td>
</tr>
<tr>
<td>CSN 100 00000006</td>
<td></td>
</tr>
<tr>
<td>DRŽÁK DESKY-ČELO.ipt</td>
<td></td>
</tr>
<tr>
<td>DRŽÁK DESKY-ŽEBRO.ipt</td>
<td></td>
</tr>
<tr>
<td>Název</td>
<td>Litina</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Obecné</td>
<td></td>
</tr>
<tr>
<td>Měrná hmotnost</td>
<td>7,25 g/cm³</td>
</tr>
<tr>
<td>Mez kluzu v tahu</td>
<td>200 MPa</td>
</tr>
<tr>
<td>Mez pevnosti v tahu</td>
<td>276 MPa</td>
</tr>
<tr>
<td>Youngův modul</td>
<td>120,5 GPa</td>
</tr>
<tr>
<td>Napětí</td>
<td></td>
</tr>
<tr>
<td>Poissonova konstanta</td>
<td>0,3 ul</td>
</tr>
<tr>
<td>Modul pružnosti</td>
<td>0 GPa</td>
</tr>
<tr>
<td>Koeficient roztažnosti</td>
<td>0,000012 ul/c</td>
</tr>
<tr>
<td>Tepelné napětí</td>
<td></td>
</tr>
<tr>
<td>Tepelná vodivost</td>
<td>50 W/(m K)</td>
</tr>
<tr>
<td>Měrné teplo</td>
<td>540 J/(kg c)</td>
</tr>
</tbody>
</table>

Názvy součástí lítinova-deska.ipt
Provozní podmínky

Gravitace

<table>
<thead>
<tr>
<th>Typ zatížení</th>
<th>Gravitace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velikost</td>
<td>9810.000 mm/s^2</td>
</tr>
</tbody>
</table>

Vybrané plochy

Tlak: 1

<table>
<thead>
<tr>
<th>Typ zatížení</th>
<th>Tlak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velikost</td>
<td>0.100 MPa</td>
</tr>
</tbody>
</table>

Vybrané plochy
Pevná vazba: 1

Typ vazby: Pevná vazba

Vybrané plochy

Výsledky

Reakční síla a moment na vazbách

<table>
<thead>
<tr>
<th>Název vazby</th>
<th>Reakční síla Velikost Komponenta (X,Y,Z) Velikost</th>
<th>Reakční moment Komponenta (X,Y,Z) Velikost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevná vazba: 1</td>
<td>147041 N -144841 N</td>
<td>188778 N m</td>
</tr>
<tr>
<td></td>
<td>25338,8 N 0 N</td>
<td>0 N m</td>
</tr>
</tbody>
</table>

Souhrn výsledků

<table>
<thead>
<tr>
<th>Název</th>
<th>Minimalní</th>
<th>Maximální</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objem</td>
<td>337436000 mm^3</td>
<td></td>
</tr>
<tr>
<td>Hmotnost</td>
<td>2577,88 kg</td>
<td></td>
</tr>
<tr>
<td>Posunutí</td>
<td>0 mm</td>
<td>0,0778672 mm</td>
</tr>
<tr>
<td>Součinitel bezpečnosti</td>
<td>15 ul</td>
<td>15 ul</td>
</tr>
</tbody>
</table>
SLOUP NA STRANĚ POHYBLIVÉ STĚNY

Materiály

<table>
<thead>
<tr>
<th>Název</th>
<th>Materiál</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obecné</td>
<td></td>
</tr>
<tr>
<td>Měrná hmotnost</td>
<td>7,85 g/cm^3</td>
</tr>
<tr>
<td>Mez kluzu v tahu</td>
<td>207 MPa</td>
</tr>
<tr>
<td>Mez pevnosti v tahu</td>
<td>345 MPa</td>
</tr>
<tr>
<td>Youngův modul</td>
<td>210 GPa</td>
</tr>
<tr>
<td>Napětí</td>
<td></td>
</tr>
<tr>
<td>Poissonova konstanta</td>
<td>0,3 ul</td>
</tr>
<tr>
<td>Modul pružnosti</td>
<td>0 GPa</td>
</tr>
<tr>
<td>Koeficient roztažnosti</td>
<td>0,000012 ul/c</td>
</tr>
<tr>
<td>Tepelné napětí</td>
<td></td>
</tr>
<tr>
<td>Tepelná vodivost</td>
<td>56 W/(m K)</td>
</tr>
<tr>
<td>Měrné teplo</td>
<td>460 J/(kg c)</td>
</tr>
</tbody>
</table>

CSN I 500 00000003
CSN I 500 00000004
CSN 425570 - 240-1500.ipt
CSN 425570 - 240-1500.ipt
pas-1500x85.ipt
ŽEBRO.ipt
CSN 100 00000001
CSN 100 00000002
CSN 100 00000003
CSN 100 00000004
CSN 100 00000005
CSN 100 00000006
DRŽÁK DESKY-ČELO.ipt
DRŽÁK DESKY-ŽEBRO.ipt
<table>
<thead>
<tr>
<th>ČSN 02 1703 21</th>
<th>CSN EN 24014 M20 x 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSN 02 1703 21</td>
<td>CSN EN 24014 M20 x 130</td>
</tr>
<tr>
<td>CSN 02 1402 M20</td>
<td>CSN EN 24014 M20 x 130</td>
</tr>
<tr>
<td>CSN 02 1703 21</td>
<td>CSN EN 24014 M20 x 130</td>
</tr>
<tr>
<td>CSN 02 1703 21</td>
<td>CSN EN 24014 M20 x 130</td>
</tr>
<tr>
<td>CSN 425715 - 194-834 28.ipt</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>POUŽDRO TENZOMETRU.ipt</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>KLÍN KRAJNÍ.ipt</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>ZÁVITOVÁ DESKA.ipt</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>KLÍN VNITŘNÍ.ipt</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>CSN EN 24014 M20 x 130</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>CSN EN 24017 M20 x 130</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>CSN EN 24017 M20 x 130</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
<tr>
<td>CSN EN 24017 M20 x 130</td>
<td>CSN EN 24017 M20 x 130</td>
</tr>
</tbody>
</table>
Provozní podmínky

Gravitace

<table>
<thead>
<tr>
<th>Typ zatížení</th>
<th>Gravitace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velikost</td>
<td>9810.000 mm/s^2</td>
</tr>
</tbody>
</table>

Vybrané plochy

![Diagram of selected areas]
Síla: 1

<table>
<thead>
<tr>
<th>Typ zatížení</th>
<th>Síla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektor X</td>
<td>100000.000 N</td>
</tr>
<tr>
<td>Vektor Y</td>
<td>0.000 N</td>
</tr>
<tr>
<td>Vektor Z</td>
<td>-0.000 N</td>
</tr>
</tbody>
</table>

Vybrané plochy

Pevná vazba: 1

<table>
<thead>
<tr>
<th>Typ vazby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevná vazba</td>
</tr>
</tbody>
</table>

Vybrané plochy
Ideální vazba: 1

Typ vazby: Ideální vazba

Vybrané plochy

Výsledky

Reakční síla a moment na vazbách

<table>
<thead>
<tr>
<th>Název vazby</th>
<th>Reakční síla Velikost</th>
<th>Komponenta (X,Y,Z) Velikost</th>
<th>Reakční moment Komponenta (X,Y,Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevná vazba:1</td>
<td>104846 N 0 N</td>
<td>31555,8 N 0 N</td>
<td>115403 N m 0 N m</td>
</tr>
<tr>
<td>Ideální vazba:1</td>
<td>3067,26 N 0 N</td>
<td>-3067,26 N 0 N</td>
<td>1040,28 N m 1040,28 N m</td>
</tr>
</tbody>
</table>

Souhrn výsledků

<table>
<thead>
<tr>
<th>Název</th>
<th>Minimální</th>
<th>Maximální</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objem</td>
<td>378641000 mm^3</td>
<td></td>
</tr>
<tr>
<td>Hmotnost</td>
<td>2898,21 kg</td>
<td></td>
</tr>
<tr>
<td>Posunutí</td>
<td>0 mm</td>
<td>0,0955119 mm</td>
</tr>
<tr>
<td>Součinitel bezpečnosti</td>
<td>6,05684 ul</td>
<td>15 ul</td>
</tr>
</tbody>
</table>

60
Obrázky

Posunutí

Součinitel bezpečnosti