VYSOKÁ ŠKOLA BÁŇSKÁ –
TECHNICKÁ UNIVERZITA OSTRAVA

Hornicko-geologická fakulta
Institut hornického inženýrství a bezpečnosti

POROVNÁNÍ METOD TBM A NRTM PŘI RAŽENÍ DOPRAVNÍCH TUNELŮ

diplomová práce

Autor: Ing. Ondřej Svoboda
Vedoucí diplomové práce: Prof. Ing. Vlastimil Hudeček, CSc.

Ostrava 2013
Prohlášení

- Celou diplomovou práci včetně příloh, jsem vypracoval samostatně a uvedl jsem všechny použité podklady a literaturu.
- Byl jsem seznámen s tím, že na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – využití díla v rámci občanských a náboženských obřadů, v rámci školních představení a využití díla školního a § 60 – školní dílo.
- Beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou práci užít (§ 35 odst. 3).
- Souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prezentačnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci, obsažené v Záznamu o závěrečné práci, umístěném v příloze mé diplomové práce, budou zveřejněny v informačním systému VŠB-TUO.
- Souhlasím s tím, že diplomová práce je licencována pod Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licencí. Pro zobrazení kopie této licence, je možno navštívit http://creativecommons.org/licenses/by-nc-sa/3.0/
- Bylo sjednáno, že s VŠB-TUO, v případě zájmu o komerční využití z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona.
- Bylo sjednáno, že užít své dílo – diplomovou práci nebo poskytnout licenci k jejímu komerčnímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Praze, dne 9. 4. 2013

Ing. Ondřej Svoboda
Summary

This thesis compares two methods of tunnelling. Firstly NATM and then TBM. The comparative analysis is based on safety and economic aspects. The thesis describes optimal conditions for application of two methods.

Keywords: New Austrian Tunnelling method, Tunnel Boring Machine, Blanka tunnel, Metro Line V.A.

Anotace

Klíčová slova: Nová rakouská tunelovací metoda, plnoprofilové razící stroj, tunel Blanka, metro V.A.
OBSAH:

ÚVOD .. 1
1 POPIS METODY NRTM A TBM ... 2
 1.1 Popis metody NRTM ... 4
 1.1.1 Průzkumné práce metody NRTM .. 4
 1.1.2 Trhací práce u metody NRTM .. 6
 1.1.3 Nakládání a odvoz rubaniny ... 7
 1.1.4 Primární ostění .. 7
 1.1.5 Sekundární ostění ... 11
 1.1.6 Geotechnický monitoring .. 14
 1.1.7 Zásady provádění NRTM ... 14
 1.2 Popis metody TBM .. 15
 1.2.1 Průzkumné práce u metody TBM ... 15
 1.2.2 Popis razícího stroje .. 17
 1.2.2.1 Typy razících strojů .. 17
 1.2.2.2 Rozpojování hornin při ražení TBM – vrtací hlava .. 19
 1.2.2.3 Odtěžování rubaniny při metodě TBM .. 20
 1.2.2.4 Další součásti TBM ... 20
 1.2.3 Geotechnický monitoring .. 22
 1.2.4 Podmínky pro nasazení TBM ... 22
2 POROVNÁNÍ JEDNOTLIVÝCH METOD Z HLEDISKÁ BEZPEČNOSTI 23
 2.1 Bezpečnostní rizika u metody NRTM .. 23
 2.2 Opaření pro odstranění rizik u metody NRTM .. 26
 2.3 Bezpečnostní rizika u metody TBM .. 26
 2.4 Opaření pro odstranění rizik u metody TBM u tunelu metra V.A .. 29
 2.5 Porovnání metod NRTM s TBM z hlediska bezpečnosti ... 31
3 EKONOMICKÉ ZHODNOCENÍ METOD ... 32
 3.1 Náklady na metodu NRTM ... 32
 3.1.1 Primární náklady NRTM .. 33
 3.1.2 Provozní náklady NRTM .. 34
 3.2 Náklady na metodu TBM .. 35
 3.2.1 Primární náklady TBM .. 35
 3.2.2 Provozní náklady TBM .. 36
 3.3 Porovnání nákladů NRTM a TBM ... 37
4 Doporučení vhodných nabídek pro nasazení TBM a NRTM ... 40
 4.1 Vliv zadávacích podmínek ... 40
 4.2 Vliv geologických podmínek .. 40
 4.3 Vliv bezpečnostní analýzy ... 41
 4.4 Vliv ekonomické analýzy ... 41
ZÁVĚR .. 43
SEZNAM POUŽITÝCH ZKRATEK

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Ovládací slova</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTM</td>
<td>Nová rakouská tunelovací metoda</td>
</tr>
<tr>
<td>TBM</td>
<td>Tunnel Boring Machines = tunelový razící stroj</td>
</tr>
</tbody>
</table>

ÚVOD

Úkolem mé diplomové práce je porovnání dvou rozdílných metod používaných k výstavbě dopravních tunelů. První metodou je již lety ověřená a dlouhodobě na našem území používaná Nová rakouská tunelovací metoda, druhou metodou je provádění tunelových komplexů za pomocí razících strojů, TBM (Tunnel Boring Machines). Metody porovnávám na základě dvou hledisek, kterými se v současné době nejvíce zaobírají společnosti v oboru stavebnictví, tedy z pohledu bezpečnostního a z pohledu ekonomického. Jelikož obě metody mají jiné pracovní postupy, výsledek porovnání nemůže být pouze jednostranný, ale závisí na velkém množství ovlivňujících faktorů. Pokusím se tedy navrhnout vhodné podmínky pro nasazení jednotlivých metod.

Pro teoretickou část diplomové práce jsem čerpal z české i mezinárodní literatury. V praktické části jsem využil své vlastní zkušenosti ze stavby tunelu Blanka, kde jsem se jako stavbyvedoucí podílel na provádění definitivního ostění tunelu. Velkou pomocí mi bylo čerpání od osob dlouhodobě zainteresovaných na stavbách dopravních tunelů, jak ze strany mého zaměstnavatele, ale i konkurenčních firem.

Hlavním cílem práce je zvolit výhodnější a bezpečnější metodu ražení dopravních tunelů z metody razících strojů a Nové rakouské metody.

Dílčí cíle:

- Popis jednotlivých metod.
- Porovnání uvedených metod z hlediska bezpečnosti.
- Ekonomické zhodnocení metod.
- Doporučení vhodných podmínek pro nasazení TBM a NRTM.
1 POPIS METODY NRTM A TBM

Ze stavebního průmyslu právě podzemí stavby podléhají nejvíce vlivu horninového prostředí. Oproti jiným druhům staveb, tunely nejsou na hornině pouze založeny, ale jsou umístěny přímo v masivu horniny. Toto prostředí tunelové ostění nejen zatěžuje, ale dochází zde k spolupůsobení horniny a ostění tunelu.

Z výše uvedených důvodů je patrno, že právě průzkum před výstavbou je velmi důležitý pro stanovení vhodného způsobu provádění tunelovacích prací, což se následně projevuje v ekonomických i bezpečnostních hlediscích výstavby.

Etapys průzkumu:

a) Orientační průzkum

Slouží k navržení optimální trasy tunelu. Ne vždy platí, že optimální trasa koridoru musí být i nejvzdálenější pro tunel. Často je koridor veden delší trasou a jsou prováděny delší nájesové cesty, aby bylo možné tunel vést větší oblastí s vhodnějšími geologickými podmínkami. Tím lze snížit celkové náklady, případně se vyhnout nevhodným geologickým oblastem.

U orientačního průzkumu se převažně čerpá z geologických map, archivních zápisů, pocházejících předchozích průzkumů provedených v letech minulých.

b) Předběžný průzkum

c) Podrobný průzkum

Slouží k získání již co nejpřesnějších informací z hlediska inženýrskogeologického, hydrogeologického a geotechnického charakteru. Podrobný průzkum také slouží jako podklad pro zhotovení realizační dokumentace.

Podrobný průzkum plyne z předešlých průzkumů, z provedení vrtných zkoušek (jádrové, hydrogeologické a jiné vrty), z geofyzikálních metod. Jako nejpřesnější, ale nákladný podklad slouží ražba průzkumných štol.

d) Doplňující průzkum

Provádí se pouze v případě potřeby a upřesňuje průzkum podrobný.
Výsledkem průzkumů je určení vlastností hornin ovlivňujících výstavbu tunelu. Mezi rozhodující vlastnosti patří:

- Struktura horninového masivu (hustota, směr a průběžnost poruch, druh výplně a jiné).
- Stav zvětrání.
- Hydrogeologické poměry v hornině (množství a druh vody, charakter přítoků).
- Geodynamické procesy (pohyby a seizmicita, gravitační pohyby atd.).

Na základě získaných podkladů musí projekční skupina rozhodnout o optimálním umístění tunelu. „Prioritní je sice generální vedení trasy komunikace, ale je nutné také uvážit, že dlouhé tunely jsou technicky i finančně nejnáročnějším objektem na příslušném úseku komunikace a náklady na jejich výstavbu jsou geologickými podmínkami výrazně ovlivněny. Není proto správné směrově a výškově naproti, pokud možno, uzpůsobit tak, aby byly optimální podmínky pro ražení tunelu. Umožní to vyhnout se mnoha problémům a dosáhnout nezanedbatelných úspor na stavebních nákladech.“ [1]

Pro navrhování umístění tunelu platí:

- „Tunel by měl být situován v dostatečné hloubce pod povrchem, ve zdvorávých horninách skalního podloží s dodržením výšky nadloží alespoň 2D (D = šířka výrubu). Při souběžném ražení dvou tunelových trub má být mezi nimi zachován horninový pilíř šířky minimálně D až 2D.“ [1]
- Tunel by se neměl umisťovat v místech s předpokladem horninových poruch (pod sedly, terénními depresemi atd.). Lze předpokládat vznik těchto poruch z důvodu menší pevnosti hornin.
- Tunel razit kolmo ke směru ploch odlučnosti, z důvodu dobré rozpojovatelnosti hornin a zhodnocovat výšku pokrývných útvarů a jejich zvětrání, hlavně u svahových tunelů.

Brát v potaz vliv hydrogeologických poměrů. Velké problémy činí mineralizované podzemní vody (rychlejší degradace ostění a zanášení drenáží), termální vody (zvyšování teploty v tunelu), minerální vody (nutná jejich ochrana).

Situování portálů je taktéž komplikované, jelikož trasa vyústuje přes zvětrané části a pokryvné útvary. Často je nutné podstoupat příslušná opatření k zlepšení podmínek v místě vyústění portálu (zajištění svahů, odvodňovací vrtu, injektáže atd.).
1.1 Popis metody NRTM

Nová rakouská tunelovací metoda patří mezi konvenční způsoby výstavby tunelů. Tyto způsoby definoval a shrnul v roce 1944 Leopold von Rabcewicz a v roce 1948 ji nechal patentovat. K rozšíření této metody silně napomohl rozvoj stříkanych betonů a v současné době se pomocí této metody na světě razí přibližně 50 % veškerých světových tunelů (např. tunel Blanka, situace – příloha č. 1, podělný řez – příloha č. 2).

„NRTM je tunelovací metoda, která vědomě a cíleně využívá nosných vlastností horninového masivu s cílem optimalizovat proces ražení a zabezpečování výrubu a minimalizovat s tím spojené ekonomické náklady.

Při výstavbě tunelů pomocí NRTM je obvykle stabilita výrubu zajištěna primárním ostěním a definitivní konstrukce tunelové trubky (sekundární ostění) je budována teprve po ustálení napěťové-deformačního stavu v okolí výrubu“ [2]

V případě výstavby tunelu s požadavkem na minimální pokles nadloží (např. v místech s nadzemní zástavbou), nelze umožnit do tvarování horninové klenby a je tedy nutné, navrhovat primární ostění s ohledem na minimální přetvoření a tím minimalizovat poklesy nadložních vrstev.

1.1.1 Průzkumné práce metody NRTM

Průzkumné práce jsou shodné s popisem v předešlé kapitole. Plánovaná trasa tunelu je, na základě průzkumných prací, rozdělena do úseků se shodnou trídou výrubu a pro jednotlivé úseky je navržen optimální způsob výstavby. Velkou výhodou metody NRTM (oproti TBM) je velká flexibilita na plánovanou či neplánovanou změnu horninových vlastností. Tato případná změna u metody NRTM se totiž neprojeví a nedojde k velkému navýšení plánovaných nákladů výstavby.

Jednotlivé členění výrubu do tříd je specifické a vždy záleží na autorovi. Já své rozdělení zvolil dle knihy Výstavba tunelu ve skalních horninách - F. Klepsatel, P. Kusý, L. Mařík. Jednotlivé třídy výrubu se dělí následovně:

Třída výrubu 1

Jedná se o stabilní výrub, nevyžadující jakékoliv zajištění. Je možné razit plným průřezem a maximální délkou záběru (L=D/2, z důvodu optimálnosti vrtacích a trhacích prací je doporučován záběr max. 4,5 m). Rozpojování horniny je prováděno trhacími pracemi. V případě vypadávání úlomků je strop lokálně zajištěn pletivem na kotvy, ale v dostatečné vzdálenosti od čelby což neovlivňuje rychlost výrubu.

Je dosahováno vysokých razičských postupů 15 až 20 m/den.

Třída výrubu 2

Jde o lámovou horninu vyžadující zajištění, ale v dostatečné vzdálenosti za čelbou, což postup prací ovlivňuje pouze nepatrně. Razit lze plným průřezem s max. délkou záběru 3,5 m s rozpojováním trhacími pracemi. Je třeba zajišťovat
výrub systémovými kotvami a lokálně i stříkaným betonem. V případě velkého průřezu tunelu je výhodné ražbu provádět členěním. Jelikož se jedná o stabilní prostorejí, členíme ražbu horizontálně na kalotovou a opěrnou část.

Je dosahováno razičských postupů až 10 m/den.

Třída výrubu 3

Lámová až drobivá hornina, osvědčuje se horizontální členění ražby s max. délkou záběru 2,5 m. Primární ostění je nutné zabudovávat v odstupu 5 až 55 metrů za čelbou (dle druhu hornin), za pomocí systémového kotvení, stříkaného betonu a obloukové výstroje. Rozpojování probíhá za pomoci trhacích prací. Zajištění je nutné dokončit před zahájením následujícího záběru. Ve spodní části je, z důvodu únosnosti, zřizována deska či protiklenba.

Je dosahováno razičských postupů 5 až 8 m/den.

Třída výrubu 4

Lámová, drobivá až tlačivá hornina vyžadující zajištění ihned po otvírce. Maximální délka záběru jsou 2 m s horizontálním členěním (kalota, opěrná část, protiklenba). V případě nestability čela je nutné ho zajistit stříkaným betonem, nebo ponechat opěrný klín horniny. Rozpojování probíhá slabými, nakyvapovacími náložemi, nebo mechanicky. Do každého záběru se vkládá výztužovací oblouk, maximálně 0,5 m od čelby a je zajištěvný stříkaným betonem s ocelovou stíš. Pokud je potřeba, je výrub posilován za pomocí kotev. Pro zajištění stability se provádí protiklenba.

Je dosahováno razičských postupů 4 až 6 m/den.

Třída výrubu 5

Jelikož se jedná o tlačivou horninu, záběr je max. 1,5m s horizontálním členěním výrubu (kalota, 1 až 2 stupně opěrné části a protiklenba). Rozpojování probíhá za pomocí mechanizace. Do každého záběru se vkládá zajišťovací oblouk, výrub je zajištěn stříkaným betonem s ocelovou stíš ve dvou vrstvách. V případě potřeby se osazují kotvy.

Postup je max. 4 m/den.

Třída výrubu 6

Z důvodu silně tlačivé horniny se výrub člení na kalotu, dva stupně a protiklenbu. Z důvodu stability výrubu se ponechává opěrné jádro. Maximální záběr je 1,2 m. Čelo a dno výrubu je nutné zajistit stříkaným betonem s ocelovou stíš a kotvami. Stabilitu čela lze zvýšit předháněným pažením. Ražba probíhá mechanicky a často je nutno přistoupit na nevhodný vertikální způsob ražby, což postup prací ještě zpomalí. Používá se buď ražení s centrální kalotovou předrázkou. Výhodou tohoto způsobu je variabilita v případě změny druhu hornin a rychlý přechod k ražení plným průřezem a zpět, ale dochází k vyšším deformacím než u druhého způsobu, kterým je ražení s bočními předrážkami. Tento moderní způsob je vhodný v případě velkých bočních tlaků. Výhodami je předběžně
odvodnění tunelu bočními předrážkami menší deformace horniny. Nevýhodou je pomalý přechod na postup ražby plným profilem.

V případě nemožnosti navržení jednoho z výše uvedených způsobů, je volena třída výruba 7 a je zpracován speciální pracovní postup

1.1.2 Trhací práce u metody NRTM

V případě použitých trhavin je důležitá kladná kyslíková bilance, díky níž po výbuchu nedochází k úbytku kyslíku. Vhodný typ trhavin je volen dle druhu horniny, její pevnosti, velikosti průřezu, množství a druhu nespojitosti atd. V současnosti jsou jako trhaviny používány nitroestery, plastické trhaviny, emulzní trhaviny a jiné.

Obr. 1 – Trojlafetový počítačem řízený vrtací vůz, 1 – počítač, 2 – naklánění lafety, 3 – měření posunů, 4 – měření hloubky vrtů, 5 – měření naklonění podvozku, 6 – vrtací plošina, 7 – vrtací kladiva.
1.1.3 Nakládání a odvoz rubaniny

V případě použití trhavin se pro nakládání využívá lopatových nakladačů, převážně na pásovém podvozku, případně nakládacích tunelbagrů. Pro převoz rubaniny slouží nejčastěji výklopné korbové vozidlo, tzv. dumper. Díky variabilitě těchto vozů ubývá využívání pásové dopravy.

V případě provádění ražby mechanickým způsobem jsou využívána hydraulická tunelová rypadla, bourací kladiva pro rozpojování pevnějších hornin a v menším rozsahu rozchody stroje a výložníkové frezy.

Použití daných strojů závisí na druhu tunelové stavby, jejím průměru, určeném typu třídy výrubu a v neposlední řadě na strojním a personálním vybavení zhotovitele stavby.

1.1.4 Primární ostění

Jak již bylo zmíněno metoda NRTM je založena na součinnost horniny a ostění tunelu. Zhotovením tunelové stavby změníme rozložení a působení síl v horninovém masivu a podle druhu horniny dochází k přetvoření horninového prostředí.

Primární ostění se provádí z důvodu zajištění dostatečné bezpečnosti výrubu, ale vždy musí být dostatečně poddajné, aby umožnilo přetvoření horniny a nenarušilo její samonosnost. Je tedy nutné dosáhnout optimálního stavu dostatečné přetvoření bez zásahu do tunelové stavby (výlomy hornin, větší deformace horniny a tím zmenšení profilu tunelu, životnost tunelu atd.). Optimální navržení primárního ostění se také projeví v ekonomické stránce, tedy nebudou vynaloženy výdaje na zbytečně nákladné typy zajištění. K použití vhodného typu
Ing Ondřej Svoboda: Porovnání metod TBM a NRTM při ražení dopravních tunelů

primárního ostění mimo jiné slouží Fenner – Pacherova křivka zobrazující závislost mezi deformací masivu a zabudováním výstroje.

Vývoj zajištění momentálně spěje k zmenšování rozdílů mezi primárním a sekundárním ostěním.

Na velký rozvoj metody NRTM mělo vliv zdokonalení stříkaného betonu. Ten patří mezi moderní a často využívané metody primárního ostění. Jedná se o upravenou recepturu klasické betonové směsi tak, aby bylo možné ho čerpat. Beton může být nanášen buď suchou metodou, kde dochází k smíchání suché směsi a vody až za střikací pistoli, nebo mokrou metodou kde je již hotová směs

Hlavní výhodou stříkaného betonu je rychlost provádění, umožnění deformací masivu, možnost vyplnění případných nadvýrubů, možnosti zvolení náběhu pevnosti a lehké zautomatizování pomocí strojů.
Pro zlepšení vlastností primárního ostění se může vkládat ocelová oblouková výstroj.
Jedná se o spojení plnostěnných, příhradových či jiných oblouků za pomocí spojek v kluzném spoji. Tento spoj umožňuje dotvarování ostění, avšak pouze po předem určený pokles (až po spojení oblouků). Tuto výstroj lze použít i jako šablonu obrysu líců, nosný prvek dočasné výztuže či ochranu pracovníků.
K zlepšení horninového prostředí lze také využít kotev. Ty fungují na principu spojení odlehčené zóny horniny v okolí výrubu s horninou neporušenou. Laicky lze nazvat, že kotva tuto porušenou horninu „přisíje“ k hornině neporušené. Jako kotvy lze používat suché, mokré lepené a jiné.
1.1.5 Sekundární ostění

Doplňuje ostění primární, zajišťuje výrub po dobu výstavby i po dobu životnosti stavby (z pravidla 100 let).

Po dobu životnosti má za funkci:

- „Přenášet všechna vzniklá zatížení, aniž by došlo k vyčerpání únosnosti
- Vykazovat dostatečnou tuhost, aby se jeho deformace pohybovaly v imitovaných hranicích z hlediska statického působení i geometrického tvaru, tj. aby se zachoval požadovaný průjezdný průřez včetně prostoru v mezích přípustných tolerancí,
- Zajistit spolehlivou ochranu vnitřního prostoru proti prosakování podzemní vody přes ostění, pracovní a dilatační spáry, prostupy vedení“ [1]

Konstrukční uspořádání ostění vyplývá z podmínek horniny v okolí (viz třídy hornin). Pokud je hornina únosná, postačí pouze tenkostěnné nevyztužené ostění bez protiklenby či základu. Pokud se ale tunel nalézá v silně tlačivých horninách, je nutné budovat širší vytužené ostění zaklesnuty do dna, tedy do základu či protiklenby. Roli v návrhu ostění také hraje druh tunelu a jeho budoucí vybavení. Ostění u železničního tunelu se liší od ostění tunelu silničního.
Pro zajištění nepropustnosti proti vodě se z pravidla mezi primární a sekundární ostění vkládá hydroizolační folie, umístována v pásech. Při provádění hydroizolace, je velmi důležité dbát na spoje pásů a dokonalé provedení v pracovních a dilatačních spárách. Zde se jako doplňující prvek často vkládá injektážní hadička či bentonitové pásky.
Obr. 8 Příprava izolace před svařením jednotlivých dílů – tunel Blanka, technologické centrum
1.1.6 Geotechnický monitoring

Neodmyslitelnou součástí konvenčního ražení tunelů je geotechnický monitoring. Jedná se o soubor měření při ražbě i fungování tunelu kontrolující součinnost ostění a horninového masivu v okolí stavby.

Úkoly geomonitoringu lze shrnout:

- Při měření v době výstavby, poskytnout podklady pro optimální navržení konstrukce budoucího ostění.
- V době provozu tunelu (měřidla zabudovaná v ostěních) ověřovat plánované chování ostění a okolní horniny a zajišťovat informace pro budoucí provádění.
- Dále se geomonitoringem obvykle sleduje sedání poklesové kotliny, pohyby nadzemní zástavby a v neposlední řadě monitoring podzemních vod (množství a tlak podzemních vod, vydatnost pramenů atd.).

1.1.7 Zásady provádění NRTM

Provádění metodo NRTM lze shrnout do následujících zásad:

- Při ražbě je nutné horninu rozpojovat co nejšetrněji, aby nedocházelo k jejímu porušení v okolí výrubu.
- Ostění je pouze doplňující prvek, hlavní nosnou funkci plní hornina sama.
- Primární ostění musí fungovat aktivně, tedy umožnit hornině uvolnění nově vzniklých napětí, ale pouze v rozsahu povolených deformací, z tohoto důvodu je nutné taktéž výztuž (či ostění) zabudovat v optimálním čase.
- U silně tlačivých hornin je nutné brzké zbudování základu dna či protiklenby.
- Optimální je ražení na plný profil tak, aby změna síl byla jednotná, provádění postupným ražením neustále síly přesupuje.
- Nejvhodnější obrysem je kruh, ovál či klenba.
- Sekundární ostění lze provádět až po dosažení rovnovážného stavu (doznění deformací).
- Návrh vhodného ostění a kontrolu jeho fungování zajišťuje geotechnický monitoring.
- Působení podzemních vod lze omezit správným návrhem drenáží a odvodnění.
1.2 Popis metody TBM

První razící stroje vznikli již v 70. letech 19. století ve Velké Británii jako pomocné stroje v kamenolomech. Teprve však po 2. světové válce se strojní ražení začalo utvářet tak, jak ho známe v dnešní podobě tedy jako TBM = Tunnel Boring Machines, aneb plnoprofilové razící stroje. Nejdříve tyto stroje byly využívány pro ražbu dlouhých maloprofilových vodohospodářských šachet a teprve v 70. letech 20. století byly použity i jako velkoprostorové pro dopravní stavby.

Na základě zjištěných vlastností hornin, je plánovaná trasa tunelu rozdělena na jednotlivé úseky s obdobnými vlastnostmi. Toto rozčlenění je velmi důležité z hlediska navržení vhodné tunelovací metody. Metoda TBM je velmi citlivá na změnu horninových vlastností a velmi těžko se s ní vyrovnává.

1.2.1 Průzkumné práce u metody TBM

„Geotechnický průzkum pro strojní ražení musí umožnit spolehlivě odpovědět na tyto zásadní otázky:

- Jaký je nejvhodnější typ TBM pro dané horninové prostředí?
- Jak hospodárně bude mechanické rozpojování horniny?
- Bude možné při práci spolehlivě rozepřít otevřený TBM do výrubu?
- Jakým způsobem bude zvolený typ TBM překonávat poruchové zóny a tlačivé úseky s velkými konvergencemi výrubu?“ [1]

Průzkumem je nutné zjistit následující horninové vlastnosti:

Abrazivita – je definována jako úbytek materiálu z vrtacích nástrojů při vrtání. Opět je silně spojena s mineralogickým složením horniny, lze ji zkoušet za pomoci testů CAI, Schimazekova testu či LCPC testu. Jedná se buď o zkoušku obrusu jehly o vzorek materiálu či stanovení poměrů zm v hornině.
Klasifikace horninového prostředí pro ražení metodou TBM:
Na základě knihy Výstavba tunelu ve skalních horninách - F. Klepsatel, P. Kusý, L. Mařík, uvedu klasifikaci podle švýcarské normy SIA 198/1993, členící tunel na pracovní oblasti (viz obr. 9), dle toho kde je nutné výrub zajišťovat:

- „AK I – není potřeba dělat žádné nebo pouze lehké zajištění výrubu v pracovní zóně L3*, tj. za razícím komplexem, takže omezení postupu ražení jsou minimální. Výrub je třeba pouze lokálně zajišťit, aby pracovníci nebyli ohrožováni úlomky horniny, vypadávajícími ze stropu.
- AK II – zajištění výrubu je možné dělat v oblasti návěstů v pracovní zóně L2*. Práce způsobují pouze malá omezení pro ražení. Předpokládá se lehká výstroj – kotvení, ocelové sítě a případně i stříkaný beton na méně než polovině obvodu výrubu.
- AK III – zajištění výrubu je třeba realizovat zčásti už v oblasti stroje v pracovní zóně L1*, což způsobuje značné omezení v pracovním cyklu. Výstroj se dokompletuje v pracovní zóně L2* a skladá se většinou ze stříkaného betonu po celém obvodu, z ocelových oblouků a kotev do ¾ obvodu výrubu. V úvahu přichází i nasazení TBM se štítovým pláštěm a primární segmentové ostění.
- AK IV – výrub je třeba zajišťit po každém záběru v oblasti stroje, k čemuž je nutné přerušení pracovního cyklu. Postup ražení se výrazně zpomaluje, při delších úsecích se v takových podmínkách doporučuje nasadit TBM s pláštěm.

Obr. 9 Pracovní oblasti razícího stroje a pracovní zóny při provádění ražeb metodou TBM, podle SIA 198/93, L₁, L₂, L₃ – pracovní oblasti, L₁*, L₂*, L₃* – pracovní zóny, AK 1 až 5 – třídy výrubu.
1.2.2 Popis razícího stroje

Volba razícího stroje vyplývá z geologických podmínek v plánované trase tunelu. Vybavení strojů je velmi variabilní a umožňuje provádění ražby metodou TBM i ve velmi náročných podmínkách. Avšak čím je vybavení komplexnější, tím roste i pořizovací cena a hmotnost stroje. Dodržuje se pravidlo, že TBM je navržen na nejnevhodnější podmínky dané průzkumem budoucí trasy tunelu. Podmínkou pro nasazení TBM také je, aby reakce sil vyvozované štítem byly přeneseny do stěn výrubu. Jedná se o tíhu stroje, reakce od přítlačné síly na vrtací hlavu a reakce od kroutícího momentu hlavy.

Hlavními výrobci TBM jsou firmy Robbins (USA), Wirt & Hereknecht (SRN), Mitsubishi (Japonsko), Framaton (Francie).

1.2.2.1 Typy razících strojů

Razící stroj bez pláště:
Je vhodný k nasazení v pevných horninách, kde lze výrub zajistit v dostatečně vzdálenosti za razící hlavou a obsluha je chráněna proti ojedinělým úlomkům lehkým přístřeškem. Přesun stroje a tlak na vrtací hlavu je zajistěn hydraulickými rozpěrami, zapřenými do stěn výrubu. Po dosažení maximálního výsunu hydraulických rozpěr je ustaven na podpěru, rozpěry se zasunou na nové místo a pohyb je opakovan. Zjednodušeně lze říci, že se jedná o variantu kráčejícího podvozku. Výhodou tohoto stroje jsou nejnižší pořizovací výdaje, nejnižší hmotnost stroje (tedy menší tlak na okolí) a v neposlední řadě nejvyšším výkonem.

Obr. 10 Razící stroj bez pláště.

Razící stroj s jednoduchým pláštěm:
Tento typ se nasazuje v méně pevných horninách s krátkou dobou stability a často se ménících podmínkách s výskytem poruchových zón. Je-li toto podmínky vyskytují nejčastěji, je také tento typ stroje nejpoužívanější. K zajistění výrubu zde dochází v pracovní oblasti L1 a nejčastěji za pomocí osazování
prefabrikovaných segmentů tzv. tubingů. Ty po osazení tvoří sekundární ostění a jejich umístování probíhá plně automaticky a kontinuálně s průběhem razících prací.

Posun razíčho stroje zajišťují hydraulické válce, zapírané o již hotové segmentové ostění. Štítový plášť musí být co nejkratší, aby byla zajištěna jeho ovladatelnost v oblouku tunelu.

Obr. 11 Razící stroj s jednoduchým pláštěm, stroj Tonda, MTS, Metro V.A.

Razící stroje s dvojitým pláštěm:
Tento druh stroje je kombinací dvou předešlých a může tedy pracovat dvěma způsoby:

- V případě vhodných geologických podmínek je posun a přítlak na hlavu zajištěn rozepřením do stěn výrubu, vrtání a montáž ostění mohou probíhat kontinuálně, což zajišťuje rychlý postup prací – jako u stroje bez pláště.
- Pokud není hornina únosná pro rozepření, je posun TBM a přítlak zajištěn opřením o poslední provedený prstenec ostění. Práce na ražbě a montáži ostění nemohou tedy probíhat současně a výkon se snižuje.

Dvouplášťový razící stroj je charakteristický vysokou hmotností pláště a tím i celku, což zvyšuje tlak na okolí a zhoršuje ovladatelnost v oblouku.
Razící s rozšiřováním výrubu:

Je používán u tunelů velkých průřezů, doposud byl využit stroj s jednostupňovým či dvoustupňovým rozšiřováním výrubu. Nevýhodou tedy je, že tunel je prorážen na dvakrát až třikrát, výhodami je dokonalá znalost hornin díky předražené štole, snížení spotřeby energie a dobrý přístup na čelbu.

Speciální typy razících strojů:

V současné době dochází k nejružnějším modifikacím strojů TBM tak, aby bylo možné využít je v jakémkoli typu horniny či zeminy. Je u nich využíváno přetlaku vzduchu u razící hlavy, jenž zajišťuje krátkodobou stabilitu výrubu před jeho zajištěním. Tento typ je vhodný do hrubozrnných zvodnělých zemin. Dalším typem je bentonitový štít využívající na místo přetlaku vzduchu, tlak bentonitové suspenze na čelo výrubu. Tato suspenze je následně odčerpávána společně s odebíranou zeminou a dále tříděna pro další využití.

1.2.2.2 Rozpojování hornin při ražení TBM – vrtací hlava

Druh rozpojování vyplývá na typu horniny či zeminy, jejich klasifikaci a zatřídění, vlivu tlaků v masivu, případně na vlivu podzemní vody.

1.2.2.3 Odtěžování rubaniny při metodě TBM

Velkou výhodou metody TBM je kontinuální odtěžování vzniklé rubaniny. Ta je na úrovni vrtací hlavy „stírána“ obvodovými lopatkami, či speciálním typem hlavy, dále šnekovým dopravníkem přenášena na pásový dopravník, který rubaninu transportuje až na vnější skládku, nebo do třídíčky kde je dále upravována k dalšímu použití.

1.2.2.4 Další součásti TBM

Další vybavení TBM je velmi variabilní a vychází z požadavků objednatele v závislosti na plánované trase tunelu, druhu horniny, způsobu zajištění výrubu atd. Mezi ty podstatné patří:

- Osazování tubingů – v případě vhodných podmínek lze ostění zajišťovat prefabrikovaným ostěním ze železobetonu či drátkobetonu tzv. tubingů, ty přímo tvoří sekundární ostění a jsou ukládány současně s probíhající ražbou, což zajišťuje vysokou rychlost výstavby. Osazování, dorovnávání těchto dílců probíhá za pomocí erektoru. Je dbán vysoký důraz na přesnost
osazení, např. z důvodu těsnosti tunelu, či zamezení vzniku prasklin v segmentech.

- Vysouvatelný ochranný rošt – slouží jako ochrana pro bezpečné osazování segmentových dílů, kotev, kontroly hlavy atd.
- Vrtací zařízení pro navrtávání kotev.
- Tryska pro automatický nástřik ostění stříkaným betonem, vč. zařízení pro osazování ocelových sítí.
- Tryska k provádění stříkané izolace
- V místě hlavy lze osadit zařízení na průzkumné vrty, čímž dochází k neustálému monitorování plánované trasy tunelu.

![Obr. 13 Řídicí jednotka razícího stroje, stroj Tonda, MTS, Metro V.A.](image)

Délka stroje může dosahovat stovek metrů, kde vrtací hlava zabírá pouze malou část stroje. Další vybavení slouží k plynulému fungování stroje, dopravy materiálu atd.
1.2.3 Geotechnický monitoring

Provádění tunelu mechanizovaným strojem, předchází cílený podrobný geotechnický průzkum, v průběhu ražby monitoring musí hlavně zajistit optimalizaci přítlaku hlavy na horninu, včasné odhalení anomálií v hornině, měření konvergencí výrubu (aby nedošlo k zavalení stroje a jeho zaseknutí či zaseknutí hlavy), měření poklesů nadloží (v případě nízkého nadloží). Oproti NRTM je monitoring méně rozsáhlý a zajišťuje pravidelný provoz stroje.

1.2.4 Podmínky pro nasazení TBM

- Je nutné předem znát hlavní směry ploch nespojitostí, jejich charakter, hustotu, sklon a prostorovou orientaci, aby se předešlo závalům stroje.
- Nutné odhalit krasové dutiny, jelikož jejich zaplavení může způsobit zaplavení stroje, nebo jeho propadnutí.
- Znát mocnost pokryvných útvarů a jejich hloubku zvětrání, aby nedošlo k jejich prolomení.
- Zjistit druh výplně poruchových zón. Mohou stroj zpomalit či zastavit.
- Pro optimální návrh stroje znát stabilitu nezajištěného výrubu.
- Správně spočítat plánované konvergence výrubu za účelem navržení vhodného typu vrtací hlavy.
- Zjistit výskyt bobtnavých hornin, které mohou stroj zastavit či zpomalit.
- Znát veškeré poznatky o podzemních vodách, mohou zvyšovat nároky na zajištění výrubu.
2 POROVNÁNÍ JEDNOTLIVÝCH METOD Z HLEDISKA BEZPEČNOSTI

Na výskyt rizik má zásadní vliv geologie prostředí. Eliminovat tyto rizika lze dopředu vhodně stanovenou metodou provádění a důsledné dodržování předpisů, technologických postupů a havarijních plánů.

2.1 Bezpečnostní rizika u metody NRTM

Metoda NRTM, oproti TBM, je více závislá na součinnosti strojů a lidské osádky, tím je náročnější k plánování či řízení a tedy i více náchylná ke vzniku nepředpokládaných skutečností. Tyto okolnosti nikdy nelze předem vyloučit, jelikož provádíme činnost v přirobním prostředí a jeho vlastnosti nelze přesně dopředu stanovit.

Výskyt bezpečnostních rizik u NRTM jsou celosvětově obdobná a lze je popsat následovně:

- Nedostatečné, nevhodné průzkumné práce. Následkem může být neodhalení poruch v masivu, nevhodné zatížení horniny a následné navržení nevhodných pracovních postupů. Tyto okolnosti se mohou projevit v neplánovaných výlomech, průniků vody, plynu atd., což má velký vliv na snížení bezpečnosti prací.

- Zřícení tunelového portálu – portálové části tunelu bývají nejnáročnější částí tunelu, jelikož se nacházejí v místech s nejméně kvalitními horninami s vysokou pravděpodobností poruch masivu a vzniku sesuvů hornin. Aby nedocházelo k případným sesuvům a závalům, jsou portálová nadloží zpevněnována za pomocí stříkaného betonu, injektážemi, kotvami, zatrvněním a jinými metodami. Taktéž zahájení ražby tunelu v místě portálu bývá nejnáročnější a bývá přistupováno k ražbě pod ochranou předháněných pažnic, jehel či kotev, případně za zpevnění nadloží proudovou injektáži.

- Trhací práce – jedná se o činnost se zvýšeným bezpečnostním rizikem a to již od počátečních fází v podobě vývrtů pro osazení náloží, přes dopravu trhavin až po provedení samotných trhacích prací. V případě těchto činností je nutné striktní dodržování předpisů a může je provádět pouze osoba k této práci určená.

Nízká stabilita čelby tunelu, případně její proválení – k proválení opět dochází vlivem nevhodně stanovených podmínek, nevhodných pracovních procesů, či následkem nepředpokládaných geologických poruch.

Bobtnání dna tunelu. K růstu hornin z podloží dochází, pokud je konstrukce tunelu neuzavřená pevnou konstrukcí dna, což umožňuje jeho navýšování. Výskyt bobtnavých hornin v místě tunelové stavby je nutné předem stanovit za pomoci průzkumů a již dopředu určit opatření. Bobtnání může mít za následek založení nutnějšího podloží a tím v krajním případě ztrátu únosnosti ostění či vzniku poruch v ostění.

Porušení podzemních vod, následné snížení jejich kvality, snížení hladiny vody, zmenšení zásoby pitné vody atd.

• Seiznické účinky (z trhacích prací, ze změn napěťových stavů v masivu) mohou mít vliv na nadzemní zástavbu. Opět může docházet k trhlinám ve stavbách, zhrucení budov, porušení inženýrských vedení atd.
• Porušení inženýrských sítí vlivem injektáží nadloží či osazováním kotev do nadloží tunelu. Tyto poruchy mají vliv v podobě ekonomických náhrad jejich vlastníků či průnik přepravovaných hmot do oblasti tunelu a snížení kvality pracovních podmínek – viz výše.
• Pohyb strojů – jakakoliv strojní zařízení skýtá možnost úrazu pracovníků. Může se jednat o následující strojní vybavení:
 o Vrtací stroje pro osazení náloží.
 o Nakládání a odvoz rubaniny – pohyb velkých strojů, demprů, nakladačů, pásové dopravníky atd..
 o Vozy pro izolace.
 o Bednící či armovací vozy.
 o Betonové domíchávače a pumpy.
 o Bednící vozy.

Pro pohyb těchto strojů musí platit přesné předpisy v podobě rychlostních limitů, vyhrazených tras, zvukových vybavení automobilů atd. V případě pásové dopravy je nutné respektovat bezpečnostní vzdálenosti z důvodu zachycení či utápění přepravovaných hmot. Taktéž pohybem strojů dochází k zvýšení prašnosti v jejich okolí a hromadění výfukových plynů.
• Dodatečné zajišťování výrubu stříkaným betonem – může dojít k zasažení osob.
• Chyby v hydroizolaci tunelu – nesprávné navržení, provedení či její poškození při následujících činnostech. Zatékání do tunelu a následné degradace konstrukcí, či nutné vynaložení vícenákladů na dodatečné injektování a čerpání. Kromě více nákladů za opravy může v krajních případech také dojít vlivem degradace konstrukcí k jejich porušení a následně i provalení.
• Přetlakováním při betonáži ostění může dojít k pohybu bednícího vozu, sevření osob, provádění betonové směsi či pádu betonu na osobu. K tomu také může dojít nevhodným, nebo nedostatečným zajištěním bednění.
• Větrání – prováděním všech pracovních činností a pohybem strojů se zvyšuje prašnost v tunelu a vznik spalovacích plynů. Tunel musí být dostatečně odvětráván a musí být přiváděn nový neporušený vzduch k místům prací. K větrání se zpracovává samostatný projekt, jenž musí být schvalován a dodržován. V tunelu také probíhá nepřetržitě měření kvality vzduchu. V případě porušení limitů dochází k přerušení prací a nápravám větrání.

Bezpečnostních rizik na stavbě je velké množství, nelze je zde všechny vyjmenovat. Popsal jsem jenom ty podstatné a rozhodující.
2.2 Opatření pro odstranění rizik u metody NRTM

Zásadní okolností pro eliminaci rizik je provedení kvalitních průzkumných prací. Čím podrobnější průzkumy se provádějí, tím jsou získány přesnější informace o horninovém složení v trase tunelu a jsou odhaleny případné poruchy či anomálie. To má samozřejmě vliv na stanovení optimální trasy tunelu, zhotovení přesné technické dokumentace stavby a provedení co nejšetrnějších přípravných prací, které jsou vždy základem kvalitního provádění každé činnosti. Na základě technické dokumentace se stanovují optimální pracovní procesy, které musejí řešit veškerá známá rizika. Zhotovitel také sestavuje závazné technologické postupy a havarijní plány, jejichž je nutné být v souladu s platnými předpisy. Jakýkoli odklon od těchto plánů může skrývat rizika v podobě ekonomických vícenákladů (nevysoké trhací práce, nevysoké těžení rubaniny a její odvoz, nedostatečné izolace, předimenzování ostění atd.) či v krajinách mězích může docházet k vzniku rizikových situací s širokým spektrum následků. Pro hladký průběh stavby je také nutné průběžně po dobu prací provádět monitoring. Jedná se o sledování chování okolních hornin, kontroly spolupůsobení ostění a horniny, či předběžné sledování razících prací za účelem odhalení případných anomálií.

2.3 Bezpečnostní rizika u metody TBM

Metoda TBM je velmi náročná na přesné naplánování, provedení podrobných průzkumů a následovně zvolení optimálního razícího stroje. Tato samotná podrobná příprava minimalizuje výskyt rizik v době stavby. Předběžné plánování musí být provedeno co nejpřesněji, jelikož TBM nedokáže zareagovat na výraznou změnu podmínek tak lehce jako konvenční metody a může ještě i k přerušení či zastavení ražeb.

I přes vyspělost metody TBM určitá rizika existují, pro jejich popis si vypomohu citací: „Podmínkou pro vytvoření úspěšné (tj. bezpečné, spolehlivé a hospodárné) koncepce mechanizovaného štítu je důkladná identifikace souvisejících rizik. Ta mohou být geologické, provozní nebo ekologické povahy, nebo mohou být spojena se stávající infrastrukturou. Pro správnou identifikaci rizik je potřeba důkladné posouzení zeminy, které musí kromě obecných údajů o základové půdě zjistit i všechny dostupné informace o občas se vyskytujících rizících, jako jsou překážky nebo místní výskyt těžkých geologických podmínek.“ [3]
Rizika se eliminují předpoklady požadovanými na razící štít, ty členíme na dva druhy:

Základní:

- Vniklé tlaky zemních vod či hornin na obálku štítu. V minimální míře může dojít k závalu štítu a jeho zaseknutí. Z tohoto důvodu mají štity možnost otáčení na obě strany, pro samostatné vyproštění.
- Štít musí sloužit jako spolehlivé zajištění celby proti tlakům podzemních vod, hornin a zajistit pravidelný postup stroje po trase. I v těch nejméně vhodných horninách, či zvodněných zeminách, to lze zajistit za pomoci bentonitových, zeminových či pneumatických štítů s přetlakovou přepážkou. Ty vyvíjejí přesný tlak na zeminu, tím nedochází k závalu štítů a zemina či hornina může být postupně odebrána.
- Omezení nadvýlomů, které by mohly mít vliv nejen na vznik vícenákladů, ale i deformaci hornin v nadloži, vzniku poruch, sesuvů či sedání v nadložních vrstvách. V porovnání s NRTM jsou vzniky nadvýlomů méně pravděpodobné, navíc lze logistické prostředky vybavit váhou, která přesně vyhodnotí množství odvážené rubaniny.
- U štítů fungujících pomocí tlaků na horninu, musí být zajištěno, aby nově vznikající emulze (směs rubaniny s pěnou či bentonitem) nevnikla do oblasti stroje a zapříčinila poruchu.
- Štíty fungující za pomocí tlaků na horninu, je nutné vybavit kompresní komorou, aby dělníci opravující štít, kde je vyšší tlak než atmosférický, byli chráněni.
- Nebezpečí může hrozit následkem špatného průzkumu, případně výskytu nepředpokládané poruchy v trase tunelu. To může mít za následek zaseknutí, či zavalení štítu. K závalu došlo při ražbě Gothardského tunelu (uvíznutí v trhlině skály vyplněné kamennou drtí). Stroj byl vyproštěn za pomocí vyražené štoly z vedlejšího tubusu a zainjektovali nadloží [6].
- Pro co nejmenší poruchy v okolí tunelu a pro bezpečnost osádky je nutné zajistit co nejrychlejší uložení tubingů a zajistění spolupůsobení s horninou. Rychlost uložení zajistí automatický ekrer (bez potřeby pohybu osádky pod obnaženou horninou), spolupůsobení zajistuje vháněná injektaž do mezery mezi tubing a horninu. Injektaž musí mít rychlý náběh pevnosti.
- Možné nebezpečí může vzniknout nedodržením stanovených předpisů a plánů. V případě lidské chyby musí být odstranění zajištěno kvalitním kontrolním systémem zhotovitele, či spolupůsobení kontrol zhotovitele-investor. Nicméně TBM není na lidské činnosti tak závislá jako NRTM a druh činnosti na stroji vyžaduje využívání kvalitní osádky, čímž je riziko také zmenšeno.
- Případné nedodržování plánů vlivem geologie masivu, poměrně spolehlivě odhalí řídicí systém, umístěný přímo na stroji, který neustále monitoruje okolí (hornina, stroj geologie v trase atd.) a porovnává skutečnost s plánem.
Rozšířené požadavky – upřesňují podklady přímo pro prováděnou stavbu daného tunelu. K jejich popisu si vypomůžu tabulkou z článku Prof. dr. - Ing. Markuse Thewese: [3]

<table>
<thead>
<tr>
<th>Součásti štítu</th>
<th>ROZŠÍŘENÉ požadavky</th>
<th>Přístupy k řešení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čelba</td>
<td>a) průzkum před čelbou, lokalizace překážek</td>
<td>a) vrtání před čelbou, geofyzikální průzkum před čelbou</td>
</tr>
<tr>
<td></td>
<td>b) stabilizace zeminy/horniny před čelbou</td>
<td>b) ochranné deštínky z injektáže a utěsnění oblasti, vytvářené zevnítř mechanizovaného štítu</td>
</tr>
<tr>
<td></td>
<td>c) údržbářské práce v prostředí tlaku pažícího media > 3,6 bar (německý předpis pro práci ve stlačeném vzduchu)</td>
<td>c) možnost vstupu do ramen řezné hlavy s pouzdry nástrojů, instalace profesionálního potápěčského zařízení (speciální respirační plyn, zařízení pro saturaci potápění)</td>
</tr>
<tr>
<td>Ražba</td>
<td>a) ražba ve velmi proměnlivých zeminových podmínkách</td>
<td>a) adaptabilní mechanizované štity s kombinovanou technologií práce</td>
</tr>
<tr>
<td></td>
<td>b) velmi abrazivní hornina/zemina</td>
<td>b) opatření pro úpravu vlastností, speciální nástroje, ochrana opotršení a monitoring</td>
</tr>
<tr>
<td></td>
<td>c) zemní plyn v hornině/zemině</td>
<td>c) zabezpečení proti výbuchu, přeměna na systém zajištění rovnováhy na čelbě kapalinou</td>
</tr>
<tr>
<td></td>
<td>d) zvládání balvanů v zemině</td>
<td>d) kombinace nožových nástrojů a valivých dlát</td>
</tr>
<tr>
<td></td>
<td>e) zvládání přechodů mezi zeminou a skalní horninou</td>
<td>e) řízení kontaktního tlaku u řezné hlavy, ochrana proti opotřebení + monitoring, injektáž před čelbou</td>
</tr>
<tr>
<td>Tlak rubaniny</td>
<td>a) neucpávání se jilem</td>
<td>a) střední řezná hlava, optimalizace toku, vysokotlaké trysky</td>
</tr>
<tr>
<td></td>
<td>b) řízení množství dopravované rubaniny</td>
<td>b) pásový dopravník vybavený váhou, laserový snímač, průtokoměr, sensory hustoty</td>
</tr>
<tr>
<td></td>
<td>c) zvládání tekuté konzistence rubaniny u štítů EPB</td>
<td>c) čerpadlo na husté látky, pomocný hydraulický okruh</td>
</tr>
<tr>
<td>Řídící systém</td>
<td>a) složité podmínky pro řízení a monitorování</td>
<td>a) proces řízení ražby: parametry pro vedení štítu z interdisciplinárního zpracování geotechnických a geodetických údajů a údajů o stroji</td>
</tr>
<tr>
<td>Údaje o stroji</td>
<td>a) sledování kvality tunelového ostění</td>
<td>a) automatické měření mezery mezi obálkou koncového dílu štítu a ostění, měření pohybů prstence ostění</td>
</tr>
</tbody>
</table>
2.4 Opatření pro odstranění rizik u metody TBM u tunelu metra V.A

Využíváním rovnovážných tlaků nedochází k tvoření nových sil či napětí v okolí tunelu, což eliminuje výskyt otřesů a sedání nadloží na minimum (při stavbě metra v Los Angeles dosažen dokonce nulový pokles s použitím zemninového štítu [4]) na což je kladen velký důraz právě v zastavěných územích, jakým Praha bezesporu je. V průběhu ražby se štít neustále posouvá kupředu po trase. To zajišťuje 16 dvojic hydraulických lisů zapřených o poslední díl segmentového ostění (5). Zde
může docházet k deformaci již osazených segmentů tlakem (např. stavba vysokorychlostní tratě Madrid – Segovie – Valladolid [5]), proto oproti prvotním plánům došlo k zvýšení množství lisů a tím rozmístění tlaků. Po každém posunu stroje o 1,5 metru dochází k osazení nového prstence segmentů za pomocí automatického erektoru. K přímému převedení tlaků na ostění vypomáhá injektáž dvousložkovou směsí (obr. 15). Dostatečně rychlé rozmístění ostění (bez přítomnosti dělníka – nehrozí zával) a rychlý náběh pevnosti injektážní malty opět napomáhá k minimálním deformacím horniny v okolí.

Obr. 15 Detail ostění a dotěsnění ostění u TBM, 1 – štít, 2 – přítlačný lis posunu jící štít, 3 – montáž segmentů, 4 – montovaný prstenec, 5 – těsnící kartáče nebo plechy, 6 – hotový prstenec, 7 – zpětná klapka, 8 – zainjektovaný prostor.

Mezi nedílné součásti razícího stroje pro metro V.A patří vážní zařízení umístěné na dopravníkém pásu, kontrolující množství odebrané rubaniny a tím eliminující vznik nadvyšům a sedání nadloží, dále hydraulický systém detekce, zajišťující optimální a bezpečný způsob ražby, rozsáhlý řídící systém a sběr dat korigující skutečnost s plánovanými hodnotami a v neposlední řadě je štít vybaven systémem injektážních vrtů, který také může sloužit na sondování před čelem výrubu. Tím se upřesňují geologické podmínky v trase a odhalují případné anomálie. Z důvodu předpokládané rychlosti ražby (teoreticky až 900 m za měsíc), musela být doprava automatizována. Odvoz rubaniny a přísně segmentů ostění je prováděn za pomocí pásové dopravy, která je výrazně bezpečnější a lépe plánovatelná, než doprava kolejová či automobilová u metody NRTM.
2.5 Porovnání metod NRTM s TBM z hlediska bezpečnosti

Z popsaných hledisek je patrno, že metoda TBM je výrazně bezpečnější metodou, nežli NRTM. Pro upřesnění uvádíme zásadní body:

- Při NRTM část prací vždy probíhá s nezajištěným vyraženým stropem. U metody TBM dělníky nejdříve chrání plášť štítu a následně segmentové či stříkané ostění, které ukládá stroj, proto nehrozí zával osádky.
- U TBM neprobíhají trhací práce, nehrozí tedy nehoda při odstřelu a nevznikají otřesy v nadloží.
- S TBM lze zajistit až nulový pokles nadložních vrstev, nehrozí tedy poškození nadzemní zástavby.
- U razících strojů jsou procesy prováděny automatizovanými zařízeními, nehrozí tedy takový vliv lidské chyby.
- Hygienické podmínky na stavbě jsou na daleko vyšší úrovni.

Obr. 16 Podhled pod razícím komplexem v době ražby – velmi dobré hygienické podmínky.

Výhod razících strojů oproti NRTM z pohledu bezpečnosti práce je mnoho a z tohoto důvodu je TBM často volena jako prováděcí metoda v zahraničí.
3 EKONOMICKÉ ZHODNOCENÍ METOD

Vývoj nákladů u jednotlivých metod je rozdílný a působí na něj řada vnějších faktorů, například skladba geologických podmínek trasy tunelu, plánovaná délka tunelu, požadovaná doba výstavby, právní předpisy v dané oblasti, skladba vybavení a znalostí jednotlivých zhotovitelů a velká šíře dalších prvků ovlivňujících rozdílné metody. U metody NRTM jsou pořizovací náklady nižší a délka tunelu na ně nemá tak velký vliv. Oproti tomu pořizovací náklady na razící stroje jsou velmi vysoké a pouze u tunelu dostatečné délky lze metodu TBM považovat za ekonomicky návratnou. Na druhé straně razící stroje jsou ve velké míře automatické a zajišťují vysokou rychlost provádění, což cíleně snižuje náklady na stavbu. Náklady na výstavbu se tedy velmi liší dle druhu navrženého projektu, odpovídajícího stanoveným vnějším podmínkám.

Nemohu v této kapitole popisovat všechny druhy nákladů, odlišující se dle druhu zabezpečení výrubu. Použití a náklady na zajišťovací materiály jsou obdobné. Pokud výrub zajišťujeme pouze stříkaným betonem s výztuží, náklady na něj jsou stejné u obou metod a liší se pouze výdaji na provádění (ruční až poloelectronizované u NRTM a většinou plně-automatické u TBM). To samé platí u osazování obloukových výztuh, injektáží okolí a dalších metod zajištění. Náklady na lidské zdroje se nicméně mohou výrazně lišit v závislosti na stavu tunelu, jeho vousích podmínkách a jiných faktorech. V následných kapitolách bych se chtěl věnovat rozdílům u jednotlivých metod. Celkový rozbor by byl až moc rozsáhlý. Pro transparentnost porovnání nákladů jednotlivých metod, jsem náklady u NRTM i TBM rozdělil na primární a provozní náklady.

3.1 Náklady na metodu NRTM

Metoda NRTM je na našem území dlouhodobě používána a prováděcí firmy s ní mají velké zkušenosti, což se projevuje na dobře zpracovaném postupu prací a optimalizací nákladů na stavbu. Nicméně NRTM má jinou skladbu nákladů, než metoda razícího stroje, má nižší prvotní výdaje na strojní vybavení a je více závislá na mzdových nákladech, jelikož většina prací je pouze polomatematická a je vždy nutné zajištění lidí na dělnické, pomocné práce. „Náklady na stavbu nejvýrazněji ovlivňují geologické podmínky na trase. Náklady na výstavbu v obtížných geologických podmínkách jsou výrazně vyšší než v příznivých geologických podmínkách a kolísají v rozmezí 90 až 270 eur/m³ výrubu.“ [1]
Ing Ondřej Svoboda: Porovnání metod TBM a NRTM při ražení dopravních tunelů

Tabulka č. 2 – průměrné náklady na stavbu tunelu.

<table>
<thead>
<tr>
<th>Geologické podmínky</th>
<th>Náklady na 1 m tunelové trouby (DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>délka do 2 km</td>
</tr>
<tr>
<td>Dobré</td>
<td>16 000</td>
</tr>
<tr>
<td>Průměrné</td>
<td>22 000</td>
</tr>
<tr>
<td>Špatné</td>
<td>47 500</td>
</tr>
</tbody>
</table>

Výdaje na hrubou stavbu tunelu se pohybují v rozmezí 70 až 80 % u tunelu s příznivými geologickými podmínkami a 85 až 90 % u tunelu s geologickými podmínkami nepříznivými.

Tabulka č. 3 – Podíl nákladů na jednotlivé činnosti při výstavbě

<table>
<thead>
<tr>
<th>Průřez výrubu</th>
<th>93 m²</th>
<th>105 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Třída výrubu</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Podíl na činnosti</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Zřizování výrubu</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Zajišťování výrubu</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Drenáž</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Sekundární ostění</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Základ opěr a</td>
<td>chodníků</td>
<td>7</td>
</tr>
<tr>
<td>Izolace</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Vozovka</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mezistrop</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Celkem bez ZS</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

Z důvodu transparentního porovnání metod jsem zvolil členění nákladů na primární a provozní.

3.1.1 Primární náklady NRTM

Jak již bylo zmíněno konvenční metoda NRTM je v České Republice používána již dlouhou dobu, prováděcí firmy s ní mají velké zkušenosti a jsou velmi dobře vybavené různými druhy strojů. Tato vybavenost snižuje počáteční výdaje na nové stroje, což je také jeden z důvodů proč NRTM byla v minulosti upřednostňována před TBM. Většina vybavení, používaného u metody NRTM, jsou klasické stavební stroje a majitel je tedy může využít i na jiných druzích
Ing Ondřej Svoboda: Porovnání metod TBM a NRTM při ražení dopravních tunelů

staveb (pozemní, dopravní stavby, zemědělství atd.) a tím je dostatečně vytížit v případě nedostatku staveb podzemních.

Prvotní náklady na nové stroje jsou tedy výrazně nižší. Počet potřebných strojů záleží na druhu tunelu a stanoveném postupu prací. V případě ražby z jednoho portálu, postačí jedna sestava strojů, ale musí prováděcí firma razit z více portálů. Aby se alespoň přiblížila výkonu a rychlosti ražby strojem TBM, musí postupovat minimálně z čtyř portálů, lépe ze šesti. Jelikož stavba tunelů je prováděna ve velmi omezeném prostoru, je postup ražby z více portálů náročný na stanovení optimálního postupu prací a nasazení vyššího počtu strojů a tím i lidí, zvyšuje náklady. Zvyšování počtu portálů, sestav či lidí má svou mez a po jejím překročení výkony již nerostou, ale vysoké množství se stává kontraproduktivním a dochází k poklesu výkonnosti.

3.1.2 Provozní náklady NRTM

I přes velký a rychlý vývoj stavebnictví v posledních letech, je při provádění podzemní stavby metodou NRTM zhotovitel závislý na velkém počtu zaměstnanců. Práce jsou pouze polouautomatické a je třeba využívat lidské zdroje k pomocným i technicky odborným pracím. Je potřeba zajistit lidsa na pomocné práce u trhacích prací, obsluhu velkého počtu strojů, práce při provádění stavebních prací jako jsou provádění izolací, ukládání armatury, bednění a betonaž primárního i sekundárního ostění. Jak již bylo zmíněno, počet zaměstnanců roste s požadavkem na rychlost výstavby, aby se rychlost alespoň částečně vyrovnala provádění metodou TBM. Náklady na lidské zdroje jsou silně ovlivňovány momentální situací na trhu, tím jak roste poptávka a nabídka těchto prací, může situace na trhu výrazně ovlivnit rozpočet stavby.

Obzvláště v současné době při poklesu celosvětového trhu, kdy objednatel více dbá na snížení výdajů, musí každý zhotovitel řešit snižování nákladů. Jednou z metod je způsob provádění prací inženýringem, jelikož náklady na vlastní zaměstnance jsou nejvyšší než náklady na zaměstnance externí, často i zahraniční firmy (vlastní zaměstnanci jsou až dvojnásobně dražší). Problémem bývá častý požadavek, aby se za prodej převedeno na provádění určitého počtu prací v podniku zaměstnanci. Většinou se tento požadavek uvádí v procentech z celkového objemu prací. To opět nавyšuje náklady na stavbu.

Z výše uvedených údajů vyplývá, že provozní náklady u nové rakouské tunelovací metody, jsou vyšší než u metody TBM. Zvláště pokud se jedná o stavbu delšího tunelu a zhotovitel musí plnit požadavek objednatele na rychlost výstavby, nasazuje vysoké počty sestav strojů a pracovníků, aby alespoň částečně vyrovnal výkon a rychlost tunelovacího stroje. Pak mohou být provozní náklady na metodu NRTM několikanásobně vyšší než u metody TBM.
3.2 Náklady na metodu TBM

„Celkové náklady na tunelování je možné podle Z. Eisensteina 1994 orientačně stanovit podle vzorce:

\[N = a + m \cdot t + n \cdot l \]

Kde a jsou primární náklady na strojní zařízení, přezdářezy, portály, přístupové komunikace, zařízení staveniště atd.,

\(m \) – provozní náklady na jednotku času,

\(t \) – doba potřebná k vyražení a zajištění tunelu,

\(n \) – přímé náklady na tunel (odvoz rubaniny, zajištění výrubu, vnitřní vybavení atd.),

\(l \) – délka tunelu.

U dlouhých tunelů jsou podle Z. Eisensteina velmi důležité náklady, závislé na délce doby výstavby. S nimi jsou totiž propojené i náklady na splácení úroků z úvěrů na výstavbu a vlivy inflace.“ [1]

Pro vhodnost porovnání nákladů volím členění na primární a sekundární složku nákladů.

3.2.1 Primární náklady TBM

U TBM jsou rozhodující nákladovou položkou pořizovací náklady na razící štít. Výše těchto nákladů závisí na druhu a konstrukci daného razícího stroje, jenž odpovídá plánovanému návrhu tunelové stavby.

„Na TBM komplex o průměru 11 až 12 m je nutné počítat orientačně s:

• 18 až 20 mil. eur na otevřený TBM s návěsy,
• 20 až 24 mil. eur na TBM s jednoduchým štítovým pláštěm a návěsy,
• přibližně 18 mil. eur na TBM s rozšiřováním průřezu“ [1]

V těchto cenách ale nejsou zahrnuty náklady na doplňující komponenty. Tyto specializované doplňky jsou dodány na požadavek objednatele a odpovídají návrhu provádění stavby. Jak již bylo uvedeno komplex lze doplnit kupříkladu o montážní celek tubingového segmentového ostění, vysouvatelný ochranný rošt, zařízení vrtaných kotev, trysky automatického nástřiku zpevňujícího betonu, injektážní soubor izolace, soubor průzkumných vrtů a další řadu doplňujícího vybavení. Je pouze na objednatele, aby důkladným výpočtem zvážil ekonomickou návratnost těchto velmi dobre fungujících, ale beze sporu drahých doplňků.

Jelikož rozdílní stroje vyrábějí pouze zahraniční výrobci (Švýcarsko, SRN, USA atd.), musí objednatel v neposlední řadě počítat s nemalými náklady na dovoz razícího soustrojí, jeho montáž na stavbě a potřebnou dobu na zaučení osádky.

Z výše uvedených informací plyne, že je velmi výhodné pokud zhotovitel je již u návrhu nového tunelového komplexu a specifikace stavby může ovlivnit tak, aby nově navrhovaná stavba odpovídala již jemu vlastněnému stroji.

3.2.2 Provozní náklady TBM

Podle vyjádření výrobců jsou náklady na údržbu a drobné opravy malé. Větší položkou jsou náklady na nová valivá dláta. „Podle údajů firmy Wirth je možné na opotřebování vrtacích dlát počítat s orientačními náklady asi 5 eur na 1 m³ rozpojené horniny v středně tvrdých vápencích a pískovcích, resp. 8 až 10 eur/m³ v tvrdých horninách krystalinika.“ [1] Mezi provozní náklady je nutné počítat náklady na odběr elektrické energie. Odběr stroje plyne dle druhu rozpojované horniny a pohybuje se okolo 1500 KW/m tunelu. Dále je nutno zajistit přívod technologické vody na chlazení stroje a zkrápění horniny v množství cca 80 m³/hodinu. K odběru elektrického proudu a vody dochází také vlivem vnějších zařízení. Výhodou TBM je vysoká automatizace prací.

Velkým rizikem u TBM je malá možnost reakce na nepředpokládané situace. Tak jak se stalo při ražbě Gotthardského tunelu [6], kdy jeden z razicích strojů uvízl v neplánované poruše skalního masivu a musely být vynaloženy vysoké náklady na vyražení pomocného propojovacího tunelu, zainjektování okolí uvízlého stroje a vypřešení stroje. Jakákoli odstávka v provozu stroje a sebemenší pozastavení či prodloužení postupu ražby, se vzhledem k vysoké pořizovací ceně TBM velice promítne v ceně stavby tunelu.
3.3 Porovnání nákladů NRTM a TBM

Ekonomické srovnání obou metod neurčuje jednoznačně vhodnější metodu, vždy závisí na vnějších podmínkách stavby.

Primární náklady:

- Prvotní náklady na razící stroj jsou velmi vysoké. Dle druhu a vybavenosti stroje začínají od 350 mil. Kč, proto společnost kupující razící soustrojí musí mít k dispozici tunel vhodných parametrů a minimální délky 2,5 km tak, aby tato investice byla návratná.
- K nákupu TBM společnost přistupuje až v případě jistoty dostatečného počtu zakázek vhodných pro daný stroj, s dostatečnou délkou tunelů z důvodu absolutní návratnosti investice. Optimální je zajistit další návrhy tunelových staveb dle vlastního stroje.
- Výroba razícího stroje je dlouhodobá záležitosť. Doba výroby stroje a jeho dopravení na staveniště je minimálně jeden rok.
- Pro možnost nasazení razícího stroje je nutné předem provést dostatečně velký portál či šachtu, umožňující montáž stroje.

Obr. 17 Šachta pro montáž TBM, staveniště Vypich.
Provozní náklady:

- Metoda NRTM je pouze poloautomatická a je tedy závislá na lidské pomocné práci. Náklady na mzdy se pohybují od 20 do 40 % celkových nákladů a má na ně vliv stav na trhu práce.

- Zhotovitel musí vždy plnit závazné termíny, aby se rychlostí vyrovnal TBM, musí nasadit větší počet lidí a sestav strojů, provádějících ražbu z více portálů. To ovšem vždy výrazně prodražuje stavbu a vyšší počet lidí může být i kontraproduktivní výkonům.

- Postup prací konvenčním způsobem v extravilánu je závislý na prodlevě potřebné k dotvarování horniny před provedením sekundárního ostění. Délka prodlevy je závislá na druhu horniny v okolí a může být dlouhá i několik měsíců.

- Razící stroj může provádět profil pouze v podobě uzavřeného kruhu a musí se počítat s vícenáklady na vyrovnání dna pod vozovku či koleje. Metodou NRTM lze provést jakýkoli profil tunelu.

Obr. 18 Ražba tunelu Blanka.
Přidružené výdaje:

- U metody TBM lze dosáhnout až nulového sedání nadložního terénu. Nemusejí se tedy vyňakládat vysoké výdaje na zajištění nadzemní zástavby.
- Oproti tomu metoda NRTM využívá k postupu razící práce a musí se počítat s dosedáním terénu. Náklady na zajištění v husté zástavbě, případně náklady na opravy jsou výraznou položkou rozpočtu zhotovitele.

Vícenáklady v případě neplánované poruchy geologické skladby v trase:

- Konvenční metoda se prodražuje v případě nepříznivých geologických podmínek, ale dokáže operativně reagovat na neplánované stavy horninového prostředí.
- Razící stroj nedokáže zareagovat na výraznější geologickou poruchu v trase tunelu. Pokud dojde k zaseknutí stroje, musí být vynaloženy vysoké náklady na vyproštění (injektáž horniny, ražby pomocných tunelů atd.). Vzhledem k vysoké pořizovací ceně soustrojí, je jakékoli zastavení či zpomalení oproti plánu vysoce nákladné.

Při použití metody razícího stroje jsou primární náklady několikanásobně vyšší, ale samotné provádění je levnější a daleko rychlejší. Pro návratnost investice do razícího stroje je nutné míť tunel dostatečné délky (min. 2,5 km), aby byl stroj rentabilní. Čím více tunelů dostatečné délky, tím více majitel vydejí. S metodou NRTM mají zhotovitelé na našem území vysoké zkušenosti, jsou nastaveny vhodné postupy prací a kontroly nákladů. Taktéž vzhledem k malé velikosti území a tím i menšímu počtu tunelů, dlouho trvalo, než se některá z firem odhodlala k vysoké investici do razícího soustrojí a metoda TBM byla na území ČR opomíjena.
4 Doporučení vhodných nabídek pro nasazení TBM a NRTM

4.1 Vliv zadávacích podmínek

Podmínky vyplývající ze zadání stavby objednatelem, již dopředu mohou a často určují, jakou metodu prováděcí firma vybere. Pokud je požadavek na minimální pokles nadloží je samozřejmé, že tunel bude prováděn metodou TBM, tak jak tomu bylo u metra V. A, kde zadávací dokumentaci již určovala způsob provádění razícím strojem. Celkově návrh trasy tunelu v zastavěném území, musí respektovat stávající stavby, aby nedošlo k jejich poškození, nebo poškození bylo minimální. V místě zastavěných ploch by měla být metoda TBM upřednostňována. Pokud se jedná o stavbu krátkého tunelu (do 2,5 km), nasazení razícího stroje je nejdejná vhodné, musí se tedy stavba provádět konvenční metodou a dokumentace tomu musí být přizpůsobena, tak aby poklesy neohrozily zástavbu, nebo musí objednatel respektovat vyšší cenu díla, ale s menšími riziky. V případě velmi dlouhých tunelových staveb, jako jsou Gotthardský tunel (57 km, 2 tunelové trubky) a Lötschbergský tunel (35 km, 2 tunelové trubky) je nutné nasazení razících strojů, jelikož stavba takto dlouhých tunelů konvenční metodou by trvala příliš dlouhou dobu, zhotovitel by vynaložil neúměrně vysoké provozní náklady a na stavbě by prodělal.

Projektant by celkově měl mít povědomí o vybavenosti a schopnostech zhotovitelských firem, aby nenavrhoval způsoby nevhodné a nezvyklé na daném území a tím neprodražoval cenu díla. Potřebná je spolupráce při zhotovování realizační dokumentace s již vybraným dodavatelem.

4.2 Vliv geologických podmínek

V současné době jsou razící stroje již takových kvalit, že je lze nasadit na jakoli nepříznivé geologické podmínky. Ale velkou nevýhodou TBM je, že nedokáže reagovat na změnu geologie. Kupříkladu vniknutí stroje s otevřeným štítem do písčitých, štěrkových a jiných poruch masivu, dojde k jeho zavalení a náklady na vyproštění jsou velmi vysoké a zpomaluje se postup prací. Naopak vnikne-li stroj s bentonitovým či pneumatickým štítem do pevných poloh, nedokáže horninu prorážet, nebo dojde k velkému zpomalení postupu prací. Nová rakouská metoda je velmi variabilní a na plánovanou či neplánovanou změnu podmínek dokáže reagovat velmi rychle a pouze s nízkými vícenáklady. Proto je velmi důležité předem znát podmínky na trase plánovaného tunelu. Z těchto důvodů je nutné provádět velmi dobrý průzkum trasy tunelu a to jak v době plánování tras, před nasazením strojů, ale i v době provádění, aby eliminoval vznik nepředpokládaných událostí.
Předběžným průzkumem je nutné především určit:

- Směry ploch nespojitosti, jejich druh, hustotu, sklon a prostorovou orientaci.
- Nálezy krasových dutin.
- Výskyt a mocnost pokryvných útvarů.
- Výskyt a výplň poruchových zón.
- Mechanické vlastnosti hornin na trase tunełu.

Pokud ale jsou podmínky konstantní, nebo na výskyt poruch je zhotovitel připraven, je rychlost TBM daleko vyšší, obzvláště pak ve velmi tvrdých horninách, kde náklady na konvenční metodu jsou vyšší a rychlost postupu je daleko menší.

4.3 Vliv bezpečnostní analýzy

Z pohledu bezpečnosti je TBM daleko vhodnější než NRTM, vyplývá to zejména z těchto bodů:

- Při NRTM část prací vždy probíhá v nezajištěném stropě. U TBM osádku chrání pláště štítu, nebo definitivní ostění. Nebezpečí závalu je minimální.
- TBM lze zajistit až nulový pokles nadloží. Nedochází k poškození nadzemní zástavby a inženýrských sítí.
- Práce razících strojů jsou automatizovány, není zde tak častá součinnost stroje s osádkou, nehrozí tedy vznik chyby vlivem lidského faktoru. Vznik jakékoliv chyby je méně pravděpodobný.
- U TBM je doprava většinou řešena pásovými dopravníky. Nevznikají spalovací plyny, nezvyšuje se prašnost v ovzduší, nehrozí vznik srážky.

4.4 Vliv ekonomické analýzy

Ekonomické srovnání obou metod nemá tak jednoznačný výsledek jako předchozí analýza. Rentabilita jedné z metod závisí na stanovených podmínkách budoucí stavby a lze ji vypsat v následujících bodech:

- Provozní náklady. Práce razícího stroje jsou vysoce automatizovány a jsou tedy pouze nízké náklady na mzdy, elektrický proud atd. Konvenční metoda
Ing Ondřej Svoboda: Porovnání metod TBM a NRTM při ražení dopravních tunelů

je vysoce závislá na součinnosti strojů a osádky, plánování pracovních postupů je daleko komplikovanější a je k němu potřeba většího počtu odborných zaměstnanců. Provozní náklady jsou daleko vyšší u metody NRTM.

- Poruchy geologie v trase tunelu. NRTM dokáže operativně reagovat na změnu podmínek, TBM na změny reagovat nedokáže a případně více náklady na případné vyproštění stroje jsou vysoké.

Ekonomická návratnost tedy vyplývá na stanovených podmínkách plánovaného tunelu. TBM je z důvodu vysokých prvotních nákladů rentabilní pouze u tunelů délky 2,5 km a více s vhodnými podmínkami na trase tunelu. Velkou roli zde hraje současná vybavenost firmem provádějících podzemní stavby. Zde by mohlo dojít k výrazné změně nákupem dvou razících strojů firmou Metrostav a.s. a metoda TBM by měla být více používána na dalších stavbách.

![Obr. 19 Hotové tubingové ostění tunelové trouby, metro V.A](image-url)
ZÁVĚR

Porovnáním obou metod jsem došel k závěru, že nová rakouská tunelovací metoda má silné postavení na českém trhu, jelikož se jedná o dlouhodobě používanou metodu, s níž mají zhotovitelé velké zkušenosti, jsou velmi dobře strojně vybaveni a primární náklady metody NRTM jsou několikanásobně nižší než u metody razících strojů. Nicméně po opakovaných komplikacích na stavbě tunelu Blanka, bych z důvodu bezpečnosti provádění a pro minimalizaci sedání nadloží doporučil používání, v tomto ohledu bezpečnější metody TBM. To také potvrzuje fakt, že následující stavba metro V.A byla již projektována s požadavkem na použití metody TBM. Tato stavba podle mne bude přelomová a po prvotní vysoké investici ze strany zhotovitele, bude využívání razících strojů na našem území narůstat.

Psaním této práce jsem si rozšířil znalosti v oblasti hornického inženýrství, které bych rád využil při ražbě tunelů, tedy ve svém profesním životě.
SEZNAM POÚŽITÉ LITERATURY:

[2] Zásady a principy NRTM jako převažující metody konvenčního tunelování
v ČR – Autorský kolektiv: Členové pracovní skupiny ČTuK pro konvenční
 tunelování
[3] Problémy při ražbách tunelovacími stroji (TBM) – Nová definice současného
 stavu vývoje – M. Thewes, Institut for tunneling, pipeline Technology and
 construction management, Ruhr-University Bochum, Časopis Tunel, ITA-
 AITES WTC 2007, Praha
 Cyroň, P. Hybský, Š. Ivor, J. Prajer, F. Schiffauer, O, Hasík – Časopis tunel
 3/2011
 Anadón, T. Just - Časopis tunel 4/2010
[6] Velký, větší, největší, Tunel (Stavby, Civilizace, Technologie, Současnost,
 Společnost) - Rikkardson – dokument National Geographic
SEZMAM OBRÁZKŮ:

Obr. 1 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Trojafetový počítačem řízený vrtací vůz AC Robot Boomer

Obr. 2 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Kinematické vrtací kladivo na vrtacím vozu

Obr. 3 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Část Fenner-Pacherovi křivky

Obr. 4 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Část Fenner-Pacherovi křivky

Obr. 5 Montáž vyztužování primárního ostění, Metro V.A, ražený úsek, Vertikální členění ražby - O. Svoboda

Obr. 6 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Ocelová oblouková výstroj

Obr. 7 Nájezd bednícího vozu sekundárního, horního ostění, tunel Blanka JTT, portál Letná – O. Svoboda

Obr. 8 Příprava izolace před svařením jednotlivých dílů – tunel Blanka, Technologické centrum – O. Svoboda

Obr. 9 Pracovní oblasti razícího stroje a pracovní zóny při provádění ražeb metodou TBM, podle SIA 198/93, Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Pracovní oblasti razícího stroje, podle zajišťování výrubu

Obr. 10 Výstavba tunelu ve skalních horninách - F. Klepsat, P. Kusý, L. Mařík, Razící stroj bez pláště

Obr. 11 Razící stroj s jednoduchým pláštěm, stroj Tonda MTS Metro V.A - www.metrosatv.cz

Obr. 12 Detail vrtací hlavy, stroj Tonda, MTS, Metro V.A – O. Svoboda

Obr. 13 Řídící jednotka razícího stroje, stroj Tonda, MTS, Metro V.A – O. Svoboda

Ing. Ondřej Svoboda: Porovnání metod TBM a NRTM při ražení dopravních tunelů

Obr. 15 Detail ostění a dotěsnění ostění u TBM, Technologie ražeb tunelovacími stroji se po 30 letech vrací na pražské metro – B. Šebesta, F. Shiffauer, P. Vítek – Časopis tunel 2/2010

Obr. 16 Podhled pod ražícím komplexem v době ražby, Velmi dobré hygienické podmínky – O. Svoboda

Obr. 17 Šachta pro montáž TBM, Staveniště Výpich - www.metrostav.cz

Obr. 18 Ražba tunelu Blanka - www.tunelblanka.cz

Obr. 19 Hotové tubingové ostění tunelové trouby, metro V.A – O. Svoboda

SEZNAM TABULEK:

Tabulka č. 1 Zásady a principy NRTM jako převažující metody konvenčního tunelování v ČR – Autorský kolektiv: Členové pracovní skupiny ČTuK pro konvenční tunelování, str.7

Tabulka č. 2 Výstavba tunelu ve skalních horninách - F. Klepsatel, P. Kusý, L. Mařík, Průměrné náklady na stavbu tunelu

Tabulka č. 3 Výstavba tunelu ve skalních horninách - F. Klepsatel, P. Kusý, L. Mařík, Podíl nákladů na jednotlivé činnosti při výstavbě tunelu

SEZNAM PŘÍLOH:

Příloha č. 1 Tunel Blanka, situace – Metrostav a.s.
Příloha č. 2 Tunel Blanka, podélný řez – Metrostav a.s.
Příloha č. 3 Metro V. A, situace – Metrostav a.s.
Příloha č. 4 Metro V. A, podélný řez – Metrostav a.s.
Příloha č. 5 Fotodokumentace staveb