Vysoká škola báňská-Technická univerzita Ostrava
Fakulta elektrotechniky a informatiky
Katedra telekomunikační techniky

Laditelná pásmová propust s jednotkovými zesilovači

Tunable bandpass amplifier unit

2010 Bc. Karel Valenta
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně.
Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

V Ostravě, dne 7. května 2010

..............................

Bc. Karel Valenta
Tuto cestou bych rád poděkoval Ing. Zdeňku Tesařovi za odborné vedení, věcné radě a připomínky pro vypracování této diplomové práce.
Abstrakt

V této praci se podrobně zabývám filtry typu pásmová propust, ve kterých je jako kmitočtově závislého členu použito modifikovaného dvojitého T-článku, aktivními prvky obvodu jsou pak rozdílové operační zesilovače s nastaveným jednotkovým zesílením. Ve všech zapojeních je kladen důraz na přeladitelnost jednotlivých vlastností pásmových propustí, a to změnou hodnot jednoho či více pasivních prvků.

Ke každému obvodu je rovněž zpracována citlivostní analýza, popisující důsledky rozptylu výrobních hodnot rezistorů a kondenzátorů na přenosovou charakteristiku filtru, prostor je věnován i průzkumu vlivu parametrů použitých operačních zesilovačů na vlastnosti filtru.

Klíčová slova

Kmitočtový filtr, Pásmová propust, Operační zesilovač, Jednotkový zesilovač, Laditelný filtr, Citlivostní analýza
Abstract

In those work in detail deal with band-pass filter, in which them as variable with frequency component used double T-network, active device network are used operational amplifier with setting unitary gain. In all circuit is emphasis on tuning, single characteristics band-pass filters, and it alternation values of one or more passive elements.

To everyone circuits is also worked sensitivity analysis, describing effect variability production values resistors and capacitors on transfer characteristics filter, space is dedicated to investigation effect parametres used operational amplifier on qualities filter.

Key words

Frequency filter, Band-pass, Amplifier, Amplifier unit, Tunable Filter, Sensitivity analysis
Seznam použitých symbolů a zkratek

\(A_U \) – napěťové zesílení [-]
\(B \) – šířka pásma [Hz]
\(f \) – frekvence [Hz]
\(f_0 \) – charakteristická frekvence [Hz]
\(K_U \) – napěťový přenos v komplexním tvaru [-]
\(K_{U0} \) – napěťový přenos pro charakteristickou frekvenci [-]
\(Q \) – činitel jakosti [-]
\(\phi \) – fázový posun [°]
\(\omega \) – úhlová frekvence [rad\cdot s^{-1}]

apod. - a podobně
DP – dolní propust
HP – horní propust
např. - například
obr. - obrázek
popř. – popřípadě
PP – pásmová propust
resp. - respektive
tab. - tabulka
tj. - to je
tzv. – takzvaný
vs. - versus
Obsah

1. Úvod ... 1
2. Kmitočtové filtry ... 2
 2.1 Základní typy filtrů ... 3
 2.2 Pásmové propusti .. 5
 2.3 Modifikovaný dvojitý T-článek .. 7
3. Operační zesilovače ... 8
 3.1 Vlastnosti operačních zesilovačů ... 9
 3.1.1 Ideální operační zesilovač ... 9
 3.1.2 Reálný operační zesilovač ... 10
 3.2 Zapojení operačního zesilovače s jednotkovým zesílením 13
4. Ladiči prvky pro kmitočtové filtry ... 15
5. Citlivostní analýza filtrů ... 17
 5.1 Relativní citlivost parametrů filtru ... 17
 5.2 Obecná citlivostní funkce .. 18
6. Zapojení pásmové propusti s oddělovacími zesilovači .. 19
 6.1 Popis zapojení .. 19
 6.2 Přeladitelnost obvodu ... 20
 6.2.1 Přeladitelnost obvodu rezistorem R₁ .. 21
 6.2.2 Přeladitelnost obvodu rezistorem R₂ ..21
 6.2.3 Přeladitelnost obvodu rezistorem R₃ ..21
 6.2.4 Přeladitelnost obvodu současnou změnou rezistorů R₂ a R₃ 22
 6.2.5 Přeladitelnost obvodu současnou změnou rezistorů R₁, R₂ a R₃ 23
 6.3 Citlivostní analýza obvodu ... 24
 6.3.1 Relativní citlivost frekvence f₀ ... 24
 6.3.2 Relativní citlivost obecné přenosové funkce ... 24
 6.4 Vliv vlastností operačního zesilovače na parametry filtru 26
7. Zapojení pásmové propusti s vazbou typu bootstrap ... 28
 7.1 Popis zapojení .. 28
 7.2 Přeladitelnost obvodu ... 30
 7.2.1 Přeladitelnost obvodu rezistorem R₁ ... 31
 7.2.2 Přeladitelnost obvodu rezistorem R₂ ... 31
 7.2.3 Přeladitelnost obvodu rezistorem R₃ ... 31
7.2.4 Přeladitelnost obvodu rezistorem R_4 .. 32
7.2.5 Přeladitelnost obvodu současnou změnou rezistorů R_2 a R_3 33
7.2.6 Přeladitelnost obvodu současnou změnou rezistorů R_1, R_2 a R_3 34
7.3 Citlivostní analýza obvodu .. 35
 7.3.1 Relativní citlivost frekvence f_0 ... 35
 7.3.2 Relativní citlivost obecné přenosové funkce 35
7.4 Vliv vlastností operačního zesilovače na parametry filtrace 37
8. Pásmová propust v limbvě zapojení ... 39
 8.1 Popis zapojení .. 39
 8.2 Přeladitelnost obvodu .. 40
 8.2.1 Přeladitelnost obvodu rezistorem R_1 ... 41
 8.2.2 Přeladitelnost obvodu rezistorem R_2 nebo R_3 41
 8.2.3 Přeladitelnost obvodu rezistorem R_4 ... 42
 8.2.4 Přeladitelnost obvodu současnou změnou rezistorů R_2 a R_3 43
 8.2.5 Přeladitelnost obvodu současnou změnou rezistorů R_1, R_2 a R_3 44
8.3 Citlivostní analýza obvodu .. 45
 8.3.1 Relativní citlivost frekvence f_0 ... 45
 8.3.2 Relativní citlivost obecné přenosové funkce 46
8.4 Vliv vlastností operačního zesilovače na parametry filtrace 48
9. Závěr .. 50
Seznam použité literatury ... 51
Seznam příloh ... 52
1. Úvod

Kmitočtové filtry ve všech svých variantách patří mezi nejpoužívanější elektronická zapojení. Oblast jejich použití je skutečně velmi rozsáhlá, zahrnuje např. obory měřicí, rádiové, spotřební či telekomunikační techniky.

V této práci se podrobně zabývám filtry typu pásmová propust, ve kterých je jako kmitočtově závislého členu použito modifikovaného dvojitého T-článku, aktivními prvky obvodu jsou pak rozdílové operační zesilovače s nastaveným jednotkovým zesílením. Ve všech zapojeních je kladen důraz na přeladitelnost jednotlivých vlastností pásmových propustí, a to změnou hodnot jednoho či více pasivních prvků. Ke každému obvodu je rovněž zpracována citlivostní analýza, popisující důsledky rozptylu výrobních hodnot rezistorů a kondenzátorů na přenosovou charakteristiku filantu, prostor je věnován i průzkumu vlivu parametrů použitých operačních zesilovačů na vlastnosti filtru.

V prvních kapitolách se zaobírám úvodom do světa kmitočtových filtrů – definuji způsoby jejich matematického zápisu, a typy, se zaměřením na pásmové propusti. Jelikož v samotných filtrtech využívám jako aktivních prvků operačních zesilovačů, je na následujících stránách uveden stručný popis jejich vlastností s ukázkou výhod zapojení s jednotkovým zesílením.

U laditelných filtrů uvedených v této práci se změna parametrů provádí úpravou hodnot pasivních součástek – nejčastěji rezistorů. Možnosti náhrady obyčejného potenciometru vyspělejšími elektronicky laděnými prvky jsou předvedeny v kapitole 4. Teoretickou část zakončuji úvodem do problematiky citlivostní analýzy, která se vzhledem ke své náročnosti přiš často nepoužívá.

Zapojení laditelných pásmových propustí s jednotkovými zesilovači demonstrují třemi obvody, ve kterých se podrobně zabývám možností přeladitelnosti, citlivostní analýzou a průzkumem vlivu parametrů operačních zesilovačů na vlastnosti filtru.
2. Kmitočtové filtry

Kmitočtové filtry jsou převážně lineární elektrické obvody, které ze signálu přiváděného na svůj vstup propustí na výstup harmonické složky spektra zpracovávaného signálu v určitém rozmezí kmitočtů bez útlumu, nebo jen s minimálním útlumem. Takováto oblast se označuje jako propustné pásmo. Mimo toto pásmo jsou harmonické složky signálu naopak silně utlumovány – zde se užívá názvů nepropustné pásmo, pásmo potlačení či útlumu.

Principiální schéma kmitočtového filtru připojeného ke zdroji harmonického signálu je uvedeno na obr. 2.1. Jestliže přes tento filtr prochází harmonický signál charakterizovaný svými parametry (amplitudou \(U_1 \), kmitočtem \(f_1 \) a fázi \(\varphi_1 \)), na výstupu z filtru získáme rovněž harmonický signál se stejným kmitočtem \((f_1 = f_2) \), ale odlišnou velikostí amplitudy \(U_2 \) a fáze \(\varphi_2 \).

\[
\begin{align*}
\text{Kmitočtový filtr} \\
\begin{array}{c}
\sim \\
R_1 \\
U_1(f) \\
\downarrow \\
\text{Kmitočtový filtr} \\
U_2(f) \\
\downarrow \\
R_2
\end{array}
\end{align*}
\]

Obr. 2.1 Blokové schéma filtru

Základní vlastnost kmitočtového filtru popisuje tzv. přenos napětí \(K_U \). Ten udává poměr parametrů výstupního a vstupního harmonického signálu pro daný kmitočet \(f \).

\[
K_U = K_u \cdot e^{j\varphi} = \frac{U_2}{U_1} \cdot e^{j\varphi_2} \quad [-]
\]

Přenos napětí je udán komplexním výrazem, lze jej tedy rozdělit na reálnou a imaginární část (tzv. modul a argument). Rozloženého popisu se v praxi z důvodu vyšší názornosti užívá častěji.

\[
K_U = \frac{U_2}{U_1} \quad [-]
\]

\[
\varphi = \varphi_2 - \varphi_1 \quad [\text{°}]
\]

Modul přenosu \(K_U \) je definován poměrem amplitud výstupního a vstupního signálu, argument \(\varphi \) je popsán rozdílem fázi výstupního signálu \(\varphi_2 \) a vstupního signálu \(\varphi_1 \). Argument \(\varphi \)
určuje výsledný fázový posuv (časový rozdíl vztažený na jednu periodu zpracovávaného signálu).

Výhodou předchozího matematického popisu kmitočtového filtru je jednoduchost a názornost. Problémem však je, že takto definovanými vztahy je možné spočíst modul přenosu a fázový posuv pouze pro určitý kmitočet harmonického signálu. Z tohoto důvodu je pro praktické využití mnohem výhodnější vyjádřit přenosové vlastnosti filtru jako funkce kmitočtu. Z této již lze pro každý konkrétní kmitočet vypočíst přenos. U filtrů je závislost přenosu na kmitočtu komplexní fórmule K(ω), přičemž platí \(\omega = 2 \pi f \), nebo \(K(p) \), kde běžně uvažujeme \(p = j \cdot \omega \) (ustálený stav).

Přenosové vlastnosti filtru jsou určeny v kmitočtové oblasti (ose \(j \cdot \omega \)), nebo v rovině komplexního kmitočtu \(p \) přenosovou funkcí:

\[
K(j\omega) = \frac{a_m(j\omega)^m + a_{m-1}(j\omega)^{m-1} + \cdots + a_1 j\omega + a_0}{b_n(j\omega)^n + b_{n-1}(j\omega)^{n-1} + \cdots + b_1 j\omega + b_0} \quad [-]
\]

(4)

\[
K(p) = \frac{a_m(p)^m + a_{m-1}(p)^{m-1} + \cdots + a_1 p + a_0}{b_n(p)^n + b_{n-1}(p)^{n-1} + \cdots + b_1 p + b_0} \quad [-]
\]

(5)

kde symbolem \(m \) označujeme řád polynomu čitatele, znakem \(n \) pak řád jmenovatele, přičemž platí, že \(m \) je menší nebo rovno \(n \) (\(m \leq n \)).

Uvedené komplexní funkce lze stejně jako v případě \(K_c \) rozložit na reálnou a imaginární část (v literatuře se používá označení modulová a argumentová část – význam je totožný) a obě tyto veličiny graficky zobrazit v závislosti na kmitočtu jako modulovou (amplitudovou) kmitočtovou charakteristikou \(K_c(\omega) \) a argumentovou (neboli fázovou) kmitočtovou charakteristikou \(\varphi(\omega) \).

2.1 Základní typy filtrů

Podle frekvenčních závislostí modulových charakteristik se kmitočtové filtry nejčastěji rozdělují na typy dolní propust, horní propust, pásmová propust a pásmová zádrž. Dělení se provádí na základě toho, které frekvenční složky signálu filtr propustí, a jaké naopak potlačí.
Dolní propust DP (angl. Low-pass LP) propouští všechny složky signálu o kmitočtech, které jsou menší než horní mezní kmitočet \(f_H \) (obr. 2.2).

![Modulová charakteristika ideální dolní propusti](image)

Obr. 2.2 Modulová charakteristika ideální dolní propusti

Horní propust HP (angl. High-pass HP) propouští všechny složky signálu o kmitočtech, které jsou větší než dolní mezní kmitočet \(f_D \) (obr. 2.3).

![Modulová charakteristika ideální horní propusti](image)

Obr. 2.3 Modulová charakteristika ideální horní propusti

Pásmová propust PP (angl. Band-pass BP) propouští jen složky signálu určitého pásma kmitočtů, ohraničeného mezním dolním kmitočtem \(f_D \) a horním kmitočtem \(f_H \) (obr. 2.4).

![Modulová charakteristika ideální pásmové propusti](image)

Obr. 2.4 Modulová charakteristika ideální pásmové propusti
Pásmová zádrž PZ (angl. Band-reject BR) nepropouští jen složky signálu určitého pásma kmitočtů, ohraničeného mezním dolním kmitočtem f_0 a horním kmitočtem f_h (obr. 2.5).

![Diagram of PZ filter](image)

Obr. 2.5 Modulová charakteristika ideální pásmové zádrže

2.2 Pásmové propusti

V této práci se budu dále zabývat pouze filtry typu pásmová propust. Velmi důležitým parametrem je u těchto filtrů šířka propustného pásma B rozloženého okolo střední frekvence f_0. Šířka pásma je dána rozdílem horního a dolního mezního kmitočtu:

$$B = f_h - f_0 \ [\text{Hz}] \quad (6)$$

![Diagram of滤波器频谱响应](image)

Obr. 2.6 Přenosová charakteristika reálné pásmové propusti

Z pohledu na přenosovou charakteristiku reálné pásmové propusti (obr. 2.6) vyplývá, že hodnoty frekvencí f_0 a f_h vytváří oblast, ve které nepoklesne přenos K_U pod hodnotu A_1.

5
S šířkou propustného pásma úzce souvisí činitel jakosti filtru Q. Ten udává kvalitu (míru selektivity) daného filtru.

\[Q = \frac{f_0}{B} \quad [-] \quad (7) \]

Vazby mezi frekvencemi \(f_0, f_D, f_H \) a činitelem jakosti Q definují vztahy:

\[f_0 = \sqrt{f_D \cdot f_H} \quad [\text{Hz}] \quad (8) \]

\[f_D = f_0 \left[\frac{-1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}} \right] \quad [\text{Hz}] \quad (9) \]

\[f_H = f_0 \left[\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}} \right] \quad [\text{Hz}] \quad (10) \]

Pro pásmové propusti 2. řádu lze přenosová funkce upravit do tvaru, ze kterého je možné přímo určit základní vlastnosti filtru:

\[K_U = m \cdot \frac{p \cdot \omega_0}{p^2 + p \cdot \frac{\omega_0}{Q} + \omega_0^2} \quad [-] \quad (11) \]

kde \(m \) udává přenos pásmové propusti na kmitočtu \(\omega_0 \).
2.3 Modifikovaný dvojitý T-článek

Modifikovaný dvojitý T-článek je pasivní elektronický obvod, skládající se ze tří rezistorů a tří kondenzátorů (obr. 2.7). Uvedené zapojení má vlastnosti pásmové propusti, po zaměnění vstupní a zemnící svorky se obvod chová jako pásmová zádrž.

Matematický popis dvojitého T-článku je uveden v kapitole 6.1. V zapojení je sice možné užití libovolných hodnot rezistorů a kondenzátorů, pro nejlepší možný průběh přenosové charakteristiky (minimální útlum v okolí frekvence f_0, symetrický průběh charakteristiky) je vhodné dodržení poměru $R_1 = 0,5 \cdot R$, $R_2 = R_3 = R$, $C_1 = 2 \cdot C$, $C_2 = C_3 = C$.

Dvojitý T-článek typu pásmová propust je složen z paralelně spojené dolní a horní propusti, kde rezistor R_1 spolu s kondenzátory C_2 a C_3 vytváří obvod filtru typu dolní propust, kondenzátor C_1 doplněný rezistory R_2 a R_3 pak tvoří filtr typu horní propust. Přenosové charakteristiky jednotlivých částí dvojitého T-článku jsou uvedeny na obr. 2.8 (pro $f_0 = 10$ kHz).
3. Operační zesilovače

Operační zesilovač je již relativně stará elektronická součástka, jejíž vznik se datuje přibližně k roku 1938 (konstrukce s elektronkami).

Pojmem operační zesilovač se označuje stejnosměrný širokopásmový zesilovač s velkým zesílením. Název „operační“ je užit z historického důvodu, neboť původně byly tyto zesilovače určeny k vytváření matematických operací.

Schématická značka rozdílového operačního zesilovače je na obr. 3.1. Součástka se skládá z neinvertujícího (kladného) vstupu, invertujícího (záporného) vstupu, výstupu a vstupu pro symetrické napájecí napětí. V konkrétních schématech se často zakreslí pouze vstupy a výstup, vývody pro napájení či případnou kompenzaci se většinou neuvidět. Vstupní a výstupní signál se vždy měří proti nule (zemí) zdroje symetrického napájení.

![Obr. 3.1 Rozdílový operační zesilovač](image)

Operační zesilovače jsou běžně určeny pro provoz v uzavřených zpětnovazebních smyčkách – systém tvořený operačním zesilovačem, obvodem zpětné vazby, zdrojem signálu a zátěží tvoří tzv. operační síť.

Postupným vývojem bylo uvedeno do provozu více druhů operačních zesilovačů, suverénně nejpoužívanějším typem je však stále rozdílový operační zesilovač.
Pro rozdílový operační zesilovač platí, že zesiluje pouze tzv. rozdílové napětí \(u_d \) mezi neinvertujícím a invertujícím vstupem.

\[
 u_d = u_+ - u_- \quad [V]
\]

(12)

Výstupní napětí \(u_o \) je pak dáno součinem rozdílového napětí \(u_d \) a zesílení operačního zesilovače \(A_U \) (platí pro obvod bez zpětné vazby):

\[
 u_o = A_U \cdot u_d \quad [V]
\]

(13)

Tento vztah však platí pouze pro výstupní napětí \(u_o \), která jsou o něco menší nežli napětí napájecí.

3.1 Vlastnosti operačních zesilovačů

3.1.1 Ideální operační zesilovač

Při zjednodušených úvahách, kdy demonstrujeme obecnou funkci daného zapojení či při orientačních výpočtech zavádíme běžně nahrazení parametrů operačního zesilovače idealizovaným modelem nazývaným ideální operační zesilovač. Tento model má tyto základní vlastnosti:

- nekonečně velké napěťové zesílení \(A_U \)
- nekonečně velké vstupní odpory (tzn. nulové vstupní proudy – operační zesilovač nezatěžuje předchozí obvody)
- nulový výstupní odpor (zesílení je tedy nezávislé na připojené zátěži)
- frekvenční nezávislost všech parametrů operačního zesilovače
- nekonečně velké potlačení součetového signálu (jedná se o signál společný oběma vstupům).

Skutečný operační zesilovač se uvedeným vlastnostem pouze přiblížuje, při realizaci zapojení je tedy vhodné pracovat s pojmem reálný operační zesilovač, ve kterém jsou zahrnuty i mnohdy nepříjemné technické omezení ovlivňující kvalitu a funkci navrhnutých obvodů.
3.1.2 Reálný operační zesilovač

Pod pojmem reálný operační zesilovač rozumíme model operačního zesilovače, ve kterém jsou zahrnuty všechny podstatné vlastnosti skutečného operačního zesilovače.

Obr. 3.2 Principiální znázornění reálného operačního zesilovače

Základními vlastnostmi reálného operačního zesilovače jsou:

Napěťové zesílení \(A_U \) **při otevřené smyčce zpětné vazby** – je definované pro nezatížený operační zesilovač \((i_o = 0) \) a pro stejnosměrný vstupní signál. Napěťové zesílení je poměrně nestálé, závisí na velikosti napájecího napětí operačního zesilovače, na teplotě okolí a na frekvenci zpracovávaného signálu (obr. 3.4). Pro klasické operační zesilovače se hodnota zesílení \(A_U \) pohybuje zhruba mezi 20 000 – 2 000 000.

Vstupní napěťová nesymetrie \(U_{I0} \) (Input Voltage Offset) – udává, jak velké napětí je třeba připojit mezi vstupní svorky, aby bylo výstupní napětí nulové. Je způsobena nesymetrií vstupních obvodů operačního zesilovače (mírná odlišnost parametrů tranzistorů či hodnot rezistorů).

Velikost \(U_{I0} \) je v řádu jednotek mV, některé operační zesilovače mají vyvedeny speciální kompenzační vývody, na které lze připojit potenciometr a tím nastavit napěťovou nesymetrii na nulovou hodnotu.

Teplotní drift napěťové nesymetrie \(aU_{I0} \) – udává změny napěťové nesymetrie v závislosti na teplotě. Vyjadřuje se v \(\mu V/^\circ C \).
Vstupní klidový proud I_{IB} (Input Bias Current) – je definován jako proud, který je nutné přivést na jeden či oba vstupy operačního zesilovače ze zdroje o nekonečně impedanci, aby napětí na výstupu bylo nulové.

$$I_{IB} = \frac{I_{B+} + I_{B-}}{2} \quad [A] \quad (14)$$

Velikost záleží na technologické konstrukci operačního zesilovače, unipolární technologie má I_{IB} řaději nižší než technologie bipolární.

Vstupní proudová nesymetrie I_{I0} (Input Difference Current) – nesymetrie vstupních obvodů operačního zesilovače vyvolává rozdíly vstupních proudů I_{B+} a I_{B-}.

$$I_{I0} = I_{B+} - I_{B-} \quad [A] \quad (15)$$

Nedokonalá symetrie se projeví vznikem určitého napětí na výstupu operačního zesilovače. Nejčastější hodnoty I_{IB} jsou přibližně $1/10 \cdot I_{IB}$.

Teplotní drift proudové nesymetrie aI_{I0} – popisuje změny proudové nesymetrie v závislosti na změně teploty. Udává se v pA/°C.

Vstupní odpor R_d – jedná se o odpor mezi neinvertujícím a invertujícím vstupem (obr. 3.2). Jeho velikost je běžně od stovk kΩ po jednotky MΩ.

Výstupní odpor R_o – odpor, který je na výstupu operačního zesilovače, není-li zapojena zpětná vazba. Tento odpor se projevuje jako sériově spojený se zátěží na výstupu. Typická hodnota jsou desítky až stovky Ω.

Napájecí proud I_{CC} – proud odebíraný z napájecího zdroje při nulovém výstupním napětí. Řádově se jedná o jednotky mA.

Vstupní napěťový rozsah U_1 – rozsah napětí na kladném vstupu, pro který platí lineární závislost u_o na u_i.

Rozkmit výstupního napětí U_{omax} – udává rozmezí hodnot napětí, kterého lze dosáhnout na výstupní svorky operačního zesilovače. Obvykle se jedná o napájecí napětí snížené o 1 – 2 V.
Potlačení souhlasného signálu CMR – udává, oči se změní výstupní napětí u_o, jestliže zvětšíme současně velikost signálu na neinvertujícím i invertujícím vstupu, přičemž stále platí, že $u_+ = u_-$ (u_+ je tedy nulové). Ideální operační zesilovač zesiluje pouze rozdílové napětí u_o, a reálného operačního zesilovače se však hodnota výstupu změní. Platíže:

$$CMR = 20 \cdot \log \left(\frac{\Delta u_{\text{rel}}}{\Delta u_o} \right) \quad [\text{dB}]$$

kde $\Delta u_{\text{rel}} = \Delta u_+ = \Delta u_-.$

Výstupní proud nakrátko $I_{o\text{m}}$ – proud, který je operační zesilovač schopen dodávat do zkratu vůči zemním svorce (běžně desítky mA).

Potlačení vlivu změn napájecího napětí SVR – udává, jak se změní výstupní napětí u_o při změně velikosti napájecího napětí U_{CC}. Tato změna se udává buď v μV/V, nebo v dB:

$$SVR = 20 \cdot \log \left(\frac{\Delta U_{CC}}{\Delta u_o} \right) \quad [\text{dB}]$$

Vstupní kapacita C_{IN} – parazitní kapacita mezi neinvertujícím a invertujícím vstupem. Nejčastější velikost je okolo 3 pF, tudíž se ve většině aplikací neuplatňuje (podstatná u vysokofrekvenčních zapojení).

Tranzitní kmitočet f_T – napěťové zesílení A_U je frekvenčně velmi závislé. Jak je patrné z obr. 3.4, zesílení A_U s nárůstem frekvence zpracovávaného signálu poměrně prudce klesá, přičemž od určité frekvence signálu již operační zesilovač není schopen plnit svou funkci a signál utlumuje.

Tranzitní kmitočet f_T je hodnota kmitočtu, při které má operační zesilovač zesílení rovno jedné (0 dB). Přibližně nízká hodnota tranzitního kmitočtu je značně limitujícím faktorem i při realizaci nízkofrekvenčních zapojení s vysokým zesílením, natož pak u zapojení vysokofrekvenčních. Proto je i v dnešní době snaha výrobci o neustálé zvyšování hodnoty f_T.

12
Rychlost přeběhu S – udává maximální hodnotu, o jakou se je schopno změnit výstupní napětí u_o za jednotku času:

$$S = \frac{\Delta u_o}{\Delta t} \begin{bmatrix} V \\ s \end{bmatrix}$$

Rychlost přeběhu se nejčastěji udává ve $V/\mu s$. Při znalosti S můžeme určit maximální frekvenci harmonického signálu, při kterém by došlo ke zkreslení přibližně 1 % (tzv. mezní kmitočet f_p):

$$f_p = \frac{S}{2\pi \cdot U_{om}} \text{[Hz]}$$

kde U_{om} je amplituda výstupního napětí.

3.2 Zapojení operačního zesilovače s jednotkovým zesílením

Ve všech obvodech uvedených v této práci je jako aktivního prvku využito výhradně zapojení operačního zesilovače s jednotkovým zesílením - tzv. sledovače napětí (obr. 3.3).

![Obr. 3.3 Sledovač napětí](image)

Operační zesilovač v tomto zapojení plní funkci oddělovacího členu, vlastnosti zpracovávaného signálu, tedy napěťový přenos K_v, kmitočet f a fázový posuv φ, zůstávají bez změn (pro ideální operační zesilovač).

Výhodnou vlastností sledovače je jeho vysoký vstupní odpor, který je vůbec nejvýšší ze všech možných zapojení s operačními zesilovači. Jeho velikost je prakticky rovna vstupnímu odporu samotného operačního zesilovače (cca stovky kΩ až jednotky MΩ). Proto je tohoto zapojení úspěšně používáno k oddělení zdrojů signálu s velkým vstupním odporem. Oddělením jednotlivých částí zapojení docílíme jejich nezávislosti na předchozích/následujících obvodech.
Jednotkové zesílení operačního zesilovače je rovněž výhodné z frekvenčního hlediska, neboť kmitočet zpracovávaného signálu může teoreticky dosahovat až do výše tzv. tranzitního kmitočtu f_T, díky čemuž je i ve vysokofrekvenčních zapojeních možné užití levnějších modelů operačních zesilovačů.

Jelikož jsou však oba vstupy na úrovni vstupního signálu, musíme dbát na to, aby operační zesilovač měl dobré potlačení souhlasného signálu CMR [1].

Obr. 3.4 Závislost zesílení operačního zesilovače na kmitočtu ($f_T = 1$ MHz)
4. Ladící prvky pro kmitočtové filtry

Při praktické konstrukci předlitového kmitočtového filtru je třeba zvážit, jakými prvky bude realizováno vlastní ladění požadovaných parametrů.

U aktivních RC filtrů, kde je jako aktivního členu užito rozdílového operačního zesilovače, je regulace hodnot (napěťový přenos K_{uI}, kmitočet f_0, jakost Q) možná změnou velikosti rezistorů či kondenzátorů, optimálně při zachování vzájemných poměrů jejich hodnot (obecně se udává, že pro filtr n-tého řádu je nutno řidit minimálně n prvků). [2]

Jelikož je však použití proměnných kondenzátorů poměrně nevýhodné (obtížnější elektronické ladění, velmi malý rozsah hodnot, kapacita řádově v pF), je pro ladění kmitočtových filtrů ve většině případů využíváno řízených resistorů. Ty je možné ladit buď klasicky mechanicky, nebo lépe elektronicky. Praktickou výhodou je shodná velikost všech řízených rezistorů, s rozdílnými hodnotami je již řešení složitější. Mezi nejběžnější metody realizace proměnných rezistorů patří:

Mechanicky ovládané potenciometry – nejčastěji řešení pro ruční regulaci. Pro řízení dvou rezistorů stejných hodnot se užívají tandemové potenciometry se zaručeným souběhem (obvykle 3 dB). Použitím logaritmických potenciometrů můžeme docílit přeladění až o tři dekády. Výhodou mechanických potenciometrů je jednoduchost řešení a relativně nízká cena, nevýhodou pak nižší přesnost a nutnost ručního nastavování.

Tranzistory řízené elektrickým polem (FET) – pro malé signály (do 100 mV) se tyto tranzistory chovají jako téměř lineární napětí řízené rezistory (obr. 4.1). Výhodou řešení je řízení velikosti odporu napětí (snadná elektronická regulace), další kladnou vlastností je poměrně velký rozsah řízení. Problémem však je souběh řízených odporů více tranzistorů.

![Obr. 4.1 Nahrazení proměnného rezistoru FET tranzistorem](image)

Optočleny s fotoodpory a LED diodami – hodnota odporu R_t je nastavována pomocí osvět LED diodou, řízenou napětím U_t (obr. 4.2). Výhodou je téměř lineární funkce řízeného odporu, široký rozsah řízení (až tři dekády) s dobrou dynamikou signálu (zkreslení se zvyšuje pouze pro nízké kmitočty kde $f < 100 \text{ Hz}$) a poměrně malý šum. Nevýhodou však je obtížné
dodržení dostatečně přesného souběhu a požadované závislosti na řídící veličině. Setrvačnost fotoodporu, která je závislá na konkrétní hodnotě velikosti odporu, omezuje rychlost řízení signály s maximálními kmitočty 10 Hz až 10 kHz.

![Diagram](image.png)

Obr. 4.2 Nahrazení proměnného rezistoru fotoodporem s LED diodou

Spínané kapacitory – tímto řešením imitujeme vlastnosti rezistoru pomocí přepínaného kondenzátoru (obr. 4.3). Hodnota takto nasízenového odporu je dána spínacím kmitočtem řídícího signálu dle vzorce:

\[
R_{SP} = \frac{1}{f_{SP} \cdot C_R} \quad [\Omega]
\]

(20)

Pomocí spínaných kapacitorů lze bez problémů řídit i filtry vyšších řádů, protože hodnota odporu \(R_{SP} \) je nastavitelná velmi přesně a problémem tedy není ani souběh více prvků.

![Diagram](image.png)

Obr. 4.3 Nahrazení proměnného rezistoru spínaným kapacitorem

Spínané odpory – efektivní hodnota odporu těchto prvků je závislá na střídě impulsů spínání (obr. 4.4). Toto řešení je vhodnější pro nižší kmitočty zpracovávaného signálu. Spínanými odpory lze dosáhnout velmi dobrého souběhu více prvků, nevýhodou je poměrně malý použitelný rozsah řízení a ne-lineární závislost na řídící veličině.

![Diagram](image.png)

Obr. 4.4 Nahrazení proměnného rezistoru spínaným odporem
5. Citlivostní analýza filtrů

Výsledkem teoretického návrhu filtrů je přenosová funkce a hodnoty, které jsou určeny na základě výpočtu při předpokladu použití absolutně přesných velikostí všech součástek, a jsou tak do značné míry pouze představou o vlastnostech filtru za ideálních podmínek.

Při praktické realizaci však bude kmitočtová charakteristika (modulová i fázová) v určitém množství ovlivněna výrobními tolerancemi použitých pasivních prvků. Velkým problémem zůstává především výrobní rozptyl kapacit kondenzátorů, u kterých není výjimečná ani odchylka 10 % od udávané nominální hodnoty. Snahou však je, aby tyto tolerance příliš neovlivňovaly průběh kmitočtové charakteristiky.

5.1 Relativní citlivost parametrů filtru

Z důvodu nutnosti popisu závislosti sledovaných vlastností filtru na rozptylu hodnot pasivních prvků se stanovují tzv. relativní citlivosti, díky kterým zjistíme, který prvek v elektronickém zapojení má na konkrétní parametr filtru největší vliv. U těchto součástek se pak snažíme o co nejvyšší přesnost hodnot a to i za cenu vyšších nákladů.

Ve většině případů se stanovují jen některé relativní citlivosti parametrů filtru, tedy relativní citlivost charakteristické frekvence \(f_0 \), činitele jakosti \(Q \) nebo napěťového přenosu v pásmu propustnosti \(K_{U0} \), a to podle toho, která vlastnost bude u filtru preferována.

Vztahy pro výpočet relativních citlivostí jsou:

\[
S_{q_i}^{f_0} = \frac{q_i}{f_0} \cdot \frac{\partial f_0}{\partial q_i} \quad [-] \\
S_{q_i}^{K_{U0}} = \frac{q_i}{K_{U0}} \cdot \frac{\partial K_{U0}}{\partial q_i} \quad [-] \\
S_{Q}^{Q} = \frac{q_i}{Q} \cdot \frac{\partial Q}{\partial q_i} \quad [-]
\]

kde \(q_i \) je obecné označení parametru i-tého pasivního prvku [6].

Výsledkem uvedených rovnic je ve všech případech reálné číslo, které udává, jak hodně se bude měnit daný parametr filtru při určité změně konkrétního pasivního prvku.
Odchylku sledovaného parametru filtru od původní hodnoty zapříčiněnou změnou hodnoty určitého pasivního prvku lze určit vztahem:

\[
\Delta Y = S_{q_i}^Y \cdot \frac{\Delta q_i}{q_i} \cdot Y
\]

kde \(\Delta Y\) je změna sledovaného parametru filtru, \(\Delta q_i\) je změna velikosti prvku \(q_i\), hodnota \(q_i\) je původní velikost pasivního prvku \(q_i\) a \(Y\) je teoreticky vypočtená hodnota sledovaného parametru pro ideální hodnoty všech prvků.

5.2 Obecná citlivostní funkce

Z hodnot relativních citlivostí však nelze určit, jaký vliv budou mít tolerance prvků na celkový průběh kmotčtové charakteristiky. Proto byla zavedena tzv. obecná citlivostní funkce přenosu filtru. Tato přenosová funkce je komplexní a kmotčtově závislá a poskytuje přehlednou informaci o tom, jak bude ovlivněn přenos filtru vlivem tolerance jednotlivých prvků v celém kmotčtovém pásmu.

Relativní citlivost obecné přenosové funkce definujeme pomocí vztahu:

\[
S_{q_i}^{K_U} = \frac{q_i}{K_U} \cdot \frac{\partial K_U}{\partial q_i} \quad [-]
\]

Výsledek je ve tvaru podílu dvou polynomů, pro názornost se využívá zejména grafické interpretace. Jelikož je obecná přenosová funkce komplexní veličinou, lze ji rozložit na reálnou a imaginární část.

Reálná část vyjadřuje relativní citlivost modulu přenosu:

\[
\text{Re } S_{q_i}^{K_U} = \text{Re} \left(\frac{q_i}{K_U} \cdot \frac{\partial K_U}{\partial q_i} \right) = \frac{q_i}{|K_U|} \cdot \left| \frac{\partial |K_U|}{\partial q_i} \right| \quad [-]
\]

Imaginární část pak určuje tzv. semirelativní citlivost argumentu přenosu:

\[
\text{Im } S_{q_i}^{K_U} = \text{Im} \left(\frac{q_i}{K_U} \cdot \frac{\partial K_U}{\partial q_i} \right) = q_i \cdot \frac{\partial \arg K_U}{\partial q_i} \quad [-]
\]
6. Zapojení pásmové propustí s oddělovacími zesilovači

6.1 Popis zapojení

Nejjednodušší možné zapojení dvojitého T-článku s jednotkovými zesilovači je uvedeno na obr. 6.1. Operační zesilovače zde slouží pouze k oddělení kmitočtového filtru od předchozích (resp. následujících) možných obvodových částí.

Výhodou tohoto zapojení je, že vstupní a výstupní impedance jsou na rozdíl od obvodu samotného dvojitého T-článku kmitočtově nezávislé, a jsou jednoznačně určeny čistě parametry použitých operačních zesilovačů.

![Diagram](image)

Obr. 6.1 Zapojení pásmové propustí s oddělovacími zesilovači

Matematicky je uvedené zapojení popsáno totožně jako samotný dvojitý T-článek, popsany v kapitole 2.3 (uvedené vztahy počítají s užitím ideálních operačních zesilovačů). Pro napěťový přenos platí:

\[
K_U = \frac{p^2 \cdot a_2 + p \cdot a_1}{p^3 \cdot b_3 + p^2 \cdot b_2 + p \cdot b_1 + 1} \quad \text{[\text{-}]} \quad (28)
\]

kde

\[a_1 = R_3 C_1 + R_2 C_2 + R_2 C_2\]
\[a_2 = R_2 R_3 C_1 C_2 + R_1 R_3 C_1 C_2 + R_1 R_3 C_1 C_3\]
\[b_1 = R_3 C_1 + R_2 C_2 + R_2 C_2 + R_1 C_2 + R_1 C_3\]
\[b_2 = R_2 R_3 C_1 C_2 + R_1 R_3 C_1 C_2 + R_1 R_3 C_1 C_3 + R_1 R_3 C_2 C_3 + R_1 R_2 C_2 C_3\]
\[b_3 = R_1 R_2 R_3 C_1 C_2 C_3\]
Pro dosažení nejlepšího průběhu amplitudové kmitočtové charakteristiky je vhodné
využít dosazení jednotné velikosti odporů R a kapacit C, při dodržení poměru \(R_1 = 0,5 \cdot R, \ R_2 = R_3 = R, \ C_1 = 2 \cdot C, \ C_2 = C_3 = C \).

Tím se výrazně zjednoduší i tvar přenosové funkce, která má po úpravě na
standardizovaný tvar podobu:

\[
K_U = \frac{p \cdot \frac{4}{RC}}{p^2 + p \cdot \frac{4}{RC} + \frac{1}{(RC)^2}} \quad [-] \quad (29)
\]

Z uvedeného vztahu je již možné odvodit základní parametry zapojení, jako je střední
frekvence \(f_0 \), napěťový přenos pro frekvenci \(f_0 \) a jakost obvodu \(Q \):

\[
f_0 = \frac{1}{2 \cdot \pi \cdot RC} \quad [Hz] \quad (30)
\]

\[
K_{U0} = 1 \quad [-] \quad (31)
\]

\[
Q = \frac{1}{4} \quad [-] \quad (32)
\]

6.2 Přeladitelnost obvodu

Změnou velikosti jednoho nebo více rezistorů je možné realizovat přelaďování obvodu,
tzn. měnit některou ze základních vlastností obvodu, jako je frekvence \(f_0 \), napěťový přenos \(K_U \)
nebo činitel jakosti \(Q \). Ladění je proveditelné i pomocí změn hodnot kondenzátorů, v praxi se
však tento postup příliš nepoužívá.

<table>
<thead>
<tr>
<th>Ladící prvek</th>
<th>Maximální změna sledovaného parametru [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frekvence (f_0)</td>
</tr>
<tr>
<td>(R_1)</td>
<td>136</td>
</tr>
<tr>
<td>(R_2)</td>
<td>211</td>
</tr>
<tr>
<td>(R_3)</td>
<td>136</td>
</tr>
<tr>
<td>(R_2) a (R_3)</td>
<td>933</td>
</tr>
<tr>
<td>(R_1, R_2) a (R_3)</td>
<td>990</td>
</tr>
</tbody>
</table>

Tab. 6.1 Úpravy vlastností obvodu změnou hodnot rezistorů (rozsah 0,1× až 10× \(R_4 \))
Při úpravách velikostí jednoho rezistoru dochází ke změnám všech sledovaných parametrů, proto se takového ladění dá užít pouze v případě, kdy je jedna vlastnost obvodu výrazně preferovaná a ostatní mohou být libovolné.

Z uvedeného důvodu je pro přelaďování obvodu mnohem výhodněji používat současněho nastavování velikostí alespoň dvou rezistorů. Změny jednoho sledovaného parametru pak bývají výrazně dominantní vůči ostatním, nebo dochází čistě ke změně pouze jedné vlastnosti obvodu (tab. 6.1).

6.2.1 Přelaďitelnost obvodu rezistorem \(R_1 \)

Při změnách velikosti rezistoru \(R_1 \) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn \(\Delta f_0 = 136\% \), \(\Delta K_U = 37\% \), \(\Delta Q = 76\% \).

Závislosti parametrů pásmové propusti (frekvence \(f_0 \), napěťového přenosu \(K_U \), jakosti \(Q \)) na relativní velikosti rezistoru \(R_1 \) s typickými příklady přenosových charakteristik pro různé hodnoty \(R_1 \) (\(f_0 = 10\) kHz) jsou uvedeny v příloze I.

6.2.2 Přelaďitelnost obvodu rezistorem \(R_2 \)

Při změnách velikosti rezistoru \(R_2 \) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn \(\Delta f_0 = 211\% \), \(\Delta K_U = 18\% \), \(\Delta Q = 64\% \).

Závislosti parametrů pásmové propusti (frekvence \(f_0 \), napěťového přenosu \(K_U \), jakosti \(Q \)) na relativní velikosti rezistoru \(R_2 \) s typickými příklady přenosových charakteristik pro různé hodnoty \(R_2 \) (\(f_0 = 10\) kHz) jsou uvedeny v příloze I.

6.2.3 Přelaďitelnost obvodu rezistorem \(R_3 \)

Při změnách velikosti rezistoru \(R_3 \) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn \(\Delta f_0 = 136\% \), \(\Delta K_U = 38\% \), \(\Delta Q = 88\% \).

Závislosti parametrů pásmové propusti (frekvence \(f_0 \), napěťového přenosu \(K_U \), jakosti \(Q \)) na relativní velikosti rezistoru \(R_3 \) s typickými příklady přenosových charakteristik pro různé hodnoty \(R_3 \) (\(f_0 = 10\) kHz) jsou uvedeny v příloze I.
6.2.4 Přeladitelnost obvodu současnou změnou rezistorů R_2 a R_3

Závislost parametrů pásmové propusti (frekvence f_0, napěťového přenosu K_{Uf}, jakosti Q) na relativní velikosti rezistorů R_2 a R_3 je uvedena na obr. 6.2.

Obr. 6.2 Závislost parametrů filtru na relativní změně rezistorů R_2 a R_3

Při změnách velikosti rezistorů R_2 a R_3 od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn $\Delta f_0 = 933 \%$, $\Delta K_{Uf} = 37 \%$, $\Delta Q = 76 \%$. Příklady přenosových charakteristik pro různé hodnoty R_2 a R_3 ($f_0 = 10 \text{ kHz}$) jsou uvedeny na obr. 6.3.

Obr. 6.3 Přenosové charakteristiky filtru pro různé hodnoty R_2 a $R_3
6.2.5 Přeladitelnost obvodu současnou změnou rezistorů R₁, R₂ a R₃

Závislost parametrů pásmové propusti (frekvence \(f₀\), napěťového přenosu \(K_{U1}\), jakosti \(Q\)) na relativní velikosti rezistorů \(R₁, R₂\) a \(R₃\) je uvedena na obr. 6.4.

![Obr. 6.4 Závislost parametrů filtru na relativní změně rezistorů \(R₁, R₂\) a \(R₃\)](image)

Při změnách velikosti rezistorů \(R₁, R₂\) a \(R₃\) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn \(Δf₀ = 990\%\), přičemž velikosti \(K_{U1}\) a \(Q\) jsou beze změn. Příklady přenosových charakteristik pro různé hodnoty \(R₁, R₂\) a \(R₃\) (\(f₀ = 10 \text{ kHz}\)) jsou na obr. 6.5.

![Obr. 6.5 Přenosové charakteristiky filtru pro různé hodnoty \(R₁, R₂\) a \(R₃\)](image)
6.3 Citlivostní analýza obvodu

6.3.1 Relativní citlivost frekvence f_0

Relativní citlivost charakteristické frekvence f_0 je u tohoto zapojení při dosazení jednotné velikosti odporů R a kapacit C určena hodnotami:

$$S^0_{R_1} = -0,25 \quad S^0_{C_1} = -0,25$$
$$S^0_{R_2} = -0,375 \quad S^0_{C_2} = -0,375$$
$$S^0_{R_3} = -0,375 \quad S^0_{C_3} = -0,375$$

Jak je z uvedeného patrné, relativní citlivosti jsou u rezistoru R_1 a kondenzátoru C_1 o třetinu nižší než u ostatních prvků, tyto součástky budou mít tedy na zkrácení velikosti charakteristické frekvence nejmenší vliv.

Pokud by jsme v tomto zapojení použili pasivní součástky s tolerancí $\pm 1\%$, při nastavení frekvence f_0 na 10 kHz by rezistor R_1 nebo kondenzátor C_1 vnášeli maximální chybu ± 25 Hz, zatímco prvky R_2, R_3, C_2 nebo C_3 by při stejné výrobní toleranci dokázaly změnit nastavenou frekvenci f_0 až o 37,5 Hz.

6.3.2 Relativní citlivost obecné přenosové funkce

Vlivy všech pasivních prvků použitých v zapojení pásmové propusti s oddělovačním zesilovači na tvar přenosové charakteristiky udávají vztahy:

$$S^U_{R_1} = \frac{-2p^4R^5C^5 - 6p^3R^4C^4 - 6p^2R^3C^3 - 2pR^2C^2}{4p^4R^2C^3 + 24p^3R^4C^4 + 40p^2R^3C^3 + 24pR^2C^2 + 4RC}$$

$$S^U_{R_2} = \frac{-2p^4R^5C^5 - 3p^3R^4C^4 + p^2R^3C^3 + 3pR^2C^2 + RC}{4p^4R^2C^3 + 24p^3R^4C^4 + 40p^2R^3C^3 + 24pR^2C^2 + 4RC}$$

$$S^U_{R_3} = \frac{p^3R^4C^4 + 5p^2R^3C^3 + 7pR^2C^2 + 3RC}{4p^4R^2C^3 + 24p^3R^4C^4 + 40p^2R^3C^3 + 24pR^2C^2 + 4RC}$$
\[S_{c_1}^{\kappa_U} = \frac{2p^3 R^4 C^4 + 6p^2 R^3 C^3 + 6p R^2 C^2 + 2RC}{4p^4 R^5 C^5 + 24p^3 R^4 C^4 + 40p^2 R^3 C^3 + 24p R^2 C^2 + 4RC} \]

\[S_{c_2}^{\kappa_U} = \frac{p^4 R^5 C^5 + 3p^3 R^4 C^4 + p^2 R^3 C^3 - 3p R^2 C^2 - 2RC}{4p^4 R^5 C^5 + 24p^3 R^4 C^4 + 40p^2 R^3 C^3 + 24p R^2 C^2 + 4RC} \]

\[S_{c_3}^{\kappa_U} = \frac{3p^4 R^5 C^5 + 7p^3 R^4 C^4 + 5p^2 R^3 C^3 + p R^2 C^2}{4p^4 R^5 C^5 + 24p^3 R^4 C^4 + 40p^2 R^3 C^3 + 24p R^2 C^2 + 4RC} \]

Při vynesení reálné části uvedených vztahů do grafu získáme závislost amplitudové charakteristiky na jednotlivých prvcích obvodu (obr. 6.6). Jak je v grafu názorně viditelné, vliv jednotlivých součástek na amplitudu je vysoce závislý na kmitočtu - v okolí charakteristické frekvence \(f_0 \) (nastavena na 10 kHz) jsou citlivosti přibližně identické, na vzdálenějších kmitočtech jsou poměry výrazně nevyrovnanější.

Obr. 6.6 Reálná část relativní citlivosti přenosové funkce filtru pro \(f_0 = 10 \text{ kHz} \)

Obdobně zobrazením imaginárních částí vztahů pro jednotlivé pasivní prvky získáme průběhy závislostí fázové charakteristiky (obr. 6.7). Na rozdíl od předchozích amplitudových
závislostí nabývá hodnota imaginární části pouze záporných hodnot. Pro možnost srovnání je i v tomto případě nastavena frekvence f_0 na 10 kHz.

![Diagram](image)

Obr. 6.7 Imaginární část relativní citlivosti přenosové funkce filtru pro $f_0 = 10$ kHz

6.4 Vliv vlastností operačního zesilovače na parametry filtru

Všechny vztahy a průběhy uvedené v této kapitole předpokládaly užití ideálních operačních zesilovačů. V reálném světě jsou však tyto zidealizované modely nahrazeny reálnými prvky, které svými negativními vlastnostmi mohou značně ovlivnit původně očekávané hodnoty.

Zapojení bylo testováno na vlivy tranzitního kmitočtu f_T, vstupního odporu R_a, výstupního odporu R_o, a také na důsledky konečné velikosti napěťového zesílení A_{uv}, tedy na vlastnosti, které se u zapojení s operačními zesilovači uplatňují nejvíce. Veškeré zkoumání vlivu vlastností operačních zesilovačů na parametry filtru bylo realizováno simulací programem SNAP [5].

Na nastavenou hodnotu střední frekvence f_0 byl ze všech výše uvedených vlastností operačního zesilovače prokázán pouze vliv tranzitního kmitočtu f_T (obr. 6.8).

Při použití operačních zesilovačů s tranzitním kmitočtem desetkrát větším nežli je hodnota střední frekvence f_0 dochází u tohoto filtru ke zkreslení 6,6 %, což může být v některých aplikacích nežádoucí hodnota. Jestliže navýšíme tranzitní kmitočet až na
stonásobek frekvence f_0 (výměnou modelu operačních zesilovačů), zkreslení poklesne na technicky již naprosto přijatelných 0,1 %, což je prakticky zanedbatelné.

Obr. 6.8 Závislost chyby frekvence f_0 na relativní velikosti tranzitního kmitočtu

Závislost průběhů amplitudových charakteristik pro zapojení pásmové propusti, ve kterém je užito operačních zesilovačů s různými hodnotami tranzitních kmitočtů f_t je uvedeno na obr. 6.9 (pro $f_0 = 10$ kHz).

Obr. 6.9 Přenosové charakteristiky pro různé hodnoty tranzitních kmitočtů
7. Zapojení pásmové propusti s vazbou typu bootstrap

7.1 Popis zapojení

Nevýhodou zapojení s oddělovacími zesilovači je velmi nízký činitel jakosti \(Q \), který je v základním nastavení roven 1/4. Při změně poměru rezistorů jej lze sice mírně zvýšit (řádově o desítky procent), ovšem na úkor ostatních parametrů filtru. Činitel jakosti přitom bývá jednou z nejvíce sledovaných vlastností kmitočtového filtru, a jeho nízké hodnoty jsou při praktickém nasazení nesmírně limitující.

Tento problém lze odstranit jednoduchým doplňením zapojení s oddělovacími zesilovači tzv. napěťovým závěsem, jehož obecné schéma je na obr. 7.1.

![Obr. 7.1 Obecné schéma napěťového závěsu (bootstrap)](image)

Princip funkce napěťového závěsu je následující – pokud je na kmitočtu \(f_0 \) přenos pásmové propusti \(K_{UPP} \) právě roven převracené hodnotě přenosu zesilovače \(K_{UZ} = k \), tedy

\[
K_{UPP} = \frac{1}{k} \quad [-] \quad (33)
\]

jsou oba vývody rezistoru \(R_6 \) na stejných potenciálech (stále platí \(f = f_0 \)) a tudíž rezistorem \(R_6 \) neprotéká žádný proud.

Jedná se tedy o frekvenčně závislý napěťový závěs, neboli bootstrap, tvořící podkritickou zpětnou vazbu. Jelikož je proud rezistorem \(R_6 \) nulový, je efektivní odpor mezi body A a B nekonečný.

28
Změnou frekvence \(f \neq f_0 \) přenos pásmové propusti \(K_{U_{PP}} \) klesá a rezistor \(R_5 \) se uplatňuje tím více, čím větší je poměr \(R_4 / R_5 \). Vstupní napětí \(u_{IN} \) je v bodě A zmenšeno úměrně podílu rezistorů \(R_4 / R_5 \). Proto výstupní napětí \(u_{OUT} \) nabývá hodnot k \(u_{IN} \) pouze na kmitočtu \(f = f_0 \). [1]

Doplníme-li tedy zapojení s oddělovacími zesilovači napěťovým závěsem, tvořeným rezistory \(R_4 \) a \(R_5 \), budeme moci měnit strmost přenosové charakteristiky, tzn. jakost obvodu Q bez vlivu na ostatní vlastnosti pásmové propusti. Schéma zapojení pásmové propusti s vazbou typu bootstrap je uvedeno na obr. 7.2.

![Obr. 7.2 Zapojení pásmové propusti s vazbou typu bootstrap](image)

Matematický popis napěťového přenosu \(K_U \) pro pásmovou propust s vazbou typu bootstrap je za předpokladu užití ideálních operačních zesilovačů a libovolných hodnot rezistorů a kondenzátorů následující:

\[
K_U = \frac{p^2 \cdot a_2 + p \cdot a_1}{p^3 \cdot b_3 + p^2 \cdot b_2 + p \cdot b_1 + R_5 + R_4} \quad [-] (34)
\]

kde

\[
a_1 = R_3 C_1 R_5 + R_3 C_2 R_5 + R_2 C_2 R_5
\]

\[
a_2 = R_2 R_3 C_1 C_2 R_5 + R_1 R_3 C_1 C_2 R_5 + R_1 R_3 C_1 C_3 R_4
\]

\[
b_1 = R_3 C_1 R_5 + R_3 C_2 R_5 + R_2 C_2 R_5 + R_1 C_3 R_4 + R_1 C_2 R_5 + R_1 C_2 R_4 + R_1 C_2 R_5
\]

\[
b_2 = R_2 R_3 C_1 C_2 R_5 + R_1 R_3 C_1 C_3 R_4 + R_1 R_3 C_1 C_3 R_5 + R_1 R_3 C_1 C_4 R_5 + R_1 R_3 C_1 C_4 R_4 +
\]

\[
+ R_1 R_3 C_2 C_3 R_5 + R_1 R_2 C_2 C_3 R_4
\]

\[
b_3 = R_1 R_2 R_3 C_1 C_2 C_3 R_4 + R_1 R_2 R_3 C_1 C_2 C_3 R_5
\]
Při praktické realizaci tohoto zapojení se často volí náhrada jednotnými hodnotami R a C, kde platí, že \(R_1 = 1/2 \cdot R, R_2 = R_3 = R, C_1 = 2 \cdot C, C_2 = C_3 = C \). Tímto nahrazením dosáhneme nejvýhodnějšího tvaru přenosové charakteristiky, a rovněž tím výraznou měrou zjednodušíme výpočetní vztahy. Pro uvedené poměry platí:

\[
K_U = \frac{1}{p^2 + p \cdot \frac{RC}{R_4 \cdot \frac{R_4 + 1}{4 \cdot R_4}} + \frac{1}{(RC)^2}} \quad [-] \quad (35)
\]

Z uvedeného vztahu lze odvodit střední kmitočet \(f_0 \), napěťový přenos pro kmitočet \(f_0 \) a činitel jakosti obvodu Q:

\[
f_0 = \frac{1}{2 \cdot \pi \cdot RC} \quad [\text{Hz}] \quad (36)
\]

\[
K_{U0} = 1 \quad [-] \quad (37)
\]

\[
Q = \frac{R_4}{R_5 + 1} \quad [-] \quad (38)
\]

7.2 Přeladitelnost obvodu

Závislost změn sledovaných parametrů obvodu na proměně hodnot rezistorů (pro \(Q_0 = 1 \)) je uvedena v tab. 7.1.

<table>
<thead>
<tr>
<th>Ladící prvek</th>
<th>Maximální změna sledovaného parametru [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frekvence (f_0)</td>
</tr>
<tr>
<td>(R_1)</td>
<td>106</td>
</tr>
<tr>
<td>(R_2)</td>
<td>195</td>
</tr>
<tr>
<td>(R_3)</td>
<td>133</td>
</tr>
<tr>
<td>(R_4)</td>
<td>0</td>
</tr>
<tr>
<td>(R_2 + R_3)</td>
<td>930</td>
</tr>
<tr>
<td>(R_1, R_2 + R_3)</td>
<td>990</td>
</tr>
</tbody>
</table>

Tab. 7.1 Úpravy vlastností obvodu změnou hodnot rezistorů (rozsah 0,1× až 10× \(R_a \))
Jak je patrné z tab. 7.1, proměnami velikostí jednoho rezistoru dochází ke změnám všech sledovaných parametrů (výjimkou je rezistor R₄ tvořící vazbu bootstrap, úpravami jeho hodnot přelaďujeme pouze jakost obvodu Q).

Daleko zajímavější změn lze dosáhnout současnými změnami dvou, nejlépe však tří rezistorů. Při přelaďování obvodu třemi rezistory (R₁, R₂ a R₃) je ideálně zachován i tvar přenosové charakteristiky (obr. 7.8).

7.2.1 Přelaďitelnost obvodu rezistorem R₁

Při změnách velikosti rezistoru R₁ od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn Δf₀ = 106 %, ΔK₀ = 108 %, ΔQ = 44 % (pro Q₀ = 1)

Závislosti parametrů pásmové propusti (frekvence f₀, napěťového přenosu K₀, jakosti Q) na relativní velikosti rezistoru R₁ s typickými příklady přenosových charakteristik pro různé hodnoty R₁ (f₀ = 10 kHz, Q₀ = 1) jsou uvedeny v příloze II.

7.2.2 Přelaďitelnost obvodu rezistorem R₂

Při změnách velikosti rezistoru R₂ od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn Δf₀ = 195 %, ΔK₀ = 63 %, ΔQ = 93 % (pro Q₀ = 1)

Závislosti parametrů pásmové propusti (frekvence f₀, napěťového přenosu K₀, jakosti Q) na relativní velikosti rezistoru R₂ s typickými příklady přenosových charakteristik pro různé hodnoty R₂ (f₀ = 10 kHz, Q₀ = 1) jsou uvedeny v příloze II.

7.2.3 Přelaďitelnost obvodu rezistorem R₃

Při změnách velikosti rezistoru R₃ od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn Δf₀ = 133 %, ΔK₀ = 81 %, ΔQ = 65 % (pro Q₀ = 1)

Závislosti parametrů pásmové propusti (frekvence f₀, napěťového přenosu K₀, jakosti Q) na relativní velikosti rezistoru R₃ s typickými příklady přenosových charakteristik pro různé hodnoty R₃ (f₀ = 10 kHz, Q₀ = 1) jsou uvedeny v příloze II.

31
7.2.4 Přeladitelnost obvodu rezistorem R_4

Závislost parametrů pásmové propuště (frekvence f_0, napěťového přenosu K_U, jakosti Q) na relativní velikosti rezistoru R_4 je uvedena na obr. 7.3 (pro $Q_0 = 1$).

![Závislost parametrů filtru na relativní změně rezistoru R_4](image)

Obr. 7.3 Závislost parametrů filtru na relativní změně rezistoru R_4

Při změnách velikosti rezistoru R_4 od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn $\Delta Q = 742 \%$, přičemž f_0 a K_U zůstávají beze změn. Příklady přenosových charakteristik pro různé hodnoty R_4 ($f_0 = 10$ kHz, $Q_0 = 1$) jsou uvedeny na obr. 7.4.

![Přenosové charakteristiky filtru pro různé hodnoty R_4](image)

Obr. 7.4 Přenosové charakteristiky filtru pro různé hodnoty $R_4
7.2.5 Přeladitelnost obvodu současnou změnou rezistorů R_2 a R_3

Závislost parametrů pásmové propusti (frekvence f_0, napěťového přenosu K_U, jakosti Q) na relativní velikosti rezistorů R_2 a R_3 je uvedena na obr. 7.5 (pro $Q_0 = 1$).

![Obr. 7.5 Závislost parametrů filtru na relativní změně rezistorů R_2 a R_3](image)

Při změnách velikosti rezistorů R_2 a R_3 od $1/10$ po desetinásobek původní hodnoty lze dosáhnout maximálních změn $\Delta f_0 = 930 \, \%$, $\Delta K_U = 108 \, \%$, $\Delta Q = 45 \, \%$. Příklady přenosových charakteristik pro různé hodnoty R_2 a R_3 ($f_0 = 10 \, \text{kHz}$, $Q_0 = 1$) jsou uvedeny na obr. 7.6.

![Obr. 7.6 Přenosové charakteristiky filtru pro různé hodnoty R_2 a R_3](image)
7.2.6 Přeladitelnost obvodu současnou změnou rezistorů R_1, R_2 a R_3

Závislost parametrů pásmové propusti (frekvence f_0, napěťového přenosu K_{ui}, jakosti Q) na relativní velikosti rezistorů R_1, R_2 a R_3 je uvedena na obr. 7.7 (pro $Q_0 = 1$).

Obr. 7.7 Závislost parametrů filtru na relativní změně rezistorů R_1, R_2 a R_3

Při změnách velikosti rezistorů R_1, R_2 a R_3 od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních rozdílů $\Delta f_0 = 990 \%$, přičemž hodnoty K_{ui} a Q jsou beze změn. Příklady přenosových charakteristik pro různé hodnoty R_1, R_2 a R_3 ($f_0 = 10$ kHz, $Q_0 = 1$) jsou na obr. 7.8.

Obr. 7.8 Přenosové charakteristiky filtru pro různé hodnoty R_1, R_2 a $R_3
7.3 Citlivostní analýza obvodu

7.3.1 Relativní citlivost frekvence f_0

Relativní citlivost charakteristik frekvence f_0 na jednotlivých prvcích obvodu je u tohoto zapojení při dosažení jednotné velikosti odporů R a kapacit C (rovněž dodržení poměru $R_1 = 1/2 \cdot R$, $R_2 = R_3 = R$, $C_1 = 2 \cdot C$, $C_2 = C_3 = C$) určena hodnotami:

\[
\begin{align*}
S_{R_1}^0 &= -0,25 & S_{C_1}^0 &= -0,25 \\
S_{R_2}^0 &= -0,375 & S_{C_2}^0 &= -0,375 \\
S_{R_3}^0 &= -0,375 & S_{C_3}^0 &= -0,375 \\
S_{R_4}^0 &= 0 & S_{R_5}^0 &= 0
\end{align*}
\]

Obdobně jako u předcházejícího zapojení (kapitola 6), relativní citlivosti jsou u rezistoru R_1 a kondenzátoru C_1 o třetinu nižší než u ostatních prvků, tyto součástky budou tedy mít na zkrácení velikosti charakteristické frekvence nejmenší vliv. Rezistory R_4 a R_5 se svými změnami na hodnotě frekvence f_0 vůbec nepodílejí. Relativní citlivost frekvence f_0 je pro všechny obvodové součástky konstantní, nezávisí tedy na nastavené jakosti obvodu.

7.3.2 Relativní citlivost obecné přenosové funkce

Vlivy všech pasivních prvků použitých v zapojení na tvar přenosové charakteristiky udávají vztahy:

\[
\begin{align*}
S_{R_1}^{K_U} &= -\frac{p^4(2dR_4 + 2dR_2) + p^3(6cR_4 + 6cR_2) + p^2(6bR_4 + 6bR_2) + p(2ar_4 + 2ar_2)}{p^4(4dR_4 + 4dR_2) + p^3(8cR_4 + 24cR_2) + p^2(8bR_4 + 40bR_2) + p(8aR_4 + 24aR_2)} + e \\
S_{R_2}^{K_U} &= -\frac{p^4(2dR_4 + 2dR_2) + p^3(3cR_4 + 3cR_2) + p^2(bR_4 + bR_2) + p(3aR_4 + 3aR_2)}{p^4(4dR_4 + 4dR_2) + p^3(8cR_4 + 24cR_2) + p^2(8bR_4 + 40bR_2) + p(8aR_4 + 24aR_2)} + e \\
S_{R_3}^{K_U} &= -\frac{p^3(cR_4 + cR_2) + p^2(5bR_4 + 5bR_2) + p(7aR_4 + 7aR_2)}{p^4(4dR_4 + 4dR_2) + p^3(8cR_4 + 24cR_2) + p^2(8bR_4 + 40bR_2) + p(8aR_4 + 24aR_2)} + e \\
S_{R_4}^{K_U} &= -\frac{4p^4dR_4 + 8p^3cR_4 + 8p^2bR_4 + 8pR_4 + 4CR_4}{p^4(4dR_4 + 4dR_2) + p^3(8cR_4 + 24cR_2) + p^2(8bR_4 + 40bR_2) + p(8aR_4 + 24aR_2)} + e
\end{align*}
\]
\[
S_{KU}^{R_5} = \frac{4p^4dR_4 + 8p^3cR_4 + 8p^2bR_4 + 8paR_4 + 4CR_4R}{p^4(4dR_4 + 4dR_s) + p^3(8cR_4 + 24cR_s) + p^2(8bR_4 + 40bR_s) + p(8aR_4 + 24aR_s) + e}
\]

\[
S_{C_1}^{KU} = \frac{p^3(2cR_4 + 2cR_s) + p^2(6bR_4 + 6bR_s) + p(6aR_4 + 6aR_s) + 0,5e}{p^4(4dR_4 + 4dR_s) + p^3(8cR_4 + 24cR_s) + p^2(8bR_4 + 40bR_s) + p(8aR_4 + 24aR_s) + e}
\]

\[
S_{C_2}^{KU} = \frac{-p^4(dR_4 + dR_s) - p^3(3cR_4 + 3cR_s) - p^2(bR_4 + bR_s) + p(3aR_4 + 3aR_s) + 0,5e}{p^4(4dR_4 + 4dR_s) + p^3(8cR_4 + 24cR_s) + p^2(8bR_4 + 40bR_s) + p(8aR_4 + 24aR_s) + e}
\]

\[
S_{C_3}^{KU} = \frac{-p^4(3dR_4 + 3dR_s) + p^3(7cR_4 + 7cR_s) + p^2(5bR_4 + 5bR_s) + p(aR_4 + aR_s)}{p^4(4dR_4 + 4dR_s) + p^3(8cR_4 + 24cR_s) + p^2(8bR_4 + 40bR_s) + p(8aR_4 + 24aR_s) + e}
\]

kde:

\[
a = R^2C^2 \quad b = R^3C^3
\]

\[
c = R^4C^4 \quad d = R^5C^5
\]

\[
e = 4CR_4R + 4CR_sR
\]

Při vynesení reálné části uvedených vztahů do grafu získáme závislost amplitudové charakteristiky na jednotlivých prvcích obvodu (obr. 7.9). Jakost je nastavena na Q = 1.

Obr. 7.9 Reálná část relativní citlivosti přenosové funkce filtru pro \(f_0 = 10 \) kHz

36
Obdobně zobrazením imaginárních částí vztahů pro jednotlivé pasivní prvky získáme průběhy závislostí fáze charakteristiky (obr. 7.10). Pro všechny prvky s výjimkou rezistorů tvořící vazbu typu bootstrap (R_s a R_D) nabývá hodnota imaginární části pouze záporných hodnot. I v tomto případě je nastavena frekvence \(f_0 \) na 10 kHz a jakost \(Q = 1 \).

Obr. 7.10 Imaginární část relativní citlivosti přenosové funkce filtru pro \(f_0 = 10 \) kHz

7.4 Vliv vlastností operačního zesilovače na parametry filtru

Zapojení pásmové propusti bylo simulací programem SNAP testováno na vlivy tranzitního kmitočtu \(f_T \), vstupního odporu \(R_s \), výstupního odporu \(R_c \), a také na důsledky konečné velikosti napěťového zesílení \(A_U \), tedy na vlastnosti, které se u zapojení s operačními zesilovači většinou uplatňují nejvíce.

Na hodnotu střední frekvence \(f_0 \) byl ze všech výše uvedených vlastností operačního zesilovače prokázán pouze vliv tranzitního kmitočtu \(f_T \) (obr. 7.11). Ten je navíc závislý na jakosti obvodu, s jejím zvyšováním dochází i k výraznějším odchylkám frekvence \(f_0 \) od původně nastavené hodnoty.

Při použití operačních zesilovačů s tranzitním kmitočtem desetkrát větším nežli je hodnota střední frekvence \(f_0 \) dochází u tohoto filtru ke zkreslení přibližně 22 % (pro \(Q = 1 \)). Taková odchylka od požadované hodnoty je již prakticky nepřijatelná, a musí se tedy odstranit použitím operačních zesilovačů s vyšší hodnotou \(f_T \). Jestliže totiž navýšíme tranzitní kmitočet

37
až na stonásobek frekvence \(f_0 \) (výměnou modelu operačních zesilovačů), zkreslení poklesne na hodnotu zhruba 4 %, což je v technické praxi většinou dostatečné.

![Obr. 7.11 Závislost chyby frekvence \(f_0 \) na relativní velikosti tranzitního kmitočtu](image)

Závislost průběhů amplitudových charakteristik pro zapojení pásmové propusti, ve kterém je užito operačních zesilovačů s různými hodnotami tranzitních kmitočtů \(f_T \) je uvedeno na obr. 7.12 (pro \(f_0 = 10 \text{ kHz} \)).

![Obr. 7.12 Přenosové charakteristiky pro různé hodnoty tranzitních kmitočtů](image)
8. Pásmová propust v Limově zapojení

8.1 Popis zapojení

![Obr. 8.1 Schéma pásmové propusti v Limově zapojení](image)

Pásmová propust v Limově zapojení je prakticky identická se zapojením pásmové propusti využívajícím vazbu typu bootstrap (kapitola 7), pouze s rozdílem, že dvojitý T-článek je modifikován odlišným propojením kondenzátoru C₁. Tato změna pak samozřejmě dává obvodu částečně odlišné vlastnosti.

Napěťový přenos \(K_U \) uvedeného zapojení je popsán vztahem:

\[
K_U = \frac{p^2 \cdot a_2 + p \cdot a_1}{p^3 \cdot b_3 + p^2 \cdot b_2 + p \cdot b_1 + R_5 + R_4} \quad [-]
\]

(39)

kde

\[
a_1 = R_3 C_2 R_5 + R_2 C_2 R_5
\]
\[
a_2 = R_2 R_3 C_1 C_2 R_5
\]
\[
b_1 = R_3 C_2 R_5 + R_2 C_2 R_5 + R_1 C_3 R_5 + R_1 C_2 R_5 + R_1 C_2 R_4 + R_2 C_3 R_4
\]
\[b_2 = R_2 R_3 C_1 C_2 R_5 + R_1 R_3 C_2 C_3 R_5 + R_1 R_3 C_2 C_4 + R_1 R_2 C_2 C_3 R_5 + R_1 R_2 C_2 C_4 \]

\[b_3 = R_1 R_2 R_3 C_1 C_2 C_3 R_5 + R_1 R_2 R_3 C_1 C_2 C_3 R_5 \]

I u tohoto zapojení se při praktické realizaci často volí náhrada jednotnými hodnotami \(R \) a \(C \), kde platí, že \(R_1 = 1/2 \cdot R \), \(R_2 = R_3 = R \), \(C_1 = 2 \cdot C \), \(C_2 = C_3 = C \). Tímto nahrazením dosáhnete nejvýhodnějšího tvaru přenosové charakteristiky, a rovněž tím výraznou měrou zjednodušíme výpočetní vztahy. Pro uvedené poměry platí:

\[
K_U = \frac{1}{p^2 + p \cdot \frac{R \cdot C}{2 \cdot R_5} + \frac{1}{R \cdot C \cdot (R \cdot C + 1)}} \quad [-] \tag{40}
\]

Z uvedeného vztahu lze odvodit střední kmitočet \(f_0 \), napěťový přenos pro kmitočet \(f_0 \) a činitel jakosti obvodu \(Q \):

\[
f_0 = \frac{1}{2 \cdot \pi \cdot R \cdot C} \quad [\text{Hz}] \tag{41}
\]

\[
K_{U0} = 1 \quad [-] \tag{42}
\]

\[
Q = \frac{R_4}{R_4 + 1} \quad [-] \tag{43}
\]

8.2 Přeladitelnost obvodu

I u tohoto zapojení je změnami velikosti hodnot jednoho nebo více rezistorů možné realizovat přelaďování obvodu, tzn. měnit některou ze základních vlastností obvodu, jako je frekvence \(f_0 \), napěťový přenos \(K_U \) a činitel jakosti \(Q \).

Jak vyplývá z tab. 8.1 a následných grafických průběhů, proměnami velikosti jednoho rezistoru dochází ke změnám všech sledovaných parametrů (výjimkou je rezistor \(R_4 \) tvořící vazbu bootstrap, úpravami jeho hodnot přelaďujeme pouze jakost obvodu \(Q \) bez zásahu do velikosti \(f_0 \) a \(K_U \)). Vliv rezistorů \(R_2 \) a \(R_3 \) je při ladění naprosto identický.
Daleko zajímavějších změn lze dosáhnout současnými změnami dvou, nejlépe však tří rezistorů. Při přelaďování obvodu třemi rezistory (R₁, R₂ a R₃) je ideálně zachován i tvar přenosové charakteristiky (obr. 8.7).

Závislost změn sledovaných parametrů obvodu na proměně hodnot rezistorů (pro Q₀ = 1) je uvedena v tab. 8.1.

<table>
<thead>
<tr>
<th>Ladící prvek</th>
<th>Maximální změna sledovaného parametru [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frekvence f₀</td>
</tr>
<tr>
<td>R₁</td>
<td>92</td>
</tr>
<tr>
<td>R₂</td>
<td>121</td>
</tr>
<tr>
<td>R₃</td>
<td>121</td>
</tr>
<tr>
<td>R₄</td>
<td>0</td>
</tr>
<tr>
<td>R₂ a R₃</td>
<td>625</td>
</tr>
<tr>
<td>R₁, R₂ a R₃</td>
<td>990</td>
</tr>
<tr>
<td></td>
<td>přenos K₁/µ</td>
</tr>
<tr>
<td>R₁</td>
<td>131</td>
</tr>
<tr>
<td>R₂</td>
<td>73</td>
</tr>
<tr>
<td>R₃</td>
<td>73</td>
</tr>
<tr>
<td>R₄</td>
<td>0</td>
</tr>
<tr>
<td>R₂ a R₃</td>
<td>131</td>
</tr>
<tr>
<td>R₁, R₂ a R₃</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>jakost Q</td>
</tr>
<tr>
<td>R₁</td>
<td>41</td>
</tr>
<tr>
<td>R₂</td>
<td>51</td>
</tr>
<tr>
<td>R₃</td>
<td>51</td>
</tr>
<tr>
<td>R₄</td>
<td>495</td>
</tr>
<tr>
<td>R₂ a R₃</td>
<td>41</td>
</tr>
<tr>
<td>R₁, R₂ a R₃</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 8.1 Úpravy vlastností obvodu změnou hodnot rezistorů (rozsah 0,1× až 10× R₄)

8.2.1 Přeladitelnost obvodu rezistorem R₁

Při změnách velikosti rezistoru R₁ od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn Δf₀ = 92 %, ΔK₁/µ = 131 %, ΔQ = 41 % (pro Q₀ = 1)

Závislosti parametrů pásmové propusti (frekvence f₀, napěťového přenosu K₁/µ, jakosti Q) na relativní velikosti rezistoru R₁ s typickými příklady přenosových charakteristik pro různé hodnoty R₁ (f₀ = 10 kHz, Q₀ = 1) jsou uvedeny v příloze III.

8.2.2 Přeladitelnost obvodu rezistorem R₂ nebo R₃

Při změnách velikosti rezistoru R₂ nebo R₃ (jejich vliv na sledované vlastnosti je totožný) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn Δf₀ = 121 %, ΔK₁/µ = 73 %, ΔQ = 51 % (pro Q₀ = 1).

Závislosti parametrů pásmové propusti (frekvence f₀, napěťového přenosu K₁/µ, jakosti Q) na relativní velikosti rezistoru R₂ (resp. R₃) s typickými příklady přenosových charakteristik pro různé hodnoty některého z rezistorů (f₀ = 10 kHz, Q₀ = 1) jsou uvedeny v příloze III.
8.2.3 Přeladitelnost obvodu rezistorem \(R_4 \)

Závislost parametrů pásmové propusti (frekvence \(f_0 \), napěťového přenosu \(K_U \), jakosti \(Q \)) na relativní velikosti rezistoru \(R_4 \) je uvedena na obr. 8.2 (pro \(Q_0 = 1 \)).

Při změnách velikosti rezistoru \(R_4 \) od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn \(\Delta Q = 495 \% \), přičemž \(f_0 \) a \(K_U \) zůstávají beze změn. Příklady přenosových charakteristik pro různé hodnoty \(R_4 \) (\(f_0 = 10 \text{ kHz}, Q_0 = 1 \)) jsou uvedeny na obr. 8.3.
8.2.4 Přeladitelnost obvodu současnou změnou rezistorů R_2 a R_3

Závislost parametrů pásmové propusti (frekvence f_0, napěťového přenosu K_{U}, jakosti Q) na relativní velikosti rezistorů R_2 a R_3 je uvedena na obr. 8.4 (pro $Q_0 = 1$).

![Obr. 8.4 Závislost parametrů filtru na relativní změně rezistorů R_2 a R_3](image)

Při změnách velikosti rezistorů R_2 a R_3 od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních změn $\Delta f_0 = 625 \%$, $\Delta K_{U} = 131 \%$, $\Delta Q = 41 \%$. Příklady přenosových charakteristik pro různé hodnoty R_2 a R_3 ($f_0 = 10$ kHz, $Q_0 = 1$) jsou uvedeny na obr. 8.5.

![Obr. 8.5 Přenosové charakteristiky filtru pro různé hodnoty R_2 a R_3](image)
8.2.5 Přeladitelnost obvodu současnou změnou rezistorů R_1, R_2 a R_3

Závislost parametrů pásmové propusti (frekvence f_0, napěťového přenosu K_{U}, jakosti Q) na relativní velikosti rezistorů R_1, R_2 a R_3 je uvedena na obr. 8.6 (pro $Q_0 = 1$).

![Obr. 8.6 Závislost parametrů filtru na relativní změně rezistorů R_1, R_2 a R_3](image)

Při změnách velikosti rezistorů R_1, R_2 a R_3 od 1/10 po desetinásobek původní hodnoty lze dosáhnout maximálních rozdílů $\Delta f_0 = 990 \%$, přičemž K_U a Q jsou beze změn. Příklady přenosových charakteristik pro různé hodnoty R_1, R_2 a R_3 ($f_0 = 10$ kHz, $Q_0 = 1$) jsou na obr. 8.7.

![Obr. 8.7 Přenosové charakteristiky filtru pro různé hodnoty R_1, R_2 a R_3](image)
8.3 Citlivostní analýza obvodu

8.3.1 Relativní citlivost frekventce f_0

Relativní citlivost charakteristické frekventce f_0 na jednotlivých prvcích je u tohoto zapojení velmi závislá na nastaveném činiteli jakosti Q (obr. 8.8). Při vyšších hodnotách jakosti pak citlivost frekventce f_0 dosahuje hodnot srovnatelných s předchozími zapojeními.

![Diagram frekventce f_0 vs. jakost Q]

Obr. 8.8 Závislost relativní citlivosti frekventce f_0 pro jednotlivé prvky na činiteli jakosti

Frekventce f_0 je nezávislá na nastaveném poměru rezistorů R_4 a R_5, proto i relativní citlivosti budou u těchto prvků nulové.

$S_{R_4}^0 = 0$ \hspace{1cm} $S_{R_5}^0 = 0$

Z důvodu velmi značné závislosti relativní citlivosti frekventce f_0 na činiteli jakosti Q je při praktické realizaci nutno uvážit, zda-li nebude tato poměrně nepříjemná vlastnost příliš rušivá. Pokud bychom totiž tento obvod využili s pevně nastaveným kmotočtem f_0 a poměrem rezistorů R_4 a R_5 regulovali jakost obvodu, případná odchylka velikosti např. rezistoru R_1 by způsobovala i změnu frekventce f_0, která by v ideálním případě (nebo při nezávislosti relativní citlivosti f_0 na činiteli jakosti) byla nezměněná.
8.3.2 Relativní citlivost obecné přenosové funkce

Vlivy všech pasivních prvků použitých v zapojení na tvar přenosové charakteristiky udávají vztahy:

\[
S_{R_1}^{K_U} = \frac{p^3(4C^3R^4R_4 + 4C^3R^4R_5) + p^2(4C^2R^3R_4 + 4C^2R^3R_5) + p(2CR^2R_4 + 2CR^2R_5)}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{R_2}^{K_U} = \frac{p^2(2C^2R^3R_4 + 2C^2R^3R_5) + p(3CR^2R_4 + 3CR^2R_5) + R_4R + R_5R}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{R_3}^{K_U} = \frac{p^2(2C^2R^3R_4 + 2C^2R^3R_5) + p(3CR^2R_4 + 3CR^2R_5) + R_4R + R_5R}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{R_4}^{K_U} = -\frac{4p^3C^3R^4R_4 + 4p^2C^2R^3R_4 + 4pCR^2R_4 + 2R_4R}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{R_5}^{K_U} = \frac{4p^3C^3R^4R_4 + 4p^2C^2R^3R_4 + 4pCR^2R_4 + 2R_4R}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{C_1}^{K_U} = \frac{p^2(2C^2R^3R_4 + 2C^2R^3R_5) + p(2CR^2R_4 + 2CR^2R_5)}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{C_2}^{K_U} = \frac{p^2(C^2R^3R_4 + C^2R^3R_5) + p(3CR^2R_4 + 3CR^2R_5) + 2R_4R + 2R_4R}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

\[
S_{C_3}^{K_U} = -\frac{p^3(4C^3R^4R_4 + 4C^3R^4R_5) + p^2(3C^2R^3R_4 + 3C^2R^3R_5) + p(CR^2R_4 + CR^2R_5)}{p^4a + p^3b + p^2(4C^2R^3R_4 + 12C^2R^3R_5) + p(4CR^2R_4 + 8CR^2R_5) + 2R_4R + 2R_5R}
\]

kde

\[a = (2C^4R^5R_4 + 2C^4R^5R_5)\]

\[b = (4C^3R^4R_4 + 8C^3R^4R_5)\]

Při vynesení reálné části uvedených vztahů do grafu získáme závislost amplitudové charakteristiky na jednotlivých prvcích obvodu (obr. 8.9). Jakost je zde nastavena na \(Q = 1\). U některých prvků dosahují hodnoty citlivosti až +1 (pro \(C_2\)) nebo -1 (např. u \(R_i\)). Tak značných
výchylek nebylo u předchozích zapojení (kapitoly 6 a 7) dosaženo, proto bych u uvedeného obvodu doporučil použití přesnějších součástek.

![Diagram showing real part of the transfer function for f₀ = 10 kHz](image1)

Obr. 8.9 Reálná část relativní citlivosti přenosové funkce filtru pro f₀ = 10 kHz

Obdobně jako v předchozích případech, i zde zobrazením imaginárních částí vztahů pro jednotlivé pasivní prvky získáme průběhy závislosti fázové charakteristiky (obr. 8.10). Hodnota frekvence f₀ je opět nastavena na 10 kHz a jakost Q = 1.

![Diagram showing imaginary part of the transfer function for f₀ = 10 kHz](image2)

Obr. 8.10 Imaginární část relativní citlivosti přenosové funkce filtru pro f₀ = 10 kHz

47
8.4 Vliv vlastností operačního zesilovače na parametry filtru

Obvod pásmové propusti v Limově zapojení jsem testoval simulačním programem SNAP na vlivy tranzitního kmitočtu \(f_T \), vstupního odporu \(R_o \), výstupního odporu \(R_v \), a také na důsledky konečné velikosti napěťového zesílení \(A_U \), tedy na vlastnosti, které se u zapojení s operačními zesilovači obvykle uplatňují nejvíce.

Vlivy jednotlivých vlastností operačního zesilovače byly s výjimkou tranzitního kmitočtu zanedbatelné. Nízká hodnota tranzitního kmitočtu \(f_T \) má velmi značný důsledek na velikost střední frekvence \(f_0 \) (obr. 8.11). Tato závislost je navíc tím větší, čím vyšší je jakost obvodu, s jejím zvyšováním tedy dochází i k výraznějším odchylkám frekvence \(f_0 \) od původně nastavené hodnoty.

Obr. 8.11 Závislost chyby frekvence \(f_0 \) na relativní velikosti tranzitního kmitočtu

Pokud v tomto zapojení použijeme operační zesilovače s tranzitním kmitočtem desetkrát větším nežli je hodnota střední frekvence \(f_0 \), dojde ke zkrácení této frekvence o přibližně 17 % (při \(Q = 1 \)). Uvedená odchylka je tedy o něco nižší nežli u zapojení v kapitole 7, stále se však jedná o dosti značnou hodnotu, která se musí odstranit použitím kvalitnějších operačních zesilovačů (s vyšší hodnotou \(f_T \)). Pokud totiž navýšíme tranzitní kmitočet až na stonásobek frekvence \(f_0 \) (výměnou typu operačních zesilovačů), zkrácení poklesne na hodnotu zhruba 3 %, což je již většinou přijatelné.
Závislost průběhů amplitudových charakteristik pro zapojení pásmové propusti, ve kterém je užito operačních zesilovačů s různými hodnotami tranzitních kmitočtů \(f_t \) je uvedeno na obr. 8.12 (pro \(f_0 = 10 \text{ kHz} \)).

Obr. 8.12 Přenosové charakteristiky pro různé hodnoty tranzitních kmitočtů
9. Závěr

V této diplomové práci jsem se zabýval laditelnými kmotčtovými filtry typu pásmová propust, ve kterých je jako aktivních prvků užito operačních zesilovačů s jednotkovým zesílením, frekvenčně závislý člen byl pak vždy realizován pomocí modifikovaného dvojitého T-článku.

Pro možnost srovnání jsem se podrobně věnoval třem zapojením splňujícím kritéria zadání, a to filtru s oddělovačími zesilovači, s vazbou typu bootstrap a obvodu v tzv. Limově zapojení.

Přeladitelnost základních parametrů filtru jsem testoval pro změnu velikosti jednotlivých rezistorů od 1/10 po desetinásobek jejich původní hodnoty. Vzhledem k obtížnému matematickému popisu s minimální vypovídající hodnotou jsem závislosti vlastností filtrů na změnách velikosti ladících prvků prezentoval graficky. Z průběhů vyplývá, že úpravou hodnoty jediného pasivního prvku sestavujícího dvojité T-článek dochází ke změnám všech sledovaných parametrů (frekvence \(f_0 \), napěťového přenosu \(K_v \), jakosti \(Q \)), a to v řádu desítek procent. Proto je výhodnější realizovat přelaďování obvodu současnými změnami dvou, nejlépe však tří rezistorů. Při ladění třemi rezistory dochází ke značným změnám frekvence \(f_0 \) při zachování ostatních vlastností obvodu na původních hodnotách.

Cílitlivostní analýza se používá z důvodu určení vlivu malých změn velikosti jednotlivých součástek na vlastnosti zapojení. Prvky se nejvyššími vlivy poté můžeme bud' nahradit za ty s vysoce přesnými hodnotami, nebo vhodnou úpravou zapojení tento vliv zredukujeme. Nutno dodat, že cílitlivostní analýza je na matematický popis značně náročná, i u obvodů v této práci s cca 6 – 8 pasivními členy jsou vztahy vyjadřující cílitlivost poměrně složité a nepřehledné.

U všech tří zapojení jsem provedl cílitlivostní analýzu charakteristické frekvence \(f_0 \), která byla u všech obvodů hodnotově podobná, a obecnou cílitlivostní analýzu, prezentovanou pomocí grafických průběhů.

Vliv parametrů aktivních prvků na vlastnosti filtru jsem zkoumal pomocí simulačního programu SNAP. Prokázán byl pouze značně omezujucí vliv tranzitního kmotčtovu \(f_T \), který ve velké míře zkracoval očekávanou hodnotu frekvence \(f_0 \). Míra vlivu \(f_T \) rostla se vzrůstající jakostí obvodu, při srovnatelných hodnotách nastavené jakosti vyšlo z testů nejlépe Limovo zapojení.
Seznam použité literatury

 http://www.spectrum-soft.com
[5] Domovská stránka programu SNAP
 http://www.webpark.cz/snap
Seznam příloh

Příloha č. I. – Závislosti parametrů pásmové propusti s oddělovacími zesílovači (kapitola 6) při změnách rezistoru \(R_1 \), \(R_2 \) nebo \(R_3 \) s typickými příklady přenosových charakteristik

Příloha č. II. – Závislosti parametrů pásmové propusti s vazbou typu bootstrap (kapitola 7) při změnách rezistoru \(R_1 \), \(R_2 \) nebo \(R_3 \) s typickými příklady přenosových charakteristik

Příloha č. III. – Závislosti parametrů pásmové propusti v Limově zapojení (kapitola 8) při změnách rezistoru \(R_1 \), \(R_2 \) nebo \(R_3 \) s typickými příklady přenosových charakteristik