Oponentský posudek na disertační práci

Název: Studium vlastností optické bezvláknové datové sítě pro vnitřní prostory v oblasti viditelného optického záření

Disertant: Ing. Petr Koudelka

Zázemolí 17, 614 00 Brno
Tel.: 728767977, e-mail: jan.maschke@email.cz

Předložená disertační práce řeší problematiku optické bezvláknové datové sítě pro vnitřní prostory v oblasti viditelného optického záření, která umožní spojení soutavy osvětlení a komunikační soutavy.

Obsah práce

Práce je rozdělena do 9 kapitol včetně úvodu a závěru. Doplněna je seznamem použití literatury a seznamem publikací autora.

Celkově je práce na 109 stranách textu včetně příloh. Práce je zaměřena na několik oblastí. Úvod obsahuje cíle práce, kapitoly 2 a 3 popisují současný stav bezdrátových datových sítí a optických bezvláknových datových sítí. Kapitoly 4 a 5 obsahují analýzu optického komunikačního kanálu a vlastní návrh vysílače systému. Kapitoly 6 a 7 se zabývají analýzou jednotlivých datových formátů z hlediska vícecestného šíření, simulací a experimentálním ověřením výsledků. Kapitola 8 řeší problém regulace optického výkonu systému.

V závěru práce jsou zhodnocena splnění cílů práce. V této části bylo přínosné zvýraznit vedle splnění cílů vlastní přínosy práce. V tomto duchu bylo vhodné zaměřit obhajobu práce.

Aktuálnost práce

Využívání luminiscenčních diod vyzařujících bílé světlo pro osvětlení místností přímo vybízí k úvaze využít je i pro optickou komunikaci. K tomu je třeba prokázat určité přednosti před řešením oddělujícím osvětlení a komunikaci. To vyžaduje poměrně podrobnou analýzu problému z hlediska konstrukce systému, jeho přenosových vlastností, problematiky pokrytí prostoru a výběru vhodných modulačních formátů. V tomto smyslu považuji práci za aktuální.

Přínos práce a splnění cílů

Lze konstatovat, že práce splnila vytýčený cíl. Je přínosná pro rozvoj vědního oboru, závěry mohou být uplatněny při praktickém návrhu specifického komunikačního systému. Za přínosné považuji zejména:

- vytvoření analytického základu pro matematické modelování a simulaci systému;
- experimentální ověření vlivu modulačních formátů na kolísání optického výkonu při vícecestném šíření a návrh na eliminaci tohoto kolísání;
- dílčí návrh matematického modelu řešení regulace optického výkonu pro vícecestné formáty.

Publikace jádra práce

Disertant je spoluautorem 7 časopiseckých publikací, souvisejících s tématem a dalších 3 nesouvisejících přímo s tématem práce. Dále je spoluautorem 12 příspěvků, souvisejících s tématem práce na konferencích a dalších 10 příspěvků na konferencích, nesouvisejících
s tématem práce. Publikační činnost svědčí o tom, že disertant je schopen předávat výsledky své práce a vystaví je k posouzení odborné veřejnosti.

Vědecká erudice disertanta

Na základě posouzení předložené práce lze konstatovat, že disertant prokázal schopnost vědecké práce. Cítovaných 74 publikací svědčí o skutečnosti, že práce je výsledkem hlubokého studia problematiky. Větší důslednost by si zaslouhovalo sladění poznatků při využívání jednotlivých pramenů. Nezanedbatelná je i schopnost využívat vhodných simulačních prostředků a experimentální dovednost. Z publikační činnosti vyplývá, že se disertant problematikou zabývá delší dobu. Odborné aktivity svědčí o schopnostech pro vědeckou práci a předpokladech pro další odborný růst.

Připomínky

Práce je zpracována na dobré grafické a po stránce textu i dobré jazykové úrovni. Bylo by možné se vyhnout některým anglickým termínům jako je např. boxplot, česky rámcové zobrazení (box, synonymum frame). Určité nepřesnosti se vyskytují v matematických formulacích a definicích fyzikálních veličin. Přínosné je uvedení seznamu použitých symbolů a zkratek. Bez toho by nebylo možné text studovat vzhledem k tomu, že v textu nejsou, alespoň při prvním použití, často symboly definovány. Navíc některé nejsou definovány vůbec nebo jsou jinak definovány v textu a jinak v seznamu. Připomínky dále uvádíme:

Str. 30 Jestliže \(n_{ref} \) a \(n_d \) jsou ve (4.3) vektory, toto je třeba nějak zvýraznit v textu, navíc symbol \(< > \) je třeba vysvětlit, jedná se o skalární součin.

Str. 37 Co je \(A \) v obr. 5.1? V seznamu symbolu je to velikost impulzu.

Str. 43 Ve vztazích pro numerický výpočet (5.8), (5.11) je třeba mít stejnou úroveň jednotek v vztahu a výsledku.

Str. 56 Co je \(h_{ref} \) ve vztahu (5.22)?

Str. 62 Ve vztahu (6.2) místo \(d(\tau) \) d\(\tau \).

Str. 68, 69 Ve vztazích se střídají symboly \(m \) a \(\mu \) definované v symbolech poněkud jinak než odpovídá (viz další terminologická připomínka).

Str. 69 Co je \(\delta \) v vztahu (6.17) a \(U_\delta \) v vztahu (6.22)?

Str. 70 Na obr. 6.12 proměnná na svislé ose neodpovídá asi chyběnemu označení v textu obrázku.

Str. 71 Ve vztahu (6.25) má být \(E_1 \) ve jmenovateli pod odmocninou.

Str. 72 V seznamu není ISI?

Str. 74 Na obr. 6.14 chyběně označená časová osa, kde mají být [s] ne [ns].

Str. 78 V (6.48) má být funkce \(f_2(t) \). Část vztahu (6.46) má být v závorce.

Str. 91 Ve třetí části vztahu (8.7) má být opačné znamění nerovnosti. Uvedenou nerovnost již zahrnuje druhý vztah.

Str. 92 V (8.16) chybí část závorky vlevo, v (8.17) chybí index \(x \) u \(\sigma \).

Vedle uvedených formálních připomínek máme připomínky faktické.

Str. 32 Ve (4.13) je \(H_d(0) \) definováno jako stejnosměrný útuln přímé optické trasy, v seznamu jako stejnosměrný kanálový zisk přímé trasy mezi optickým vysílačem a přijímačem.

Str. 71 V seznamu je \(A \) jako velikost impulzu (bez jednotek), jehož energie se zde definuje jako \(A^2T \). Je této hodnotě pouze úměrná, tj., můžeme ji jen charakterizovat tímto vztahem.

Str. 54 Uvádí se, že „hodnota optického výkonu je \(x \text{ W mm}^{-2} \). Toto je jednotka zářivého toku, bylo by možné opsat jako optický výkon na jednotku plochy.
V kapitole vícecestného šíření není jasné jak se do výkonového profilu zpoždění, spojitě exponenciální funkce (6.4), zahrnuje skokové změny výkonu při odrazech.

Vzhledem (6.8) nebyl odvozen správně. Jedná se o podíl dvou určitých integrálů a následně primitivních funkcí stejných mezemi. Nelze ve zlomku nejprve krátit funkce a poté dosadit meze a nejprve dosadit meze a poté podle možnosti upravit.

Ve vztahu (5.23) je $N0$ definováno jako oboustranná hustota energie šumu, v seznamu jako jednostranná část spektrální hustoty výkonu šumu. Vztah (5.23) nemůže platit. Jednotka $N0$ by zde vyšla A^2/s, zatímco na str. 58 je uvedena jednotka WHz^{-1}.

Při práci s Gaussovým rozložením je třeba dodržovat terminologii. Použité termíny nejsou správné. Symbol μ v Gaussové rozložení není průměr ani průměrná hodnota Gaussova rozložení, ale v tomto případě střední hodnota náhodné proměnné. Symbol σ^2 není odchylka (viz text a seznam), ale rozptyl nebo také variance. V části 8.2 za (8.4) je již správně σ^2 jako rozptyl, za (8.9) již opět σ jako rozptyl. Symbol σ je směrodatná odchylka.

V rámci rozpravy doporučuji, aby disertant odpověděl na následující otázky:

1. Jak byla nastaveny podmínky simulace z hlediska uspořádání s ohledem na obr. 5.13, kde je P_{max} řádu desetin nW?

2. Vysvětlete závislost BER na efektivní hodnotě zpoždění na obr. 6.14 a jaký závěr je možné vyvodit?

3. Při rozboru vícecestného šíření podle (6.4) výkonový profil klesá exponenciálně s časem. Jak byl vztah získán a jak se projevují skokové změny výkonu při odrazech?

4. Jaké jsou poznatky, ať teoretické nebo experimentální o vlivu na detekci přenášeného signálu např. z hlediska velkého poměru výkonu osvětlovací a signálové složky?

Závěr

Disertant prokázal schopnost samostatné vědecké práce a zvládl poměrně obsahově náročnou problematiku. To vyžadovalo prostudování širokého rozsahu literatury. Předložená práce vytváří dobrý základ pro další směřování vývoje systému.

Na základě zhodnocení doporučuji předloženou práci k obhajobě a po úspěšně obhajobě udělení akademického titulu.

V Brně dne 02.02.2016

Doc. Ing. Jan Maschke, CSc.
oponent