PŘÍLOHA A

UKÁZKA ZDROJOVÝCH KÓDŮ Z PROGRAMU

POUŽITÍ TEORETICKÝCH ODVOZENÍ

UKÁZKY ZAJÍMAVÝCH PASÁŽÍ Z GRAFICKÉHO PROSTŘEDÍ
Zdrojový kód pro výpočet ohybových momentů a průhybů spojitého nosníku o pěti polích

Tato ukázka je reprezentativní část kódu, jedná se o výpočet spojitého nosníku o pěti polích. Ukázka má za cíl předvěst použití teoreticky odvozených vztahů z bakalářské práce. Zdrojový kód je exportován z VBA.

Sub SPOJITY_NOSNIK_5()
 ' Načítání modulu pružnosti [10].
 E = List3.Cells(7, 14)
 ' Výběr momentů sestavačnosti a průřezových modulů podle orientace profilu [10].
 If List3.Cells(1, 48) = 1 Then
 ly = List3.Cells(7, 4)
 Wy = List3.Cells(7, 2)
 Else
 ly = List3.Cells(7, 5)
 Wy = List3.Cells(7, 3)
 End If

 ' Číslo n charakterizuje zatěžovací stavy.
 ' Může nabývat hodnot 0-8.
 ' Pokud je > 0 počítá se ze zatěžovacím stavem.
 ' Hodnota posunuje sloupec z kterého se načítají vstupní údaje pro MSÚ nebo MSP.
 n = List4.Cells(22, 9 + p)

 ' Když je n 0 tak se cyklus neprovede.
 If n = 0 Then
 GoTo back ' Zadní vrátko, přeskočí celý cyklus.
 Else

 ' Načítání vstupních údajů, ty se mění v závislosti na zvoleném druhu zatížení. Pro načítání je další procedura, ta načítá data s MS Excel.

 ' Nosník 1
 Call NACITANI1(p, n, L1, q1u, q1s, q1_1, a1_1q, b1_1q, d1_1, q1_2, a1_2q, b1_2q, d1_2, q1_w1, a1_w1, b1_w1, d1_w1, q1_w2, a1_w2, b1_w2, d1_w2, F1, F2, F3, F4, F5, a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, a1_1, a1_2, b1_1, b1_2, d1_1, d1_2, a1_w1, a1_w2, b1_w1, b1_w2, d1_w1, d1_w2, Zba_F, Zba_q1_1, Zba_q1_2, Zba_q1_w1, Zba_q1_w2, Zba_q1)

 ' Nosník 2
 Call NACITANI2(p, n, L2, q2u, q2s, q2_1, a2_1q, b2_1q, d2_1, q2_2, a2_2q, b2_2q, d2_2, q2_w1, a2_w1, b2_w1, d2_w1, q2_w2, a2_w2, b2_w2, d2_w2, F1_2, F2_2, F3_2, F4_2, F5_2, a1_2, a2_2, a3_2, a4_2, a5_2, b1_2, b2_2, b3_2, b4_2, b5_2, a1_2, a2_2, b2_2, d2_1, d2_2, a2_w1, a2_w2, b2_w1, b2_w2, d2_w1, d2_w2, Zbc_F, Zbc_q1_1, Zbc_q1_2, Zbc_q1_w1, Zbc_q1_w2, Zbc_q1, Zcb_F, Zcb_q1_1, Zcb_q1_2, Zcb_q1_w1, Zcb_q1_w2, Zcb_q1)
Nosník 3

Call NACITANI3p, n, L3, q3u, q3s, q3_1, a3_1q, b3_1q, d3_1, q3_2, a3_2q, b3_2q, d3_2, q3_w1, a3_w1, b3_w1, d3_w1, q3_w2, a3_w2, b3_w2, d3_w2, F3_1, F3_2, F3_3, F4_3, F5_3, a1_3, a2_3, a3_3, a4_3, a5_3, b1_3, b2_3, b3_3, b4_3, b5_3, aa3_1, aa3_2, bb3_1, bb3_2, dd3_1, dd3_2, aa3_w1, aa3_w2, bb3_w1, bb3_w2, dd3_w1, dd3_w2, Zcd_F, Zcd_q1_1, Zcd_q1_2, Zcd_q1_w1, Zcd_q1_w2, Zcd_q1, Zcd_1, Zcd_2, Zcd_q1_w1, Zcd_q2, Zcd_q2_w1, Zcd_q2_w2, Zcd_1, Zcd_2, Zcd_q1, Zcd_q2, Zcd_q1_1, Zcd_q1_2, Zcd_q1_w1, Zcd_q2, Zcd_q2_w1, Zcd_q2_w2, Zcd_1, Zcd_2

Nosník 4

Call NACITANI4p, n, L4, q4u, q4s, q4_1, a4_1q, b4_1q, d4_1, q4_2, a4_2q, b4_2q, d4_2, q4_w1, a4_w1, b4_w1, d4_w1, q4_w2, a4_w2, b4_w2, d4_w2, F4_1, F4_2, F4_3, F4_4, F5_4, a1_4, a2_4, a3_4, a4_4, a5_4, b1_4, b2_4, b3_4, b4_4, b5_4, a1_1, a4_1, a4_2, b4_1, b4_2, dd4_1, dd4_2, aa4_w1, aa4_w2, bb4_w1, bb4_w2, dd4_w1, dd4_w2, Zde_F, Zde_q1_1, Zde_q1_2, Zde_q1_w1, Zde_q1_w2, Zde_q1, Zde_1, Zde_2, Zde_q1_w1, Zde_q2, Zde_q2_w1, Zde_q2_w2, Zde_1, Zde_2, Zde_q1, Zde_q2, Zde_1, Zde_2, Zde_q1_1, Zde_q1_2, Zde_q1_w1, Zde_q2, Zde_q2_w1, Zde_q2_w2, Zde_1, Zde_2

Nosník 5

Call NACITANI5p, n, L5, e5_1, e5_2, e5_w1, e5_w2, q5u, q5s, q5_1, e5_1q, b5_1q, d5_1, q5_2, a5_2q, b5_2q, d5_2, q5_w1, a5_w1, b5_w1, d5_w1, q5_w2, a5_w2, b5_w2, d5_w2, F5_1, F5_2, F5_3, F5_4, F5_5, a1_5, a2_5, a3_5, a4_5, a5_5, b1_5, b2_5, b3_5, b4_5, b5_5, a1_1, a4_1, a4_2, b5_1, b5_2, dd5_1, dd5_2, ee5_w1, ee5_w2, bb5_w1, bb5_w2, dd5_w1, dd5_w2, Zef_F, Zef_q1_1, Zef_q1_2, Zef_q1_w1, Zef_q1_w2, Zef_q1

Doplňující hodnoty pro zatěžovací členy.

Call NACITANI8(L4, e4_1, e4_2, e4_w1, e4_w2, a4_1q, a4_2q, a4_w1, a4_w2, b4_1q, b4_2q, b4_w1, b4_w2, dd4_1, dd4_2, dd4_w1, dd4_w2, Zde_F, Zde_q1_1, Zde_q1_2, Zde_q1_w1, Zde_q1_w2, Zde_1, Zde_2, Zde_q1, Zde_q2, Zde_q1_1, Zde_q1_2, Zde_q1_w1, Zde_q2, Zde_q2_w1, Zde_q2_w2, Zde_1, Zde_2

Pomocné hodnoty na zatěžovací stavy [1].

Zba = Zba_F * Zba_q1_1 + Zba_q1_2 + Zba_q1_w1 + Zba_q1_w2 + Zba_q1
Zbc = Zbc_F + Zbc_q1_1 + Zbc_q1_2 + Zbc_q1_w1 + Zbc_q1_w2 + Zbc_q1
Zcb = Zcb_F + Zcb_q1_1 + Zcb_q1_2 + Zcb_q1_w1 + Zcb_q1_w2 + Zcb_q1
Zod = Zod_F + Zod_q1_1 + Zod_q1_2 + Zod_q1_w1 + Zod_q1_w2 + Zod_q1
Zdc = Zdc_F + Zdc_q1_1 + Zdc_q1_2 + Zdc_q1_w1 + Zdc_q1_w2 + Zdc_q1
Zde = Zde_F + Zde_q1_1 + Zde_q1_2 + Zde_q1_w1 + Zde_q1_w2 + Zde_q1
Zed = Zed_F + Zed_q1_1 + Zed_q1_2 + Zed_q1_w1 + Zed_q1_w2 + Zed_q1
Zef = Zef_F + Zef_q1_1 + Zef_q1_2 + Zef_q1_w1 + Zef_q1_w2 + Zef_q1

Trimomentová rovnice [1].

List2.Cells(1032, 1) = 2 * (L1 + L2)
List2.Cells(1032, 2) = L2
List2.Cells(1032, 3) = 0
List2.Cells(1032, 4) = 0
List2.Cells(1032, 5) = -Zba * L1 - Zbc * L2
List2.Cells(1033, 1) = L2
List2.Cells(1033, 2) = 2 * (L2 + L3)
List2.Cells(1033, 3) = L3
List2.Cells(1033, 4) = 0
List2.Cells(1033, 5) = -Zcb * L2 - Zcd * L3
List2.Cells(1034, 1) = 0
List2.Cells(1034, 2) = L3
List2.Cells(1034, 3) = 2 * (L3 + L4)
List2.Cells(1034, 4) = L4
List2.Cells(1034, 5) = -Zdc * L3 - Zde * L4
List2.Cells(1035, 1) = 0
List2.Cells(1035, 2) = 0
List2.Cells(1035, 3) = L4
List2.Cells(1035, 4) = 2 * (L4 + L5)
List2.Cells(1035, 5) = -Zed * L4 - Zef * L5

' Výsledné nadpodporové momenty.
Mb = List2.Cells(1036, 5)
Mc = List2.Cells(1037, 5)
Md = List2.Cells(1038, 5)
Mf = List2.Cells(1039, 5)

' Výpočet reakcí na jednotlivých nosnících.
Rbe = (-Mb + ((F1 * a1) + (F2 * a2) + (F3 * a3) + (F4 * a4) + (F5 * a5) + (q1_1 * b1_1q * aa1_1) + (q1_2 * b1_2q * aa1_2) + (q1_w1 * b1_w1 * aa1_w1) + (q1_w2 * b1_w2 * aa1_w2) + (q1_u * L1 * L1 / 2)) / L1
Rab = (Mb + ((F1 * b1) + (F2 * b2) + (F3 * b3) + (F4 * b4) + (F5 * b5) + (q1_1 * b1_1q * bb1_1) + (q1_2 * b1_2q * bb1_2) + (q1_w1 * b1_w1 * bb1_w1) + (q1_w2 * b1_w2 * bb1_w2) + (q1_u * L1 * L1 / 2)) / L1)
Rbc = (-Mb + Mc + ((F1_2 * a1_2) + (F2_2 * a2_2) + (F3_2 * a3_2) + (F4_2 * a4_2) + (F5_2 * a5_2) + (q2_1 * b2_1q * bb2_1) + (q2_2 * b2_2q * bb2_2) + (q2_w1 * b2_w1 * bb2_w1) + (q2_w2 * b2_w2 * bb2_w2) + (q2_u * L2 * L2 / 2)) / L2)
Rcb = (Mb + Mc + ((F1_2 * a1_2) + (F2_2 * a2_2) + (F3_2 * a3_2) + (F4_2 * a4_2) + (F5_2 * a5_2) + (q2_1 * b2_1q * bb2_1) + (q2_2 * b2_2q * bb2_2) + (q2_w1 * b2_w1 * bb2_w1) + (q2_w2 * b2_w2 * bb2_w2) + (q2_u * L2 * L2 / 2)) / L2)
Rde = (Md + Mc + ((F1_3 * a1_3) + (F2_3 * a2_3) + (F3_3 * a3_3) + (F4_3 * a4_3) + (F5_3 * a5_3) + (q3_1 * b3_1q * aa3_1) + (q3_2 * b3_2q * aa3_2) + (q3_w1 * b3_w1 * aa3_w1) + (q3_w2 * b3_w2 * aa3_w2) + (q3_u * L3 * L3 / 2)) / L3)
Rdc = (Md + Mc + ((F1_3 * a1_3) + (F2_3 * a2_3) + (F3_3 * a3_3) + (F4_3 * a4_3) + (F5_3 * a5_3) + (q3_1 * b3_1q * aa3_1) + (q3_2 * b3_2q * aa3_2) + (q3_w1 * b3_w1 * aa3_w1) + (q3_w2 * b3_w2 * aa3_w2) + (q3_u * L3 * L3 / 2)) / L3)
Rde = (Md + Mc + ((F1_4 * a1_4) + (F2_4 * a2_4) + (F3_4 * a3_4) + (F4_4 * a4_4) + (F5_4 * a5_4) + (q4_1 * b4_1q * aa4_1) + (q4_2 * b4_2q * aa4_2) + (q4_w1 * b4_w1 * aa4_w1) + (q4_w2 * b4_w2 * aa4_w2) + (q4_u * L4 * L4 / 2)) / L4)
Rde = (Md + Mc + ((F1_4 * a1_4) + (F2_4 * a2_4) + (F3_4 * a3_4) + (F4_4 * a4_4) + (F5_4 * a5_4) + (q4_1 * b4_1q * aa4_1) + (q4_2 * b4_2q * aa4_2) + (q4_w1 * b4_w1 * aa4_w1) + (q4_w2 * b4_w2 * aa4_w2) + (q4_u * L4 * L4 / 2)) / L4)
Rfe = (Mf + ((F1_5 * a1_5) + (F2_5 * a2_5) + (F3_5 * a3_5) + (F4_5 * a4_5) + (F5_5 * a5_5) + (q5_1 * b5_1q * aa5_1) + (q5_2 * b5_2q * aa5_2) + (q5_w1 * b5_w1 * aa5_w1) + (q5_w2 * b5_w2 * aa5_w2) + (q5_u * L5 * L5 / 2)) / L5)
Ref = (Mf + ((F1_5 * b1_5) + (F2_5 * b2_5) + (F3_5 * b3_5) + (F4_5 * b4_5) + (F5_5 * b5_5) + (q5_1 * b5_1q * bb5_1) + (q5_2 * b5_2q * bb5_2) + (q5_w1 * b5_w1 * bb5_w1) + (q5_w2 * b5_w2 * bb5_w2) + (q5_u * L5 * L5 / 2)) / L5)

' Výsledné reakce.
Raz = Rab
Rbz = Rba + Rbc
Roz = Rob + Rcd
Rdz = Rdc + Rde
Rez = Red + Ref
Rtz = Rfe

' Vnitřní cyklus pro jednotlivé nosníky.
For i = 1 To 200
If p < 5 Then ' V případě volby MSP se cyklus na MSÚ přeskakuje.

' NOSNIK 1.

' VÝPOČET OHYBOVÝCH MOMENTŮ 1. NOSNIK.
M1 = Raz * List2.Cells(9, i, 1) ' reakce

' Jednotlivé momenty odpovídají druhu zatížení.

' Započítávají se jakmile hodnota x přesáhne hodnotu začátku zatížení.
If List2.Cells(9 + i, 1) > a1_1q Then
M2 = -q1_1^1 / (((List2.Cells(9 + i, 1) - a1_1q) ^ 2) / 2) * spojitě zatížení 1.
End If
If List2.Cells(9 + i, 1) > d1_1 Then
M3 = q1_1^2 / (((List2.Cells(9 + i, 1) - d1_1) ^ 2) / 2) * spojitě zatížení 1. viz obrázek 7, str. 16, hlavní textová část bc.
End If
If List2.Cells(9 + i, 1) > a1 Then
M4 = -F1 * (List2.Cells(9 + i, 1) - a1) * síla F1
End If
If List2.Cells(9 + i, 1) > a2 Then
M5 = -F2 * (List2.Cells(9 + i, 1) - a2) * síla F2
End If
If List2.Cells(9 + i, 1) > a3 Then
M6 = -F3 * (List2.Cells(9 + i, 1) - a3) * síla F3
End If
If List2.Cells(9 + i, 1) > a4 Then
M7 = -F4 * (List2.Cells(9 + i, 1) - a4) * síla F4
End If
If List2.Cells(9 + i, 1) > a5 Then
M8 = -F5 * (List2.Cells(9 + i, 1) - a5) * síla F5
End If
M9 = -((q1u * List2.Cells(9 + i, 1) ^ 2) / 2) * užitné zatížení
M10 = -((q1s * List2.Cells(9 + i, 1) ^ 2) / 2) * zatížení sněhem
If List2.Cells(9 + i, 1) > a1_2q Then
M11 = -q1_2 / (((List2.Cells(9 + i, 1) - a1_2q) ^ 2) / 2) * spojitě zatížení 2.
End If
If List2.Cells(9 + i, 1) > d1_2 Then
M12 = q1_2 / (((List2.Cells(9 + i, 1) - (d1_2)) ^ 2) / 2) * spojitě zatížení 2. (systém stejný jako u spojitého zatížení 1.)
End If
If List2.Cells(9 + i, 1) > a1_w1 Then
M13 = -q1_w1 / (((List2.Cells(9 + i, 1) - a1_w1) ^ 2) / 2) * zatížení větví 1.
End If
If List2.Cells(9 + i, 1) > d1_w1 Then
M14 = q1_w1 / (((List2.Cells(9 + i, 1) - d1_w1) ^ 2) / 2) * zatížení větví 1. (systém stejný jako u spojitého zatížení 1.)
End If
If List2.Cells(9 + i, 1) > a1_w2 Then
M15 = -q1_w2 / (((List2.Cells(9 + i, 1) - a1_w2) ^ 2) / 2) * zatížení větví 2.
End If
If List2.Cells(9 + i, 1) > d1_w2 Then
\[
M_{16} = q_1 \cdot w_2 \cdot \left(\frac{\left(\text{List}2 \cdot \text{Cells}(9 + i, 1) - (d_{1,w2})^2 \right)}{2} \right) \]
\text{'zatížení větrem 2. (systém stejný jako u spojitého zatížení 1.)'}
\]
\text{End If}

\text{'Výsledný moment v místě (x) 1. nosníku.'}

\[
M = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9 + M_10 + M_{11} + M_{12} + M_{13} + M_14 + M_{15} + M_{16}
\]
\text{'V případě požadavku se vypíšou hodnoty momentů pro příslušnou pořadici x'}

If List2.Cells(1, 1) = -1 Then
List2.Cells(9 + i, 1 + n) = M
End If

\text{'Hledání maximálních a minimálních hodnot ohybových momentů na nosníku 1.'}

If M > Maximum_M Then
Maximum_M = M
Else
If M < Minimum_M Then
Minimum_M = M
End If
End If

If p > 4 Then \text{'V případě, že je požadováno pouze MSÚ vynechá se výpočet MSP.'}

\text{'Integrační konstanty C1 a C2, rozepsány pro lepší přehlednost.'}

\[
C_1 = \frac{\text{Raz} \cdot L_1 \cdot ^3}{6}
\]
\[
C_2 = -q_1 \cdot \frac{1}{(L_1 - a_1)^4} \cdot \frac{1}{6}
\]
\[
C_3 = q_1 \cdot \frac{1}{(L_1 - (d_1))^4} \cdot \frac{1}{6}
\]
\[
C_4 = \frac{1}{(F_1 \cdot (L_1 - a_1)^3)} \cdot \frac{1}{6}
\]
\[
C_5 = \frac{1}{(F_2 \cdot (L_1 - a_2)^3)} \cdot \frac{1}{6}
\]
\[
C_6 = \frac{1}{(F_3 \cdot (L_1 - a_3)^3)} \cdot \frac{1}{6}
\]
\[
C_7 = \frac{1}{(F_4 \cdot (L_1 - a_4)^3)} \cdot \frac{1}{6}
\]
\[
C_8 = \frac{1}{(F_5 \cdot (L_1 - a_5)^3)} \cdot \frac{1}{6}
\]
\[
C_9 = \frac{1}{(q_1 u \cdot L_1 \cdot ^4)} \cdot \frac{1}{24}
\]
\[
C_{10} = \frac{1}{(q_{1s} \cdot L_1 \cdot ^4)} \cdot \frac{1}{24}
\]
\[
C_{11} = -q_1 \cdot \frac{2}{(L_1 - a_{1,2q})^4} \cdot \frac{1}{24}
\]
\[
C_{12} = q_1 \cdot \frac{2}{(L_1 - d_{1,2})^4} \cdot \frac{1}{24}
\]
\[
C_{13} = q_1 \cdot \frac{w_1}{(L_1 - a_1, w_1)^4} \cdot \frac{1}{24}
\]
\[
C_{14} = q_1 \cdot \frac{w_1}{(L_1 - (d_{1,w1})^4} \cdot \frac{1}{24}
\]
\[
C_{15} = q_1 \cdot \frac{w_2}{(L_1 - a_1, w_2)^4} \cdot \frac{1}{24}
\]
\[
C_{16} = q_1 \cdot \frac{w_2}{(L_1 - d_{1,w2})^4} \cdot \frac{1}{24}
\]

\text{'Výsledná hodnota integrační konstanty.'}

\[
C = \frac{1}{\text{List2.Cells}(9 + i, 1)} \cdot \left(C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8 + C_9 + C_{10} + C_{11} + C_{12} + C_{13} + C_{14} + C_{15} + C_{16} \right) / L_1
\]
W1 = (-Raz * (List2.Cells(9+i, 1)^3) / 8) " reakce

If List2.Cells(9+i, 1) > a1_1q Then
W2 = q1_1 * (((List2.Cells(9+i, 1) - a1_1q)^4) / 24) " spojité zatížení 1.
End If

If List2.Cells(9+i, 1) > (d1_1) Then
W3 = -q1_1 * (((List2.Cells(9+i, 1) - d1_1)^4) / 24) " spojité zatížení 1.
End If

If List2.Cells(9+i, 1) > a1 Then
W4 = (F1 * (List2.Cells(9+i, 1) - a1)^3 / 6) " síla F1
End If

If List2.Cells(9+i, 1) > a2 Then
W5 = (F2 * (List2.Cells(9+i, 1) - a2)^3 / 6) " síla F2
End If

If List2.Cells(9+i, 1) > a3 Then
W6 = (F3 * (List2.Cells(9+i, 1) - a3)^3 / 6) " síla F3
End If

If List2.Cells(9+i, 1) > a4 Then
W7 = (F4 * (List2.Cells(9+i, 1) - a4)^3 / 6) " síla F4
End If

If List2.Cells(9+i, 1) > a5 Then
W8 = (F5 * (List2.Cells(9+i, 1) - a5)^3 / 6) " síla F5
End If

W9 = ((q1u * List2.Cells(9+i, 1)^4) / 24) " užitné zatížení

W10 = ((q1s * List2.Cells(9+i, 1)^4) / 24) " zatížení sněhem

If List2.Cells(9+i, 1) > a1_2q Then
W11 = q1_2 * (((List2.Cells(9+i, 1) - a1_2q)^4) / 24) " spojité zatížení 2.
End If

If List2.Cells(9+i, 1) > (d2_1) Then
W12 = -q1_2 * (((List2.Cells(9+i, 1) - d2_1)^4) / 24) " spojité zatížení 2. (systém stejný jako u spojitého zatížení 1.)
End If

If List2.Cells(9+i, 1) > a1_w1 Then
W13 = q1_w1 * (((List2.Cells(9+i, 1) - a1_w1)^4) / 24) " zatížení větrem 1.
End If

If List2.Cells(9+i, 1) > (d1_w1) Then
W14 = -q1_w1 * (((List2.Cells(9+i, 1) - d1_w1)^4) / 24) " zatížení větrem 1. (systém stejný jako u spojitého zatížení 1.)
End If

If List2.Cells(9+i, 1) > a1_w2 Then
W15 = q1_w2 * (((List2.Cells(9+i, 1) - a1_w2)^4) / 24) " zatížení větrem 2.
End If

If List2.Cells(9 + i, 1) > (d1_w2) Then

W16 = q1_w2 * (((List2.Cells(9 + i, 1) - d1_w2)^ 4) / 24) * zatížení větrem 2. (systém stejného jako u spojitěho zatížení 1.)

End If

'Výsledná hodnota průhybů v místě (x) 1. nosníku.

W = (W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 + W9 + W10 + W11 + W12 + W13 + W14 + W15 + W16 + C) / (E * l_y)

'V případě požadavku se vypíše hodnoty průhybů pro příslušnou pořadnici x.

If List2.Cells(1, 1) = -1 Then

List2.Cells(9 + (i), 1 + n) = W

End If

End If

'Hledání maximálních a minimálních hodnot průhybů na nosníku 1.

If W > Maximum_W Then

Maximum_W = W

Else

If W < Minimum_W Then

Minimum_W = W

End If

End If

'NOSNÍK 2.

If p < 5 Then 'V případě volby MSP se cyklus na MSÚ přeskakuje.

'VÝPOČET OHYBOVÝCH MOMENTŮ 2. NOSNÍK.

M_1_11 = Raz * (L1 + List2.Cells(9 + i, 10))

M_1_12 = (q1_w1 * b1_w1 * (bb1_w1 + List2.Cells(9 + i, 10)))

M_1_13 = -F1 * (b1 + List2.Cells(9 + i, 10))

M_1_14 = -F2 * (b2 + List2.Cells(9 + i, 10))

M_1_15 = -F3 * (b3 + List2.Cells(9 + i, 10))

M_1_16 = -F4 * (b4 + List2.Cells(9 + i, 10))

M_1_17 = -F5 * (b5 + List2.Cells(9 + i, 10))

M_1_18 = -(q1u * L1 * (L1 / 2 + List2.Cells(9 + i, 10)))

M_1_19 = -(q1s * L1 * (L1 / 2 + List2.Cells(9 + i, 10)))

M_1_20 = -(q1_w1 * b1_w1 * (bb1_w1 + List2.Cells(9 + i, 10)))

M_1_21 = -(q1_w2 * b1_w2 * (bb1_w2 + List2.Cells(9 + i, 10)))

M_1_22 = -(q1_w2 * b1_w2 * (bb1_w2 + List2.Cells(9 + i, 10)))

M1_2 = Rbz * List2.Cells(9 + i, 10)

If List2.Cells(9 + i, 10) > a2_1q Then
M2_2 = -q2_1 * (((List2.Cells(9 + i, 10) - a2_1q) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > d2_1 Then
M3_2 = q2_1 * (((List2.Cells(9 + i, 10) - (d2_1)) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > a1_2 Then
M4_2 = -F1_2 * (List2.Cells(9 + i, 10) - a1_2)

End If

If List2.Cells(9 + i, 10) > a2_2 Then
M5_2 = -F2_2 * (List2.Cells(9 + i, 10) - a2_2)

End If

If List2.Cells(9 + i, 10) > a3_2 Then
M6_2 = -F3_2 * (List2.Cells(9 + i, 10) - a3_2)

End If

If List2.Cells(9 + i, 10) > a4_2 Then
M7_2 = -F4_2 * (List2.Cells(9 + i, 10) - a4_2)

End If

If List2.Cells(9 + i, 10) > a5_2 Then
M8_2 = -F5_2 * (List2.Cells(9 + i, 10) - a5_2)

End If

M9_2 = -(q2u * List2.Cells(9 + i, 10) ^ 2) / 2)
M10_2 = -(q2s * List2.Cells(9 + i, 10) ^ 2) / 2)

If List2.Cells(9 + i, 10) >= a2_2q Then
M11_2 = -q2_2 * (((List2.Cells(9 + i, 10) - a2_2q) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > d2_2 Then
M12_2 = q2_2 * (((List2.Cells(9 + i, 10) - d2_2) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > a2_w1 Then
M13_2 = -q2_w1 * (((List2.Cells(9 + i, 10) - a2_w1) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > d2_w1 Then
M14_2 = q2_w1 * (((List2.Cells(9 + i, 10) - (d2_w1)) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > a2_w2 Then
M15_2 = -q2_w2 * (((List2.Cells(9 + i, 10) - a2_w2) ^ 2) / 2)

End If

If List2.Cells(9 + i, 10) > d2_w2 Then
M16_2 = q2_w2 * (((List2.Cells(9 + i, 10) - d2_w2) ^ 2) / 2)
Výsledný moment v místě \(x \) 2. nosníku.

\[
\begin{align*}
M_2 &= M_{1,11} + M_{1,12} + M_{1,13} + M_{1,14} + M_{1,15} + M_{1,16} + M_{1,17} + M_{1,18} + M_{1,19} + M_{1,20} + M_{1,21} + M_{1,22} + M_{1,2} + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9 + M_{10} + M_{11} + M_{12} + M_{13} + M_{14} + M_{15} + M_{16}
\end{align*}
\]

V případě požadavku se vypišou hodnoty momentů pro příslušnou pořadnici \(x \).

If List2.Cells(1, 1) = -1 Then
List2.Cells(S + (I), 10 + n) = M_2
End If

Hledání maximálních a minimálních hodnot ohybových momentů na nosníku 2.

If M_2 > Maximum_M2 Then
Maximum_M2 = M_2
Else
If M_2 < Minimum_M2 Then
Minimum_M2 = M_2
End If
End If
End If

If \(p > 4 \) Then 'V případě že je požadováno pouze MSÚ vynechá se výpočet MSP.

Integrační konstanty C1 a C2, rozepsány pro lepší přehlednost.

C_{1,2} = ((Raz * L1 * L2 * 2) / 2) + ((Raz * L2 * 3) / 6)
C_{1,q} = -((q_1 * b_1 * 1q * bb_1 * L2 * 2) / 2) - ((q_1 * b_1 * 1q * L2 * 3) / 6)
C_{1,F} = -(F_1 * b_1 * L2 * 2) / 2 - (F_1 * L2 * 3) / 6 - (F_2 * b_2 * L2 * 2) / 2 - (F_2 * L2 * 3) / 6 - (F_3 * b_3 * L2 * 2) / 2 - (F_3 * L2 * 3) / 6 - (F_4 * b_4 * L2 * 2) / 2 - (F_4 * L2 * 3) / 6
C_{2,2} = ((Rb_2 * (L2 * 24)) - (q_2,1 * ((L2 - a_2.1q) ^ 4) / 24)) - (q_2,1 * ((L2 - (d_2.1)) ^ 4) / 24)) - (q_2,2 * (((L2 - a_2.2q) ^ 4) / 24)) + (q_2,2 * (((L2 - (d_2.2)) ^ 4) / 24)) - (q_2,2 * ((L2 * 4) / 24)) - (q_2,2 * ((L2 - a_2.2q) ^ 4) / 24))
C_{3,2} = ((F_1,2 * (L2 - a_1.2) ^ 3) / 6)
C_{4,2} = -((F_2,2 * (L2 - a_2.2) ^ 3) / 6)
C_{5,2} = -((F_3,2 * (L2 - a_3.2) ^ 3) / 6)
C_{6,2} = -((F_4,2 * (L2 - a_4.2) ^ 3) / 6)
C_{7,2} = -((F_5,2 * (L2 - a_5.2) ^ 3) / 6)
C_{8,2} = -((q_1 * (L1 * 2 * L2) / 4) - (q_1 * L1 * L2 * 3) / 6)
C_{9,2} = -((q_1s * L1 * 2 * L2) / 4) - (q_1s * L1 * L2 * 3) / 6)
C_{1,2} = -(((q_1 * b_1 * 2q * b_1 * L2) ^ 2) / 2) - (q_1 * b_1 * 2q * L2 * 3) / 6)
C_{1,w} = -((q_1 * (L2 * b_1 * w_1 * b_1 * w_1 * L2) / 2) / 2) - (q_1 * b_1 * w_1 * L2 * 3) / 6)
C_{2,2b} = -((q_2 * w_1 * (((L2 - a_2.1w_1) ^ 4) / 24)) - (q_2 * (L2 - (d_2.1w_1)) ^ 4) / 24)) - (q_2 * w_2 * (((L2 - a_2.2w_2) ^ 4) / 24)) + (q_2 * w_2 * (((L2 - (d_2.2w_2)) ^ 4) / 24))
C_{1,w} = -(q_1 * w_1 * b_1 * w_1 * b_1 * w_1 * b_1 * w_1 * L2 * 3) / 6)

Výsledná hodnota integrační konstanty.

C_2 = ((List2.Cells(S + (I), 10) * (C_{1,2} + C_{1,q} + C_{1,F} + C_{2,2} + C_{3,2} + C_{4,2} + C_{5,2} + C_{6,2} + C_{7,2} + C_{8,2} + C_{9,2} + C_{1,q} + C_{1,w} + C_{2,2b} + C_{1,w})) / L2)
VÝPOČET PRŮHYBŮ 2. NOSNÍK.

W_1_11 = ((-Raz \cdot L1 \cdot (\text{List2.Cells}(9 + i, 10)^2)^2 / 2) - (Raz \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

W_1_12 = (q1_1 \cdot b1_1 \cdot \text{List2.Cells}(9 + i, 10)^2 / 2 + (q1_1 \cdot b1_1 \cdot \text{List2.Cells}(9 + i, 10)^3 / 6)

W_1_13 = (F1 \cdot b1 \cdot (\text{List2.Cells}(9 + i, 10)^2 / 2) + (F1 \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

W_1_14 = (F2 \cdot b2 \cdot (\text{List2.Cells}(9 + i, 10)^2 / 2) + (F2 \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

W_1_15 = (F3 \cdot b3 \cdot (\text{List2.Cells}(9 + i, 10)^2 / 2) + (F3 \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

W_1_16 = (F4 \cdot b4 \cdot (\text{List2.Cells}(9 + i, 10)^2 / 2) + (F4 \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

W_1_17 = (F5 \cdot b5 \cdot (\text{List2.Cells}(9 + i, 10)^2 / 2) + (F5 \cdot (\text{List2.Cells}(9 + i, 10)^3 / 6))

If List2.Cells(9 + i, 10) > a2_1q Then

W_2_2 = q2 \cdot ((\text{List2.Cells}(9 + i, 10) - a2_1q)^4 / 24)

End If

If List2.Cells(9 + i, 10) > d2_1 Then

W_3_2 = q2_1 \cdot (((\text{List2.Cells}(9 + i, 10) - d2_1)^4 / 24)

End If

If List2.Cells(9 + i, 10) > a1_2 Then

W_4_2 = (F1_2 \cdot (\text{List2.Cells}(9 + i, 10) - a1_2)^3 / 6)

End If

If List2.Cells(9 + i, 10) > a2_2 Then

W_5_2 = (F2_2 \cdot (\text{List2.Cells}(9 + i, 10) - a2_2)^3 / 6)

End If

If List2.Cells(9 + i, 10) > a3_2 Then

W_6_2 = (F3_2 \cdot (\text{List2.Cells}(9 + i, 10) - a3_2)^3 / 6)

End If

If List2.Cells(9 + i, 10) > a4_2 Then

W_7_2 = (F4_2 \cdot (\text{List2.Cells}(9 + i, 10) - a4_2)^3 / 6)

End If

If List2.Cells(9 + i, 10) > a5_2 Then

W_8_2 = (F5_2 \cdot (\text{List2.Cells}(9 + i, 10) - a5_2)^3 / 6)

End If

If List2.Cells(9 + i, 10) > a2_2 Then

W_9_2 = ((q2_2 \cdot \text{List2.Cells}(9 + i, 10)^4) / 24)

W_10_2 = ((q2_2 \cdot \text{List2.Cells}(9 + i, 10)^4) / 24)

End If
Výsledná hodnota průhybů v místě (x) 2. nosníku.

\[W_2 = (W_{1.11} + W_{1.12} + W_{1.13} + W_{1.14} + W_{1.15} + W_{1.16} + W_{1.17} + W_{1.1F1} + W_{1.1F2} + W_{1.F3} + W_{1.F4} + W_{1.F5} + W_{1.2} + W_{2.2} + W_{3.2} + W_{4.2} + W_{5.2} + W_{6.2} + W_{7.2} + W_{8.2} + W_{9.2} + W_{10.2} + W_{11.2} + W_{12.2} + W_{13.2} + W_{14.2} + W_{15.2} + W_{16.2} + C.2)/ (E * t_y) \]

V případě požadavku se vypíšou hodnoty průhybů pro příslušnou pořadíčnou x.

If List2.Cells(1, 1) = -1 Then

List2.Cells(9 + i, 10 + n) = W_2

End If

Hledání maximálních a minimálních hodnot průhybů na nosníku 2.

If W_2 > Maximum_W2 Then

Maximum_W2 = W_2

Else

If W_2 < Minimum_W2 Then

Minimum_W2 = W_2

End If

End If

End If
NOSNÍK 3.

If $p < 5$ Then 'V případě volby MSP se cyklus na MSÚ přeskakuje.

VÝPOČET OHYBOVÝCH MOMENTŮ 3. NOSNÍK.

M$_{1.21} = R_1 * (L_1 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.22} = -((q_1 * b_1_1q * (bb_1_1 + L_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{1.23} = -F_1 * (b_1 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.24} = -F_2 * (b_2 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.25} = -F_3 * (b_3 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.26} = -F_4 * (b_4 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.27} = -F_5 * (b_5 + L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{1.28} = -((q_1_2 * b_1_2q * (bb_1_2 + L_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{1.29} = -((q_1u * L_1 * (L_1 / 2 + L_2 + \text{List2.Cells}(9 + i, 19)))) - ((q_1s * L_1 * (L_1 / 2 + L_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{1.30} = -((q_1w_1 * b_1w_1 * (bb_1w_1 + L_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{1.31} = -((q_1w_2 * b_1w_2 * (bb_1w_2 + L_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{2.21} = Rbz * (L_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.22} = -((q_2 * b_2_1q * (bb_2_1 + \text{List2.Cells}(9 + i, 19))))$

M$_{2.23} = -F_1_2 * (b_1_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.24} = -F_2_2 * (b_2_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.25} = -F_3_2 * (b_3_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.26} = -F_4_2 * (b_4_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.27} = -F_5_2 * (b_5_2 + \text{List2.Cells}(9 + i, 19))$

M$_{2.28} = -((q_2_2 * b_2_2q * (bb_2_2 + \text{List2.Cells}(9 + i, 19))))$

M$_{2.29} = -((q_2u * L_2 * (L_2 / 2 + \text{List2.Cells}(9 + i, 19)))) - ((q_2s * L_2 * (L_2 / 2 + \text{List2.Cells}(9 + i, 19))))$

M$_{2.30} = -((q_2w_1 * b_2w_1 * (bb_2w_1 + \text{List2.Cells}(9 + i, 19))))$

M$_{2.31} = -((q_2w_2 * b_2w_2 * (bb_2w_2 + \text{List2.Cells}(9 + i, 19))))$

M$_3 = Rcz * \text{List2.Cells}(9 + i, 19)$

If List2.Cells(9 + i, 19) > a$_3_1q$ Then

M$_2_3 = -q_3_1 * (((\text{List2.Cells}(9 + i, 19) - a_3_1q)^2 / 2)$

End If

If List2.Cells(9 + i, 19) > d$_3_1$ Then

M$_3_3 = q_3_1 * (((\text{List2.Cells}(9 + i, 19) - d_3_1)^2 / 2)

End If

If List2.Cells(9 + i, 19) > a$_1_3$ Then

M$_4_3 = -F_1_3 * (\text{List2.Cells}(9 + i, 19) - a_1_3)$

End If

If List2.Cells(9 + i, 19) > a$_2_3$ Then

M$_5_3 = -F_2_3 * (\text{List2.Cells}(9 + i, 19) - a_2_3)$

End If
If List2.Cells(9 + i, 19) > a3_3 Then
M8_3 = -F3_3 * (List2.Cells(9 + i, 19) - a3_3)
End If
If List2.Cells(9 + i, 19) > a4_3 Then
M7_3 = -F4_3 * (List2.Cells(9 + i, 19) - a4_3)
End If
If List2.Cells(9 + i, 19) > a5_3 Then
M9_3 = -(q3u * List2.Cells(9 + i, 19) ^ 2) / 2
M10_3 = -(q3s * List2.Cells(9 + i, 19) ^ 2) / 2
If List2.Cells(9 + i, 19) > a3_2q Then
M11_3 = -q3_2 * (((List2.Cells(9 + i, 19) - a3_2q) ^ 2) / 2
End If
If List2.Cells(9 + i, 19) > d3_2 Then
M12_3 = q3_2 * (((List2.Cells(9 + i, 19) - d3_2) ^ 2) / 2
End If
If List2.Cells(9 + i, 19) > a3_w1 Then
M13_3 = -q3_w1 * (((List2.Cells(9 + i, 19) - a3_w1) ^ 2) / 2
End If
If List2.Cells(9 + i, 19) > d3_w1 Then
M14_3 = q3_w1 * (((List2.Cells(9 + i, 19) - d3_w1) ^ 2) / 2
End If
If List2.Cells(9 + i, 19) > a3_w2 Then
M15_3 = -q3_w2 * (((List2.Cells(9 + i, 19) - a3_w2) ^ 2) / 2
End If
If List2.Cells(9 + i, 19) > d3_w2 Then
M16_3 = q3_w2 * (((List2.Cells(9 + i, 19) - d3_w2) ^ 2) / 2
End If

* Výsledný moment v místě (x) 3. nosníku.

M_3 = M_1_21 + M_1_22 + M_1_23 + M_1_24 + M_1_25 + M_1_26 + M_1_27 + M_1_28 + M_1_29 + M_1_30 + M_1_31 + M_2_21 + M_2_22 + M_2_23 + M_2_24 + M_2_25 + M_2_26 + M_2_27 + M_2_28 + M_2_29 + M_2_30 + M_2_31 + M_3_21 + M_3_22 + M_3_23 + M_3_24 + M_3_25 + M_3_26 + M_3_27 + M_3_28 + M_3_29 + M_3_30 + M_3_31 + M_4_21 + M_4_22 + M_4_23 + M_4_24 + M_4_25 + M_4_26 + M_4_27 + M_4_28 + M_4_29 + M_4_30 + M_4_31 + M_5_21 + M_5_22 + M_5_23 + M_5_24 + M_5_25 + M_5_26 + M_5_27 + M_5_28 + M_5_29 + M_5_30 + M_5_31 + M_6_21 + M_6_22 + M_6_23 + M_6_24 + M_6_25 + M_6_26 + M_6_27 + M_6_28 + M_6_29 + M_6_30 + M_6_31 + M_10_3 + M11_3 + M12_3 + M13_3 + M14_3 + M15_3 + M16_3

* V případě požadavku se vypišu hodnoty momentů pro příslušnou pořadnici x.

If List2.Cells(1, 1) = -1 Then
List2.Cells(9 + i, 19 + n) = M_3
End If
Hledání maximálních a minimálních hodnot ohybových momentů na nosníku 3.

If \(M_3 > \text{Maximum}_M3 \) Then

Maximum\(_M3 = M_3 \)

Else

If \(M_3 < \text{Minimum}_M3 \) Then

Minimum\(_M3 = M_3 \)

End If

End If

End If

If \(p > 4 \) Then \(v případě že je požadováno pouze MSU vynechá se výpočet MSP. \)

Integrované konstanty C1 a C2, rozepsány pro lepší přehlednost.

\[
C_{1,3} = (\text{Raz} * (L1 + L2) * L3^2) / 2 + (\text{Raz} * L3^3) / 6 - (q1u * L1 * (L1 / 2 + L2) * L3^2) / 2 - ((q1u * L1 * L3^3) / 6) - ((q1s * L1 * (L1 / 2 + L2) * L3^3) / 6)
\]

\[
C_{1,q_1} = -(q1_1 * b_1 * b_1 * L3^2) / 2 - (q1_1 * b_1 * L3^3) / 6
\]

\[
C_{1,q_2} = -(q1_2 * b_1 * b_2 * L3^2) / 2 - (q1_2 * b_1 * L3^3) / 6
\]

\[
C_{1,F_3} = -(F1 * b_1 * L3^2) / 2 - ((F1 * L3^3) / 6) - ((F2 * b_2 + L2) * L3^2) / 2 - ((F2 * L3^3) / 6) - (F3 * b_3 + L3^2) * L3^2) / 2 - (F3 * L3^3) / 6)
\]

\[
C_{1,q_1,w_1} = -(q1_1 * b_1 * b_1 * b_1 * L3^2) / 2 - (q1_1 * b_1 * L3^3) / 6
\]

\[
C_{1,q_2,w_1} = -(q1_2 * b_1 * b_2 * b_2 * L3^2) / 2 - (q1_2 * b_2 * L3^3) / 6
\]

\[
C_{2,3} = (Rb * L3^2) / 2 + (Rb * L3^3) / 6 - (q2u * (L2 ^ 2) * (L3 ^ 2)) / 4 - ((q2s * (L2 ^ 2) * (L3 ^ 2)) / 4) - (q2s * L3^3) / 6
\]

\[
C_{2,q_1} = -(q2_1 * b_2 * b_1 * L3^2) / 2 - (q2_1 * b_2 * L3^3) / 6
\]

\[
C_{2,q_2} = -(q2_2 * b_2 * b_2 * L3^2) / 2 - (q2_2 * b_2 * L3^3) / 6
\]

\[
C_{2,F_3} = -(F1 * b_1 * b_1 * L3^2) / 2 - ((F1 * L3^3) / 6) - ((F2 * b_2 + L2) * L3^2) / 2 - ((F2 * L3^3) / 6) - (F3 * b_3 + L3^2) * L3^2) / 2 - (F3 * L3^3) / 6)
\]

\[
C_{2,q_1,w_1} = -(q2_1 * b_1 * b_1 * b_1 * L3^2) / 2 - (q2_1 * b_1 * L3^3) / 6
\]

\[
C_{2,q_2,w_1} = -(q2_2 * b_1 * b_2 * b_2 * L3^2) / 2 - (q2_2 * b_2 * L3^3) / 6
\]

\[
C_{3,1} = (Rcz * L3^3) / 6 - ((q3u * L3^4) / 24) - ((q3s * L3^4) / 24)
\]

\[
C_{3,q_1} = -(q3_1 * (L3 - a_3_1) ^ 4) / 24 + (q3_1 * (L3 - d_3_1) ^ 4) / 24
\]

\[
C_{3,q_2} = -(q3_2 * (L3 - a_3_2) ^ 4) / 24 + (q3_2 * (L3 - d_3_2) ^ 4) / 24
\]

\[
C_{3,3} = -(F1_3 * (L3 - a_1_3) ^ 3) / 6 - ((F2_3 * (L3 - a_3_2) ^ 3) / 6 - (F3_3 * (L3 - a_3_3) ^ 3) / 6) - ((F4_3 * (L3 - a_4_3) ^ 3) / 6) - ((F5_3 * (L3 - a_5_3) ^ 3) / 6)
\]

\[
C_{3,q_3} = -(q3_3 * (L3 - d_3_3) ^ 4) / 24 + (q3_3 * (L3 - d_3_4) ^ 4) / 24
\]

\[
C_{3,q_4} = -(q3_4 * (L3 - d_3_5) ^ 4) / 24 + (q3_4 * (L3 - d_3_6) ^ 4) / 24
\]

Výsledná hodnota integrované konstanty.

\[
\text{C}_3 = ((\text{List}_2\text{.Cells}(9 + 1, 19) * \text{C}_1 + \text{C}_2 + \text{C}_3) / 1 + \text{C}_1 \text{q}_2 + \text{C}_2 \text{F}_3 + \text{C}_3 + \text{C}_1 \text{q}_2 \text{w}_1 + \text{C}_1 \text{q}_3 \text{w}_1 + \text{C}_1 \text{q}_2 \text{w}_1 + \text{C}_1 \text{q}_3 \text{w}_1 + \text{C}_1 \text{q}_2 \text{w}_1 + \text{C}_1 \text{q}_3 \text{w}_1 + \text{C}_1 \text{q}_2 \text{w}_1) / \text{L}_3)
\]

VÝPOČET PRUHYBŮ 3. NOSNIK.

\[
W_{1, 11, 3} = -(\text{Raz} * (L1 + L2) * (\text{List}_2\text{.Cells}(9 + 1, 19) ^ 2) / 2) - (\text{Raz} * (\text{List}_2\text{.Cells}(9 + 1, 19) ^ 3) / 6)
\]

\[
W_{1, 12, 3} = (q1u * L1 * (\text{List}_2\text{.Cells}(9 + 1, 19) ^ 2 * ((L1 / 2 + L2)) / 2) + ((q1u * \text{List}_2\text{.Cells}(9 + 1, 19) ^ 3 * L1) / 6)
\]

\[
W_{1, 13, 3} = (q1s * L1 * (\text{List}_2\text{.Cells}(9 + 1, 19) ^ 2 * ((L1 / 2 + L2)) / 2) + ((q1s * \text{List}_2\text{.Cells}(9 + 1, 19) ^ 3 * L1) / 6)
\]
W_1_{14,3} = (q_1_{1} * b_1_{1}q * b_1{1,1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_1_{1} * b_1{1,1} * L_2 * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_1_{1} * b_1_{1}q * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{15,3} = (q_1_{2} * b_1_{2}q * b_1{2,1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_1_{2} * b_1{2,1} * L_2 * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_1_{2} * b_1_{2}q * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{16,3} = (q_{1w1} * b_1{w1,1} * b_1{w1,1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{1w1} * b_1{w1,1} * L_2 * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{1w1} * b_1{w1,1} * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{17,3} = (q_{1w2} * b_1{w2,1} * b_1{w2,1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{1w2} * b_1{w2,1} * L_2 * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{1w2} * b_1{w2,1} * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{1,F1} = (F_1 * b_1 * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_1 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{1,F2} = (F_2 * b_2 * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_2 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{1,F3} = (F_3 * b_3 * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_3 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{1,F4} = (F_4 * b_4 * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_4 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{1,F5} = (F_5 * b_5 * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_5 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{11} = (-Rby * L_2) * (List2.Cells(9 + i, 19) ^ 2) / 2) - (Rby * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{12} = ((q_{2u} * (List2.Cells(9 + i, 19) ^ 2) * L_2) / 4) + ((q_{2u} * (List2.Cells(9 + i, 19) ^ 3) * L_2) / 6)

W_2_{13} = ((q_{2s} * (List2.Cells(9 + i, 19) ^ 2) * L_2) / 4) + ((q_{2s} * (List2.Cells(9 + i, 19) ^ 3) * L_2) / 8)

W_2_{14} = (q_{2,w1} * b_{2,1}q * b_{2,1}q * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{2,1} * b_{2,1}q * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{15} = (q_{2,2} * b_{2,2}q * b_{2,2}q * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{2,2} * b_{2,2}q * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{16} = (q_{2,w1} * b_{2,w1} * b_{2,w1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{2,w1} * b_{2,w1} * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{17} = (q_{2,w2} * b_{2,w2} * b_{2,w2} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (q_{2,w2} * b_{2,w2} * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{1,F1} = (F_1 * b_{1,1} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_1 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{1,F2} = (F_2 * b_{2,2} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_2 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{1,F3} = (F_3 * b_{3,3} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_3 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{1,F4} = (F_4 * b_{4,4} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_4 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_2_{1,F5} = (F_5 * b_{5,5} * (List2.Cells(9 + i, 19) ^ 2) / 2) + (F_5 * (List2.Cells(9 + i, 19) ^ 3) / 6)

W_1_{3} = (-Rcz * (List2.Cells(9 + i, 19) ^ 3) / 6)

If List2.Cells(9 + i, 19) > a_3_{1}q Then

W_2_{3} = q_3_{1} * (List2.Cells(9 + i, 19) ^ 4) / 24

End If

If List2.Cells(9 + i, 19) > d_3_{1} Then

W_3_{3} = q_3_{1} * (List2.Cells(9 + i, 19) ^ 4) / 24

End If

If List2.Cells(9 + i, 19) > a_1_{3} Then

W_4_{3} = (F_1_{3} * (List2.Cells(9 + i, 19) ^ 3) / 6

End If

If List2.Cells(9 + i, 19) > a_2_{3} Then

W_5_{3} = (F_2_{3} * (List2.Cells(9 + i, 19) ^ 3) / 6

End If

If List2.Cells(9 + i, 19) > a_3_{3} Then

W_6_{3} = (F_3_{3} * (List2.Cells(9 + i, 19) ^ 3) / 6

End If
If List2.Cells(9 + i, 19) > a4_3 Then
 W7_3 = (F4_3 * (List2.Cells(9 + i, 19) - a4_3)^3 / 6) / (q3u * List2.Cells(9 + i, 19)^4) / 24
End If
If List2.Cells(9 + i, 19) > a5_3 Then
 W8_3 = (F5_3 * (List2.Cells(9 + i, 19) - a5_3)^3 / 6) / (q3s * List2.Cells(9 + i, 19)^4) / 24
End If
If List2.Cells(9 + i, 19) > a3_2q Then
 W11_3 = q3_2 * (((List2.Cells(9 + i, 19) - a3_2q)^4) / 24)
End If
If List2.Cells(9 + i, 19) > d3_2 Then
 W12_3 = -q3_2 * (((List2.Cells(9 + i, 19) - d3_2)^4) / 24)
End If
If List2.Cells(9 + i, 19) > a3_w1 Then
 W13_3 = q3_w1 * (((List2.Cells(9 + i, 19) - a3_w1)^4) / 24)
End If
If List2.Cells(9 + i, 19) > d3_w1 Then
 W14_3 = -q3_w1 * (((List2.Cells(9 + i, 19) - d3_w1)^4) / 24)
End If
If List2.Cells(9 + i, 19) > a3_w2 Then
 W15_3 = q3_w2 * (((List2.Cells(9 + i, 19) - a3_w2)^4) / 24)
End If
If List2.Cells(9 + i, 19) > d3_w2 Then
 W16_3 = -q3_w2 * (((List2.Cells(9 + i, 19) - d3_w2)^4) / 24)
End If

Výsledná hodnota průhybů v místě (x) 3. Nosníku.

\[
\begin{align*}
W_3^* &= (W_1_{-11_3} + W_1_{12_3} + W_1_{13_3} + W_1_{14_3} + W_1_{15_3} + W_1_{16_3} + W_1_{17_3} + W_1_{1_3} + W_1_{F2_3} + W_1_{F3_3} + W_1_{F4_3} + W_1_{F5_3} + W_2_{-11_3} + W_2_{12_3} + W_2_{13_3} + W_2_{14_3} + W_2_{15_3} + W_2_{16_3} + W_2_{17_3} + W_2_{F1} + W_2_{F2} + W_2_{F3} + W_2_{F4} + W_2_{F5} + W_3_{-3} + W_3_{3} + W_4_{3} + W_5_{3} + W_6_{3} + W_7_{3} + W_8_{3} + W_9_{3} + W_{10_3} + W_{11_3} + W_{12_3} + W_{13_3} + W_{14_3} + W_{15_3} + W_{16_3} + C_{3_3} \}/ (E^* ly)
\end{align*}
\]

V případě požadavku se vypíšou hodnoty průhybů pro příslušnou pořadíčí x.

If List2.Cells(1, 1) = -1 Then
 List2.Cells(9 + i, 19 + n) = W_3
End If

Hledání maximálních a minimálních hodnot průhybů na nosníku 3.

If W_3 > Maximum_W3 Then
 Maximum_W3 = W_3
Else
 If W_3 < Minimum_W3 Then
Výpočet ohybových momentů 5. nosník.

M1_5 = Rfz * List2.Cells(9 + i, 37)
If List2.Cells(9 + i, 37) > dd5_1 Then
 M2_5 = -q5_1 * (((List2.Cells(9 + i, 37) - dd5_1)^2) ^ 2) / 2
End If
If List2.Cells(9 + i, 37) > e5_1 Then
 M3_5 = q5_1 * (((List2.Cells(9 + i, 37) - e5_1)^2) ^ 2) / 2
End If
If List2.Cells(9 + i, 37) > b5_5 Then
 M4_5 = -F5_5 * (List2.Cells(9 + i, 37) - b5_5)
End If
If List2.Cells(9 + i, 37) > b4_5 Then
 M5_5 = -F4_5 * (List2.Cells(9 + i, 37) - b4_5)
End If
If List2.Cells(9 + i, 37) > b3_5 Then
 M6_5 = -F3_5 * (List2.Cells(9 + i, 37) - b3_5)
End If
If List2.Cells(9 + i, 37) > b2_5 Then
 M7_5 = -F2_5 * (List2.Cells(9 + i, 37) - b2_5)
End If
If List2.Cells(9 + i, 37) > b1_5 Then
 M8_5 = -F1_5 * (List2.Cells(9 + i, 37) - b1_5)
End If
M9_5 = -(q5u * List2.Cells(9 + i, 37)^2) / 2
M10_5 = -(q5u * List2.Cells(9 + i, 37)^2) / 2
If List2.Cells(9 + i, 37) > dd5_2 Then
 M11_5 = -q5_2 * (((List2.Cells(9 + i, 37) - dd5_2)^2) ^ 2) / 2
End If
If List2.Cells(9 + i, 37) > e5_2 Then
 M12_5 = q5_2 * (((List2.Cells(9 + i, 37) - e5_2)^2) ^ 2) / 2
End If
If List2.Cells(9 + i, 37) > ddw_1 Then
M13_5 = -q5_w1 * (((List2.Cells(9 + i, 37) - dd5_w1) ^ 2) / 2)
End If

If List2.Cells(9 + i, 37) > e5_w1 Then
M14_5 = q5_w1 * (((List2.Cells(9 + i, 37) - e5_w1) ^ 2) / 2)
End If

If List2.Cells(9 + i, 37) > dd5_w2 Then
M15_5 = -q5_w2 * (((List2.Cells(9 + i, 37) - dd5_w2) ^ 2) / 2)
End If

If List2.Cells(9 + i, 37) > e5_w2 Then
M16_5 = q5_w2 * (((List2.Cells(9 + i, 37) - e5_w2) ^ 2) / 2)
End If

' Výsledný moment v místě (x) 5. nosníku
M_5 = M_1_5 + M_2_5 + M_3_5 + M_4_5 + M_5_5 + M_6_5 + M_7_5 + M_8_5 + M_9_5 + M_10_5 + M_11_5 + M_12_5 + M_13_5 + M_14_5 + M_15_5 + M_16_5

' V případě požadavku se vypišou hodnoty momentů pro příslušnou pořadnici x
If List2.Cells(1, 1) = -1 Then
List2.Cells(9 + (i), 37 + n) = M_5
End If

' Hledání maximálních a minimálních hodnot ohybových momentů na nosníku 5.
If M_5 > Maximum_M5 Then
Maximum_M5 = M_5
Else
If M_5 < Minimum_M5 Then
Minimum_M5 = M_5
End If
End If

End If

If p > 4 Then 'V případě že je požadováno pouze MSÚ vynechte se výpočet MSP.

' Integrační konstanty C1 a C2, rozepsány pro lepší přehlednost.
C1_5P = (Rfz * L5 ^ 3) / 6
C2_5P = -q5_1 * (((L5 - dd5_1) ^ 4) / 24)
C3_5P = q5_1 * (((L5 - e5_1) ^ 4) / 24)
C4_5P = -((F5_5 * (L5 - b5_5) ^ 3) / 6))
C5_5P = -((F4_5 * (L5 - b4_5) ^ 3) / 6))
C6_5P = -((F3_5 * (L5 - b3_5) ^ 3) / 6))
C7_5P = -((F2_5 * (L5 - b2_5) ^ 3) / 6))
C8_5P = -((F1_5 * (L5 - b1_5) ^ 3) / 6))
C9_5P = -(q5u * L5 ^ 4) / 24)
C10_5P = -((q5s * L5 ^ 4) / 24)
C11_5P = -q5_2 * (((L5 - dd5_2) ^ 4) / 24)
C12_5P = q5_2 * (((L5 - e5_2) ^ 4) / 24)
C13_5P = -q5_w1 * (((L5 - dd5_w1) ^ 4) / 24)
C14_5P = q5_w1 * (((L5 - e5_w1) ^ 4) / 24)
C15_5P = -q5_w2 * (((L5 - dd5_w2) ^ 4) / 24)
C16_5P = q5_w2 * (((L5 - e5_w2) ^ 4) / 24)

* Výsledná hodnota integrální konstanty

C_5P = ((List2.Cells(9 + i, 37) * (C1_5P + C2_5P + C3_5P + C4_5P + C5_5P + C6_5P + C7_5P + C8_5P + C9_5P + C10_5P + C11_5P + C12_5P + C13_5P + C14_5P + C15_5P + C16_5P)) / L5)

* VÝPOČET PRŮHYBŮ S. NOSNÍK.

W1_5P = (-Rf * (List2.Cells(9 + i, 37) ^ 3) / 6)
If List2.Cells(9 + i, 37) > dd5_1 Then
W2_5P = q5_1 * (((List2.Cells(9 + i, 37) - dd5_1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > e5_1 Then
W3_5P = -q5_1 * (((List2.Cells(9 + i, 37) - e5_1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > b5_5 Then
W4_5P = (F5_5 * (List2.Cells(9 + i, 37) - b5_5) ^ 3 / 6)
End If
If List2.Cells(9 + i, 37) > b4_5 Then
W5_5P = (F4_5 * (List2.Cells(9 + i, 37) - b4_5) ^ 3 / 6)
End If
If List2.Cells(9 + i, 37) > b3_5 Then
W6_5P = (F3_5 * (List2.Cells(9 + i, 37) - b3_5) ^ 3 / 6)
End If
If List2.Cells(9 + i, 37) > b2_5 Then
W7_5P = (F2_5 * (List2.Cells(9 + i, 37) - b2_5) ^ 3 / 6)
End If
If List2.Cells(9 + i, 37) > b1_5 Then
W8_5P = (F1_5 * (List2.Cells(9 + i, 37) - b1_5) ^ 3 / 6)
End If
If List2.Cells(9 + i, 37) > dd5_2 Then
W9_5P = ((q5u * List2.Cells(9 + i, 37) ^ 4) / 24)
W10_5P = ((q5u * List2.Cells(9 + i, 37) ^ 4) / 24)
If List2.Cells(9 + i, 37) > dd5_2 Then
W11_5P = q5_2 * (((List2.Cells(9 + i, 37) - dd5_2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > e5_2 Then
W12_5P = -q5_2 * (((List2.Cells(9 + i, 37) - e5_2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > dd5_w1 Then
W13_5P = q5_w1 * (((List2.Cells(9 + i, 37) - dd5_w1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > e5_w1 Then
W14_5P = -q5_w1 * (((List2.Cells(9 + i, 37) - e5_w1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > dd5_w2 Then
W15_5P = q5_w2 * (((List2.Cells(9 + i, 37) - dd5_w2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 37) > e5_w2 Then
W16_5P = -q5_w2 * (((List2.Cells(9 + i, 37) - e5_w2) ^ 4) / 24)
End If

' Výsledná hodnota průhýbů v místě (x) 5. nosníku
W_5 = (W1_5P * W2_5P * W3_5P * W4_5P * W5_5P * W6_5P * W7_5P * W8_5P * W9_5P * W10_5P * W11_5P * W12_5P * W13_5P * W14_5P * W15_5P * W16_5P * C_5P) / (E * I_y)

' V případě požadavku se vyplňou hodnoty průhýbů pro příslušnou pořadnici x
If List2.Cells(1, 1) = -1 Then
List2.Cells(9 + (i), 37 + n) = W_5
End If

'Hledání maximálních a minimálních hodnot průhýbů na nosníku 5.
If W_5 > Maximum_W5 Then
Maximum_W5 = W_5
Else
If W_5 < Minimum_W5 Then
Minimum_W5 = W_5
End If
End If
End If

' NOSNÍK 4.
If p < 5 Then ' V případě volby MSP se cyklus na MSÚ přesaká

' VÝPOČET OHYBOVÝCH MOMENTŮ 4. NOSNÍK.
M_5_11 = RFz * (L5 + List2.Cells(9 + i, 28))
M_5_12 = (q5_1 * b5_1q * (ee5_1 + List2.Cells(9 + i, 28))
M_5_13 = -F5_5 * (e5_5 + List2.Cells(9 + i, 28))
M_5_14 = -F4_5 * (e4_5 + List2.Cells(9 + i, 28))
M_5_15 = -F3_5 * (e3_5 + List2.Cells(9 + i, 28))
M_5_16 = -F2_5 * (e2_5 + List2.Cells(9 + i, 28))
M_5_17 = -F1_5 * (e1_5 + List2.Cells(9 + i, 28))
M_5_18 = -(q5u * L5 * (L5 / 2 + List2.Cells(9 + i, 28)))
\[M_{5.19} = -(q_{5s} \cdot L5 \cdot (L5 / 2 + \text{List2.Cells}(9 + i, 28))) \]
\[M_{5.20} = -(a_{5} \cdot b_{5} \cdot q_{2q} \cdot (aa_{5} \cdot 2 + \text{List2.Cells}(9 + i, 28))) \]
\[M_{5.21} = -(q_{5_w1} \cdot b_{5_w1} \cdot (aa_{5_w1} + \text{List2.Cells}(9 + i, 28))) \]
\[M_{5.22} = -(q_{5w2} \cdot b_{5w2} \cdot (aa_{5w2} + \text{List2.Cells}(9 + i, 28))) \]

\[M_{1.4} = Rez \cdot \text{List2.Cells}(9 + i, 28) \]
If \text{List2.Cells}(9 + i, 28) > dd_{4.1} Then
\[M_{2.4} = q_{4_1} \cdot (((\text{List2.Cells}(9 + i, 28) - dd_{4.1})^2)^2 / 2) \]
End If
If \text{List2.Cells}(9 + i, 28) > e_{4.1} Then
\[M_{3.4} = q_{4_1} \cdot (((\text{List2.Cells}(9 + i, 28) - (e_{4.1}))^2)^2 / 2) \]
End If
If \text{List2.Cells}(9 + i, 28) > b_{5.4} Then
\[M_{4.4} = -F_{5_4} \cdot (\text{List2.Cells}(9 + i, 28) - b_{5.4}) \]
End If
If \text{List2.Cells}(9 + i, 28) > b_{4.4} Then
\[M_{5.4} = -F_{4_4} \cdot (\text{List2.Cells}(9 + i, 28) - b_{4.4}) \]
End If
If \text{List2.Cells}(9 + i, 28) > b_{3.4} Then
\[M_{6.4} = -F_{3_4} \cdot (\text{List2.Cells}(9 + i, 28) - b_{3.4}) \]
End If
If \text{List2.Cells}(9 + i, 28) > b_{2.4} Then
\[M_{7.4} = -F_{2_4} \cdot (\text{List2.Cells}(9 + i, 28) - b_{2.4}) \]
End If
If \text{List2.Cells}(9 + i, 28) > b_{1.4} Then
\[M_{8.4} = -F_{1_4} \cdot (\text{List2.Cells}(9 + i, 28) - b_{1.4}) \]
End If
\[M_{9.4} = -(q_{4u} \cdot \text{List2.Cells}(9 + i, 28)^2 / 2) \]
\[M_{10.4} = -(q_{4s} \cdot \text{List2.Cells}(9 + i, 28)^2 / 2) \]
If \text{List2.Cells}(9 + i, 28) > dd_{4.2} Then
\[M_{11.4} = -q_{4_2} \cdot (((\text{List2.Cells}(9 + i, 28) - dd_{4.2})^2)^2 / 2) \]
End If
If \text{List2.Cells}(9 + i, 28) > e_{4.2} Then
\[M_{12.4} = q_{4_2} \cdot (((\text{List2.Cells}(9 + i, 28) - (e_{4.2}))^2)^2 / 2) \]
End If
If \text{List2.Cells}(9 + i, 28) > dd_{w1} Then
\[M_{13.4} = -q_{4_w1} \cdot (((\text{List2.Cells}(9 + i, 28) - dd_{w1})^2)^2 / 2) \]
End If
If \text{List2.Cells}(9 + i, 28) > e_{4_w1} Then
M14_4 = q4_w1 * (((List2.Cells(9 + i, 28) - (e4_w1)) ^ 2) / 2)
End If
If List2.Cells(9 + i, 28) > dd4_w2 Then
M15_4 = q4_w2 * (((List2.Cells(9 + i, 28) - dd4_w2) ^ 2) / 2)
End If
If List2.Cells(9 + i, 28) > e4_w2 Then
M16_4 = q4_w2 * (((List2.Cells(9 + i, 28) - (e4_w2)) ^ 2) / 2)
End If

* Výsledný moment v místě (x) 4. Nosníku.

M_4 = M_5_11 + M_5_12 + M_5_13 + M_5_14 + M_5_15 + M_5_16 + M_5_17 + M_5_18 + M_5_19 + M_5_20 + M_5_21 + M_5_22 + M1_4 + M2_4 + M3_4 + M4_4 + M5_4 + M6_4 + M8_4 + M9_4 + M10_4 + M11_4 + M12_4 + M13_4 + M14_4 + M15_4 + M16_4

* V případě požadavku se vyplňou hodnoty momentů pro příslušnou pořadnici x
If List2.Cells(1, 1) = -1 Then
List2.Cells(9 + i, 28 + n) = M_4
End If

* Hledání maximálních a minimálních hodnot ohybových momentů na nosníku 4.
If M_4 > Maximum_M4 Then
Maximum_M4 = M_4
Else
If M_4 < Minimum_M4 Then
Minimum_M4 = M_4
End If
End If

If p > 4 Then * V případě že je požadováno pouze MSÜ vynechá se výpočet MSP.

* Integrální konstanty C1 a C2, rozepsány pro lepší přehlednost.

C5_4 = ((RFz * L5 * L4 ^ 2) / 2) + ((RFz * L5 * L4 ^ 3) / 6) - ((q5u * L5 * L4 ^ 2) / 2) + ((q5u * L5 * L4 ^ 3) / 6) - ((q5s * L5 * L4 ^ 2) / 4) - ((q5s * L5 * L4 ^ 3) / 6)
C5_4q2 = ((q5_1 * b5_1q * b5_1q * L4 ^ 2) / 2) - ((q5_1 * b5_1q * L4 ^ 3) / 6)
C5_4q2 = ((q5_2 * b5_2q * a5_2 * L4 ^ 2) / 2) - ((q5_2 * b5_2q * L4 ^ 3) / 6)
C4_F = ((F5_5 * a5_5 * L4 ^ 2) / 2) - ((F5_5 * L4 ^ 3) / 6) - ((F4_5 * a4_5 * L4 ^ 2) / 2) - ((F4_5 * L4 ^ 3) / 6) - ((F3_5 * a3_5 * L4 ^ 2) / 2) - ((F3_5 * L4 ^ 3) / 6)
C4_F = ((F2_5 * a2_5 * L4 ^ 2) / 2) - ((F1_5 * a1_5 * L4 ^ 2) / 2) - ((F1_5 * L4 ^ 3) / 6)
C2_5 = ((Rez * (L4 ^ 3) / 6) - ((q4u * (L4 ^ 4) / 24) - ((q4s * (L4 ^ 4) / 24)
C2_5q = ((q4_1 * ((L4 - dd4_1) ^ 4) / 24)) + ((q4_1 * ((L4 - e4_1) ^ 4) / 24))
C2_5q2 = ((q4_2 * ((L4 - dd4_2) ^ 4) / 24)) + ((q4_2 * ((L4 - e4_2) ^ 4) / 24))
C3_5 = ((F5_4 * (L4 - b5_4) ^ 3) / 6)
C4_5 = (F4_4 * (L4 - b4_4) ^ 3) / 6
C5_5 = (F3_4 * (L4 - b3_4) ^ 3) / 6
C6_5 = (F2_4 * (L4 - b2_4) ^ 3) / 6
C7_5 = (F1_4 * (L4 - b1_4) ^ 3) / 6
\[
C_{5\text{w4}} = -((q_{5\text{w1}} \ast b_{5\text{w1}} \ast a_{5\text{w1}} \ast L_{4} \ast 2) / 2) - ((q_{5\text{w1}} \ast b_{5\text{w1}} \ast L_{4} \ast 3) / 6)
\]
\[
C_{5\text{w2}} = -((q_{5\text{w2}} \ast b_{5\text{w2}} \ast a_{5\text{w2}} \ast L_{4} \ast 2) / 2) - ((q_{5\text{w2}} \ast b_{5\text{w2}} \ast L_{4} \ast 3) / 6)
\]
\[
C_{5\text{w5}} = -(q_{4\text{w1}} \ast (((L_{4} - dd_{4\text{w1}}) \ast 4) / 24)) + (q_{4\text{w1}} \ast (((L_{4} - (e_{4\text{w1}}) \ast 4) / 24))
\]
\[
C_{5\text{w25}} = -(q_{4\text{w2}} \ast (((L_{4} - dd_{4\text{w2}}) \ast 4) / 24)) + (q_{4\text{w2}} \ast (((L_{4} - (e_{4\text{w2}}) \ast 4) / 24))
\]

'Výsledná hodnota integrační konstanty'

\[
C_5 = ((\text{List2.Cells}(9 + i, 28) \ast (C_{5\text{4}} + C_{5\text{4q}} + C_{5\text{4q2}} + C_{4\text{F}} + C_{2\text{5}} + C_{2\text{5q}} + C_{2\text{5q2}} + C_{3\text{5}} + C_{5\text{5}} + C_{6\text{5}} + C_{7\text{5}} + C_{5\text{w4}} + C_{5\text{w24}} + C_{5\text{w5}} + C_{5\text{w25})) / (L_{4}))
\]

'VÝPOČET PRŮHYBU 4. NOSNÍK.'

\[
W_{5\text{w11}} = -(Rf_{z} \ast L_{5} \ast ((\text{List2.Cells}(9 + i, 28) \ast 2) / 2)) - (Rf_{z} \ast (\text{List2.Cells}(9 + i, 28) \ast 3) / 6))
\]
\[
W_{5\text{w12}} = (q_{5\text{w1}} \ast b_{5\text{w1}} \ast a_{5\text{w1}} \ast (\text{List2.Cells}(9 + i, 28) \ast 2) / 2) + (q_{5\text{w1}} \ast b_{5\text{w1}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{w55}} = (F_{5\text{w5}} \ast a_{5\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (F_{5\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{wF4}} = (F_{4\text{w5}} \ast a_{4\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (F_{4\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{wF3}} = (F_{3\text{w5}} \ast a_{3\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (F_{3\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{wF2}} = (F_{2\text{w5}} \ast a_{2\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (F_{2\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{wF1}} = (F_{1\text{w5}} \ast a_{1\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (F_{1\text{w5}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6))
\]
\[
W_{5\text{w13}} = (a_{5\text{u}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) \ast (L_{5} \ast 2) / 4) + (a_{5\text{u}} \ast (\text{List2.Cells}(9 + i, 28) ^ 5) \ast (L_{5} \ast 3) / 6))
\]
\[
W_{5\text{w14}} = (q_{5\text{u}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) \ast (L_{5} \ast 2) / 4) + (q_{5\text{u}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) \ast (L_{5} \ast 5) / 6))
\]
\[
W_{5\text{w15}} = (q_{5\text{w2}} \ast b_{5\text{w2}} \ast a_{5\text{w2}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (q_{5\text{w2}} \ast b_{5\text{w2}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6)
\]
\[
W_{5\text{w16}} = (q_{5\text{w1}} \ast b_{5\text{w1}} \ast a_{5\text{w1}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (q_{5\text{w1}} \ast b_{5\text{w1}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6)
\]
\[
W_{5\text{w17}} = (q_{5\text{w2}} \ast b_{5\text{w2}} \ast a_{5\text{w2}} \ast (\text{List2.Cells}(9 + i, 28) ^ 2) / 2) + (q_{5\text{w2}} \ast b_{5\text{w2}} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6)
\]

\[
W_{1\text{L4}} = -(R_{z} \ast (\text{List2.Cells}(9 + i, 28) ^ 3) / 6)
\]

If List2.Cells(9 + i, 28) > dd_{4\text{w1}} Then

W_{2\text{w4}} = (q_{4\text{w1}} \ast (((\text{List2.Cells}(9 + i, 28) - dd_{4\text{w1}}) \ast 4) / 24)

End If

If List2.Cells(9 + i, 28) > e_{4\text{w1}} Then

W_{3\text{w4}} = -(q_{4\text{w1}} \ast (((\text{List2.Cells}(9 + i, 28) - e_{4\text{w1}}) \ast 4) / 24)

End If

If List2.Cells(9 + i, 28) > b_{5\text{w4}} Then

W_{4\text{w4}} = (F_{5\text{w4}} \ast (\text{List2.Cells}(9 + i, 28) - b_{5\text{w4}}) ^ 3) / 6)

End If

If List2.Cells(9 + i, 28) > b_{5\text{w4}} Then

W_{5\text{w4}} = (F_{4\text{w4}} \ast (\text{List2.Cells}(9 + i, 28) - b_{5\text{w4}}) ^ 3) / 6)

End If

If List2.Cells(9 + i, 28) > b_{3\text{w4}} Then

W_{6\text{w4}} = (F_{3\text{w4}} \ast (\text{List2.Cells}(9 + i, 28) - b_{3\text{w4}}) ^ 3) / 6)

End If

If List2.Cells(9 + i, 28) > b_{2\text{w4}} Then

W_{7\text{w4}} = (F_{2\text{w4}} \ast (\text{List2.Cells}(9 + i, 28) - b_{2\text{w4}}) ^ 3) / 6)

End If
End If
If List2.Cells(9 + i, 28) > b1_4 Then
 W6_4 = (F1_4 * (List2.Cells(9 + i, 28) - b1_4) ^ 3 / 5)
End If
If W9_4 = ((q4u * List2.Cells(9 + i, 28) ^ 4) / 24)
W10_4 = (((q4s * List2.Cells(9 + i, 28) ^ 4) / 24)
If List2.Cells(9 + i, 28) > dd4_2 Then
 W11_4 = q4_2 * (((List2.Cells(9 + i, 28) - dd4_2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 28) > e4_2 Then
 W12_4 = -q4_2 * (((List2.Cells(9 + i, 28) - e4_2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 28) > dd4_w1 Then
 W13_4 = q4_w1 * (((List2.Cells(9 + i, 28) - dd4_w1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 28) > e4_w1 Then
 W14_4 = -q4_w1 * (((List2.Cells(9 + i, 28) - e4_w1) ^ 4) / 24)
End If
If List2.Cells(9 + i, 28) > dd4_w2 Then
 W15_4 = q4_w2 * (((List2.Cells(9 + i, 28) - dd4_w2) ^ 4) / 24)
End If
If List2.Cells(9 + i, 28) > e4_w2 Then
 W16_4 = -q4_w2 * (((List2.Cells(9 + i, 28) - e4_w2) ^ 4) / 24)
End If

* Výsledná hodnota průhybů v místě (x) 4. Nosníku.
W_4 = (W_5_11 + W_5_12 + W_5_13 + W_5_14 + W_5_15 + W_5_16 + W_5_17 + W_5_F5_5 + W_5_F4_5 + W_5_F3_5 + W_5_F2_5 +
W_5_F1_5 + W1_4 + W2_4 + W3_4 + W4_4 + W5_4 + W6_4 + W7_4 + W8_4 + W9_4 + W10_4 + W11_4 + W12_4 + W13_4 + W14_4 + W15_4 +
W16_4 + C_5) / (E * l)

* V případě požadavku se vypíšou hodnoty průhybů pro příslušnou pořadnici x.
If List2.Cells(1, 1) = -1 Then
 List2.Cells(9 + i), 28 + n) = W_4
End If

* Hledání maximálních a minimálních hodnot průhybů na nosníku 4.
If W_4 > Maximum_W4 Then
 Maximum_W4 = W_4
Else
 If W_4 < Minimum_W4 Then
 Minimum_W4 = W_4
End If
'Výpis maximálních a minimálních momentů a průhybů.

End If

back:

Next p

'Procedura která přeuspořádá hodnoty momentů, tak aby bylo možno vykreslit hodnoty na celém spojitém nosníku najednou.

Call VYPSANI

End Sub
Zdrojový kód pro načtení databáze s profily a zobrazení grafických podkladů v okně [11] [12].

Private Sub ComboBox46_Change()
 Dim cela As String
 Dim Noa As Integer

 * Procedura na zjištění počtu prvku a vypsání řádku, na kterém se aktuální prvek nachází.

 UserForm1.ComboBox46.RowSource = "POMOCNÁ TABULKA" & Noa + 5
 cela = ComboBox46.Value

 If List3.Range("P1").Value > 13 Then
 If List3.Range("P1").Value < 19 Then
 Sheets("GRAFICKE PODKLADY 18").Select
 Image3.Visible = True
 Application.ScreenUpdating = True
 Worksheets("GRAFICKÉ PODKLADY 18").Range("A1:J19").Select
 Hi = Selection.Height
 Wi = Selection.Width
 Selection.CopyPicture Appearance:=xlScreen, Format:=xlBitmap
 Set ch = Worksheets("GRAFICKÉ PODKLADY 18").ChartObjects.Add(0, 0, Wi, Hi)
 Dateiname = "18.gif"
 ch.Chart.Paste
 ch.Chart.Export Filename:=Dateiname, FilterName:="GIF"
 ActiveSheet.ChartObjects.Delete
 Image3.Picture = LoadPicture(Dateiname)
 End If
 End If

End Sub

Zdrojový kód pro tvorbu chybových hlášek.

* Ukázka práce s MessageBox

Public Sub CommandButton17_Click()
If List3.Range("AC78") > 0 Then
 i = MsgBox("POZOR! délka některého pole je nulová ", vbOKOnly + vbCritical, " KONTROLA VSTUPNÍCH DAT ")
End If
End Sub
V programu jsou umístěny tyto chybové hlášení:

V případě, že uživatel nezadal délku z některého poli zobrazí se toto upozornění.

V případě špatně zadaného zatížení na nosník, například parametr \(a \) a \(b \) neodpovídá délce nosníku, zobrazí se toto hlášení. Ukáže se počet konfliktů na každém nosníku. Uživatel se musí vrátit na list kde se nachází konflikt a opravit chybu. Chyby jsou zvýrazněny červeně.

Jakmile nedochází k žádnému konfliktu je zobrazena tato hláška.

Zdrojový kód pro tvorbu grafických výstupů.

Private Sub CommandButton16_Click()

 Image2.Visible = True

 If List3.Cells(1, 36) = 6 Then

 Sheets("N5").Select

 Set Graf = Sheets("N5").ChartObjects("MOMENTY5").Chart

 Dateiname = "graf1.gif"

 Graf.Export Filename:=Dateiname, FilterName:="GIF"

 Image2.Picture = LoadPicture(Dateiname)

 End If
Zdrojový kód pro TextBox[12]

Sub ZapisJenCislo(ByVal KeyAscii As MSForms.ReturnInteger, Ct As Control, Optional desCis As Boolean = True)

' Povolíte zapsat do textboxu jen řádné číslo

' Oddělovač desetinných míst lze vkládat pomocí tečky i čárky - automaticky se změní podle národního nastavení

' Autor: Radek Jureček

' Pokud není stisknuta klávesa 0-9, tečka, nebo čárka - nevkládat
If Not ((KeyAscii >= Asc(“0”) And KeyAscii <= Asc(“9”)) _
 Or KeyAscii = Asc(“.”) _
 Or KeyAscii = Asc(“,”) _
 Or KeyAscii = Asc(Application.International(xlDecimalSeparator))) Then

 KeyAscii = 0
End If
If desCis Then

' Změnit tečku nebo čárku podle národního nastavení a oddělovač desetinných míst
If KeyAscii = Asc(“.”) Then KeyAscii = Asc(Application.International(xlDecimalSeparator))
If KeyAscii = Asc(“,”) Then KeyAscii = Asc(Application.International(xlDecimalSeparator))

' Kontrola na zadaní dvou oddělovačů des. míst
If KeyAscii = Asc(Application.International(xlDecimalSeparator)) Then

 If Len(Ct.Text) - Len(Replace(Ct.Text, Application.International(xlDecimalSeparator), “”)) > 0 Then KeyAscii = 0
End If
Else

' Pokud není povoleno vkládání desetinných čísel - nevkládat
If KeyAscii = Asc(“.”) Then KeyAscii = 0
If KeyAscii = Asc(“,”) Then KeyAscii = 0
End If
End Sub

' V textboxu potom umístěno:
Private Sub TextBox1_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

' Umožni zadání čísla do TextBoxu s názvem txt1 pomocí klávesnice
Call ZapisJenCislo(KeyAscii, TextBox1)

End Sub
Ukázka plnění ComboBoxu pro výběr MSP.
Private Sub ComboBox2_Change()
Select Case ComboBox2.Value
Case "L/300"
 Worksheets("POMOCNÁ TABULKA").Range("AS1").ClearContents
 List3.Range("AS1").Value = 300
Case "L/250"
 Worksheets("POMOCNÁ TABULKA").Range("AS1").ClearContents
 List3.Range("AS1").Value = 250
Case "L/200"
 Worksheets("POMOCNÁ TABULKA").Range("AS1").ClearContents
 List3.Range("AS1").Value = 200
Case "L/150"
 Worksheets("POMOCNÁ TABULKA").Range("AS1").ClearContents
 List3.Range("AS1").Value = 150
End Select
End Sub

Zobrazení nápovědy nad objektem po přejetí myší.
Private Sub TextBox1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 TextBox1.SetToolTipText = "Zde zadejte rozměr prvního pole v [m]"
 TextBox1.MousePointer = fmMousePointerHelp
End Sub
Využitelnost profilu a jeho uložení do textu v grafickém prostředí.

Dim VYUZITELNOST_KL As Double
Dim VYUZITELNOST_ZA As Double
Dim VYUZITELNOST_PRUHYBY As Double
VYUZITELNOST_KL = List2.Cells(992, 12)
VYUZITELNOST_ZA = List2.Cells(995, 12)
VYUZITELNOST_PRUHYBY = List2.Cells(1062, 2)

If Worksheets("ZADÁVACÍ LIST").Range("E26") = 1 Then
 Label174.Visible = True
 Label175.Visible = True
Else
 Label174.Caption = VYUZITELNOST_KL
End If

If Worksheets("POMOCNÁ TABULKA").Range("AV1") = 1 Then
 Label174.Caption = VYUZITELNOST_ZA
Else
 Label174.Caption = VYUZITELNOST_ZA
End If

If Worksheets("ZADÁVACÍ LIST").Range("E27") = 1 Then
 Label176.Visible = True
 Label177.Visible = True
 Label176.Caption = VYUZITELNOST_PRUHYBY
End If
PŘÍLOHA B

FOTOGRAFIE Z EXKURZE

autor fotografii: doc. Ing. Martin Krejsa Ph.D.
Obrázek 1: Svítek určený pro výrobu tenkostěnných profilů.

Obrázek 2: plechy jsou už ve finálním barevném provedení.
Obrázek 3: vstup do výrobní haly.

Obrázek 4: před tvarováním plech projde lázní.
Obrázek 5: tvarování začíná od středu plechu.

Obrázek 6: tvarování stojiny trapézového plechu.
Obrázek 7: tvarování pokračuje ze středu do krajů plechu.

Obrázek 8: závěr tvarování.
Obrázek 9: ustríhnutí plechu.

Obrázek 10: výsledné plechy.
Obrázek 11: hotové zabalěné plechy připraveny na prodej.
Uživatelský manuál

k programu pro návrh stříšní konstrukce a pláště stavebního objektu
z těnkostenných trapézových prvků firmy Satjam.
Základní informace:

V databází materiálů se nachází tyto řady profilů [1]:

SAT18/138
SAT18L/138
SAT35/207
SAT35L/207
SAT40/182
SAT50/260
SAT75
T160/260

(pozn. databáze se bude rozšiřovat o stěnové profily SATCASS a další profily SAT)

Manuál k programu SATJAM 2012 v1.0

! Důležité upozornění: Pro správný chod programu musíte mít povoleny v Microsoft Office Excel MAKRA (povolují se při spuštění souboru)!

Obsah
Kontakt: ... 1
Základní informace: ... 2
Popis jednotlivých částí: .. 3
Práce s programem: ... 11
Závěr: ... 14
Literatura: .. 14

Kontakt:
Vedoucí: doc. Ing. Martin Krejša Ph.D.

Autor: Jakub Flodr

Email: flo052@vsb.cz

VŠB-Technická univerzita Ostrava

Fakulta stavební – Katedra mechaniky

Ludvíka Poděště 1875, 708 33 Ostrava Poruba

Veškeré náměty, připomínky a chyby programu sdělte na e-mailovou adresu.
Typy konstrukcí:
- KONZOLA
- PROSTÝ NOSNÍK
- SPOJITÝ NOSNÍK O 2 POLÍCH
- SPOJITÝ NOSNÍK O 3 POLÍCH
- SPOJITÝ NOSNÍK O 4 POLÍCH
- SPOJITÝ NOSNÍK O 5 POLÍCH

2. Šířka podpor.
Jedná se o šířku vnitřní podpory (v případě spojitých nosníků) a vnější v případě prostého nosníku. Slouží k redukci momentů nad podporami.

Rozměry polí a vnitřních podpor zadávejte v metrech.

3. Výběr prvku a jeho orientace, kritérium mezinního stavu použitelnosti a volba posouzení.
Materiál: vyberte z nabídky profilů, nabídka odpovídá výše zmíněným profilům. Každá řada profilů má několik různých tloušťek.
Orientace: vyberte orientaci prvku, každý prvek má negativní a pozitivní orientaci. Ta má vliv na únosnost průřezu.
K dispozici máme tyto druhy zatižení:

Stálé zatižení v podobě dvou plošných spojitých zatižení (možnost zadat 2 různě velká zatižení na 1 nosník) a 5 osamělých břemen. Stálé zatižení mají hodnotu dílčího součinitele 1,35. (ČSN EN 1991-1-1)

Proměnná zatižení

Užitné zatižení se zadává po celé délce nosníku o konstantní velikosti. Užitné zatižení stropů a stěch se rozdělují podle druhu zatižovacích ploch na několik kategorií. V návodě je nabídlena hodnota 0,75 kNm⁻². Můžete zadat libovolnou hodnotu.

Zatižení sněhem se opět zadává po celé délce nosníku o konstantní velikosti. K dispozici je utilita, která nabízí určení zatižení pomocí dvou způsobů. První a všeobecně známou metodou je určení hodnoty \(s \), mapy sněhových oblastí. Na území České republiky se rozlišuje celkem osm oblastí, část VIII, které zabírají škálu zatižení 0,7 do 4,0 kNm⁻². Uživatel získá podrobné informace o zatižení sněhem na zemi pro libovolně zvolenou lokalitu na území České republiky. Údaje poskytuje digitální mapou jsou garantovány Českým hydrometeorologickým ústavem. Jedná se o digitální mapu, která je umístěna na webu www.snehovamapa.cz. Utilita nabízí jednoduchý přístup na tento web, který je podmíněný připojením k internetu. Utilita dále nabízí možnost volit typ krajiny \(C_p \), tepelný součinitel \(C_t \) a sklon střechy. Výsledkem výpočtu je charakteristická hodnota \(s \) v kNm⁻². (ČSN EN 1991-1-3)

Kritérium průhybu: v nabídce jsou tyto kritéria:

- \(L/150 \)
- \(L/200 \)
- \(L/250 \)
- \(L/300 \)

Při posuzování MSP bude vybráno nejnepříznivější pole.

Posouzení: Možnost zvolit mezí posouzením mezinní stavu únosnosti a mezinní stavu použitelnosti. Základně nastaveno řešení MSU i MSP.

4. Informace o aktuálně vybraném profilu.

Jednotlivá technická data jako barevnost, šířka vstupu, stavební šířka, min./max. délka, dostupné příslušenství, materiál, technické schvalování, normy, dále možné povrchové úpravy a specifikování pozitivní a negativní orientace [2].

ZADÁVÁNÍ ZATIŽENÍ

ZATIŽENÍ SNĚHEM

ZVOLTE

VARIANTA

POMOCÍ PŘÍLOŽNÉ MAPY

OBLAST

Snehová oblast II

TYP KRAJINY

Normální

\[D_p \]

\[C_p \]

\[C_t \]

\[\alpha \]

\[\beta \]

\[C_p \]

Y Velká hodnota

f

\[\beta \]

\[\gamma \]

VÝSLEDNÉ ZATIŽENÍ

\[f \times \beta \times \gamma \]

\[v \times [kN/m^2] \]

SPOČÍTEJ

6

7

8

9

10

11

12

DRUH

1. STÁLE

2. STÁLE

3. UŽITNÉ

4. BNÍH

5. ŠÍLA F1

6. ŠÍLA F2

7. ŠÍLA F3

8. ŠÍLA F4

9. ŠÍLA F5

10. VITR

12. VITR

1. STÁLE

2. STÁLE

3. UŽITNÉ

4. BNÍH

5. ŠÍLA F1

6. ŠÍLA F2

7. ŠÍLA F3

8. ŠÍLA F4

9. ŠÍLA F5

11. Tímto option button se přepíná druh působení větru. Tlak značí kladné hodnoty a sání záporné.

12. Zde se nachází schéma k zadávání zatížení na nosníky. Rolováním lze najít nápovědu k zadávání, varování a vysvětlivky.

13. Kontrolou vstupních dat se zamezí případným chybám. Mohou nastat tyto situace:

a.) V případě nulové velikosti jednoho z polí spojitého nosníku (prostého nosníku) se zobrazí tato chybová hláška.

b.) Tato chybová hláška označuje nosíky, na kterých došlo ke kolizi v zadávání. Například délka plošného zatížení je větší jak délka nosníku, nebo osamělé břemeno je mimo nosník.

14. Volba varianty výpočtu
15. Pouze v případě zvolení standartní metody se sněhovou mapou.
17. Volba sklonu střechy, ve stupnicích.
18. Výpočet
19. Výsledné zatížení v [kNm²]. ČSN EN 1991-1-3 (EC1) Zatížení konstrukci – zatížení sněhem udává zatížení s₁,₁ a s₁,₂. U sedlových střech je jedná o levou a pravou stranu střechy. Předpokládá se řešení každé strany vzláště, hodnota s₁,₂ je polovinou hodnoty s₁,₁.

Zatížení větrem lze volit dvěma způsoby. Vítěr působi jako kladný tlak nebo záporný tlak (sání). Uživateli je nabídнутa možnost zadání zatížení větrem pomocí dvou spojitých plošních zatížení na jedno pole nosníku. To je z důvodu možnosti vzniku různých větrných oblastí q₀, po délce nosníku. (ČSN EN 1991-1-4)

Všechna proměnná zatížení mají hodnotu dišiciho součinitele 1,5. (ČSN EN 1991-1-1)

6. Zaškrtnutím checkboxu označe, s kterým zatížením se má počítat. To ovlivňuje kombinace.

9. Zatížení je možnost zadat dvěma parametry. Parametrum a [m], který určuje počátek zatížení z levého konce a parametrum b [m], který značí delku zatížení. Na každý nosník je také možnost zadat až pět různých bodových sil. Zadání těchto sil je podmíněno parametrem a [m], který má stejný význam jako u plošného zatížení.
Protokol z výpočtu

Typ konstrukce: SPOJITÝ NOSNÍK O 2 POLICÍ

Rozpětí jednotlivých polí:
- L1: 5 m
- L2: 5 m

Zvolený materiál: T150/1,25

Orientace: POZITIV

Technická data (mm):
- Výška: 160
- Celková šířka: 812 / 538
- Stavební šířka: 780 / 520
- Minimax délka: 2000 / 14000

Požadované kritérium MSP: U/200

Posudek:

Mězní stav únosnosti:
- Využitelnost %: 80,50

Mězní stav použitelnosti:
- Využitelnost %: 63,60

Údaje:
- Údaj 1: 2012.04.13 14:15:11

Kontakty:
- SATJAM s.r.o.
 - Michálova 1032/21, 710 00 OSTRAVA
 - Tel.: +420 596 233 511
 - Fax.: +420 596 233 560
 - E-mail.: satjam@satjam.cz
 - www.satjam.cz

Při zaškrtnutí možnosti „Zobrazit průběhy momentů a průhybů?“ bude možné zobrazit grafické ohybové momenty a průhyby na nosnicích s vyznačenými maximálními hodnotami. Při zvolení této možnosti nepatrně narůstá doba výpočtu. Tlačítkem „POSOUZENÍ“ se ověří vybraný profil na požadované mezní stav.

14. „Textový výstup pro náhled“ zobrazí formulář o výpočtu, kde jsou specifikovány rozměry, informace o vybraném průřezu, kritéria MSP, posudek a kontaktní údaje. „Textový výstup pro tisk“ zmíněný formulář vytečí.

15. Posudky jsou zobrazeny posouzení pro MSÚ a MSP.

16. Využijte profilů lze využít pro následnou optimalizaci.

17. V případě nevyhovujícího návrhu z hlediska MSÚ je hledán náhradní profil z databáze. V případě nevyhovujícího návrhu na MSP je nutno cílem volit náhradní profil. UPOZORNĚNÍ: Při nalezení náhradního profilu je pokud je nutné znovu profil ověřit!

18. Tlačítky přepínáme grafické znázornění momentů a průhybů (v případě zaškrtnutí tlačítka „Zobrazit průběhy momentů a průhybů“).

20. Grafický výstup, dle volby uživatele.

22. Extrémy v rozhodujícím zatěžovacím stavu, ve vykresleném grafu.

23. Zobrazení průběhu výpočtu, rychlost ovlivňuje požadavek na vykreslení grafů.

24. Protokol z výpočtu, základní informace

25. Vyhodnocení MSÚ a MSP, procentuální využití.

26. Kontakty

28. Návrat k programu
Práce s programem:

Zatěžovací schéma a rozměry konstrukce
Závěr:

Grafické podklady a technická data (momenty setrvačnosti a průřezové moduly), které jsou použity v software jsou poskytnuty firmou SATIAM.

Veškeré připomínky, náměty a chyby prosím sdílete na výše zmíněnou emailovou adresu.

Zdroje: