Show simple item record

dc.contributor.authorBerrone, S.
dc.contributor.authorKozubek, Tomáš
dc.date.accessioned2007-03-08T11:44:49Z
dc.date.available2007-03-08T11:44:49Z
dc.date.issued2006
dc.identifier.citationSIAM Journal on Scientific Computing. 2006, vol. 28, issue 6, p. 2114-2138.en
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.urihttp://hdl.handle.net/10084/59850
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.ispartofseriesSIAM Journal on Scientific Computingen
dc.relation.urihttps://doi.org/10.1137/04062014Xen
dc.subjectadaptive wavelet and finite element methodsen
dc.subjectelliptic operator equationsen
dc.subjectrates of convergenceen
dc.titleAn adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domainsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.description.abstract-enIn this paper, we introduce a simple adaptive wavelet element algorithm similar to the Cohen–Dahmen–DeVore algorithm [A. Cohen, W. Dahmen, and R. DeVore, Math. Comp., 70 (2001), pp. 27–75]. The main difference is that we do not assume knowledge of the many constants appearing therein. The algorithm is easy to implement and applicable to a large class of problems in fairly general domains. The efficiency is illustrated by several two-dimensional numerical examples and compared with an adaptive finite element method.en
dc.identifier.doi10.1137/04062014X
dc.identifier.wos000243968200006


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record