Anotace

Disertační práce je zaměřená na inovaci a vývoj všesměrových kol s cílem splnit definované limitní parametry určující komfort odvalování s následnou možností implementace do transportních prostředků, využívaných k přepravě osob v rámci nemocnic a obdobných institucí. Cílem vývoje je sestavit flexibilní nástroj v podobě metodiky předběžného návrhu rozměrových parametrů všesměrového kola ve formě skeletonů dílčích komponentů, jež vycházejí z definovaných vstupních hodnot, stanovených scénářem nasazení. Charakter vstupních hodnot předběžného návrhu je sestaven s ohledem na širokou škálu možných aplikací a rozměrových tříd všesměrových kol, přičemž výstupní parametry vycházejí jak z hodnot definovaných na počátku, tak vnitřních souvislostí návrhu všesměrového kola.

Výstupní hodnoty parametrů předběžného návrhu všesměrového kola jsou dále experimentálně ověřeny na konkrétní geometrii rozměrově vhodné k implementaci do uvažovaných transportních systémů. Projevy chování s vazbou na komfort odvalování jsou ověřeny sledem testovacích kroků s výstupem ve formě záznamu hodnot zrychlení vibrací.

Vytvořená metodika návrhu všesměrového kola představuje silný nástroj, pomocí kterého může konstruktér již v první iteraci návrhu a ve velmi krátkém čase získat konkrétní parametry, které mohou být velmi blízké finálnímu návrhu řešení.
Obsah

1. Úvod ... 4
2. Přehled současného stavu problematiky ... 5
 2.1 Analýza metodiky a procesů transportu ... 5
3. Cíle disertační práce ... 6
4. Analýza a výběr vhodných konstrukcí všesměrových kol 7
 4.1 Koncepce uspořádání všesměrových kol typu Mecanum 9
 4.2 Analýza konstrukcí všesměrových kol typu Mecanum s vazbou na snížení
 vibrací při odvalování ... 10
5. Analýza charakteru odvalování dostupných konstrukcí všesměrových kol........ 11
6. Vliv vibrací na pacienta .. 12
7. Výběr a principiální výzkum návrhu rozměrových a tvarových parametrů
 všesměrového kola .. 13
8. Inovace a vývoj částí všesměrového kola, za účelem eliminace vibrací a reálného
 zvýšení komfortu výsledného valení .. 14
 8.1 Zadávané hodnoty ... 14
 8.2 Informativní hodnoty výpočtu .. 16
 8.3 Idealizace křivky tvořící pláště pasivního elementu 17
 8.4 Automatizace výpočtu prostřednictvím šablony v PTC Creo 3.0 23
9. Realizace a experimentální ověření vnějšího tvaru pláště včetně návrhu vnitřního
 uspořádání .. 24
 9.1 Experimentální ověření navržené geometrie .. 26
 9.2 Vyhodnocení měření ... 28
 9.3 Identifikace zdroje vibrací .. 29
 9.4 Komplexní hodnocení úprav vnějšího pláště pasivních elementů 31
10. Finální návrh vnitřního uspořádání a materiálového řešení pasivního elementu . 33
 10.1 Experimentální ověření ... 34
 10.2 Experimentální ověření na prototypu transportního zařízení 39
 10.3 Experimentální ověření na průmyslové platformě AGV 39
11. Závěr ... 40
 11.1 Přínos pro vědu a praxi ... 41
 11.2 Doporučení na další výzkum .. 42
12. Použitá literatura .. 43
13. Vlastní publikace .. 44
14. Přílohy ... 47
Seznam použitých symbolů

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>JEDNOTKA</th>
<th>VÝZNAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(m \cdot s^{-2})</td>
<td>Zrychlení</td>
</tr>
<tr>
<td>(c_v)</td>
<td>-</td>
<td>Křivka vnějšího pláště pasivního elementu v souřadnicích kolové jednotky (x_k; y_k; z_k)</td>
</tr>
<tr>
<td>(c_{v2})</td>
<td>-</td>
<td>Křivka vnějšího pláště pasivního elementu transformovaná do souřadného systému pasivního elementu (x_v; y_v; z_v)</td>
</tr>
<tr>
<td>(c_{v3})</td>
<td>-</td>
<td>Křivka vnějšího pláště pasivního elementu transformovaná do roviny (x_v - z_v) pasivního elementu</td>
</tr>
<tr>
<td>(D_k)</td>
<td>(mm)</td>
<td>Průměr kolové jednotky</td>
</tr>
<tr>
<td>(D_m)</td>
<td>(mm)</td>
<td>Průměr motoru / příruby kolové jednotky</td>
</tr>
<tr>
<td>(g)</td>
<td>(m \cdot s^{-2})</td>
<td>Gravitační zrychlení</td>
</tr>
<tr>
<td>(LCS_1)</td>
<td>-</td>
<td>Lokální souřadný systém kolové jednotky</td>
</tr>
<tr>
<td>(LCS_2)</td>
<td>-</td>
<td>Lokální souřadný systém pasivního elementu</td>
</tr>
<tr>
<td>(n)</td>
<td>(ks)</td>
<td>Počet pasivních elementů kolové jednotky</td>
</tr>
<tr>
<td>(n_1)</td>
<td>(mm)</td>
<td>Souřadnice posunutí kružnice do středu souřadného systému kolové jednotky v osc (y_k)</td>
</tr>
<tr>
<td>(P)</td>
<td>-</td>
<td>Obecný bod křivky (c_v)</td>
</tr>
<tr>
<td>(p^k_v)</td>
<td>(mm)</td>
<td>Vzdálenost souřadných systému kolové jednotky a pasivního elementu</td>
</tr>
<tr>
<td>(P_x; P_y; P_z)</td>
<td>-</td>
<td>Souřadnice bodu (P)</td>
</tr>
<tr>
<td>(R^k_v)</td>
<td>-</td>
<td>Transformační matice souřadného systému kolové jednotky do souřadného systému pasivního elementu</td>
</tr>
<tr>
<td>(R_{x,\theta})</td>
<td>-</td>
<td>Transformační matice kolem osy xo úhel (\theta)</td>
</tr>
<tr>
<td>(R_{y,\varphi})</td>
<td>-</td>
<td>Transformační matice kolem osy yo úhel (\varphi)</td>
</tr>
<tr>
<td>(R_{z,\alpha})</td>
<td>-</td>
<td>Transformační matice kolem osy zo úhel (\alpha)</td>
</tr>
<tr>
<td>(S)</td>
<td>-</td>
<td>Vnější povrch pláště pasivního elementu</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\degree)</td>
<td>Úhel sevření os váleců a náboje kolové jednotky</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\degree)</td>
<td>Úhel natočení kolové jednotky v ose náboje</td>
</tr>
</tbody>
</table>
1. Úvod

Periferní zařízení v obecném kontextu rozšiřují základní užitné vlastnosti výchozího systému, což nabízí jeho nové uplatnění nebo zlepšení původních funkcí právě na základě nově instalovaného subsystému. V oblasti robotik a manipulátorů pro aplikace v oblasti bezpečnosti a ochrany obyvatel a záchranných systémů lze do dané kategorie zařadit periferní zařízení určené k cílenému vyhledávání a vyprošťování osob, automatickému nakládání s přidruženou autonomní detekcí životních funkcí osob, nebo řízenému doručování důležitých materiálů a zařízení k podporu životních funkcí. Uvedené kategorie jsou uvažovány bez bezprostřední přítomnosti zasahujícího personálu v rámci environmentálních hazardů. Dá se konstatovat, že za periferií lze považovat libovolný typ subsystému mechanického nebo elektronického charakteru, který rozšiří nebo vylepší stávající vlastnosti systému dle konkrétní aplikace nasazení záchranného prostředku, což eliminuje primární ohrožení zasahujících členů jednotek záchranných systémů. Sekundárně lze uvažovat o eliminaci ohrožení ve formě fyzicky náročných monotónních úkonů spojených s transportem nebo manipulací ve špatně přístupném a členitěm terénu na místě zásahu, v takových případech přicházejí v úvahu pomocné transportní platformy, případně komplexní zásahové roboty, vybavené sofistikovaným periferním zařízením určeným právě k transportu osob.

Aktuálně je stále častěji patrný trend pronikání robotů do odvětví, technologií a procesů, kde to dříve nebylo myslitelné. Výrobci nejen v oblasti robotických systémů si uvědomují obrovské možnosti, které jim nabízejí dílčí komplexní robotické subsystémy, případně dílčí periferie využívané ve specifických oborech. Důležitým faktorem je v tomto směru změna myšlení na mnoha postech. Například u konstruktérů zařízení určených pro aplikace v oblasti bezpečnosti a ochrany je nutné využívat mezioborové znalosti s důrazem na přednosti pokroků robotiky.

Přesto, že se touto problematikou v minulých desetiletích zabývaly výzkumné týmy významných univerzit po celém světě, můžeme v této oblasti spatřit mnoho nevyřešených problémů představujících řadu výzev k dalšímu hlubokému vědeckému bádání. Inovace a vývoj specifické periferie nebo části systému v oblasti aktuálních procesů záchranných systémů může přispět k jejímu dramatickému rozvoji, případně k rozšíření užitých vlastností inovovaného subsystému, což potencionálně vede k širší uplatnitelnosti v konkrétních aplikacích.
2. Přehled současného stavu problematiky

Směr a rozsah zaměření cílů diszertační práce lze stanovit analýzou sledu fázi daných řešením krizových situací, urgentní medicíny a medicíny katastrof. Rozdělením daného sledu operací různých zásahů na dílčí fáze lze určit, že se vždy odvíjí od základního scénáře „páteřního postupu“, ten je pouze modifikován dle okolností a podmínek na místě zásahu. Společným rysem veškerých analyzovaných zásahů bez ohledu na účel, původ nebo následky je obecný transport pacienta z místa události, a to na definované stanoviště, případně do nemocnice, kde je pacient lokálně transportován na dílčí oddělení.

2.1 Analýza metodiky a procesů transportu

Dle uvažovaného členění průběhu transportu je možné vyvodit závěry upřesňující přístup a důvody řešení práce.

K jednotlivým analyzovaným katastrofám dochází ojediněle, a to i ve světovém měřítku, přičemž průběh jednotlivých událostí se řídí vlastním postupovým scénářem, což na uvažované systémy klade rozličné požadavky směřující k značné univerzalitě. V opačném případě by bylo dané zařízení natolik specifické, že by pouze „vyčkávalo“ na možnost nasazení, uplatnitelnost takovéhoho zařízení je ojedinělá. Dané úvaze napovídá celá řada zařízení analyzovaných v rámci základní rešerše určující trendy a směry řešení systémů určených k transportu, případně vyproštění a transportu v různých situacích hromadného ohrožení osob. Daná skupina zařízení byla řešena ve vztahu k lokálnímu transportu na místě zásahu. Malému rozšíření uvažovaných systémů dále napovídá i samotný výskyt nejen v okolních tuzemských lokalitách, ale v celosvětovém měřítku.

Dílčí analýza transportu z místa události do oblastního, případně specializovaného zařízení je podmíněna nejen legislativně, ale zejména technicky, kde je velmi obtížné vůbec analyzovat současný stav ve vztahu k možným inovacím. Komplexnost řešení transportu prostřednictvím pozemní nebo letecké techniky je natolik sofistikovaný a propracovaný systém, s návazností na dílčí úlohy personálu a vybavenost zařízení, který striktně stanovuje definované požadavky na konstrukce ve vztahu k přepravovaným osobám a obslužnému personálu.

Za určující směr vyplývající z dané analýzy a analýzy zařízení vymezených k transportu osob ve vazbě na obsluhující personál, tedy členy záchranných systémů, lze s určitostí definovat náročnost transportu osob v rozsahu jednotlivých oblastí nemocnic a přibuzných
léčebných zařízení, a to i přes rozšiřující se škálu přípravku a pomocných systémů eliminujících potřeby hlavní tlačné síly ze strany obsluhujícího personálu.

Vývoj zařízení určených pro daný segment se v poslední době ze strany komerčních dodavatelů rozšiřuje o nabídku zařízení častěji v elektrifikovaném provedení, což s sebou přináší výhodu ve formě částečného odstranění fyzicky náročných úkonů spojených s transportem pacientů. Dané prostředky, zejména v analyzované komerční sféře, nabízí napříč většinou dodavatelů identicky řešený systém čtyř volně otočných kladkových kol s jedním centrálním poháněným kolem situovaným ve středu zařízení, případně dílčí přidavné jednotky, které je možné implementovat do aktuálně využívaných konstrukcí.

Postupné rozšiřování elektricky poháněných systémů nabízí možnost zařízení komplexního řešení elektrifikovaného typu transportního prostředku s pohonnou jednotkou všesměrového typu, což potenciálně přináší řadu výhod ve formě eliminace fyzicky náročných úkonů spojených s transportem pacientů v rámci arcálů nemocnic. Potencionálem daného technického řešení je možnost flexibilního manévrování v prostředí s výskytem překážek rozličného charakteru, mezi základní lze zařadit osoby s různou schopností pohyblivosti, lékařské vybavení, případně jiné transportní prostředky. Zařízení daného konceptu kolové jednotky do specifického transportního prostředku vyžaduje komplexní řešení systému ve vazbě na celou řadu legislativních a technických požadavků, nicméně vhodnost řešení je opodstatněna komfortem transportu ve vazbě jak na obslužný personál, tak přepravovanou osobou.

3. Cíle disertační práce

Analyzované prostředky, zejména v komerční sféře, nabízí napříč většinou dodavatelů identicky řešený systém čtyř volně otočných kladkových kol s jedním centrálním poháněným kolem situovaným ve středu zařízení, daný aspekt nabízí možnost začlenění všesměrového typu kola do úcelových transportních prostředků. Analýzou problematiky implementace všesměrových kol do úcelových transportních prostředků byla prokázána vhodnost rozšíření řiditelných manévrovacích schopností ve vazbě na prostředí aplikace. Nicméně konstrukční řešení, respektive navrhovaný model všesměrových kol, neumožňuje možnost implementace do daných konstrukcí vlivem snížení komfortu transportu, který je dán především zvýšenou mírou vibrací. Vibrace jsou dány zejména konstrukčním a materiálovým řešením válečkových segmentů, přičemž vliv vibrací na komfort transportu nelze definovat pouze pohodlí transportovaného pacienta, případně obsluhy zařízení, je zde nutné zahrnout i vliv
vibrací přenášených do konstrukce zařízení a stavebních konstrukcí (příkladem může být nemocniční koridor) s vazbou na akustické projevy a možnosti ovlivnění osob v dané oblasti.

Z provedené studie jednotlivých oblastí vyplývá možnost rozšíření užitných vlastností účelových transportních prostředků implementací všesměrového typu kola, za podmínek eliminace uvedených nežádoucích vlivů, které negativně ovlivňují možnost rozšíření vlastního nasazení i v jiných oblastech.

Disertační práce se proto věnuje analýze výše nastíněných problémů s cílem vyhledat jejich řešení.

1. Určení možných aplikačních směrů a vyplývajících scénářů nasazení podvozků se všesměrovým pohybem; analýza současného stavu.
 - Analýza konstrukcí všesměrových kol.
 - Negativní vliv konstrukčních řešení všesměrového kola.

2. Výběr a principiální výzkum návrhu rozměrových a tvarových parametrů všesměrového kola.

3. Inovace a vývoj elementů všesměrového kola za účelem eliminace vibrací a reálného zvýšení komfortu výsledného valení.

4. Realizace a experimentální ověření.

5. Stanovení možností implementace všesměrových kol.

4. Analýza a výběr vhodných konstrukcí všesměrových kol

Typy kolových jednotek umožňujících všesměrový pohyb a zároveň potencionálně vhodných k začlenění do konstrukčního řešení uvažované aplikace je možné rozdělit do čtyř základních skupin.

1. Standardní kolo s jedním nebo dvěma stupni volnosti.
2. Kolo s otočnou kladkou, které disponuje dvěma stupni volnosti.
3. a 4. Všesměrová kola disponují třemi stupni volnosti.
4. Sférická kolová jednotka. [1]

Z uvedené škály kolových jednotek je vzhledem k základním funkčním vlastnostem vhodné implementovat všesměrové kolo typu Mecanum 4 (Tab. 1). Uvažovaný scénář nasazení uplatňuje vnitřnomocniční transport pacienta v členitých prostorách budov a propojovacích koridorech s výskytu různorodých překážek ztěžujících flexibilní manipulaci

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

![Diagram showing various designs](image)

Tab. 1 Konstrukce jednotek se všesměrovým řízením

Uspořádání všesměrových kol typu Mecanum je založeno na běžném konceptu klasických kol situovaných podélně, nejčastěji v rozích nebo jejich blízkosti. Dané uspořádání umožňuje dodržet konvenční styly současného vzhledu zařízení, přičemž dané všesměrové kolo nevyžaduje volný okolní prostor v konstrukci, nezbytný k vytáčení běžné koncepce kola při změně směru jízdy.

Charakteristika výsledného pohybu všesměrových kol dále umožňují minimalizaci vzdálenosti ložných ploch téměř na nulovou hodnotu mezi transportním lůžkem a lůžkem stacionárním, což je výhodné při potencionálním přesunu pacienta prostřednictvím manipulačních přípravků nebo obslužným personálem.
4.1 Koncepce uspořádání všesměrových kol typu Mecanum

Technické řešení je tvořeno skupinou identických válců (pasivních elementů) umístěných symetricky kolem základního segmentu kola. Povrch každého pasivního elementu je zároveň součástí rotační plochy, jejichž osa je vychýlena od osy náboje kola, obvykle úhel výchylky odpovídá hodnotě ±45°.

Obr. 1 Konstrukce všesměrového kola typu Mecanum [3]

Uspořádání pasivních elementů vytváří teoreticky kruhový vnější tvar kružnice odvalování. V základním konstrukčním řešení lze prezentované návrhy dělit dle vetknutí pasivních elementů na středové a stranové kotvení. Středové řešení vyžaduje cílené přerušení středové části kontinuálního povrchu vnějšího pláště pasivního elementu, což může negativně ovlivňovat výsledný komfort odvalování kolové jednotky vytvořením přerušení, jehož velikost odpovídá rozměrům kotvících prvků definovaných žádanou únosností kolové jednotky. Stranové kotvení pasivních elementů v rámci základních přírub náboje kolové jednotky naopak vyžaduje vysoké nároky na rozměry konstrukce přírubových segmentů a jejich přesnost výroby. Možný výskyt chyb žádané pozice může vytvářet prostorové odchylky osy pasivního elementu, které vedou k znehodnocení teoreticky ideálního geometrického řešení vnějšího tvaru kolové jednotky.

Platforma osazena kolovou jednotkou typu Mecanum, je v obecné rovině vlastně osazena dvěma verzemi identického typu kola, jedno s osou váleců instalovanou pod úhlem +45° vzhledem k ose náboje a druhé s osou pasivních elementů pod úhlem -45° k ose náboje kola. Umístění os pasivních elementů kolových jednotek jedné nápravy jsou tedy v opačném smyslu, jedna dvojice má pozitivní úhel druhá negativní. Schéma uspořádání je patrné s výše uvedené tabulky (Tab. 1).
4.2 Analýza konstrukcí všesměrových kol typu Mecanum s vazbou na snížení vibrací při odvalování

Charakteristickým rysem analyzovaných návrhů je menší počet pasivních elementů situovaných po obvodu základního náboje. Dle popisů jednotlivých patentů a zařízení, využívaných daných principů a odkazovaných právě na uvedená patentová řešení, je vyplývající shoda vždy v definování počtu šesti nebo sedmi středově kotvených rozměrově náročnějších elementů, vycházejících z vnějšího průměru odvalování. Komerčně realizované industriální platformy transportního typu nebo vysokozdvihné vozíky s identickou kolovou jednotkou přitom dosahují pouze omezené rychlosti pojezdu v závislosti na průměru kolové jednotky.

Nároky patentových přihlášek jsou zaměřeny zejména na střední část elementů, kde je v daném případě definováno kotvení ke středové přírubě. Směr řešení eliminace zdroje vibrací je koncipován v návrhu materiálových přídavků, umístěných v blízkosti hranice přechodu vnější plochy pláště a volného prostoru kotvení. Daným způsobem je dle nároků kompenzováno přerušení vnějšího pláště pasivního elementu.

Zároveň je obdobným způsobem řešen stranový výběh elementů s principiálními návrhy dílčích optimalizací ve formě tvarových úprav vnějšího pláště nebo různorodého materiálového řešení. Výše uvedené alternativní směry řešení všesměrových kol s deklarovanou nízkou hodnotou parametrů vibrací jsou graficky interpretovány níže. Je nutné zdůraznit absenci transparentních hodnot parametrů dosažených vibrací v závislosti na zatížení nebo rychlosti pohybu platform. Charakteristická data podobné konstrukce jsou interpretována v kapitole referenčních měření dostupných konstrukcí a analyzovaných systémů. [4-7]

Obr. 2 Prezentační obrázky předkládaných návrhů patentů US6796618 B2 [7]
5. Analýza charakteru odvalování dostupných konstrukcí všesměrových kol

Problematiku výskytu vibrací způsobených odvalováním všesměrových kol lze zařadit mezi primární negativa konstrukčních řešení, potažmo zhoršení možnosti jejich nasazení do širšího spektra aplikací, využívajících transportních systémů v prostorách s požadavkem na flexibilní změnu směru trajektorie pohybu.

Cílem výchozího měření komfortu odvalování, prostřednictvím analýzy vibrací, běžně využívaných nemocničních transportních prostředků, komerčně dostupných všesměrových kol instalovaných na robotu Odin a prototypu pojízdné miniresuscitační jednotky, je stanovit konkrétní hodnoty a charakter parametrů vibrací s následnou analýzou možného vlivu na transportovanou osobu a přidružené systémy zařízení.

<table>
<thead>
<tr>
<th></th>
<th>Odin</th>
<th>Lůžko</th>
<th>Robostretcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hmotnost [kg]</td>
<td>75</td>
<td>120</td>
<td>392</td>
</tr>
<tr>
<td>Nosnost [kg]</td>
<td>-</td>
<td>460</td>
<td>360</td>
</tr>
<tr>
<td>Průměr kola [mm]</td>
<td>203,2</td>
<td>220</td>
<td>400</td>
</tr>
<tr>
<td>Šířka kola [mm]</td>
<td>74,4</td>
<td>50</td>
<td>220</td>
</tr>
<tr>
<td>Počet váleček [ks]</td>
<td>12</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

Tab. 2 Základní parametry analyzovaných zařízení a transportních systémů
Níže uvedené vyhodnocení interpretuje pouze fáze testovacích sekvencí jízdy vpřed a vzad. Uvedené pohyby překrývají 95% profilu uvažovaného scénáře nasazení, zejména jízda přímým směrem ustálenou rychlostí.

<table>
<thead>
<tr>
<th></th>
<th>Odin</th>
<th>Lůžko</th>
<th>Robostretcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmenovitá rychlost [m · s⁻¹]</td>
<td>0,8</td>
<td>1,14</td>
<td>0,89</td>
</tr>
<tr>
<td>Efektivní hodnota [m · s⁻²] na nápravě</td>
<td>3,22</td>
<td>3,62</td>
<td>1,04</td>
</tr>
<tr>
<td>Efektivní hodnota [m · s⁻²] za odpružením</td>
<td>-</td>
<td>-</td>
<td>0,52</td>
</tr>
</tbody>
</table>

Tab. 3 Referenční hodnoty analýzy vibrací dostupných zařízení

6. Vliv vibrací na pacienta

Výchozí měření lokomočního ústrojí dostupného robotu dle očekávání a uvedených výsledků prokázalo výskyt vibrací, které bylo možné numericky specifikovat dle základních vyhodnocovacích parametrů. Díky specifické aplikaci implementace všesměrových kol do transportních prostředků využívaných v areálech nemocnic je možné vycházet z řady klinických studií, praktických zkušeností a norem, které definují okrajové podmínky očekávaných výstupů daných zařízení, nejen ve vazbě na komfort transportu, ale také možné negativní vlivy na přidružené vyšetřovací systémy a zařízení.

Prezentovaná kategorizace intervalů subjektivního nepohodlí (Tab. 4) vychází z analyzovaných studií, pojednávajících o komfortu transportované osoby nemocničními prostředky. Subjektivní nepohodli způsobené vibracemi při transportu může vyvolat krátkodobé, ale i dlouhodobé újmy pacienta s přidruženou vazbou na transportované diagnostické přístroje. Zejména proto, jsou zde interpretovány výsledky studie působení vibrací, ovlivňujících lidské tělo, kde je zdrojem vibrace standardní typ transportního prostředku nebo nosítek.

Analyzované studie zároveň poukazují na negativní účinky vibrací, které mohou být na rezonanční frekvenci transportovaných osob a jejich orgánů, což může způsobit značné nepohodlí nebo zhoršení celkového stavu. [8]
<table>
<thead>
<tr>
<th>Zrychlení ([m \cdot s^{-2}])</th>
<th>Měřítko nepohodlí dle výše uvedených studií a norem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menší než 0,315</td>
<td>POHODLNÉ</td>
</tr>
<tr>
<td>0,315–0,63</td>
<td>TROCHU NEPOHODLNÉ</td>
</tr>
<tr>
<td>0,5–1</td>
<td>POMĚRNĚ NEMPOHODLNÉ</td>
</tr>
<tr>
<td>0,8–1,6</td>
<td>NEPOHODLNÉ</td>
</tr>
<tr>
<td>1,25–2,5</td>
<td>VELMI NEPOHODLNÉ</td>
</tr>
<tr>
<td>Větší než 2</td>
<td>EXTÉMNĚ NEPOHODLNÉ</td>
</tr>
</tbody>
</table>

Tab. 4 Hodnoty efektivního zrychlení vibrací - subjektivního nepohodlí [8]

Výsledný návrh implementace všesměrových kol by měl splňovat výše definované hodnoty, určující subjektivní pohodlí, a zároveň maximálně snižit možnost výskytu frekvence, odpovídající vlastní frekvenci těla a jeho orgánů.

7. Výběr a principiální výzkum návrhu rozměrových a tvarových parametrů všesměrového kola

Závěry provedené analýzy postupových kroků návrhů všesměrových kol identického typu poukazují na zcela chaotické a neucelené uspořádání dílčích návrhů, přičemž dle uvedených poznatků jsou návrhy vytvářeny pro konkrétní zařízení s definovaným pracovním prostředím a scénářem nasazení. Výsledné tvarové návrhy pasivních elementů přitom nemohou plnit základní podmínku stanovených přesahů okrajových částí pasivních elementů skrze plochu imaginárního válce s průměrem odpovídajícím průměru všesměrového kola. [9-12]

Splněním uvedené posloupnosti postupových kroků lze výsledný návrh interpretovat vizualizací (Obr. 3) výsledného pasivního elementu a žádaného poloměru kolové jednotky, kde jsou patné nežádoucí přesahy, které nevytváří ideální kružnici, ale mnohopůlkelník, jenž musí bezpochyby tvořit nežádoucí vibrace.

Referenční křivka vnějšího tvaru pasivního elementu byla vytvořena tak, že její tvar odpovídá části elipsy tvořené řezem, rovinou vedenou válcem o průměru kolové jednotky pod definovaným úhlem středem náboje, přičemž rotací dané křivky kolem osy pasivního elementu vznikne vnější plášť. Kde má výsledný tvar dle uvedených postupových kroků analyzovaných metodik návrhů odpovídat finálnímu tvaru vnější geometrie pasivního
elementu, nicméně dle interpretovaných přesahů tělesa pasivního elementu (Obr. 3) skrze vnější plášť imaginárního válce, určujícího parametr odvalování kola, není evidentně dodržena výchozí podmínka.

![Diagram](image)

Obr. 3 Přesahy těles pasivních elementů

Z uvedeného vyplývá vhodnost vytvoření metodického nástroje s možností flexibilního návrhu rozměrových parametrů všesměrových kol dle zadaných vstupních hodnot, které budou výsledkem analýzy zamyšlené konstrukce lokomočního ústrojí a scénářů nasazení.

8. **Inovace a vývoj částí všesměrového kola, za účelem eliminace vibrací a reálného zvýšení komfortu výsledného valení**

Metodika návrhu všesměrového kola vychází z řady obecných podmínek, určených specifickým scénářem nasazení, proto je vhodné zařadit jednotlivé parametry návrhu do skupiny zadaných hodnot, které je nezbytné stanovit již v počáteční fázi návrhu, a dále hodnot informativních, které lze považovat za výsledek vyplývající z hodnot zadaných a obecně lze předložený popis výpočtu rozdělit na dvě části, kde první část řeší stanovení výchozích parametrů s přímou vazbou na výstupní informativní hodnoty a jejich vzájemné působení a druhá část popisuje idealizaci výsledné křivky vnějšího plášť pasivního elementu dle výchozí zadané podmínky.

8.1 **Zadávané hodnoty**

Zadávané hodnoty jsou stanoveny zejména s důrazem na rychlost a univerzalitu návrhu. Očekávaným výstupem je základní geometrie křivky pasivního elementu a zároveň geometrických parametrů kolové jednotky. Níže uvedené geometrické a parametrické hodnoty vnějších obálk základních komponentů umožňují stanovit výchozí podobu konkrétního typu konstrukce včetně specifikace základních konstrukčních prvků.
<table>
<thead>
<tr>
<th>Zadávaný parametr</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměr odvalování všesměrového kola</td>
<td>Průměr imaginárního válce, jehož průměr je totožný s průměrem vnějšího povrchu všesměrového kola.</td>
</tr>
<tr>
<td>Průměr motoru / příruby</td>
<td>Průměr motoru nebo příruby, jenž ovlivňuje vnitřní prostor konstrukce, příkladem může být implementace pohonu přímo do konstrukce všesměrového kola.</td>
</tr>
<tr>
<td>Šířka všesměrového kola</td>
<td>–</td>
</tr>
<tr>
<td>Mezera motor – vnější plášť pasivního elementu</td>
<td>Volný prostor mezi vnější konstrukcí pohonu nebo příruby a maximálním rozměrem pasivního elementu. Navýšením dané hodnoty je možné eliminovat zasekávání cizích předmětů, stanovené velikosti v daném prostoru; příkladem cizích předmětů může být volně ložená frakce štěrku, úlomky dřeva atp.</td>
</tr>
<tr>
<td>Mezera mezi pasivními elementy</td>
<td>Mezera mezi pasivními elementy, mimo obdobné vlastnosti eliminace zasekávání cizích předmětů, dále ovlivňuje konstrukci křivky pasivního elementu.</td>
</tr>
<tr>
<td>Přesah pasivního elementu</td>
<td>Přesah pasivního elementu lze definovat hodnotou přesahu osy pasivního elementu za hranici definovanou šířkou kola. Hodnota může být kladná i záporná dle směru – prodloužení nebo zkrácení pasivního elementu od hranice (šířky kola).</td>
</tr>
<tr>
<td>Úhel sevření váleců</td>
<td>Úhel sevření osy váleců s osou náboje.</td>
</tr>
</tbody>
</table>

Tab. 5 Zadávané parametry

Mezi základní vnitřní souvislosti uvedených parametrů lze zařadit počet pasivních elementů všesměrového kola, kde zvolený vyšší počet pasivních elementů po obvodu kola vede k menší šířce. Větší počet pasivních elementů umožňuje proporce všesměrového kola přibližit proporcím kola konvenčního, čímž se zásadně sníží požadované zástavbové rozměry v rámci podvozku. Větší počet pasivních elementů všesměrového kola umožňuje dosáhnout většího prostoru v náboji konstrukce kola, což umožňuje implementaci elektromotoru o větším průměru. Vyšší počet pasivních elementů vede k postupnému napřímení povrchových křivky, a tím k minimalizaci rozdílů mezi středovým a stranovým průměrem vnějšího pláště pasivního elementu, přičemž velikost středního průměrů je menší. Rozměrové větší válečky jsou napak schopny přenášet větší zatížení, ale zejména lépe snášejí jízdu všesměrového kola mimo ideální povrch (všesměrová kola jsou z principu koncipována pro odvalování na
kvalitním povrchu), změnou uvedených parametrů je možné docílit schopnosti komfortního pohybu i po ne rovném povrchu.

8.2 Informativní hodnoty výpočtu

Informativní hodnoty výpočtu jsou výsledkem výpočtové sekvence z hodnot zadávaných, dané hodnoty poskytují předstawu o základních technických parametrech a přidružených hodnotách majících vliv na koncové řešení.

<table>
<thead>
<tr>
<th>Informativní parametr</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hmotnost</td>
<td>Teoretická hmotnost dle objemů a uvažovaných materiálů. Uvažováno ve vazbě na 3D software.</td>
</tr>
<tr>
<td>Roztečný průměr os pasivních elementů</td>
<td>Průměr kružnice se středem situovaným v ose kola a středu šířky kola. Kružnice protíná v dané pozici osy pasivních elementů.</td>
</tr>
<tr>
<td>Počet pasivních elementů</td>
<td>Výsledný počet pasivních elementů na jednom kole – zaokrouhlená hodnota.</td>
</tr>
<tr>
<td>Teoretický počet pasivních elementů</td>
<td>Parametr určuje přesnou hodnotu – je vhodné dosáhnout celého čísla - POČET PE = TEORETICKÝ POČET PE</td>
</tr>
<tr>
<td>Délka oblouku přes pasivní elementy</td>
<td>Délka části kružnice určující roztečný průměr os pasivních elementů, délka je určena tvarem pasivního elementu (vnějším pláštěm).</td>
</tr>
<tr>
<td>Průměr na konci pasivního elementu</td>
<td>Průměr na konci pasivního elementu – hodnota uvažovaná s definovaným přesahem.</td>
</tr>
<tr>
<td>Průměr střední části pasivního elementu</td>
<td>Průměr pasivního elementu ve středu vlastní délky.</td>
</tr>
<tr>
<td>Úhel výseče pasivního elementu</td>
<td>Úhel překrytí výšeče je definován délkou funkční plochy pasivního elementu reprezentované tvarem povrchové křivky překrývající část siluety imaginární plochy válců odpovídajícího průměru odvalování.</td>
</tr>
<tr>
<td>Úhel překrytí pasivních elementů</td>
<td>Vzájemně překrytí sousedních pasivních elementů, úhel je definován hodnotou překrytí vlastních výšečí.</td>
</tr>
<tr>
<td>Procento překrytí pasivních elementů</td>
<td>Procento překrytí je děno poměrem délky překrytí sousedních pasivních elementů a vlastní délky pasivního elementu.</td>
</tr>
</tbody>
</table>

Tab. 6 Informativní parametry
8.3 Idealizace křivky tvořící plášť pasivního elementu

Teoretický návrh vnějšího tvaru pláště pasivního elementu vychází z části křivky tvořené elipsou, která je definována řezem vedeným středem válce, který interpretuje základní rozměry kolové jednotky. Řez je veden rovinou pod úhlem identickým s úhlem natočení osy náboje kola a pasivních elementů, omezení délky křivky vnějšího pláště pasivního elementu je definováno šířkou, případně konstrukcí kola a přidružených částí. Idealizace daného pláště, interpretována matematicky, vychází ze základních zadávaných parametrů, přičemž základní podmínkou řešení úlohy je dodržení identické vzdálenosti osy náboje kola a ideálně rovné podložky stávající se pojezdovou plochou. Výsledný tvar siluety vnějšího pláště kolové jednotky musí při bočním pohledu vytvářet teoretické spojení skupiny pasivních elementů uspořádaných po obvodu kolové jednotky. Daná podmínka vede k vytvoření ideální kružnice odvalování, což přispívá k idealizaci výsledného návrhu ve vztahu k vibracím.

Očekávaným výstupem idealizace výpočtu křivky vnějšího pláště pasivního elementu s vazbou na vstupní parametry a definovanou podmínku je funkce křivky vnějšího pláště, definovaná v závislosti na konstantní vzdálenosti pozice kontaktního bodu pasivního elementu a osy kolové jednotky. Vzhledem k symetrii pasivního elementu je možné uvažovat pouze polovinu křivky.

Obr. 4 Schéma kolové jednotky
Z interpretovaného schématu vyplývá geometrická podmínka vytvářející křivku \(c_y \), která rotací kolem vlastní osy, vzdálené od osy náboje kola dle dalších parametrů, tvoří vnější povrch \(S \) plášť pasivního elementu, jenž je součástí povrchu imaginárního válce \(Z \) o průměru identickém s povrchem odvalování kolové jednotky o průměru \(D_k \), rotující kolem osy \(a \). Plocha pasivního elementu \(S \) a imaginárního válce \(Z \) jsou přítom v kontaktním bodě vzájemně tangenciální dle aktuální pozice na křivce \(c_y \). Daná křivka \(c_y \) dále určuje přesnou pozici kontaktního bodu plochy válečku \(S \) s podložkou \(\tau \).

Výchozí podmínkou sestaveného výpočtu je dodržení konstantní vzdálenosti pojedové plochy s osou náboje kolové jednotky.

\[
\frac{D_k}{2} = \text{konst.}
\]

(1)

Dle schématu je možné určit základní goniometrické vztahy, díky kterým lze stanovit přesnou pozici kontaktního bodu, jenž zároveň leží na vnější ploše válce.

\[
f = r_{os} \cdot \tan(\beta)
\]

(2)

\[
x = f \cdot \cot(\alpha)
\]

(3)

\[
x = r_{os} \cdot \tan(\beta) \cdot \cot(\alpha)
\]

(4)

\[
y = \frac{D_k}{2} \cdot \sin(\beta)
\]

(5)

\[
z = -\frac{D_k}{2} \cdot \cos(\beta)
\]

(6)
Maticové vyjádření určuje prostorovou pozici bodu křivky váleců ve vztahu k absolutnímu středu kola.

\[
c_v(\beta) = \begin{bmatrix} x(\beta) \\ y(\beta) \\ z(\beta) \end{bmatrix} = \begin{bmatrix} r_{os} \cdot \tan(\beta) \cdot \cot(\alpha) \\ \frac{D_k}{2} \cdot \sin(\beta) \\ -\frac{D_k}{2} \cdot \cos(\beta) \end{bmatrix}
\]

Dále je vhodné přetvořit smysl vyjádření křivky takovým způsobem, který povede k určení funkce závislosti souřadnice \(x \) odpovídající vzdálenosti na ose váleců a bodu \(P \), jenž náleží křivce \(c_v \) a je definován hodnotou vzdálenosti souřadnice \(z \), tedy \(f(x_v) = f(c_v) \), proto je vhodné transformovat souřadný systém ze středu náboje kola do středu válečku.

Pro transformaci souřadnic mezi lokálními souřadnými systémy, které jsou spojeny s daným prvkem sestavy a zároveň globálním souřadným systémem, jenž odpovídá souřadnému systému středu náboje kola, je s výhodou využíváno právě maticového počtu. Odvození maticových vztahů pro přepočet souřadnic z jednoho souřadného systému do jiného lze interpretovat přímo na řešené problematice.

Dílčí bod \(P \) ležící na křivce \(c_v \), jehož poloha je určena prostřednictvím třírozměrných souřadnic definovaných v závislosti na úhlu natočení kola \(\beta \), vyjádřit jako sloupec matici určující klasické ortogonální souřadnice polohy v základním souřadném systému situovaném ve středu náboje kola.

\[
P = \begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix}
\]

Maticový vztah uvedený níže říká, že souřadnice bodu \(P \) transformujeme ze souřadného systému náboje kola \(x_k, y_k, z_k \) do souřadného systému pasivního elementu \(x_v, y_v, z_v \) tak, že je zleva vynásobíme transformační maticí \(R^k_v \). Indexy transformační matice udávají, mezi kterými souřadnými systémy je počet prováděn. V řešeném případě je nezbytné souřadný systém \(x_v, y_v, z_v \) otáčet vůči \(x_k, y_k, z_k \) kolem osy \(z_k \) o úhel \(\alpha \) a zároveň posunout počátek souřadného systému \(x_v, y_v, z_v \) o vzdálenost definovanou \(p^k_v \).

\[
(P)^v = [R]_v^k \cdot (P)^k + p^k_v
\]
Po dosazení do transformační matice ve vztahu k úvaze, že skalární součin kolmých vektorů je nula, skalární součin totožných jednotkových vektorů je jedna a skalární součin různoběžných jednotkových vektorů je \(\cos(\theta) \) a při uvážení vzorce \(\cos\left(\frac{\pi}{2} \pm \theta\right) = \pm \sin(\theta) \), dostaneme transformační matici kolem osy \(x \) o úhel \(\varphi \) ve tvaru

\[
R_{x,\varphi} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\varphi) & -\sin(\varphi) \\
0 & \sin(\varphi) & \cos(\varphi)
\end{bmatrix}
\] \hspace{1cm} (10)

Obdobně pro rotaci kolem osy \(y \) o úhel \(\varphi \) a kolem osy \(z \) o úhel \(\alpha \) dostaneme transformační matice ve tvaru

\[
R_{y,\varphi} = \begin{bmatrix}
\cos(\varphi) & 0 & \sin(\varphi) \\
0 & 1 & 0 \\
-\sin(\varphi) & 0 & \cos(\varphi)
\end{bmatrix} \hspace{1cm} R_{z,\alpha} = \begin{bmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{bmatrix}
\] \hspace{1cm} (11)

Uvedené tři základní transformační matice umožňují přepočet souřadnic i při víceasobném natočení kolem různých os, přitom je nutné zachovat pořadí matic takové, jaké bylo pořadí imaginárních pohybů. [13]

Níže uvedený vztah symbolicky vyjadřuje transformaci souřadného systému ze středu náboje kola do středu válečku s potočením kolem osy \(z \) o úhel \(\alpha \), definovaný natočením osy pasivních elementů od osy náboje kola.

\[
c_{v2} = R_{z\alpha} \cdot c_v + p^k_v
\] \hspace{1cm} (12)

\[
c_{v2} = \begin{bmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
\frac{r_{os} \cdot \tan(\beta) \cdot \cot(\alpha)}{2} \\
\frac{D_k \cdot \sin(\beta)}{2} \\
-\frac{D_k \cdot \cos(\beta)}{2}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
r_{os}
\end{bmatrix}
\] \hspace{1cm} (13)

Výsledná podoba matice interpretuje transformační vztah pro přepočet souřadnic bodu \(C_{v2} \) křivky v závislosti na úhlu natočení \(\beta \) kolové jednotky, vyjádřeného v souřadnicích posunutého a natočeného souřadného systému \(x_k, y_k, z_k \) do souřadnic souřadného systému \(x_v, y_v, z_v \).
\[c_{v2}(\beta) = \begin{bmatrix} r_{os} \cdot \tan(\beta) \cdot \cos(\alpha) \cdot \cot(\alpha) + \frac{D_k}{2} \cdot \sin(\beta) \cdot \sin(\alpha) \\ \frac{D_k}{2} \cdot \sin(\beta) \cdot \cos(\alpha) - r_{os} \cdot \tan(\beta) \cdot \cot(\alpha) \cdot \sin(\alpha) \\ r_{os} - \frac{D_k}{2} \cdot \cos(\beta) \end{bmatrix} \] (14)

Vzhledem k typu prostorové křivky, která je součástí plochy pláště imaginárního válce, díky čemuž neleží v jedné rovině, je nezbytné transformovat dílčí body křivky do roviny \(x_v - z_v \) pasivního elementu takovým způsobem, který umožní stanovení závislost funkce \(f(x_v) = f(c_v) \). Výsledná křivka vytváří rotaci kolem vlastní osy pasivního elementu – vnější plášť splňující výchozí podmínku vzdálenosti středu kola a ideálně rovné pojedové podložky.

Obr. 5 Transformace prostorové křivky \(c_v \) do roviny \(x_v - z_v \)

Ke kýčenému výsledku je možné dojít dvěma směry, které vlastním srovnáním poskytují kontrolu dané operace. První směr navazuje na předchozí sekvenci výpočtu prostřednictvím obecných transformačních matric.

\[c_{v3} = R_x^\theta \cdot c_{v2} \] (15)

\[c_{v3}(\beta, \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} r_{os} \cdot \tan(\beta) \cdot \cos(\alpha) \cdot \cot(\alpha) + \frac{D_k}{2} \cdot \sin(\beta) \cdot \sin(\alpha) \\ \frac{D_k}{2} \cdot \sin(\beta) \cdot \cos(\alpha) - r_{os} \cdot \tan(\beta) \cdot \cot(\alpha) \cdot \sin(\alpha) \\ r_{os} - \frac{D_k}{2} \cdot \cos(\beta) \end{bmatrix} \] (16)

Výsledná podoba matice interpretuje transformační vztah pro přepočet souřadnic bodu \(C_{v3} \) křivky v závislosti na úhlu natočení \(\beta \) kolové jednotky, vyjádřeného v souřadnicích posunutého a natočeného souřadného systému \(x_k, y_k, z_k \) do souřadnic souřadného systému
\(x_v, y_v, z_v\), přičemž dílčí body prostorové křivky jsou transformovány prostřednictvím natočení souřadného systému kolem osy válec\(x_v\). Hodnota úhlu natočení \(\theta\) dílčích bodů ležících na povrchové křivce \(c_{v2}\) transformovaných do podoby křivky \(c_{v3}\) odpovídá vztahu aktuálního natočení kolové jednotky a vzdálenosti daného bodu od středu osy pasivního elementu \(\theta(\beta) = -\text{atan} (\cos(\alpha) \cdot \tan(\beta))\).

Dosazením vztahu vyjádření úhlu \(\theta(\beta) = -\text{atan} (\cos(\alpha) \cdot \tan(\beta))\) do níže uvedené matice vznikne soustava rovnic, definujících jednotlivé souřadnice v závislosti na natočení kolové jednotky, a tedy kontaktního bodu povrchové křivky pasivního elementu s podložkou, při dodržení podmínky konstantní vzdálenosti osy náboje kolové jednotky a pojedové podložky. Dosazením výrazu do matice je možné eliminovat souřadnici \(y\), jež bude po transformaci rovna nule.

\[
c_{v3}(\beta, \theta) = \begin{bmatrix}
\frac{D_k}{2} \cdot \sin(\beta) \cdot \sin(\alpha) + r_o \cdot \tan(\beta) \cdot \cos(\alpha) \cdot \cot(\alpha)

\cos(\theta) \cdot \left(\frac{D_k}{2} \cdot \sin(\beta) \cdot \cos(\alpha) - r_o \cdot \tan(\beta) \cdot \cot(\alpha) \cdot \sin(\alpha)\right) - \sin(\theta) \cdot \left(r_o - \frac{D_k}{2} \cdot \cos(\beta)\right)

\sin(\theta) \cdot \left(\frac{D_k}{2} \cdot \sin(\beta) \cdot \cos(\alpha) - r_o \cdot \tan(\beta) \cdot \cot(\alpha) \cdot \sin(\alpha)\right) + \cos(\theta) \cdot \left(r_o - \frac{D_k}{2} \cdot \cos(\beta)\right)
\end{bmatrix}
\]

Druhý směr je principiálně snazšího a intuitivnějšího charakteru, výsledný tvar křivky je do roviny \(x_v - z_v\) transformován prostřednictvím „Pythagorovy věty“. Výsledná transformace určuje souřadnici \(z\) v závislosti na natočení kolové jednotky.

\[
Z_{cv3-xz} = \sqrt{(Y_{cv2})^2 + (Z_{cv2})^2}
\]

Výše interpretované vztahy určují souřadnice \(x_v\) a \(z_v\) v závislosti na úhlu natočení \(\beta\) kolové jednotky. Žádané výsledné podoby funkce lze dosáhnout vyjádřením úhlu \(\beta\) ze souřadnice \(x_z\) a návazným dosazením do funkce souřadnice \(z_v\). Danou úpravou je možné získat výslednou podobu křivky definovanou v základních souřadnicích \(x_v\) a \(z_v\), při zadání vstupních parametrů.

Uvedenou funkcí křivky je možné implementovat do výpočetní šablony libovolného 3D programu, případně výpočetovou hodnotu exportovat v podobě výsledného modelového řešení. Výslednou podobu křivky pasivního elementu je nutné zařadit do výchozího výpočtu počátečních parametrů informativních hodnot. Druhou iteraci výpočtu dojde k upřesnění výstupních hodnot.
8.4 Automatizace výpočtu prostřednictvím šablony v PTC Creo 3.0

Uvedená posloupnost matematických operací byla transformována do výpočetní šablony vytvořené prostřednictvím vnitřních funkcí a relací programu Creo 3.0, do něhož vstupují dříve interpretované vztahy. Vložením konkrétních hodnot žádaných parametrů je flexibilně generována základní podoba objemového modelu dílčích prvků s odpovídajícími rozměrovými parametry a skupinou informačních hodnot, vhodných pro relevantní posouzení vhodnosti návrhu. Výslednou sestavu prvků je možné dále využívat k úpravě konkrétních konstrukčních řešení jednotlivých dílů s přímou vazbou na stanovenou geometrii prostřednictvím vytvořených objemových skeletonů. Objemové skeletony interpretují výslednou rozměrovou charakteristiku ideální pro výchozí konstrukční posouzení, zároveň je možné skeletony dále využívat jako pracovní obálu konstrukčního řešení všesměrového kola.

Obr. 6 Automatizace výpočtu v programu PTC Creo 3.0
9. Realizace a experimentální ověření vnějšího tvaru pláště včetně návrhu vnitřního uspořádání

Vytvoření konkrétní geometrie kolové jednotky, navazuje na dílčí cíl dizertační práce směřující k experimentálnímu ověření vyvozených návrhů a závěrů. Na základě metodického postupu byla dále sestavena tabulka základních konstrukčních variant všesměrového kola, jež nabízí komplexní náhled ve smyslu stanovené škály rozměrových variant na základě předpokládaných vstupních parametrů.

Parametry kolové jednotky byly voleny s ohledem na plánovanou zástavbu do konstrukce transportního prostředku, jenž je tvořen podvozkovou platformou s vnitřním uspořádáním dílčích systémů, přičemž dané parametry byly vyšetřeny jako nejvhodnější i s ohledem na kotvení, instalaci pohoných jednotek a možnou zástavbu do alternativních podvozkových platforem. Scénář nasazení je uvažován ve vnitřním prostředí nemocnic s užitím při transportu převážně v definovaných koridorech s kvalitním povrchem. Dané aspekty vedly k návrhu kolové jednotky s vyšším počtem pasivních elementů, ale menších průměrů, a zároveň minimalizaci mezer mezi válečky, potažmo válečky a přírubou. V daných prostorách není předpokládán vysoký výskyt volně ležících těles daných parametrů. Zároveň byl průměr odvalování kola a průměr příruby/motoru volen s úmyslem neeliminovat případné alternativy jak s pohonem mimo kolovou jednotku tak s pohonem implementovaným v kolové jednotce. Dané aspekty mají synchronní vliv na prostor věnovaný pasivním elementům a jejich rozměrové parametry.

<table>
<thead>
<tr>
<th>Zadávaný parametr</th>
<th>Označení</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměr odvalování kola</td>
<td>D_k</td>
<td>300 mm</td>
</tr>
<tr>
<td>Průměr motoru/příruby</td>
<td>D_m</td>
<td>215 mm</td>
</tr>
<tr>
<td>Šířka kola</td>
<td>l_k</td>
<td>110 mm</td>
</tr>
<tr>
<td>Mezera motor – pasivní element</td>
<td>\Delta_{mv}</td>
<td>2,5 mm</td>
</tr>
<tr>
<td>Mezera mezi pasivními elementy</td>
<td>\Delta_{vv}</td>
<td>3,8 mm</td>
</tr>
<tr>
<td>Přesah pasivního elementu</td>
<td>\Delta l_p^*</td>
<td>-14,4 mm</td>
</tr>
<tr>
<td>Úhel sevření válečků</td>
<td>\alpha</td>
<td>45°</td>
</tr>
</tbody>
</table>

Tab. 7 Vstupní parametry kolové jednotky

24
Výstupní parametry s informativním charakterem byly zároveň hodnoceny z pohledu celkové vyrobitelnosti kolové jednotky a přidružených komponentů. Již v daném kroku návrhu byly zpracovány návrhy možných konstrukčních řešení dílčích uzelů a jejich vzájemných interakcí.

<table>
<thead>
<tr>
<th>Informativní parametr</th>
<th>Označení</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roztečný průměr os pasivních elementů</td>
<td>(d_{os} = 2 \cdot r_{os})</td>
<td>260 mm</td>
</tr>
<tr>
<td>Počet pasivních elementů</td>
<td>(n)</td>
<td>14 ks</td>
</tr>
<tr>
<td>Teoretický počet pasivních elementů</td>
<td>(n^*)</td>
<td>14,005 ks</td>
</tr>
<tr>
<td>Délka oblouku přes pasivní element</td>
<td>(\alpha)</td>
<td>54,521 mm</td>
</tr>
<tr>
<td>Průměr na konci pasivního elementu</td>
<td>(d_{v,min} = 2 \cdot r_{v,min})</td>
<td>28,64 mm</td>
</tr>
<tr>
<td>Průměr střední části pasivního elementu</td>
<td>(d_{v,max} = 2 \cdot r_{v,max})</td>
<td>40 mm</td>
</tr>
<tr>
<td>Úhel výšeče pasivního elementu</td>
<td>(\varphi)</td>
<td>31,45°</td>
</tr>
<tr>
<td>Úhel překrytí pasivního elementu</td>
<td>(\omega)</td>
<td>5,74°</td>
</tr>
<tr>
<td>Procento překrytí váleců</td>
<td>(\omega %)</td>
<td>18,3 %</td>
</tr>
</tbody>
</table>

Tab. 8 Výstupní/informativní parametry kolové jednotky

Geometrie vnějšího tvaru pláště je definována posloupností kroků sestavené metodiky návrhu. Analyzované zdroje a přidružené databáze neobsahují výstupy obdobné problematiky nebo záznamy vnitřních uspořádání, natož materiálového řešení, které by bylo možné využít jako základ návrhu. Zejména z těchto důvodů jsou v průběhu kroků vytvořeny pomocné varianty, směřující dílčím způsobem ke kýženému výsledku. Dále v práci je zachycena pouze výchozí a finální varianta návrhu, včetně vnitřního uspořádání. Mimo uvedené návrhy byly řešeny pomocně konstrukční a materiálové variant, které napomáhaly rozšířit znalostní základnu řešené problematiky. Poznámky všech variant jsou zachyceny v kapitole níže „komplexní hodnocení návrhů a úprav pasivního elementu“.

Vnější tvar pláště pasivního elementu koresponduje s výslednou křivkou, vytvořenou metodikou návrhu, pozice zakončení křivky a zároveň vnějšího tvaru pláště je definováno parametrem přesahu, což určují výše definované parametry kolové jednotky.
Vnitřní uspořádání pasivního elementu je tvořeno osou 3, na niž navazuje kluzný náboj 2 s dvojicí po stranách situovaných těsnících prvků 4 zamezujících průnik nečistot do vnitřního prostoru třecích ploch, umístěných v blízkosti daných prvků. Kluzný náboj dále navazuje na vnější plášť 1, přičemž kompaktní složení pasivního elementu je propojeno skrze šroubové spoje k přírubám kolové jednotky.

Obr. 7 Vnitřní uspořádání výchozího návrhu pasivního elementu

9.1 Experimentální ověření navržené geometrie

Na obrázku níže je patrné složení sestavy dvojice kolových jednotek s trubkovou nápravou, která je v testovací fázi kotvena do základního rámů testovacího podvozku. Z důvodu širší škály testovacích zatížení kolových jednotek a flexibilní změny parametrů, zejména rozměrové škály kolových jednotek, byl navržen a sestaven jednoduchý testovací podvozek (Obr. 8) s interface a přidruženou konstrukcí, umožňující upnutí různých druhů náprav s pohonným subsystémem. Zároveň je rám ve střední části osazen nádrží s možností akumulace 1000l kapalného média, což umožňuje flexibilní a přesnou změnu zatížení, které je díky středové pozici symetricky rozděleno mezi kolové jednotky.

Obr. 8 Pasivní elementy dle navržené geometrie instalované na kolové jednotce
Uspořádání testovacího podvozku pro definovanou geometrii disponuje symetrickým uspořádáním přední a zadní nápravy, které jsou s rámem testovacího podvozku (Obr. 8) propojeny prostřednictvím interface, na který navazuje rámová konstrukce 1 (Obr. 9) se skupinou pryžových silentbloků 3 a stavitelným dorazem odpružení 2. Pohony dílčích kolových jednotek jsou situovány v trubkové části nosné nápravy 4 nebo implementovány přímo do náboje kola. Nosná náprava 4 je prostřednictvím kotvícího segmentu upevněna do pryžových silentbloků 3.

Obr. 9 Pryžová stavitelná vazba kotvení nápravy do rámu

Propojení nápravy a testovacího podvozku odpovídá očekávanému uspořádání využitelné konstrukce podvozkové platformy, proto jsou primárně měřicí prvky situovány na nápravě v minimální vzdálenosti od kolové jednotky, sekundárně za propojením s pryžovými prvky. Synchronní záznam z dílčích měřicích bodů je možné vychopit nejen z hlediska dosažitelných hodnot na nápravě, ale také pomocí reálného utlumení, respektive hodnoty vibrací přenesených na základní nosné a přidružené konstrukce.

Měření vibrací je zajištěno skupinou tříosých akcelerometrů, umístěných na nápravě v blízkosti kolové jednotky a na rámu za odpružením nápravy. Akcelerometry jsou prostřednictvím kabelů napojeny na měřicí stanici NI USB-6008 (National Instruments), která je dále propojena prostřednictvím USB s běžným PC, opatřeným příslušným softwarem.

Obr. 10 Pozice měřicích bodů testovacího podvozku
9.2 Vyhodnocení měření

Souhrn výsledků měření dílčích testovacích sekvencí je názorně interpretován v tabulce níže, testovací sekvence jsou rozděleny dle hodnoty zatížení testovacího podvozku. Každému testovacímu cyklu předcházelo ve výchozí pozici trajektorie dráhy pojezdu ověření normálového ustavení kolové jednotky vůči podkladu. Parametr je definován úhlovou hodnotou odchylky vnější příruby kolové jednotky vůči podkladu (Tab. 9).

<table>
<thead>
<tr>
<th>Název měření</th>
<th>Celkové zatížení</th>
<th>Zatížení kolové jednotky</th>
<th>Odklon příruby kolové jednotky</th>
<th>Vzdálenost rámu od podložky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Měření 2E</td>
<td>250 kg</td>
<td>62,5 kg</td>
<td>+0,1°</td>
<td>24,9 mm</td>
</tr>
<tr>
<td>Měření 2F</td>
<td></td>
<td></td>
<td>+0,2°</td>
<td></td>
</tr>
<tr>
<td>Měření 2A</td>
<td>500 kg</td>
<td>125 kg</td>
<td>0°</td>
<td>24,4 – 24,5 mm</td>
</tr>
<tr>
<td>Měření 2B</td>
<td></td>
<td></td>
<td>+0,1°</td>
<td></td>
</tr>
<tr>
<td>Měření 2C</td>
<td>750 kg</td>
<td>187,5 kg</td>
<td>+0,4°</td>
<td>23,9 – 24,1 mm</td>
</tr>
<tr>
<td>Měření 2D</td>
<td></td>
<td></td>
<td>+0,6°</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9 Testovací sekvence – měření výchozí varianty

Dosážené efektivní hodnoty zrychlení vibrací analyzovaných měření spadají dle provedených studií (Tab. 4) do pomezí kategorií „velmi nepohodlné“ až „extremně nepohodlné“, uvažované hodnoty jsou snímany na nápravě v blízkosti kolové jednoty. Hodnoty měřené za pryžovou vazbou na základním rámu testovacího podvozku vykazují výrazně příznivější výsledky, spadající do překrytí kategorií „trochu nepohodlné“ až „poměrně nepohodlné“. Ve frekvenčním spektru byla identifikována špička na frekvenci 15,6 Hz, což se blíží hodnotě očekávané frekvence, způsobené počtem pasivních elementů. Potencionální zdroj vibrací je podrobněji analyzován dále v práci.

I přes výše charakterizované nedostatky výchozí konstrukce pasivního elementu je možné konstatovat přínos dosažených výsledků, které prokazují výrazné zlepšení ve srovnání s výchozím referenčním měřením robotu Odin, při obdobných referenčních rychlostech pojezdu a pozicích snímačů v neodpružené části na nápravě. Na druhou stranu, analyzované hodnoty nedosahují parametrů komfortu aktuálně využívaných transportních zařízení nevyužívajících tlumicí pryžové prvky, pryžové části běhounu kol s otočnou kladkou nejsou uvažovány.
<table>
<thead>
<tr>
<th>Parametr měření</th>
<th>Výchozí varianta</th>
<th>Odin</th>
<th>Lůžko</th>
<th>Robostretcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnoty měřené na nápravě v blízkosti kolové jednotky transportních prostředků</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jmenovitá rychlost ([m \cdot s^{-1}])</td>
<td>1,04</td>
<td>1,05</td>
<td>0,8</td>
<td>1,14</td>
</tr>
<tr>
<td>Efektivní hodnota ([m \cdot s^{-2}])</td>
<td>2,65</td>
<td>2,52</td>
<td>3,22</td>
<td>3,62</td>
</tr>
<tr>
<td>Hodnoty měřené za odpužením transportních prostředků</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efektivní hodnota ([m \cdot s^{-2}])</td>
<td>0,81</td>
<td>0,75</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 10 *Srovnání referenčních hodnot stávajících konstrukcí a výchozí varianty*

9.3 **Identifikace zdroje vibrací**

Analýza geometrických přechodů sousedních elementů kolové jednotky poukazuje na shodou vyskytujících se pulzů odpovídajících délce výšeče definované stranovými náběhy / výběhy sousedních elementů 67,32 mm pro vzdálenost definované časovým intervalem \(t_1 = 0,064 \text{s}\) a délce výšeče definované výběhy sousedních elementů 15,4 mm pro vzdálenosti definované časovým intervalem \(t_2 = 0,0147 \text{s}\).

Pozice předpokládaných zdrojů vibrací jsou interpretovány v grafu níže, kde je patrná identifikace shody špiček pulzů v definovaném časovém intervalu proložených grafickým zobrazením pasivních elementů. Vynášecí čáry odpovídají pozicím koncových bodů délky výšeče definované stranovými náběhy / výběhy sousedních elementů.

<table>
<thead>
<tr>
<th>Délka výšeče definovaná stranovými náběhy / výběhy sousedních elementů</th>
<th>67,3190 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka S-křivky ohraničená stranovými přechody</td>
<td>89,8540 mm</td>
</tr>
</tbody>
</table>
Graf 1 Pozice předpokládaných zdrojů vibrací

Předpokládaným zdrojem vibrací v úseku přechodů sousedních elementů jsou vlivy deformací zatíženého vnějšího pláště, přičemž očekávaný plynulý přechod je v daném úseku znehodnocen navazujícím elementem dostávajícím se do záběru v odlehčeném stavu, což na profilu kružnice odvalování kolové jednotky vytváří tvarový přechod o velikosti definované deformací předchozího pláště pasivního elementu. Zároveň je možné uvažovat o vlivu rozložení zatížení a názně vzniklé deformaci mezi dvojicí pasivních elementů.

Obr. 11 Předpokládaná návaznost pasivních elementů s definovaným zatížením
9.4 Komplexní hodnocení úprav vnějšího pláště pasivních elementů

V rámci experimentálního ověření navržené geometrie vnějšího pláště pasivního elementu byl vytvořen testovací podvozek s možností flexibilní změny rovnoměrného zatížení působícího na symetricky uspořádané kolové jednotky, kotvené prostřednictvím náboje na nápravu a dále na rám testovacího podvozku prostřednictvím prýžových segmentů.

Výchozí návrh tvaru vnějšího pláště pasivního elementu vykoval zlepšení ve srovnání s referenčním měřením kolových jednotek využívaných u robotu Odin, nicméně výsledné hodnoty neodpovídaly stanoveným cílům, směřujícím k možnosti implementace do transportních prostředků využívaných v areálech nemocnic nebo obdobném charakteru lékařských institucí. Prostřednictvím analyzy zaznamenávaných dat výchozí varianty návrhu bylo možné identifikovat zdroj vibrací ve formě přechodů sousedních pasivních elementů, tedy přechodů samostatně zatíženého elementu a navazujícího, který se dostává do záběru v odlehlém stavu. Zároveň se při analýze výchozí varianty návrhu potvrdil korektní návrh střední části, která neprokazuje výrazné rázy nebo odchylky, mimo doznívajícího útlumu předchozího rázu.

Na základě analyzovaných hodnot deformací výchozí varianty návrhu s konkrétním číselným vyjádřením byla dále navržena idealizovaná homogenní materiálová struktura pasivního elementu s vysokou tuhostí a minimální deformací vnějšího pláště. Cílem bylo ověřit korektní návrh geometrie vnějšího pláště pasivního elementu, přičemž výstupní data pouze potvrdila oblast výskytu rázů a korektnost návrhu střední oblasti geometrie. Charakter rázů byl vyhodnocen v závislosti na vysoké tvrdosti, horší schopnosti útlumu a malé deformaci, která způsobuje obdobně jako u výchozího návrhu razy v oblasti přechodů. Skupinou přidružených měření bylo dále vyvráceno subjektivní uvažování chybného ustavení kolové jednotky, podloží převzatého a podobně nedodržení normálních pozic k podkladu nebo nedodržení předepsaných výrobních tolerancí.

Dvojice provedených měření vykovala nežadoucí vibrace v oblasti přechodů sousedních pasivních elementů, přičemž zvolené materiálové řešení i přes stanovená očekávání nemělo na výsledné hodnoty přiznivý vliv. Proto byla daná oblast konstrukce pasivních elementů podrobená dalšímu testování s cílem ověřit vliv eliminace překrytí a idealizaci náběhu. Absolutní eliminace překrytí, kdy kontaktní bod přechází skokově z jednoho elementu na druhý bez krátkodobého rozložení zatížení mezi danou dvojicí (při zanedbání výrobních nepřesností), prokázala změnu charakteru měřených dat. V analyzovaných úsecích měření došlo k sjednocení původní dvojice rázů, což potvrdilo předpoklad identifikovaného zdroje.
vibrací, a zároveň došlo ke snížení efektivní hodnoty zrychlení vibrací měřených na nápravě v blízkosti kolové jednotky až o 35,2 %, synchronně na rámu za kotvením s dvojití pryžových prvků o 5,5 %, při minimálním zatižení stanoveném metodikou testování. Střední a maximální přípustné zatižení způsobilo identicky s výchozím návrhem deformaci pryžového pláště pasivního elementu, a tedy vytvořením geometrického přechodu.

Závěrem byl vytvořen návrh idealizované geometrie překrytí sousedních elementů, vytvořený na základě provedené deformací a tvarové studie dané oblasti, přičemž cílem návrhu bylo optimalizovat možný výskyt náhlych změn geometrických přechodů vlivem deformace samostatné zatiženého pláště pasivního elementu. Výstupní kontrola úpravy vnějšího pláště vykazovala vzhledem k tvarové náročnosti nežádoucí geometrické odchylky v oblasti výběhu materiálového úběru, proto byla provedena optimalizace na žádaný tvar, přičemž série měření prokázala snížení hodnot efektivního zrychlení v celém spektru testovacích sekvencí. Příkladem může být referenční měření se středním zatižením, které prokázalo snížení hodnot efektivního zrychlení měřených na nápravě v blízkosti kolové jednotky až o 46,3 %, na rámu za kotvením s dvojití pryžových prvků až o 29,3% ve srovnání s výchozím návrhem. Hlavním přínosem dané sekce měření bylo zmírnění výsledných projevů vibrací při změně zatižení v definovaném rozsahu.

Výsledné hodnoty dílčích úseků měření byly současně převedeny do frekvenční oblasti s cílem zjistit, které frekvence signál obsahuje. Analyzované frekvence byly primárně využívány k identifikaci zdroje vibrací, přičemž byl synchronně pozorován konflikt výsledných hodnot s vlastní rezonancí lidského těla. V případě návrhu primární varianty pasivního elementu se jedná o frekvenci 15 Hz, která odpovídá vlastní frekvenci hlavy a měchýře. Vlastní hodnotu frekvence výchozího návrhu lze vzhledem k harmonickým projevům teoreticky definovat v závislosti na rychlosti podvozkové platformy.

Nedostatky navržených a optimalizovaných typů pasivních elementů lze characterizovat následovně:

- **Maximální přípustné zatižení** způsobilo odtržení vnějšího pláště od jádra pasivního elementu.
- Přesnost geometrie povrchu vnějšího plášťte vyrobené série výchozího návrhu byla v širších tolerancích.
- Třeci vazba bronzové osy s jádrem pasivního elementu vytváří nesouměrné odpory napříč celou výrobní sérií.
- Homogenní materiálové řešení s vysokou tvrdostí pocitově vytváří nižší vibrace, výsledné hodnoty tomu neodpovídají.
- Nulové překrytí pasivních elementů prokázalo lepší hodnoty pouze při minimálním zatížení, zároveň byly potvrzeny oblasti zdroje rezonance.
- Tvarová optimalizace výběhu/náběhu prokázaly snížení efektivní hodnoty zrychlení vibrací v rozsahu testovaných zatížení, obtížnost výroby v závislosti na neměnné pozici nulového překrytí je omezující.

10. Finální návrh vnitřního uspořádání a materiálového řešení pasivního elementu

Komplexní technické a materiálové řešení optimalizované konstrukce pasivního elementu vychází z analýz a poznatků výchozích variant pasivních elementů a jejich dílčích úprav.

Přístup návrhu byl stanoven s cílem eliminovat maximum negativních projevů testovaných konstrukcí a vytvořených úprav výchozích návrhů pasivních elementů.

Tvarové a materiálové řešení vnitřního uspořádání vykazovalo negativní projevy ve formě nepřesné geometrie vnějšího plášťte, nesouměrnou deformaci pryskyřové části plášťte při odvolávání kolové jednotky a zároveň porušení vazby jádra s vnějším plášťem, způsobené limitním zatížením. Finální návrh dané oblasti vnitřního uspořádání je tvořen tvarově optimalizovaným jádrem, jehož vnější tvar vytváří křivka vyvozená z komplexní deformací analýzy sestavy pryskyřového plášťte a jádra. Analýza je tvořena s výchozí podmínkou symetrické deformace v celém průběhu kontaktního bodu samostatně zatíženého pasivního elementu. Oblast překrytí dvou sousedních pasivních elementů je optimalizována při stejné výchozí podmínce, přičemž zatížení je rozděleno mezi dvojici pasivních elementů. Navržená geometrie vnitřního uspořádání ve výsledku vyvozuje identickou deformaci ve všech bodech kružnice odvalování. Zároveň výsledný tvar jádra a navazujícího vnějšího plášťte nevytváří vazbu ve tvaru válce, používanou u výchozích návrhů, ale tvar „bombírovaný“, u kterého je očekáváno lepší přenášení působících silových zatížení, které eliminuje přetržení vazby jádra s plášťem (Obr. 54). Geometrická přesnost vnějšího plášťte a zároveň pevnost vazby jádra s vnějším plášťem jsou dále částečně garantovány navrženým technologickým postupem
výroby prostřednictvím vulkanizace pod tlakem s materiálovým přídavkem a návazným broušením doloženým 3D měřením vnějšího povrchu pláště pasivního elementu.

Mezi další negativní projevy analyzovaných řešení lze zařadit neidentickou úroveň odporů volného otáčení jednotlivých pasivních segmentů, způsobenou navrženou třecí vazbou. U finální varianty je do vnitřního prostoru implementovaná dvojice kluzných ložisek s navazující dvojicí těsnících prvků, zamezujících průnik nečistot do dané oblasti (Obr. 11).

![Diagram](image)

Obr. 12 Těleso pasivního elementu s konstantní tloušťkou vnějšího pláště

Vnitřní uspořádání pasivního elementu je tvořeno tvarově optimalizovaným jádrem 2, na které navazuje průzrivý vnější pláště 1, jehož vnější tvar utváří identická křivka výchozí varianty. Optimalizované jádro je osazeno dvojicí kluzných ložisek 5 a těsnících prvků 4, do kterých je umístěna osa 3, prostřednictvím které je pasivní element propojen šrouby s přírubou kolové jednotky.

10.1 Experimentální ověření

Výstupní kontrola pasivních elementů prokázala kompaktnější tvar vnějšího pláště s rozměry odpovídajícími výrobní dokumentaci, které byly doloženy 3D měřením vybraných vzorků výrobní série. Při finální kompletaci kolové jednotky byly dále pozitivně hodnoceny identické odpory při volném otáčení v kluzných pouzdrcích, nově navržených u finálního řešení.

Experimentální ověření finálního návrhu řešení koresponduje s metodikou testování sestavenou u výchozí varianty návrhu. Měření probíhá primárně s trojicí stanovených zatižení a dvojicí rychlostních režimů. Zároveň byly zachovány identické okrajové podmínky prostředí, zejména charakter povrchu podkladu, teplota atd. I přes výše uvedené, před zahájením testu proběhlo referenční měření výchozího návrhu pasivního elementu, které prokázalo identické vlastnosti a charakter projevů vibrací s původním měřením.
Tab. 11 Výchozí parametry měření finálního návrhu

Sérií provedených testů finálního uspořádání pasivního elementu v definovaném rozsahu zatížení prokázala eliminaci výsledky přetření vazby jádra a pláště pasivního elementu i při maximálním zatížení. Zároveň bylo možné v průběhu testování subjektivně konstatovat pocitové zlepšení pojednu testovacího podvozku po stanovené dráze.

Níže interpretované výstupy referenčního testu při středním zatížení prokazují výrazné snížení efektivní hodnoty vibrací při jmenovité rychlosti. Přičemž z průběhů zrychlení vibrací v čase, uvedeném v grafu, který odpovídá jednomu otočení kolové jednotky (měření 11E2 při jmenovité rychlosti 0,96 m · s⁻¹ v intervalu měření 1,7 – 2,5 s), je patrná eliminace špiček, způsobených přechody mezi zatíženým pasivním elementem a elementem dostávajícím se do záběru. Eliminací uvedených rázů došlo k celkovému zklidnění testovacího podvozku při odvalování kolových jednotek.

Graf 2 Průběh zrychlení vibrací (měření 11E2)
Dosažené hodnoty špiček v uvedeném rozsahu měření (Graf 2) lze srovnávat s dílčími úseky měření pomocných konstrukcí pasivních elementů. Je nutné konstatovat, že u srovnávaných konstrukcí jsou zjevně lokální špičky způsobené nesouměrnou návazností deformovaného pláště pasivního elementu, nicméně při odhlednutí od daných špiček je možné v návazných částech intervalů měření (právě mezi dosaženými maximy) identifikovat obdobný charakter při snížených hodnotách zrychlení vibrací. Z daného vyplývá přínos optimalizace návrhu vnitřního uspořádání jádra a pláště pasivního elementu (Obr. 11).

<table>
<thead>
<tr>
<th>Výchozí charakteristika měření s parametrickým popisem vstupních hodnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Měření 2E2</td>
</tr>
<tr>
<td>Jmenovitá rychlost</td>
</tr>
<tr>
<td>Pozice snímače</td>
</tr>
<tr>
<td>FFT [Hz]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametry měřeného vzorku v délce časového úseku 1 s při ustálené rychlosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná hodnota [m · s⁻²]</td>
</tr>
<tr>
<td>Efektivní hodnota [m · s⁻²]</td>
</tr>
<tr>
<td>Dosažené maximum [m · s⁻²]</td>
</tr>
</tbody>
</table>

Tab. 12 Výchozí charakteristika měření 2E2 a 2F2

Mimo uvedené hodnoty efektivních vibrací, snížených k hranici subjektivní úrovně nepohodlí v rozsahu definovaném jako „pohodlné“ až „trochu nepohodlné“, byl měřený rozsah převeden z časové oblasti do oblasti frekvenční s analyzovaným výskytem harmonické frekvence dosahující 20 Hz. Hodnota spadá do oblasti vlastních frekvencí lidského těla mezi spodní hranici spektra pro hlavu, vzhledem k tělu a očím.

Srovnání referenčních hodnot

Srovnání charakteristických hodnot výchozí a finální konstrukce pasivního elementu poukazuje na výrazné zlepšení napříč všemi měřenými hodnotami a zatižením.

Zároveň ale primárně měřené hodnoty v blízkosti kolové jednotky překračují stanovené hodnoty přimě implementace bez meziprvků prýžových odpružení, které eliminují výrazné
hodnoty vibrací přenášených na návaznou konstrukci. Měřený rozsah v blízkosti kolové jednotky spadá do intervalu hodnot zařazených mezi „poměrně nepohodlné“ až „nepohodlné“. V případě logického zařazení standardního prýžového odpružení ve formě silentbloku jsou dosažené hodnoty řádově příznivější, přičemž spadají do intervalu hodnot zařazených mezi „pohodlné“ až „trochu nepohodlné“.

Srovnání charakteristických hodnot měření výchozí a finální konstrukce pasivního elementu při identickém zatížení a rozptylu rychlosti ±4%

<table>
<thead>
<tr>
<th>Typ konstrukce</th>
<th>Výchozí</th>
<th>Finální</th>
<th>Zlepšení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozice měření</td>
<td>z1</td>
<td>z2</td>
<td>z1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zatížení [N]</th>
<th>625</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnoty měření</td>
<td>2E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Průměrná hodnota [m · s⁻²]</th>
<th>1,99</th>
<th>0,59</th>
<th>1,06</th>
<th>0,35</th>
<th>53,3 %</th>
<th>59,3 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efektivní hodnota [m · s⁻²]</td>
<td>2,48</td>
<td>0,73</td>
<td>1,28</td>
<td>0,44</td>
<td>51,6 %</td>
<td>60,3 %</td>
</tr>
<tr>
<td>Dosažené maximum [m · s⁻²]</td>
<td>7,44</td>
<td>2,33</td>
<td>4,9</td>
<td>1,54</td>
<td>65,9 %</td>
<td>66,1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zatížení [N]</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnoty měření</td>
<td>2B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Průměrná hodnota [m · s⁻²]</th>
<th>1,95</th>
<th>0,59</th>
<th>1,02</th>
<th>0,34</th>
<th>52,3 %</th>
<th>57,6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efektivní hodnota [m · s⁻²]</td>
<td>2,53</td>
<td>0,75</td>
<td>1,33</td>
<td>0,43</td>
<td>52,6 %</td>
<td>57,3 %</td>
</tr>
<tr>
<td>Dosažené maximum [m · s⁻²]</td>
<td>10,73</td>
<td>2,7</td>
<td>5,85</td>
<td>2,09</td>
<td>54,5 %</td>
<td>77,4 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zatížení [N]</th>
<th>1875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnoty měření</td>
<td>2C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Průměrná hodnota [m · s⁻²]</th>
<th>1,45</th>
<th>0,53</th>
<th>0,91</th>
<th>0,27</th>
<th>62,8 %</th>
<th>50,9 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efektivní hodnota [m · s⁻²]</td>
<td>1,89</td>
<td>0,76</td>
<td>1,18</td>
<td>0,35</td>
<td>62,4 %</td>
<td>46,1 %</td>
</tr>
<tr>
<td>Dosažené maximum [m · s⁻²]</td>
<td>8,09</td>
<td>2,37</td>
<td>4,02</td>
<td>1,36</td>
<td>49,7 %</td>
<td>57,4 %</td>
</tr>
</tbody>
</table>

Tab. 13 Srovnání charakteristických hodnot měření

Z hodnot všech měření provedených v rámci testování finálního návrhu pasivního elementu byl sestaven graf závislosti zrychlení vibrací na rychlosti testovací platformy. Grafická interpretace hodnot poukazuje na rozsah využitelnosti konkrétní kolové jednotky s definovanou geometrii a vnitřním uspořádáním dle okrajových podmínek stanovené aplikace. Příkladem může být úvaha vymezená na počátku, a to snaha docílit identických hodnot efektivního zrychlení vibrací aktuálně využívaného nemocničního lůžka (Tab. 2) a
všesměrové kolové jednotky. Výsledné hodnoty měření nemocničního lůžka vykazovaly efektivní hodnotu vibrací v rozsahu 1,04 – 1,15 m·s⁻² při rychlosti pojezdu 0,89 – 1,09 m·s⁻¹. Analyzovaný podvozek nedisponuje pružnou vazbou ani přídavným odpružením, kola s otočnou kladkou jsou uchycena přímo do základního rámu konstrukce nemocničního lůžka.

Srovnáním definovaných hodnot nemocničního lůžka a výsledných hodnot kolové jednotky (Graf 3) je možné usoudit, že v uvedeném rozsahu rychlosti pojezdu dosahuje navržená kolová jednotka lepších výsledných parametrů měřených na nápravě. Přiémž při zařazení prýžové vazby dle návrhu a měření hodnot na rámu, nebylo hodnot stanovených nemocničním lůžkem dosaženo ani při maximální testované rychlosti v celém spektru zatížení.

![Graf 3](image)

Graf 3
Znázornění hodnot zrychlení vibrací v závislosti na rychlosti platformy

Z výsledků je zároveň patrná splnění kyženého cíle, a zároveň limitních hodnot. Zařízení s implementovanou skupinou všesměrových kol osazených finálním návrhem pasívního elementu je možné provozovat v rozsahu rychlostí 0 – 1 m·s⁻¹ při měřítku subjektivního nepohodlí definovaném jako „pohodlné“ a rozsahu 1 – 1,38 m·s⁻¹ při měřítku subjektivního nepohodlí ve škále „trochu nepohodlné“.

38
10.2 **Experimentální ověření na prototypu transportního zařízení**

Geometrie pasivních elementů včetně přidružených vazeb návrhu kolové jednotky byla s kladným výsledkem testována na prototypu reabilitačního a transportního zařízení.

Zařízení je využitelné jak pro transport, tak pro léčebné a reabilitační procesy imobilních a pohybově handicapovaných osob. Princip robotického mobilního a modifikovatelného lůžka tkví v možných transformacích poloh včetně výškové nastavitelnosti a schopnosti všesměrového pohybu. Zařízení disponuje funkcí řízeného přestavování polohovacího systému s možností přeměny na rovinou plochu, polohu křesla a vertikalizační polohu. Systém v rámci přechodu mezi dvěma krajními polohami umožňuje dosáhnout široké škály pozic. Modifikovatelné lůžko s výhodou využívá všesměrových kol, což sebou přínáší vynikající manévrovací schopnosti. [14]

![Obr. 13](image13.jpg) *Rehabilitační a transportní zařízení [14]*

10.3 **Experimentální ověření na průmyslové platformě AGV**

Navržená geometrie pasivních elementů včetně přidružených vazeb návrhu kolové jednotky je aktuálně řešena v rámci projektu LF15026 „Multifunkční modulární robotický transportní systém umožňující všesměrovou mobilitu pro aplikace v logistických výrobních, nevýrobních a humanitních systémech“. Dílčím cílem řešeného projektu je implementace navržených všesměrových kol do průmyslové transportní platformy.

![Obr. 14](image14.jpg) *Robotický transportní systém*
11. Závěr

Výsledný obsah disertační práce je v souladu se stanovenými cíli, které vycházejí z primární studie aktuální problematiky inovace a vývoje periferních zařízení robotů a manipulátorů pro aplikace bezpečnosti a ochrany obyvatel a záchranných systémů. Podrobná studie oblastí transportu a návazně aktuálně využívaných transportních prostředků určených pro interní přepravu pacientů v rámci lékařských institucí poukazuje na možnost rozšíření užitných vlastností prostřednictvím implementace všesměrového typu kola, a to při současném splnění podmínek eliminace negativních projevů, které ovlivňují možnost rozšíření i v jiných oblastech. Výběr typů všesměrových kol vhodných k implementaci do stanovených transportních prostředků koresponduje s konstrukčně identickým rozmístěním, což teoreticky umožňuje záměnu stávajících kolových jednotek za inovované řešení.

Na základě provedené analýzy dostupných databází se zaměřením na návrh a optimalizaci projevů vibrací kolových jednotek byl vytvořen metodický postup návrhu všesměrového kola s definovanou skupinou vstupních parametrů, určujících základní požadavky kladené na výslednou kolovou jednotku, přičemž vstupní parametry vycházejí ze základních principů a očekávaného scénáře nasazení výsledného systému. Výstupem sekvence postupových kroků jsou informativní parametry vycházející z vnitřních funkcí návrhu všesměrového kola, které definují základní rozměrové parametry vnějších tvarů, včetně křivky pasivního elementu.

Výstupní parametry metodického nástroje návrhu všesměrového kola byly experimentálně ověřeny vytvořením výchovího návrhu pasivního elementu včetně přidružených částí všesměrového kola, mezi které lze zařadit příruby, nápravu a pohoný subsystém. Projevy chování kolové jednotky s vazbou na komfort odvalování byly ověřeny sledem testovacích kroků s výstupem ve formě hodnot zrychlení vibrací a dosažených frekvencí. Okrajevá podmínky výstupních hodnot byly stanoveny z analyzovaných studií zaměřených právě na výsledný komfort transportu, možnosti sekundárního zranění nebo poškození monitorovacích systémů v rámci nemocničního prostředí. Výstupní hodnoty měření výchovího návrhu pasivního elementu prokazují výrazné zlepšení ve srovnání s identickým měřením hodnot dostupných všesměrových kol, nicméně dané hodnoty výchovího návrhu pasivního elementu zároveň překračovaly stanovené limity zrychlení vibrací působících na transportovaného pacienta. Zároveň se v rámci testování projevily konstrukční nedostatky vnitřního uspořádání pasivního elementu ve formě přetržení vazby jádra a pláště pasivního elementu a nadměrné odchylky tvaru vnějšího pláště v nezatíženém stavu. Průběhy dílčích
měření byly podrobeny detailní analýze s cílem identifikovat konkrétní zdroj vibrací všesměrového kola. Výsledkem analýzy byla stanovena oblast přechodů kontaktního bodu zatíženého a odlehčeného pasivního elementu, kde vlivem deformace pláště pasivního elementu vzniká tvarový přechod o velikosti definované aktuálním zatížením. Stanovené úvahy byly podpořeny řadou měření vytvořených pomocných konstrukcí, jež byly vytvořeny s cílem potvrdit, nebo vyvrátit stanovené optimalizační směry návrhu konstrukce pasivního elementu.

Z výsledků měření výchozí varianty a dílčích pomocných návrhů pasivních elementů, včetně analyzovaných konstrukčních nedostatků, byl vytvořen finální návrh vnitřního uspořádání pasivního elementu s vnějšími tvarem pláště definovaným metodickým postupem návrhu. Cílem finálního návrhu bylo vytvořit takové vnitřní uspořádání pasivního elementu, které v celém rozsahu zatížení poskytne na trajektorii kontaktního bodu identickou deformací vnějšího pláště, čímž se minimalizuje potencionální vznik nežádoucích geometrických přechodů s návaznou vazbou na tvorbu vibrací.

Výstupní sekvence měření finálního návrhu pasivního elementu prokázala přínos inovace návrhu geometrie vnějšího pláště, potažmo celého návrhu všesměrového kola, včetně vnitřního uspořádání prvků pasivního elementu. Měření prokázalo výrazné snížení hodnot zrychlení vibrací, díky čemuž lze komfort odvalování kolové jednotky zařadit do intervalu subjektivního vnímání ‚pohodlně‘ až ‚trochu nepohodlně‘. Z výsledků je patrná možnost uplatnění navržené konstrukce všesměrového kola nejen v transportních prostředcích využívaných v rámci nemocnic, ale i napříč celým spektrum aplikací s využitelným potenciálem flexibilní změny trajektorie pohybu.

11.1 Přínos pro vědu a praxi

Základem definice požadovaného směru řešené problematiky byla důkladná analýza krizových situací ve vazbě na environmentální hazardy způsobené lidskou činností. Přestože tento výčet nelze vlivem neustálých a mnohdy velmi dynamických změn ve společnosti a životním prostředí považovat za konečný, tvoří racionální základ pro specifikaci vhodných směrů řešení inovací periferních zařízení robotů a manipulátorů pro aplikace v oblasti bezpečnosti a ochrany obyvatel, případně složek záchranných systémů.

V rámci zpracování disertační práce a vývoje vnitřního uspořádání pasivního elementu včetně jeho experimentálního ověření byl navržen zcela unikátní metodický nástroj
rozměrového návrhu skeletonů všesměrové kolové jednotky. Metodika je založena na definovaných vstupních parametrech, vyvozených z řady obecných podmínek určených specifickým scénářem nasazení, které je nezbytné stanovit již v počáteční fázi návrhu. Výstupem metodického návrhu je základní geometrie křivky pasivního elementu a zároveň geometrických parametrů kolové jednotky, jež jsou prezentovány skupinou informativních parametrů. Flexibilita návrhu všesměrového kola prostřednictvím metodického návrhu nabízí vytvoření, případně rozměrovou optimalizaci finálního návrhu v krátkém čase, což s sebou přináší zvýšenou míru konkurenceschopnosti v reakci na specifické požadavky a jejich upřesňování v celém procesu návrhu.

Představená disertační práce je tedy přínosem v oblasti rozvoje metodiky návrhu servisních robotů, zkrácení doby vývoje a posílení míry inovací za účelem dosažení vyšší konkurenceschopnosti.

11.2 Doporučení na další výzkum

Inovace a vývoj v oblasti všesměrových kol nabízí nepřekročitelné množství potencionálních směrů výzkumu. Mezi základní lze zařadit komplexní výzkum všesměrových kol určených pro transportní platformy vysokých nosností, kde jsou očekávány několikanásobné proporce dílčích částí. Dané aspekty dovolují řešit výsledné uspořádání vnitřních částí z úplné jiného hlediska, včetně materiálového a technologického řešení. Mezi neměně významný směr výzkumu všesměrových kol, potažmo pasivních elementů, spadá materiálové řešení vnějšího pláště, zejména ve vztahu k plnění výchozí podmínky eliminace nezádoucích projevů vibrací, a zároveň dosažení optimální životnosti, popřípadě prognostičké změny projevů vibrací pod definovanou hranicí při stanovené životnosti pasivních elementů. Ověření uvedeného směru však vyžaduje vývoj měřícího stanoviště daného typu kolových jednotek, optimálně s proměnlivým nastavením okrajových podmínek.
12. Použitá literatura

[6] R. BAKER, KOKOMO, IN; A. KOORS KOKOMO, IN, *Omnidirectional wheel design for construction cost reduction*. Původce vynálezu: R. BAKER, KOKOMO, IN; A. KOORS KOKOMO, IN, US. PN 7641288, DoP 08-12-2010

13. Vlastní publikace

Web of Science a SCOPUS:

Ostatní:

LIPINA, Jan, KOPEC, Petr, MAREK, Jiří, KRYŠ, Václav. Thread Variants and Their Load Capacity in Components Made by Rapid. ERIN. 2013, roč. VI, s. 11-15. ISSN 1337-9089.

Seznam užitných vzorů:

Seznam patentových příkladek:

Registrované funkční vzory

KOPEC, P. Interface. 2011.

KOPEC, P. Rozmístění a uchycení prvků vzduchotechniky kontejneru pro záchranu a transport kontaminovaných pacientů. 2012.

KOPEC, P. Řešení těsnících prvků kontejneru pro transport kontaminovaných pacientů. 2012.
KOPEC, P. Řešení potrubního systému v místě napojení na horní akumulační nádrž přečerpávací elektrárny. 2014.
KOPEC, P. Řešení rozmístění a uchycení snímačů v horní akumulační nádrži systému přečerpávací elektrárny. 2014.
KOPEC, P. Řešení rozmístění a uchycení snímačů v rámci potrubního systému přečerpávací elektrárny. 2014.
KOPEC, P. Řešení bezpečnostního krytování spojky turbinového soustrojí. 2014.
KOPEC, P. Řešení odvzdušnění potrubního systému přečerpávací elektrárny. 2014.
KOPEC, P. Řešení uchycení hydraulického pohonu deflektoru Peltonovy turbíny. 2014.
14. Přílohy

Annotation

The presented dissertation focuses on innovation and development in omnidirectional wheels with the aim to meet the defined limit parameters concerning the rolling comfort with the subsequent options for implementing in equipment used for transporting persons in hospitals and similar institutions. The aim of the development is to create a flexible tool in the form of a preliminary design methodology and dimension parameters of the omnidirectional wheel shown in skeletons of individual components designed according to the defined input values and application scenario. The character of the preliminary design input values considers the wide range of potential applications and size categories of omnidirectional wheels and the input parameters are dictated by the values defined in the initial stage, as well as internal connections in the omnidirectional wheel design.

The output values of the preliminary design parameters for the omnidirectional wheel are subsequently tested in an experiment using a specific geometry with dimensions suitable for the intended transport systems. Behaviour of the designed structure concerning the rolling comfort is verified in a series of testing steps with an output consisting of a record of acceleration values for the occurring vibration.

The created methodology for designing omnidirectional wheels is a powerful tool allowing design engineers to obtain specific parameters that may be very close to the final design in the first design stage and within a very short time.
Životopis

Narozen: 1985

Vzdělání:
2011–2017 Vysoká škola báňská – Technická univerzita Ostrava, Fakulta strojní Doktorský studijní program Robotika
2008–2011 Vysoká škola báňská – Technická univerzita Ostrava, Fakulta strojní Magisterský studijní program Robotika
2009–2010 Studium v zahraničí
BTH - Blekinge Tekniska Högskola/ Blekinge Institute of Technology
2005–2008 Vysoká škola báňská – Technická univerzita Ostrava, Fakulta strojní Bakalářský studijní program Robotika
2001–2005 SPŠ Ostrava – Vítkovice

Zaměstnání:
2011–2015 Reacont, a.s.
výzkumně vývojový pracovník
2013–2017 ROBOTSYSTEM, s. r. o.
výzkumně vývojový pracovník

Biography

Born 1985

Education:
2011–2017 VŠB – TU Ostrava, Faculty of Engineering
Doctoral study: Robotics
2008–2011 VŠB – TU Ostrava, Faculty of Engineering
Master's study: Robotics
2009–2010 Study abroad
BTH - Blekinge Tekniska Högskola/ Blekinge Institute of Technology
2005–2008 VŠB – TU Ostrava, Faculty of Engineering
Bachelor's study: Robotics
2001–2005 SPŠ Ostrava – Vítkovice

Employment:
2011–2015 Reacont, a.s.
Research and Development Specialist
2013–2017 ROBOTSYSTEM, s. r. o.
Research and Development Specialist