VYSOKÁ ŠKOLA BÁŇSKÁ -
TECHNICKÁ UNIVERZITA OSTRAVA
Hornicko-geologická fakulta
Institut geodézie a důlního měřictví

ZAMĚŘENÍ IDENTICKÝCH BODŮ PRO
ZPŘESŇUJÍCÍ TRANSFORMACI SOUVISLÉHO
RASTRU PŘI OBNOVĚ KATASTRÁLNÍHO
OPERÁTU V KATASTRÁLNÍM ÚZEMÍ UBLO

Diplomová práce

Autor: Bc. Eva Kašíková
Vedoucí bakalářské práce: Ing. Černota Pavel, Ph.D.

Ostrava 2013
Zadání diplomové práce

Student:
Bc. Eva Kašíková

Studijní program:
N3646 Geodézie a kartografie

Studijní obor:
3646T007 Inženýrská geodézie

Téma:
Zaměření identických bodů pro zpřesňující transformaci souvislého rastru při obnově katastrálního operátu v katastrálním území Ublo
Surveying of Identical Points for Precise Transformation of Connected Raster by Renewal of Cadastre Dokumentation in Cadastral District Ublo

Zásady pro vypracování:
1. Výběr vhodných identických bodů z využitelných podkladů
2. Připojení měřické sítě do souřadnicového systému S-JTSK
3. Zaměření identických bodů
4. Početní a grafické zpracování naměřených dat

Seznam doporučené odborné literatury:
Zákon č. 344/1992 Sb., o katastru nemovitostí České republiky (katastrální zákon), ve znění pozdějších předpisů
Zákon č. 200/1994 Sb., o zeměměřictví a o změně a doplnění některých zákonů souvisejících s jeho zavedením, ve znění pozdějších předpisů
Vyhláška č. 31/1995 Sb., ve znění pozdějších předpisů a vyhlášky č. 311/2009 Sb.

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce:
Ing. Pavel Černota, Ph.D.

Datum zadání:
31.10.2012

Datum odevzdání:
30.04.2013

Ing. Pavel Černota, Ph.D.
vedoucí institutu

prof. Ing. Vladimír Slivka, CSc., dr.h.c.
děkan fakulty
Prohlášení

- Celou diplomovou práci věcně přihl., jsem vypracovala samostatně a uvedla jsem všechny použité podklady a literaturu.

- Byla jsem seznámena s tím, že na moji diplomovou práci se plně vztahuje zákon č.121/2000 Sb. - autorský zákon, zejména § 35 – využití díla v rámci občanských a náboženských obřadů, v rámci školních představení a využití díla školního a § 60 – školní dílo.

- Beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou práci užít (§ 35 odst. 3).

- Souhlasím s tím, že jeden výtisk diplomové práce bude uložen v Ústřední knihovně VŠB-TUO k prezentčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že údaje o diplomové práci, obsažené v Záznamu o závěrečné práci, umístěném v příloze mé diplomové práce, budou zveřejněny v informačním systému VŠB-TUO.

- Souhlasím s tím, že diplomová práce je licencována pod Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licenci. Pro zobrazení kopie této licence, je možno navštívit http://creativecommons.org/licenses/by-nc-sa/3.0/

- Bylo sjednáno, že s VŠB-TUO, v případě zájmu o komerční využití z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona.

- Bylo sjednáno, že užít své dílo – diplomovou práci nebo poskytnout licenci k jejímu komerčnímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mnie požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne 30. 4. 2013

Bc. Eva Kašíková

2013
ANOTACE

V diplomové práci je popsána jedna z etap obnovy katastrálního operátu, zaměření identických bodů pro zpřesňující transformaci souvislého rastru při obnově katastrálního operátu v katastrálním území Ublo. Diplomová práce v první části seznamuje čtenáře se základními pojmy. V následující části je popsán výběr vhodných identických bodů a jejich grafické zpracování. Na tuto část navazuje měření v terénu připojením měřické sítě do systému S-JTSK a vlastní zaměření identických bodů. Poslední část je zaměřena na výpočty souřadnic všech zaměřených bodů a vyhotovení dokumentace.

Klíčová slova: Měření, identické body, GNSS, podrobné polohové bodové pole, transformace rastru

SUMMARY

My diploma thesis describes one of the renewing phases of the registry authority, surveying of identical points for precise transformation of connected raster by renewal of cadastral documentation in cadastral district Ublo. Thesis introduces basic concepts in the first part. The following section describes the selection of appropriate identical points and creating graphical attachments. This part is followed by field measurements surveying networks connected to the S-JTSK and geodetic surveying of own identical points. The last part is directed on calculating of coordinate’s points which were measured and then elaboration of documentation is made.

Keywords: Measuring, identical points, GNSS, detailed position of the orientating field, transformation of the raster
OBSAH

1. ÚVOD ... 8
2. ZÁKLADNÍ POJMY ... 9
3. POPIS LOKALITY .. 14
4. VÝBĚR A PŘÍPRAVA VYUŽITELNÝCH PODKLADŮ .. 16
 4.1 Přehled ZPMZ .. 16
 4.2 Přehled identických bodů 18
 4.3 Vyhledání identických bodů v terénu 19
5. ZAMĚŘENÍ IDENTICKÝCH BODŮ 20
 5.1 Rekognoskace .. 20
 5.2 Měřické práce .. 21
 5.2.1 Použité měřické metody 22
 5.2.2 Měřická síť ... 25
 5.2.3 Podrobné zaměření identických bodů 26
 5.2.4 Přesnost měření .. 26
 5.3 Měřické pomůcky ... 29
 5.4 Výpočetní práce a grafické zpracování 34
 5.4.1 Výpočet naměřených dat technologií GNSS 34
 5.4.2 Výpočet naměřených dat geodetickými metodami . 35
 5.4.3 Záznam podrobného měření změn (ZPMZ) 36
6. ZÁVĚR .. 39

SEZNAM POUŽITÉ LITERATURY ... 40
SEZNAM OBRÁZKŮ ... 42
SEZNAM TABULEK ... 43
SEZNAM PŘÍLOH .. 44
SEZNAM POUŽITÝCH ZKRATEK

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Jednání</th>
</tr>
</thead>
<tbody>
<tr>
<td>ČR</td>
<td>Česká republika</td>
</tr>
<tr>
<td>ČÚZK</td>
<td>Český úřad zeměměřický a katastrální</td>
</tr>
<tr>
<td>DGPS</td>
<td>Diferenciální GPS</td>
</tr>
<tr>
<td>DP</td>
<td>Diplomová práce</td>
</tr>
<tr>
<td>EGNOS</td>
<td>European Geostationary Navigation Overlay Service – Evropská „podpůrná“ geostacionární navigační služba</td>
</tr>
<tr>
<td>ETRF</td>
<td>Evropský terestrický referenční rámec</td>
</tr>
<tr>
<td>ETRS</td>
<td>Evropský terestrický referenční systém</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System – Globální navigační satelitní systém</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System - Globální polohový systém</td>
</tr>
<tr>
<td>GTK</td>
<td>Globální transformační klíč</td>
</tr>
<tr>
<td>HRMS</td>
<td>Horizontal Root Mean Square – Střední kvadratická chyba horizontální</td>
</tr>
<tr>
<td>IB</td>
<td>Identické body</td>
</tr>
<tr>
<td>ISKN</td>
<td>Informační systém katastru nemovitostí</td>
</tr>
<tr>
<td>K.ú.</td>
<td>Katastrální území</td>
</tr>
<tr>
<td>Kat.</td>
<td>Katastrální</td>
</tr>
<tr>
<td>M.s.e.</td>
<td>Mean squared error – střední kvadratická chyba</td>
</tr>
<tr>
<td>Odst.</td>
<td>Odstavec</td>
</tr>
<tr>
<td>OKO</td>
<td>Obnova katastrálního operátu</td>
</tr>
<tr>
<td>PDOP</td>
<td>Parametr přesnosti polohy</td>
</tr>
<tr>
<td>PPBP</td>
<td>Podrobné polohové bodové pole</td>
</tr>
<tr>
<td>RES</td>
<td>Registr souřadnic</td>
</tr>
<tr>
<td>RTK</td>
<td>Kinematika v reálném čase, metoda měření GNSS</td>
</tr>
<tr>
<td>S-JTSK</td>
<td>Systém jednotné trigonometrické sítě katastrální</td>
</tr>
<tr>
<td>S-SK</td>
<td>Souřadnicový systém stabilního katastru</td>
</tr>
<tr>
<td>SGI</td>
<td>Soubor geodetických informací</td>
</tr>
<tr>
<td>SPI</td>
<td>Soubor popisných informací</td>
</tr>
<tr>
<td>TL</td>
<td>Triangulační list</td>
</tr>
<tr>
<td>Trig.</td>
<td>Trigonometrická</td>
</tr>
<tr>
<td>V.č.</td>
<td>výrobní číslo přístroje</td>
</tr>
<tr>
<td>VRMS</td>
<td>Vertical Root Mean Square – Střední kvadratická vertikální chyba</td>
</tr>
<tr>
<td>VRS</td>
<td>Virtuální referenční stanice</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation Systém - Americká „podpůrná“ geostacionární navigační služba</td>
</tr>
<tr>
<td>ZE</td>
<td>Zjednodušená evidence</td>
</tr>
</tbody>
</table>

2013
<table>
<thead>
<tr>
<th>ZhB</th>
<th>Zhušťovací body</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPBP</td>
<td>Základní polohové bodové pole</td>
</tr>
<tr>
<td>ZPMZ</td>
<td>Záznam podrobného měření změn</td>
</tr>
</tbody>
</table>
1 ÚVOD

Cílem mé diplomové práce je zaměření identických bodů pro zpřesňující transformaci souvislého rastru v katastrálním území Ublo a vyhotovit příslušnou dokumentaci. Zaměření se provádí jako jedna z etap obnovy katastrálního operátu přepracováním. Diplomová práce popisuje jednotlivé činnosti, které byly prováděny k dosažení cíle. Popisuje přípravu a získávání podkladů, vybrání vhodných identických bodů s jejich revizí, následné zaměření v terénu, celkové početní a grafické zpracování naměřených dat v kanceláři a tvorbu ZPMZ.

Digitalizace map je velkým krokem katastrálních úřadů, který probíhá na území celé České republiky a následně ulehčí spoustu činností, především v oboru katastru. Takto zpracované mapy lze efektivně aktualizovat, poskytovat dálkově prostřednictvím výměnných formátů a jednoduše archivovat.

2 ZÁKLADNÍ POJMY

Katastrální operát, dle § 4 [4]

Obsah katastru je uspořádán v katastrálních operátech podle katastrálních území. Katastrální operát tvoří:

a) soubor geodetických informací, který zahrnuje katastrální mapu a ve stanovených katastrálních územích i její číselné vyjádření

b) soubor popisných informací, který zahrnuje údaje o katastrálním území, o parcelách, o stavbách, o bytech a nebytových prostorech, o vlastnících a jiných oprávněných, o právních vztazích a právech a skutečnostech uvedených v § 2 odst. 4 písm. b) až i) [4]

c) souhrnné přehledy o půdním fondu z údajů katastru

d) dokumentace výsledků šetření a měření pro vedení a obnovení souboru geodetických informací, včetně seznamu místního a pomístního názvosloví

e) sbírka listin, která obsahuje rozhodnutí státních orgánů, smlouvy a jiné listiny, na jejichž podkladě byl proveden zápis do katastru.

Obnova katastrálního operátu, dle § 13 [4]

Je vyhotovení nového souboru geodetických informací ve formě grafického počítačového souboru a nového souboru popisných informací katastrálního operátu.

Lze ji provést:

a) novým mapováním

b) přepracováním souboru geodetických informací

c) na podkladě výsledků pozemkových úprav.

V k.ú. Úblo, byla zvolena obnova katastrálního operátu přepracováním.

Při obnově katastrálního operátu přepracováním se převádí katastrální mapa z grafické formy do formy grafického počítačového souboru, dle § 15 katastrálního zákoní [4].

Činnosti při vedení katastru v rámci obnovy katastrálního operátu přepracováním SGI jsou popisovány v § 63 katastrální vyhlášky [5].
Bc. Eva Kašíková: Zaměření identických bodů pro zpřesňující transformaci souvislého rastru

OKO přepracováním má tyto etapy, dle odst. 1.4.3 [1]:

a) zahájení obnovy a přípravné práce,

b) budování nebo revize a doplnění PPBP a související rekognoskace na bodech ZPB a ZhB a údržba ZhB, prováděná jen v nezbytném rozsahu v případě její potřeby pro doplnění bodů PPBP,

c) částečná revize katastru a doplnění neúplných údajů podle § 63 odst. 3 katastrální vyhlášky [5],

d) výběr a příprava využitelných podkladů,

e) vyhledání a zaměření identických bodů podle odstavce 3.5 [1],

f) obnovení SGI, včetně doplnění pozemků ZE,

g) obnovení SPI,

h) námítky podle § 16 katastrálního zákona [4],

i) vyhlášení platnosti obnoveného kat. operátu podle § 62 katastrální vyhlášky,

j) nový výpočet výměr dílů BPEJ.

Diplomová práce popisuje podrobně pouze body d) a e). Okrajově se dotýká i blízkých etap.

Soubor geodetických informací, dle § 16, odst. 1 [5]

Katastrální mapa je závazným státním mapovým dílem velkého měřítka, obsahuje body polohového bodového pole, polohopis a popis a má tyto formy:

a) katastrální mapa v S-JTSK vyhotovená při obnově katastrálního operátu novým mapováním, na podkladě výsledků pozemkových úprav, přepracováním souboru geodetických informací, s výjimkou mapy vyhotovené podle písmene c), nebo převedením jejího číselného vyjádření do digitální formy (dále jen "digitální mapa"),

b) katastrální mapa na plastové fólii s přesností a v zobrazovací soustavě stanovenými v době jejího vzniku (dále jen "analogová mapa"),

c) katastrální mapa v S-JTSK vyhotovená přepracováním analogové mapy v souřadnicovém systému gusterberském nebo svatoštěpánském do digitální formy nebo digitální forma katastrální mapy vyhotovená podle dřívějších předpisů, zejména v souřadnicovém systému gusterberském nebo svatoštěpánském (dále jen "digitalizovaná mapa").
Katastrální mapa může mít v ucelených částech kat. území různou formu. Klad, rozměry a označení mapových listů katastrální mapy v S-JTSK a map v souřadnicovém systému gusterbergském nebo svatoštěpánském jsou uvedeny v bodu č. 9 přílohy kat. vyhlášky [5].

Identické body

Jsou v terénu jednoznačně identifikovatelné a v transformovaném podkladu zobrazené body, dle odst. 3.5.1 návodu pro OKO [1].

Výběr a zaměření jednotlivých identických bodů, řeší samostatná kapitola.

Připojení na identické body, dle § 70, odst. 1 a 5 [5]

Je-li změnu potřebné zobrazit a navázat na polohopisný obsah katastrální mapy, která není v SJTSK, měření se připojí s ohledem na rozsah zaměřované změny na dostatečný počet podrobných bodů v terénu jednoznačně identifikovatelných a zobrazených v katastrální mapě (dále jen „identické body“). V katastrálním území, ve kterém probíhá obnova katastrálního operátu, se měření připojí na identické body tak, aby změnu bylo možné zobrazit v dosavadní i nové katastrální mapě, není-li s katastrálním úřadem dohodnuto jinak.

Je-li třeba změnu navázat na polohopisný obsah mapy dřívější pozemkové evidence, připojí se měření na identické body způsobem podle odstavce 1, nebo se polohopisný obsah mapy dřívější pozemkové evidence ztotožní s polohopisným obsahem katastrální mapy a dále se změna navazuje na polohopisný obsah takto ztotožněných map.

Globální transformační klíč (dále jen „GTK“)

Jsou transformační rovnice sloužící pro transformaci ze S-SK do S-JTSK, které jsou sestaveny na podkladě souřadnic bodů číselné triangulace stabilního katastru I. až III. řádu, u nichž jsou známé i souřadnice v systému S-JTSK, dle odst. 1.1 [2].

Souvislý rastr

Je rastrový soubor zobrazující jedno nebo více katastrálních území v souvislém zobrazení s vyrovnanými hranicemi katastrálních území v S-SK nebo v S-JTSK po transformaci provedené GTK, dle odst. 1.1 [2].
Geodetické referenční systémy, dle § 2 [6]

Geodetickými referenčními systémy závaznými na území státu (dále jen "závazné geodetické systémy") jsou

a) Světový geodetický referenční systém 1984 (WGS84),

b) Evropský terestrický referenční systém (ETRS),

c) Souřadnicový systém Jednotné trigonometrické sítě katastrální (S-JTSK),

d) Katastrální souřadnicový systém gusterbergský,

e) Katastrální souřadnicový systém svatoštěpánský,

f) Výškový systém baltský - po vyrovnání (Bpv),

g) Tlakový systém 1995 (S-Gr95),

h) Souřadnicový systém 1942 (S-42/83).

Zásady používání geodetických referenčních systémů dle § 4 [6]

Závazné geodetické systémy podle § 2 písm. a) až g) [6], se užívají na celém území státu pro zeměměřické činnosti ve veřejném zájmu a pro výsledky zeměměřických činností využívaných ve veřejném zájmu. Závazný geodetický systém podle § 2 písm. h) [6], lze užít pouze pro vyměřování, udržování a vedení dokumentárního díla státních hranic s Polskou republikou.

V katastrálním území Ublo, jsou pro zaměření použity souřadnicové systémy S-JTSK a ETRS-89.

Souřadnicový systém S-JTSK, dle odst. 3, přílohy [6]

Souřadnicový systém Jednotné trigonometrické sítě katastrální je určen

a) Besselovým elipsoidem s parametry

\[
\begin{align*}
a &= 6377397,15508 \text{ m}, \\
 b &= 6356078,96290 \text{ m},
\end{align*}
\]

kde "a" je délka hlavní poloosy, "b" je délka vedlejší poloosy,

b) Křovákovým konformním kuželovým zobrazením v obecné poloze,

c) Souborem souřadnic bodů z vyrovnání trigonometrických sítí.
Souřadnicový systém ETRS-89, dle odst. 2, přílohy [6]

Evropský terestrický referenční systém je na území České republiky určen

a) technologiemi kosmické geodézie a konstantami, které jsou součástí programů mezinárodních zpracovatelských center,

b) referenčním rámcem vybraných bodů geodetických základů, jejichž pravoúhlé geocentrické souřadnice byly vztáženy k evropskému terestrickému referenčnímu rámci (European Terrestrial Reference Frame), epoše 1989.0,

c) elipsoidem geodetického referenčního systému 1980 s konstantami a=6378137 m, f=1:298,257222101, kde "a" je délka hlavní poloosy a "f" je zploštění.
3 POPIS LOKALITY

Obec Ublo nalezneme uvnitř Přírodního parku Vizovické vrchy, v nadmořské výšce 410 až 602 metrů nad mořem (vrchol Tanečnica), na spojovací cestě mezi obcemi Lutoninou a Bratřejovem. O samotné obci Ublo, existuje první písemný doklad z roku 1450. Ke dni 1. ledna 2013, má obec 266 obyvatel a rozkládá se na kat. výměře 463 ha.

Oznámení o zahájení OKO přepracováním vydal Katastrální úřad pro Zlínský kraj, Katastrální pracoviště Zlín, dne 1. února 2012 pod číslem jednacím OO-2/2012-705 a je přílohou č. 1 této diplomové práce.
Obr. 6. Přibližný obvod katastrálního území Ublo [19]

Obr. 7. Příjezd do obce Ublo, z obce Lutonína [18]
4 VÝBĚR A PŘÍPRAVA VYUŽITELNÝCH PODKLADŮ

Návod pro obnovu katastrálního operátu [1], v odstavci 3.1 uvádí využitelné podklady. Těmi jsou:

a) data platného stavu SGI a SPI z ISKN,

b) výsledky zeměměřických činností založené v měřické dokumentaci katastrálního pracoviště, včetně výsledků vyžádaných podle § 14 odst. 1 zvláštního předpisu [7] a výsledků zeměměřických činností pro tvorbu jiných informačních systémů s ověřenou přesností,

c) operáty dřívějších pozemkových evidencí pro doplnění pozemků dosud evidovaných zjednodušeným způsobem do SGI.

4.1 Přehled ZPMZ

Přehled ZPMZ se vyhodnotuje jako grafický počítačový soubor, v programu MicroGEOS Nautil. Tento výkres se připojuje referenčně k hlavnímu výkresu při obnově SGI a slouží k rychlé orientaci ve stávajících podkladech. Vyhotovuje se dle odst. 3.1 - 3.4 [1]. Výsledkem je přehled všech výsledů zeměměřických činností, které jsou uloženy v měřické dokumentaci katastrálního pracoviště. Jako grafický vzor slouží příloha 14a [1].

Grafickým podkladem přehledu ZPMZ je rastr mapy KN. Obsahem výkresu jsou čísla ZPMZ. Číslování se řídí odst. 3.4 návodu pro OKO [1]. U ZPMZ, které nejsou číslovány v aktuální číselné řadě 0001-9999 (jak uvádí odst. 16.9 katastrální vyhlášky [5]), se ZPMZ nově očisťují zápornými čísly od čísla „-1“, chronologicky od nejnovějšího. Čísła se vyznačují do pravého horního rohu ZPMZ. Pokud jsou již ZPMZ očíslovány v rámci mikrosnímkování, tato čísła se použijí se znaménkem minus. V k.ú. Ublo byla použita čísła z mikrosnímkování, nacházející se v pravém dolním rohu ZPMZ.

Pro lepší orientaci jsou čísla v grafickém přehledu ZPMZ barevně odlišeny:

- Fialově – ZPMZ v S-JTSK
- Modře – ZPMZ v místním systému
- Zeleně – ZPMZ před rokem 1972, záporná čísła

V přehledu ZPMZ jsou čísla umístěna v prostoru, kde dochází ke změně v SGI a mohou být umístěna souběžně na více místech. Je kladen důraz na to, aby čísla ZPMZ byla dobře uspořádaná a šlo lehce určit všechny ZPMZ, které se daného prostoru týkají.

Je možné vytvořit i tabulkový seznam změn, který se vytváří dle vzoru z příloze návodu pro OKO [1]. Tabulkový seznam není povinnou přílohou elaborátu ZPMZ [1].

2013 16
Ukázka výřezu přehledu je na obrázku č. 8, spolu s ukázkou původního ZPMZ v zobrazené lokalitě, na obrázku č. 9. Celý grafický soubor přehledu ZPMZ se nachází na přiloženém CD, k diplomové práci.

Obr. 8. Ukázka části přehledu ZPMZ

Obr. 9. Ukázka původního ZPMZ (-135)
4.2 Přehled identických bodů

Současně s přehledem ZPMZ se vytvoří i přehled identických bodů, který řeší podrobně kapitola 3.5 návodu pro OKO [1]. Vzor pro grafické zpracování obsahuje příloha č. 37 návodu pro OKO [1], se zobrazeným detailem na příloze č. 38 návodu pro OKO [1]. Identické body a případně i linie, se využijí pro zpřesňující transformaci souvislého rastru. Přehled IB je vyhotoven jako počítačový soubor, v programu MicroGEOS Nautil. Vytisknutý přehled IB tvoří přílohu č. 2 diplomové práce a je rozdělen na čtyři části, které tvoří přehled kladů a tři výkresy identických bodů, které jsou předmětem měření. Grafický soubor přehledu IB se nachází na přiloženém CD, k diplomové práci.

Dle odst. 3.5.1 návodu pro OKO [1], identickými body jsou v terénu jednoznačně identifikovatelné a v transformováném podkladu zobrazené body. Těmito body jsou zejména trvalým způsobem označené původní lomové body na hranicích katastrálních území nebo na hranicích pozemků (přednostně jsou-li na stynku tři nebo více takových hranic). Identickými body mohou být také lomové body na obvodu budov, popřípadě body na jiných trvalých předmětech obsahu katastrální mapy, za předpokladu, že se jejích původní poloha nezměnila. Identickými body mohou být také body vytyčené, kterými jsou např. navazující body změny na nezmatelné hranici, body vytyčené a zaměřené v rámci určení obvodu pozemkové úpravy či body tvořící zpřesněné geometrické a polohové určení. Jejich volba je ponechána na zpracovateli, který ji zdůvodní v technické zprávě.

Do zaměření IB se zahrnují i hranické znaky nalezené při revizi hranice kat. území. Do zaměření IB se řadí i body, které se nacházejí mimo katastrální území, které jsou důležité pro zpracování zpřesněné transformace souvislého rastru. Tyto body mohou ovlivnit geometrické a polohové určení hranice katastrálního území.

Návodem pro OKO [1] je dáno, že přehled identických bodů se vyhotovuje jako grafický počítačový soubor, na podkladě rastrů katastrální mapy, mapy dřívější pozemkové evidence, RES, vektorového hraněního polygonu a případně i ortofota.

Body, které jsou již zaměřené v souřadnicovém systému S-JTSK se převezmou z registru souřadnic. Pokud lze souřadnice dopočítat z využitelných podkladů, dopočítají se. Pro takové prostory se přehled IB nezakládá.

Pro vyznačení IB se v grafickém přehledu použije mapová značka č. 1.10, podle bodu 10.2 přílohy kat. vyhlášky [5]. Značky IB se v přehledu barevně odlišují. Zeleně se zobrazí body, které jsou známé v souřadnicovém systému S-JTSK. Červeně se zobrazí body, které je nutné nově zaměřit. Červenou tečkovanou čarou se vyznačí linie nebo prostory, ve kterých je třeba IB vyhledat a zaměřit. Pro přehlednost, je možné k identickému bodu použít vývodku pro upřesnění polohy, případně je možné vytvořit detaily nepřehledných prostorů.

2013 18
Jednotlivé IB byly vyhledány v dostupných podkladech. Do přehledu IB jsem účelně doplnila popis, který informuje například o stabilizaci bodu nebo ho blíže popisuje. Tím se usnadní následné práce v terénu.

4.3 Vyhledání identických bodů v terénu

Bohužel v terénu jsou identické body často zničené nebo jsou body nepřístupné. Z tohoto důvodu se v terénu před vlastním zaměřením provede rekognoskace. K orientaci v terénu byl použit navigační přístroj eTrex Vista HCx s uloženými souřadnicemi hraničních znaků sejmutými z transformovaného rastru katastrální mapy, spolu s vytištěným přehledem IB a ortofotomapou se zakreslenými hraničními znaky.

Při návštěvě obce jsem informovala obecní úřad o plánovaných zeměměřických pracích a o pohybu měřičů. Obci jsem předala oznámení s žádostí o uveřejnění. Toto oznámení není předmětem návodu pro OKO [1], ale jedná se o zvyklost měřického oddělení Katastrálního úřadu pro Zlínský kraj. Informovanost občanů přispívá k větší efektivnosti samotného měření, kdy jsou občané vstřícnější k našemu vstupu na jejich pozemky. Oznámení je přílohou č. 3 této diplomové práce.

Identické body jsem vyhledala v terénu. Tyto body je vhodné fyzicky označit reflexní barvou, zejména jedná-li se o body v extravilánu. Na základě rekognoskace se upraví přehled identických bodů pro zaměření, aby následně v terénu bylo z takového přehledu zřejmé, které body se následně budou zaměřovat a které jsou z měření vyloučené.

Z hraničních znaků byly nalezeny pouze 3 kameny na hranici mezi k.ú Ublo a k.ú. Bratřejov u Vizovic.
5 ZAMĚŘENÍ IDENTICKÝCH BODŮ

Při zaměření identických bodů, pro účely zpřesňující transformace souvislého rastru v rámci obnovy katastrálního operátu, vycházíme z polohového bodového pole.

Polohové bodové pole obsahuje, dle odstavce 1.2 přílohy k vyhlášce [7]

a) základní polohové bodové pole, které tvoří
 aa) body referenční sítě nultého řádu,
 ab) body Astronomicko-geodetické sítě (závazná zkratka „AGS“),
 ac) body České státní trigonometrické sítě (závazná zkratka „ČSTS“),
 ad) body geodynamické sítě,

b) zhušťovací body,

c) podrobné polohové bodové pole.

Geometrický základem podrobného měření jsou

a) body polohového bodového pole, popřípadě pomocné měřické body, v případě použití technologie globálního polohového systému také body referenční sítě permanentních stanic,

b) v terénu jednoznačně identifikovatelné podrobné body, charakterizované kódem kvality 3, se souřadnicemi v S-JTSK nebo výjimečně v místním souřadnicovém systému, nejedná-li se o stanovené prostory, nelze-li postupovat podle písmene a) nebo je-li to vzhledem k napojení změny na stávající stav katastrální mapy a její rozsah účelnější a vhodnější.

Charakteristiky a kritéria přesnosti podrobného měření a určení souřadnic podrobných bodů polohopisu katastrální mapy a způsoby ověření a testování přesnosti výsledků zeměměřických činností jsou uvedeny v bodu 13 přílohy kat. vyhlášky [5]. Tuto problematiku rozvíjí kapitola 5.2.4 této diplomové práce.

5.1 Rekognoskace

Pro zaměření identických bodů je nejdříve nutné zajistit informace o stávajícím polohovém bodovém poli. Informace jsou dostupné na internetových stránkách Českého úřadu zeměměřického a katastrálního (www.cuzk.cz), v sekci Geodetické základy, Databáze bodových polí.

V katastrálním území Ublo, které je zobrazeno na triangulačním listu č. 4502, se nachází několik trigonometrických a zhušťovacích bodů. Pro vybudování měřické sítě jsem
se účelně rozhodla pro využití technologie GNSS, z důvodu členitosti terénu. Ze stávajícího polohového bodového pole jsme využili pouze k orientaci, zhušťovací bod č. 201 (TL 4502), kterým je střed makovice věže kostela v Jasenné. Geodetické údaje o bodě jsou přílohou č. 4 této diplomové práce.

Obr. 11. Ukázka části TL č. 4502

5.2 Měřické práce

Zaměřování bodů řeší podrobně kapitola 2.5 návodu pro OKO [1]. Lze využít geodetické metody, fotogrammetrické metody a technologii GNSS. Fotogrammetrické metody v k.ú. Ublo, použity nebyly.

Z technologie GNSS jsem využila metody RTK s VRS a rychlou statickou metodu. Z geodetických metod poté metodu polygonového pořadu oboustranně připojeného a oboustranně orientovaného, polární metodu, rajón a kontrolní oměrné míry.

Veškeré použité měřické vybavení bylo kalibrováno. Kalibrační protokoly jsou přílohou č. 5 této diplomové práce.
5.2.1 Použité měřické metody

Díky technologii GNSS, dokážeme určit přesnou polohu kdekoliv na Zeměkouli. Technické požadavky na měření a výpočty bodů určovaných technologií GNSS se řídí kapitolou č. 9 přílohy k vyhlášce č. 31/1995 Sb. [7].

Poloha bodu musí být určena buď ze dvou nezávislých výsledků měření pomocí technologie GNSS, nebo jednoho výsledku měření technologií GNSS a jednoho výsledku měření klasickou metodou. Souřadnice bodu musí vyhovět charakteristikám přesnosti pro trigonometrické body a zhušťovací body stanovených v kapitolách č. 2 a č. 3 přílohy k vyhlášce č. 31/1995 Sb. a pro body podrobného polohového bodového pole a podrobné body v kapitolách č. 12 a č. 13 přílohy katastrální vyhlášky č. 26/2007 Sb. [7].

Opakované měření GNSS musí být nezávislé a musí být tedy provedeno při nezávislém postavení druhého, to znamená, že opakované měření nesmí být provedeno v čase, který se vůči času ověřovaného měření nachází v intervalích: <-1 + n.k ; n.k + 1> hodin, kde: k je počet dní a může nabývat pouze hodnot nezáporných celých čísel n = 23,9333 hodin (23 hod. 56 minut) pro americký systém GPS-NAVSTAR a 22,5000 hodin (22 hod. 30 minut) pro ruský systém GLONASS [7].

Transformaci souřadnic z geocentrického souřadnicového systému WGS84 nebo ETRS v epoše 1989.0 do S-JTSK lze provést pouze pomocí zpracovatelského programu, který je schválen Úřadem, využitím transformace podrobných bodů mezi ETRS v epoše 1989.0 a S-JTSK bez volby identických bodů pomocí zpřesněné globální transformace, jestliže je dodržen postup uvedený v návodu takového programu, nebo transformace pomocí místního klíče a volby identických bodů při splnění daných podmínek řešených v kapitole č. 9.11 přílohy vyhlášky č. 31/1995 Sb. [7].

Transformaci souřadnic z geocentrického souřadnicového systému WGS84 nebo ETRS v epoše 1989.0 do S-JTSK lze provést pouze pomocí zpracovatelského programu, který je schválen Úřadem, využitím transformace podrobných bodů mezi ETRS v epoše 1989.0 a S-JTSK bez volby identických bodů pomocí zpřesněné globální transformace, jestliže je dodržen postup uvedený v návodu takového programu, nebo transformace pomocí místního klíče a volby identických bodů při splnění daných podmínek řešených v kapitole č. 9.11 přílohy vyhlášky č. 31/1995 Sb. [7].

GNSS – RTK s VRS (real time kinematic)

Kinematická metoda využívá rádiového přenosu korekcí fázových měření od referenčního k pohybujícímu se přijímači. Metoda nachází uplatnění při určování souřadnic bodů podrobných bodových polí a podrobných bodů, především však při vytvářování [9].

Pro měření metodou RTK v rámci GNSS, jsem si připravila do kontroléru pomocný transformační klíč pro převod souřadnic na danou lokalitu, abych mohla již v terénu sledovat naměřené hodnoty v systému S-JTSK a případné hrubé chyby ihned vyloučit a měření opakovat. Transformační klíč je vytvořen z bodů, které mají souřadnice v systému S-JTSK a ETRS-89 a obklopují zájmovou lokalitu.

GNSS – Rychlá statická metoda (pseudostatická metoda)

Doba observace při této metodě dosahuje několika minut, což je umožněno technologií rychlého určování ambiguit. Metoda vyžaduje dvoufrekvenční přijímač s P kódem a výhodnou konfiguraci družic (5 – 6 družic s elevací vyšší než 15°). Velké omezení pro tuto metodu představuje úmyslné rušení kódu SA – selective availability, nebo nahrazení P kódu jeho šifrovanou verzí Y kódem. Metoda se realizuje dvojicí přijímačů a měření lze uskutečnit v okruhu 15 kilometrů od zvoleného referenčního bodu. Použití je pro zhušťování základních i podrobných bodových polí a budování prostorových sítí nižší přesnosti [9].

Při užití geodetických metod vycházíme z pomocných bodů, již určených v souřadnicovém systému S-JTSK. Tyto body považujeme za dané. Z naměřených hodnot, kterými jsou vodorovné úhly a délky, jsme schopni spočítat souřadnice měřených bodů.

Polární metoda

Obr. 12. Princip polární metody [10]
Polygonový pořad

Polygonové pořady slouží k určení souřadnic bodů PPBP. V polygonovém pořadu postupně zaměřujeme levoustranné úhly a délky mezi body.

Polygonové pořady kratší než 1,5 km mohou být jednostranně orientované, popř. neorientované (vetknuté). Neorientované pořady mohou mít nejvýše 4 strany a je-li to možné, alespoň na jednom z jeho vrcholů se zaměří orientační úhel a porovná se podle odstavce 2.5.1.2 písm. e) nebo f) [1].

Tabulka č. 1 – Geometrické parametry a kritéria přesnosti polygonových pořadů [1]

<table>
<thead>
<tr>
<th>Připojovací body</th>
<th>Mezní délka strany [m]</th>
<th>Mezní délka pořadu d [m]</th>
<th>Mezní odchylka v uzávěru pořadu</th>
<th>Úhlová ["]</th>
<th>Polohová [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPBP, ZhB</td>
<td>200-1500</td>
<td>5000</td>
<td>25.(n)"</td>
<td>0,0025.(Σd)"</td>
<td></td>
</tr>
<tr>
<td>ZPBP, ZhB</td>
<td>50-400</td>
<td>3000</td>
<td>50.(n)"</td>
<td>0,004.(Σd)"</td>
<td></td>
</tr>
<tr>
<td>PPBP, ZPBP, ZhB</td>
<td>50-400</td>
<td>1500</td>
<td>100.(n)"</td>
<td>0,006.(Σd)"</td>
<td></td>
</tr>
</tbody>
</table>

n ... počet bodů pořadu včetně bodů připojovacích; Σd ... součet délek stran pořadu

Polygonový pořad má nejvýše 15 nových bodů, mezní poměr délek sousedních stran v polygonovém pořadu je 1:3 [1].

Polygonové pořady lze považovat za n-násobné rajóny, které na sebe vzájemně navazují. Za rajón považujeme orientovanou a délkově zaměřenou spojnici daného a určovaného bodu, díky níž matematicky určíme souřadnice nového bodu v S-JTSK.

Číslování pomocných a podrobných bodů

Číslování pomocných bodů, má tvar PPPP 0000 CCCC

PPP ... pořadové číslo k.ú. v rámci územního obvodu kat. pracoviště

CCCC ... je pořadové číslo pomocného bodu od 4001

Číslování podrobných bodů, má tvar PPSZ ZZZZ CCCC

PPPP ... pořadové číslo k.ú. v rámci územního obvodu kat. pracoviště

S ... je uvnitř územního obvodu nulové číslo nebo může znamenat příslušnost bodu do sousedního obvodu a pak má hodnotu 1 až 8

ZZZZ ... je číslo měřického náčrtu

CCCC ... je pořadové číslo podrobného bodu v rámci měřického náčrtu v rozmezí od 1 do 3999 [1].
5.2.2 Měřická síť

Zaměření identických bodů v k.ú. Ublo navazuje na etapu OKO budování, revizi a doplnění PPBP. Pro výchozí měřickou síť byly použity metody GNSS a geodetické metody s následným vyrovnáním sítě.

V etapě budování PPBP byla vytvořena měřická síť s 28 pomocnými měřickými body v číselné řadě 106000004001-106000004028. Tuto síť jsem využila k zaměření IB. Grafický soubor přehledného náčrtu PPBP je přílohou č. 6 této diplomové práce.

Body 4001-4006, 4012 a 4014 byly zaměřeny 2x, technologií GNSS.

Body 4007-4011, 4013, 4015-4028 byly zaměřeny pomocí polygonového pořadu oboustranně připojeným a oboustranně orientovaným, v jedné skupině.

Body 4001-4028 jsou stabilizovány ocelovým hřebem a tvoří páteřní síť v intravilánu. Z této měřické sítě byly zaměřeny body PPBP v číselné řadě 106000000501-106000000522.

Bod 511 – roh podezdívky
Body 515 a 517 stabilizovány měřickým hřebem
Body 501-510, 512-514, 516, 518-522 – roh budovy

Výpočetní práce se uskutečnily pomocí výpočetního softwaru Groma verze 9.0.
Pro zaměření IB byl založen záznam podrobného měření změn s číslem 246.

V rámci ZPMZ 246 bylo zaměřeno celkem 126 pomocného podrobných bodů v číselném řadě 106002464001-106002464126. Pro stabilizaci těchto bodů bylo použito 45 ocelových hřebů, 63 dřevěných kolíků a 18 dočasně stabilizovaných stanovisek.

V rámci ZPMZ 246 byly body 4032-4035, 4050-4053, 4072-4074, 4082, 4089-4092 a 4107-4110 zaměřeny technologií GNSS. Stabilizace těchto bodů byla provedena dřevěnými kolíky, kromě bodu 4033, který byl stabilizován ocelovým hřebem. Zbylé pomocné body byly změřeny geodetickými metodami pomocí polygonového pořadu nebo rajóny.

5.2.3 Podrobné zaměření identických bodů

V k.ú. Ublo jsem pro zaměření identických bodů použila polární metodu. Tato metoda je jedná ze nejpoužívanějších, pro její rychlost a jednoduchost.

Bylo zaměřeno celkem 291 podrobných bodů. Z toho 272 bodů na budovách, 1 bod zbořeniště, 4 body na pomníku, 9 kamenů a 5 znaků z plastu.

Mezi jednotlivými podrobnými body, jsme zaměřili ocelovým pásmem na vidlici vodorovnou vzdálenost – kontrolní oměřné míry, na centimetry. V náčrtu jsou míry zobrazeny čárkou. Naměřené míry jsou porovnány s délkou vypočtenou ze souřadnic, a jsou obsahem protokolu (Příloha DP č. 8). Pomocí této kontroly můžeme odhalit případné měřické chyby. Grafické zobrazení zaměřených identických bodů obsahuje náčrt ZPMZ 246 a blíže se o něm pojednává v kapitole č. 5.4.3 této diplomové práce.

5.2.4 Přesnost měření, dle přílohy katastrální vyhlášky [5]

Zaměření a zpracování elaborátu musí odpovídat náležitostmi a přesností právním předpisům. Technické požadavky na body podrobného polohového bodového pole obsahuje příloha katastrální vyhlášky v bodu č. 12 [5]. Charakteristiky a kritéria přesnosti podrobného měření a souřadnic podrobných bodů, řeší bod č. 13 [5].

A) Charakteristikou přesnosti určení souřadnic x, y bodů podrobného polohového bodového pole je střední souřadnicová chyba m_{xy}, daná vztahem

\[m_{xy} = \sqrt{\frac{(m_x^2 + m_y^2)}{2}} \] \hspace{1cm} (5-1)

kde \(m_x \), \(m_y \) jsou střední chyby určení souřadnic x, y. Podrobné polohové bodové pole se vytváří s přesností, která je dána základní střední souřadnicovou chybou 0,06 m a vztahuje se k nejblížším bodům základního polohového bodového pole a zhušťovacím bodům.
B) Mezní souřadnicová chyba u_{xy} se stanoví dvojnásobkem základní střední souřadnicové chyby m_{xy}.

C) Posouzení dosažené přesnosti určení souřadnic nově určovaného bodu podrobného polohového bodového pole se provádí pomocí

a) výběrové střední souřadnicové chyby vypočtené metodou nejmenších čtverců, nebo

b) výběrové střední souřadnicové chyby vypočtené z dvojice měření, která nesmí překročit hodnotu mezní souřadnicové chyby u_{xy} vypočtenou podle bodu B). V případě souboru obsahujícího více než 20 nově určovaných bodů podrobného polohového bodového pole musí být současně nejméně 40% výběrových středních souřadnicových chyb menších, než je hodnota základní střední souřadnicové chyby m_{xy}.

D) Ověření souřadnic stávajícího bodu podrobného polohového bodového pole se provádí pomocí nezávislého kontrolního určení souřadnic. Skutečná souřadnicová chyba nesmí překročit hodnotu mezní souřadnicové chyby u_{xy} vypočtenou podle bodu B). V případě ověření homogenity souboru obsahujícího více než 20 bodů podrobného polohového bodového pole se základním polohovým bodovým polem a zhušťovacími body musí být současně nejméně 40% výběrových středních souřadnicových chyb menších, než je hodnota základní střední souřadnicové chyby m_{xy}.

E) Charakteristikou přesnosti určení souřadnic x, y podrobných bodů polohopisu je střední souřadnicová chyba m_{xy}, která se vztahuje k nejbližším bodům polohového bodového pole. Souřadnice podrobných bodů polohopisu se určují s přesností, která je dána základní střední souřadnicovou chybo $m_{xy} = 0,14$ m. Charakteristikou relativní přesnosti určení souřadnic dvojice bodů je střední chyba délky m_d. Délky se určují s přesností, která je dána základní střední chyboch délky m_d vypočtenou podle vzorce (5-3), bodu J).

F) Mezní souřadnicová chyba u_{xy} se stanoví dvojnásobkem základní střední souřadnicové chyby m_{xy}. Mezní rozdíl délky U_d se stanoví dvojnásobkem základní střední chyby délky m_d.

G) Mezní polohová chyba u_p je dána vztahem

$$u_p = \sqrt{2} \cdot u_{xy} \quad (5-2)$$

H) Posouzení dosažené přesnosti určení souřadnic nově určovaného nebo ověření souřadnic stávajícího podrobného bodu polohopisu se provádí pomocí
a) oměrných měr nebo kontrolního měření délek přímých spojnic jiných vybraných dvojic podrobných bodů a jejich porovnání s délkami, vypočtenými ze souřadnic, nebo

b) nezávislého kontrolního určení souřadnic podrobného bodu polohopisu a jejich porovnání s prvotně určenými souřadnicemi.

I) Při postupu podle bodu H) písm. a) se přesnost považuje za vyhovující, když rozdíl kontrolně měřené délky a délky vypočtené ze souřadnic je menší než mezní rozdíl u_d vypočtený podle bodu F), přičemž základní střední chyba délky m_d se stanoví podle vzorce \((5-3)\) bodu J). V případě souboru obsahujícího více než 20 rozdílů délek mezi nově určovanými body musí být současně nejméně 60 % těchto rozdílů menších, než je hodnota základní střední chyby délky m_d.

J) Základní střední chyba délky m_d je dána vztahem

$$m_d = k \cdot \left(\frac{d_{12}}{d_{20}} \right) \quad (5-3)$$

kde d je větší z porovnávaných délek v metrech a k se vypočte jako $\sqrt{2}$ násobek základní střední souřadnicové chyby stanovené podle kódu kvality bodu s nižší přesností.

K) Při posouzení dosažené přesnosti souřadnic nově určovaného podrobného bodu polohopisu postupem podle bodu H) písm. b) se přesnost považuje za vyhovující, když

a) výběrová střední souřadnicová chyba vypočtená metodou nejmenších čtverců, nebo

a) výběrová střední souřadnicová chyba vypočtená z dvojice měření je menší než mezní souřadnicová chyba u_{xy}, vypočtená podle bodu F). V případě souboru obsahujícího více než 20 nově určovaných podrobných bodů polohopisu musí být současně nejméně 40 % výběrových středních souřadnicových chyb menších, než je hodnota základní střední souřadnicové chyby m_{xy}.

L) Při ověření souřadnic stávajícího podrobného bodu polohopisu postupem podle bodu H) písm. b) nesmí skutečná souřadnicová chyba překročit hodnotu mezní souřadnicové chyby u_{xy} vypočtenou podle bodu F), přičemž základní střední souřadnicová chyba se stanoví podle bodu M). V případě ověření homogeneity souboru obsahujícího více než 20 podrobných bodů polohopisu s bodovým polem musí být současně nejméně 40 % výběrových středních souřadnicových chyb menších, než je hodnota základní střední souřadnicové chyby m_{xy}.
M) Kód kvality podrobných bodů určených geodetickými nebo fotogrammetrickými metodami se stanoví podle hodnoty výběrové střední souřadnicové chyby v závislosti na základní střední souřadnicové chybě \(m_{xy}\).

<table>
<thead>
<tr>
<th>Kód kvality</th>
<th>Základní střední souřadnicová chyba (m_{xy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0,14 m</td>
</tr>
<tr>
<td>4</td>
<td>0,26 m</td>
</tr>
<tr>
<td>5</td>
<td>0,50 m</td>
</tr>
</tbody>
</table>

Tabulka č. 2 – Kódy kvality [5]

Body převzaté ze schváleného návrhu pozemkových úprav se považují za body určené se základní střední souřadnicovou chybou \(m_{xy} = 0,14\) m.

5.3 Měřické pomůcky

K navigaci v terénu a vyhledání hranicích znaků byl použit navigační přístroj eTrex Vista HCx. Přístroj obsahuje vestavěnou kruhovou anténou s přijímačem podporující systém WAAS/EGNOS, s průběžnou aktualizací 1 za sekundu. Dále obsahuje kompas s přesností \(±5°\) a výškoměr s přesností \(±3,05\) m. Přesnost GNSS je 10 metrů.

Obr. 14. Navigační přístroj eTrex Vista HCx
Obr. 15. Pásmo na vidlici

K zaměření kontrolních oměrých měr a k určení totožnosti identického bodu dle původního geometrického plánu, bylo použito komparované ocelové pásmo na vidlici BMI, délky 30 m.

Tato totální stanice umožňuje měření horizontálních a vertikálních úhlů, měření délek s hranolem i bez hranolu a také umožňuje vytyčování. Práce s totální stanicí se řídí návodem pro použití [11].

Tabulka č. 3 – Technické parametry pulsní totální stanice TOPCON GPT-3002 [10, 11]

<table>
<thead>
<tr>
<th>Dalekohled</th>
<th>Délka</th>
<th>150 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměr objektivu</td>
<td></td>
<td>45 mm</td>
</tr>
<tr>
<td>Zvětšení</td>
<td></td>
<td>30 x</td>
</tr>
<tr>
<td>Obraz</td>
<td></td>
<td>Vzpřímený</td>
</tr>
<tr>
<td>Minimální zaostření</td>
<td></td>
<td>1,3 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elektronické měření úhlů</th>
<th>Metoda</th>
<th>Absolutní čtení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Přesnost</td>
<td>2" (0,6 mgon)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Délkové měření</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Měřický dosah</td>
<td>Bezhranolový mód</td>
<td>1,5 až 250 m</td>
</tr>
<tr>
<td></td>
<td>Hranolový mód</td>
<td>3000 m</td>
</tr>
<tr>
<td>Přesnost měření délek</td>
<td>Bezhranolový mód</td>
<td>1,5 - 25 m : ±(10mm) m.s.e.</td>
</tr>
<tr>
<td></td>
<td>Hranolový mód</td>
<td>více než 25m : ±(5mm) m.s.e.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±(3mm +2ppm x D) m.s.e.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D…měřená délka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Korekce náklonu</th>
<th>Automatický vertikální a horizontální kompenzátor, kapalinový typ s rozsahem kompenzace ±3' a korekční jednotkou 1" (0,1 mgon)</th>
</tr>
</thead>
</table>

| Citlivost libel | Krabicevá libela | 10'/2 mm |
| | Alhídádová libela| 30'/2 mm |
Obr. 15. Totální stanice Topcon GPT-3002, v.č. 420181 [12]

Obr. 16. GNSS přijímač Topcon TPS HiPer+ [12]
K zaměření pomocných bodů technologie GNSS byl použit přístroj Topcon TPS HiPer+, výrobní číslo 279-0840, který je na obrázku č. 15. Tento přístroj slouží ke sběru dat ze satelitní sítě a řídících stanic. Přístroj zpracovává signály L1 a L2.

Ovládacím prvkem tohoto přístroje je datový kontrolér TOPCON FC-200, který je na obrázku č. 16. Obě zařízení spolu komunikují prostřednictvím Bluetooth.

Obr. 17. Datový kontrolér TOPCON FC – 200 [12]

Tabulka č. 4 – Technické parametry GNSS přijímače [13]

<table>
<thead>
<tr>
<th>Přijímač HiPer+</th>
<th>40-kanálový přijímač s interní pamětí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>možnost interního UHF a GSM modemu</td>
</tr>
<tr>
<td></td>
<td>modul podporující Bluetooth</td>
</tr>
<tr>
<td></td>
<td>uživatelské rozhraní MINTER</td>
</tr>
<tr>
<td>Typ přijímače</td>
<td>GGD-GPS/GLONASS L1/L2</td>
</tr>
<tr>
<td>Měřické módy</td>
<td>Statický, Kinematický (Kontinuální, stop a Go), RTK (kinematické měření v reálném čase), DGPS (diferenciální GPS)</td>
</tr>
<tr>
<td>Modem</td>
<td>GSM modem - 900/1800 Mhz</td>
</tr>
</tbody>
</table>
Tabulka č. 4, pokračování – Technické parametry GNSS přijímače [13]

<table>
<thead>
<tr>
<th>Anténa</th>
<th>GPS/GLONASS anténa</th>
<th>Interní</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ antény</td>
<td>Microstrip</td>
<td></td>
</tr>
</tbody>
</table>

| **Kontrolér** | Externí |

<table>
<thead>
<tr>
<th>Přesnost měření</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTK metoda</td>
<td></td>
</tr>
<tr>
<td>Pro L1 + L2</td>
<td>Hor. 10 mm + 1,5 ppm x D</td>
</tr>
<tr>
<td>Statická a rychlá statická metoda</td>
<td></td>
</tr>
<tr>
<td>Pro L1 + L2</td>
<td>Hor. 3 mm+1 ppm × D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DGPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formát korekcí</td>
<td>RTCM SC 104 Ver. 2.1, 2.2 a 2.3</td>
</tr>
<tr>
<td>Typ RTCM zpráv</td>
<td>1, 3, 9, 31, 32, 34; volitelný uživatelsky</td>
</tr>
<tr>
<td>Interval zpracování</td>
<td>1Hz standardně; 5, 10, 20 Hz volitelně</td>
</tr>
<tr>
<td>Výstupní interval RTCM korekcí</td>
<td>1Hz standardně; 5, 10, 20 Hz volitelně</td>
</tr>
<tr>
<td>Elevační maska</td>
<td>0° až 90°</td>
</tr>
<tr>
<td>DGPS s více ref. stanicemi (multibase)</td>
<td>Výběrový mód diferenciálních korekcí: nejbližší, mix, nejlepší (volitelně)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formát korekcí</td>
<td>CMR2/CMR+, RTCM SC104 Ver. 2.2 nebo 2.3</td>
</tr>
<tr>
<td>Typ RTCM zpráv</td>
<td>3, 18, 19, 20, 21, 22; volitelný uživatelský</td>
</tr>
<tr>
<td>Inicializace ambiguit</td>
<td>OTF (on the fly) (L1, L1/L2)</td>
</tr>
<tr>
<td>Délka vektoru</td>
<td>Až 50 km ráno a večer. Až 32 km v poledne.</td>
</tr>
<tr>
<td>Inicializační čas</td>
<td>5 sekund až 10 minut v závislosti na délce vektoru a na vedlejších odrazech</td>
</tr>
<tr>
<td>Elevační maska</td>
<td>0° až 90°</td>
</tr>
<tr>
<td>Mód řešení</td>
<td>Delay (zpoždění)(synchronizace)</td>
</tr>
<tr>
<td></td>
<td>Extrapolace (není synchronizováno)</td>
</tr>
<tr>
<td>Status</td>
<td>Fix, Float, DOP, Data Link Status (stav datové linky), Modern Latency (reakční doba modemu), Common satellites (společné satelity), Percentage of fixing (procentuální vyjádření fixace)</td>
</tr>
<tr>
<td>Výsledky</td>
<td>RTK souřadnice, HRMS, VRMS, kovarianční matice</td>
</tr>
<tr>
<td>Úrovně fixace ambiguit</td>
<td>Volitelné úrovně nízká: 95%; střední: 99,5%; vysoká: 99,9%</td>
</tr>
</tbody>
</table>
5.4 Výpočetní práce a grafické zpracování

5.4.1 Výpočet naměřených dat technologií GNSS

Naměřená data RTK jsem vyexportovala z datového kontroléru příslušným kabelem pomocí softwaru Microsoft ActiveSync 4.5.0. Tato data obsahují pro každý bod dvojí geocentrické souřadnice a informace o kvalitě pořízení, jako je HRMS, VRMS, PDOP, počet satelitů a časy.

V programu ETRF2KRO jsem převedla zpřesněnou globální transformaci všechny geocentrické souřadnice do systému S-JTSK. Výsledné souřadnice jsou spočítány jako aritmetický průměr z dvojího měření a jsou součástí protokolu o výpočtu, který tvoří přílohu č. 7 této diplomové práce. Vzhledem k obsáhlosti protokolu, je v příloze DP vytížena pouze část, celý protokol se nachází na přiloženém CD.

Obr. 18. Ukázka výpočetního programu Topcon Tools
5.4.2 Výpočet naměřených dat geodetickými metodami

Data z totální stanice jsem vyexportovala pomocí softwaru GEOMANW verze 3.05. Pro výpočet naměřených dat geodetickými metodami jsem využila software Groma, verze 9.0 s nastavením matematické redukce a redukce do zobrazovací roviny S-JTSK.

Základem připojení měřické sítě do systému S-JTSK a výpočtu jsou body dané, které tvoří zhušťovací bod č. 201 (TL 4502), podrobné polohové bodové pole a pomocné body určené technologií GNSS. Přichází na řadu výpočet z upraveného zápisníku.
Nejdříve jsem spočítala měřickou síť a z ní polární metodou rajóny a identické body. Funkci kontrolních oměrných jsem porovnala délky změřené pásmem v terénu, s délkami vypočtenými ze souřadnic. Výsledkem výpočtů jsou souřadnice pomocných a nově určených identických bodů v systému S-JTSK. Přílohou č. 8 této DP, je část zápisníku měření s ukázkami jednotlivých výpočtů geodetických metod, doplněné o výsledné souřadnice. Celý soubor se nachází na přiloženém CD.

5.4.3 Záznam podrobného měření změn (ZPMZ)

Pro zaměření identických bodů nebo pro převzetí identických bodů z dokumentace výsledků zeměměřických činností pro tvorbu jiných informačních systémů s ověřenou přesností se vyhotoví ZPMZ, který má náležitosti podle bodu 16.1 písm. a) až d) přílohy katastrální vyhlášky [5] a případně obsahuje srovnávací sestavení čísel bodů v ZPMZ a ve výsledku zeměměřických činností pro tvorbu jiných informačních systémů. Popisové pole ZPMZ se vyplní přiměřeně účelu vyhotovení [1].

Bod č. 16.1 písm. a) až d) přílohy katastrální vyhlášky [5] informuje o náležitostech ZPMZ pro zaměření identických bodů. Těmi jsou:

a) popisové pole
b) náčrt
c) zápisník
d) protokol o výpočtech

Vzor popisového pole se řídí odstavcem č. 16.7 přílohy katastrální vyhlášky [5]. Věcné a formální náležitosti jsou vymezeny tiskopisem Úřadu v odstavci č. 16.8 přílohy katastrální vyhlášky [5].
Záznamy podrobného měření změn se číslují v rámci katastrálního území v jedné číselné řadě v rozsahu 0001 až 9999 [5]. O číslo ZPMZ jsem požádala Katastrální pracoviště ve Zlíně, kde pro mé účely rezervovali číslo ZPMZ 246. Obálka tohoto ZPMZ s popisovým polem, se nachází na přiloženém CD.

Zápisník obsahuje dle bodu 16.17 přílohy katastrální vyhlášky

a) čísla bodů geometrického základu měření, kontrolních, identických a nových bodů a měřené hodnoty určující jejich polohu,

b) změřené údaje pro ověření polohy bodů geometrického základu a identických bodů,

c) další měřené kontrolní údaje, popřípadě doplňující popis bodů [5].

Zápisník, obsahující měřené údaje, může být nahrazen v případě použití technologie GPS výstupem výpočetního protokolu ze zpracovatelského programu [5].

Protokol o výpočtech v rámci zaměření identických bodů obsahuje seznam souřadnic bodů geometrického základu měření a bodů polohopisu katastrální mapy použitých pro výpočet souřadnic nových podrobných bodů, údaje o použitých metodách výpočtu souřadnic, porovnání dosažených výsledků a mezivýsledků s mezními hodnotami, seznam souřadnic nově určených bodů a datum, jméno, příjmení a podpis osoby, která výpočty prováděla.

Ukázkou části zápisníku a protokolu o výpočtech, obsahuje příloha č. 8. Celý soubor obsahuje přiložené CD.

Výsledný elaborát je odevzdán příslušnému katastrálnímu úřadu nejen v analogové podobě, ale také v elektronické podobě, podle předepsané struktury dat, která je dána přílohou č. 56 návodu pro OKO [1].

Obr. 22. Ukázka struktury dat dle přílohy č. 56, návodu pro OKO

Ověřený záznam podrobného měření změn bude tvořit součást katastrálního operátu v dokumentaci výsledků šetření a měření pro vedení a obnovu souboru geodetických informací (měřická dokumentace).
6 ZÁVĚR

Cílem diplomové práce bylo zaměřit identické body pro zpřesňující transformaci souvislého rastru v katastrálním území Ublo, v okrese Zlín. Pro splnění úkolu bylo nutné vybrat vhodné identické body pro zaměření, připojit měřickou síť do systému S-JTSK, z ní zaměřit identické body a vyhotovit příslušnou dokumentaci.

Identické body byly vybrány ze všech dostupných využitelných podkladů a byl vyhotoven jejich přehled. Současně se vyhotovil také přehled ZPMZ, který slouží k orientaci ve stávajících podkladech.

Pro zaměření měřické sítě jsem využila technologii GNSS, doplněnou o klasické geodetické metody. Navázalo zaměření samotných identických bodů polární metodou. K výpočtu naměřených dat jsem využila běžné geodetické programy a vytvořila výstupy ve formě výpočetních protokolů. Jako výsledek činností je záznam podrobného měření změn č. 246, obsahující náčrt identických bodů, včetně měřické sítě a vyznačením kládů, zápisník měření, výpočetní protokol GNSS a geodetických metod a v neposlední řadě také seznam nově určených souřadnic v systému S-JTSK s kódem kvality 3.

Ověřený záznam podrobného měření změn, který se předal Katastrálnímu pracovišti v Holešově, se využil pro zpřesňující transformaci souvislého rastru při obnově katastrálního operátu v měsíci únoru roku 2013. Souvislý rastr se transformuje zpřesňující transformací, zpravidla podobnostní s Jungovou dotransformací, v programu Kokeš. Transformační klíč tvoří vhodné identické body, případně body doplněného vektorového hraničního polygonu a body transformačního klíče, které již byly využity v sousedních katastrálních územích, při tvorbě zpřesněného rastru.

V diplomové práci je popisována teoretická i praktická část úkolu. Pro zaměření a zpracování jsem se řídila platnými právními předpisy, kterými jsou především:

- Návod pro obnovu katastrálního operátu a převod ve znění dodatku č. 1 a č. 2
- Zákon č. 344/1992 Sb. (Katastrální zákon)
- Zákon č. 200/1994 Sb., o zeměměřictví a o změně a doplnění některých zákonů souvisejících s jeho zavedením
- Vyhláška č. 26/2007 Sb. (Katastrální vyhláška)

Součástí diplomové práce jsou přílohy, které se v elektronické podobě, nachází také na přiloženém datovém nosiči.
SEZNAM POUŽITÉ LITERATURY

[6] Nařízení vlády č. 430/2006 Sb. o stanovení geodetických referenčních systémů a státních mapových děl závazných na území státu a zásadách jejich používání

[14] Souřadnicové systémy, Kapitola 2. Tvar zemského tělesa a referenční plochy, odst. 2.3.2, [2013-02-24]. Dostupné na WWW:

[15] Coordinate systems (Souřadnicové systémy), internetové stránky královské observatoře Belgie, výzkumná skupina GNSS [2013-02-25]. Dostupné na WWW:

[16] Mapy Seznam, internetové stránky mapového serveru, [2013-02-25]. Dostupné na WWW:

[17] Nahlížení do KN, internetové stránky ČUZK, [2013-02-25]. Dostupné na WWW:

[18] Oficiální internetové stránky obce Ublo, [2013-02-25]. Dostupné na WWW:

SEZNAM OBRÁZKŮ

Obr. 1. Schéma Křovákova zobrazení ... 13
Obr. 2. Schéma geocentrického souřadnicového systému 13
Obr. 3. Mapa ČR s vyznačenou lokalitou ... 14
Obr. 4. Znak obce Ublo ... 14
Obr. 5. Mapa okolí ... 14
Obr. 6. Přibližný obvod katastrálního území Ublo ... 15
Obr. 7. Příjezd do obce Ublo, z obce Lutonina ... 15
Obr. 8. Ukázka části přehledu ZPMZ ... 17
Obr. 9. Ukázka původního ZPMZ (-135) .. 17
Obr. 10. Ukázka části přehledu identických bodů ... 19
Obr. 11. Ukázka části TL č. 4502 ... 21
Obr. 12. Princip polární metody ... 23
Obr. 13. Ukázka části přehledného náčrtu PPBP ... 25
Obr. 14. Navigační přístroj eTrex Vista HCx ... 29
Obr. 15. Pásmo na vidlici ... 29
Obr. 16. GNSS přijímač Topcon TPS HiPer+ ... 31
Obr. 17. Datový kontrolér TOPCON FC – 200 .. 31
Obr. 18. Ukázka výpočetního programu Topcon Tools 34
Obr. 19. Ukázka transformace souřadnic v programu ETRF2KRO 35
Obr. 20. Ukázka zápisníku pro výpočet v programu Groma 35
Obr. 21. Popisové pole ZPMZ 246 .. 36
Obr. 22. Ukázka struktury dat dle přílohy č. 56, návodu pro OKO 38
SEZNAM TABULEK

Tabulka č. 1 – Geometrické parametry a kritéria přesnosti polygonových pořadů24
Tabulka č. 2 – Kódy kvality ... 29
Tabulka č. 3 – Technické parametry pulsní totální stanice TOPCON GPT-300230
Tabulka č. 4 – Technické parametry GNSS přijímače ..32, 33
SEZNAM PŘÍLOH

<table>
<thead>
<tr>
<th>Příloha č.</th>
<th>Název a popsání</th>
</tr>
</thead>
<tbody>
<tr>
<td>Příloha č. 1</td>
<td>Oznámení o zahájení OKO přepracováním SGI v k.ú. Ublo</td>
</tr>
<tr>
<td>Příloha č. 2</td>
<td>Přehled identických bodů s kladem náčrtů (4 části)</td>
</tr>
<tr>
<td>Příloha č. 3</td>
<td>Oznámení obci o plánovaných měřických pracích</td>
</tr>
<tr>
<td>Příloha č. 4</td>
<td>Geodetické údaje zhušťovacího bodu č. 201</td>
</tr>
<tr>
<td>Příloha č. 5</td>
<td>Kalibrační protokoly měřicích pomůcek</td>
</tr>
<tr>
<td>Příloha č. 6</td>
<td>Přehledný náčrt PPBP</td>
</tr>
<tr>
<td>Příloha č. 7</td>
<td>Ukázka části protokolu GNSS. Celý soubor obsahuje přiložené CD.</td>
</tr>
<tr>
<td>Příloha č. 8</td>
<td>Ukázka zápisníku a protokolu o výpočtu geodetických metod, včetně souřadnic nově určených bodů. Celý soubor obsahuje přiložené CD.</td>
</tr>
<tr>
<td>Příloha č. 9</td>
<td>Náčrt ZPMZ 246 včetně kladů náčrtů (7 částí)</td>
</tr>
<tr>
<td>Příloha č. 10</td>
<td>Datový nosič obsahující diplomovou práci včetně příloh a zadání diplomové práce</td>
</tr>
</tbody>
</table>