Show simple item record

dc.contributor.authorJahoda, Pavel
dc.contributor.authorJahodová, Monika
dc.date.accessioned2015-07-21T10:37:11Z
dc.date.available2015-07-21T10:37:11Z
dc.date.issued2015
dc.identifier.citationMathematica Slovaca. 2015, vol. 65, issue 1, p. 33-44.cs
dc.identifier.issn0139-9918
dc.identifier.issn1337-2211
dc.identifier.urihttp://hdl.handle.net/10084/106829
dc.descriptionNefunkční DOIcs
dc.description.abstractThe classical probability that a randomly chosen number from the set {n ∈ N : n ≤ n0} belongs to a set A ⊆ N can be approximated for large number n0 by the asymptotic density of the set A. We say that the events are independent if the probability of their intersection is equal to the product of their probabilities. By analogy we define the independence of sets. We say that the sets are independent if the asymptotic density of their intersection is equal to the product of their asymptotic densities. In the article is described a generalisation of one of the criteria of independence of sets and one interesting case in which sets are not independentcs
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesMathematica Slovacacs
dc.relation.urihttp://www.degruyter.com/view/j/ms.2015.65.issue-1/ms-2015-0004/ms-2015-0004.xmlcs
dc.relation.urihttp://dx.doi.org/10.1515/ms-2015-0004
dc.titleOn systems of independent setscs
dc.typearticlecs
dc.identifier.doi10.1515/ms-2015-0004
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume65cs
dc.description.issue1cs
dc.description.lastpage44cs
dc.description.firstpage33cs
dc.identifier.wos000355583100004


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record