Performance comparison of six efficient pure heuristics for scheduling meta-tasks on heterogeneous distributed environments

DSpace/Manakin Repository

aaK citaci nebo jako odkaz na tento záznam použijte identifikátor: http://hdl.handle.net/10084/78112

Show simple item record


dc.contributor.author Izakian, Hesam
dc.contributor.author Abraham, Ajith
dc.contributor.author Snášel, Václav
dc.date.accessioned 2010-02-08T10:46:41Z
dc.date.available 2010-02-08T10:46:41Z
dc.date.issued 2009
dc.identifier.citation Neural network world : international journal on non-standard computing and artificial intelligence. 2009, vol. 19, issue 6, s. 695-710. en
dc.identifier.issn 1210-0552
dc.identifier.uri http://hdl.handle.net/10084/78112
dc.description.abstract Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous distributed computing systems and represents an NP-complete problem. Therefore, using meta-heuristic algorithms is a suitable approach in order to cope with its difficulty. In many meta-heuristic algorithms, generating individuals in the initial step has an important effect on the convergence behavior of the algorithm and final solutions. Using some pure heuristics for generating one or more near-optimal individuals in the initial step can improve the final solutions obtained by meta-heuristic algorithms. Pure heuristics may be used solitary for generating schedules in many real-world situations in which using the meta-heuristic methods are too difficult or inappropriate. Different criteria can be used for evaluating the efficiency of scheduling algorithms, the most important of which are makespan and flowtime. In this paper, we propose an efficient pure heuristic method and then we compare the performance with five popular heuristics for minimizing makespan and flowtime in heterogeneous distributed computing systems. We investigate the effect of these pure heuristics for initializing simulated annealing meta-heuristic approach for scheduling tasks on heterogeneous environments. en
dc.language.iso en en
dc.publisher Akademie věd České republiky. Ústav informatiky en
dc.publisher České vysoké učení technické v Praze. Fakulta dopravní
dc.relation.ispartofseries Neural network world : international journal on non-standard computing and artificial intelligence en
dc.title Performance comparison of six efficient pure heuristics for scheduling meta-tasks on heterogeneous distributed environments en
dc.type Article en
dc.identifier.location Není ve fondu ÚK en
dc.identifier.wos 000273729800003

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Navigation

Browse

My Account

Statistics