Návrh informačního systému skladové evidence podniku Offim, s. r. o.
Design of Stock Records Information System for the Offim, s. r. o. Company

Student: Dušan Gašpárek
Vedoucí bakalářské práce: doc. Ing. Ludmila Kalužová, CS

Ostrava 2010
Podľahovanie

Touto cestou by som rád podľahoval vedúcej mojej bakalárskej práce pani doc. Ing. Ludmile Kalužovej, CSc. za ochotu a pomoc, ktorú mi poskytla v priebehu vypracovania mojej práce a za vecné pripomienky, ktoré ma nasmerovali k dokončeniu bakalárskej práce. Ďalej by som rád podľahoval Ing. Jánovi Kunovskému za poskytnuté podklady o firme Offím, s. r. o. a Márii Kunovskej za spoluprácu a za poskytnutie rozhovoru o súčasnom stave IS Offím, s. r. o.
Miestoprísažné prehlásenie:

„Miestoprísažne prehlasujem, že som celú prácu vrátane všetkých príloh vypracoval samostatne.“

V Ostrave dňa 09. 07. 2010

...

meno a priezvisko študenta
Obsah

1 Úvod ... 1

2 Teoretické východiská pre riešenie ... 2
 2.1 Dáta ... 2
 2.2 Informácie ... 2
 2.3 Informačné technológie .. 2
 2.4 Databázový systém ... 3
 2.4.1 Databázy .. 3
 2.4.2 Dátový slovník ... 4
 2.4.3 Databázová technológia .. 5
 2.5 Dátové modelovanie ... 5
 2.5.1 Trojúrová koncepcia dátového modelovania ... 5
 2.5.2 Sémantické modelovanie .. 6
 2.5.3 Konceptuálne modelovanie ... 7
 2.5.4 Postup pri tvorbe E-R modelu .. 8
 2.5.5 Základné konštruktory E-R modelovania ... 9
 2.6 Logické relačné modelovanie .. 11
 2.6.1 Vytvorenie sústavy predbežných relácií ... 11
 2.6.2 Priradenie zostávajúcich atribútov .. 12
 2.6.3 Revízia konceptuálneho modelu .. 12
 2.6.4 Normalizácia modelu ... 12
 2.6.5 Špecifikácia domén .. 13
 2.7 Funkčný model systému .. 14
 2.7.1 Hierarchia DFD ... 14
 2.7.2 DFD – Data Flow Diagramy ... 14

3 Charakteristika podniku a analýza súčasného stavu riešenej problematiky 16
 3.1 Charakteristika podniku .. 16
 3.2 Rozhovor s majiteľkou podniku ... 16
 3.3 Analýza súčasného stavu riešenej problematiky ... 18
 3.3.1 Výsledky šetrenia ... 18

4 Návrh racionalizovaného riešenia skladovej evidencie ... 20
 4.1 Návrh dátového modelu ... 20
 4.2 Sémantický model .. 20
 4.3 Konceptuálny model ... 22
 4.4 E-R diagram ... 27
 4.5 Logický dátový model ... 29
 4.5.1 Predbežné relácie ... 29
4.5.2 Úplné relácie .. 29
4.6 Popis relácií databázy a špecifikácia domén .. 30
4.7 Funkčný model .. 35
 4.7.1 Dekompozícia funkcií ... 38
 4.7.2 Popisy dátových tokov a úložísk ... 38
5 Zhodnotenie výsledkov návrhu .. 42
6 Záver .. 43
1 Úvod

Informačná spoločnosť. Tak by sa dala definovať spoločnosť, v ktorej žijeme a odpovedajú tomu aj trendy, ktorými sa táto spoločnosť vyvíja. Využívanie informačných technológií a rozšírue obrovským tempom a už nie je záležitosťou predovšetkým v prostredí podnikov, ale aj v domácnostiach. Ale práve v podnikoch hrajú informačné technológie veľkú úlohu a umožňujú efektívnejšie plánovanie, zaznamenávanie a jeho celkový rozvoj. Podniky sa využívaním informačných technológií snažia získať nielen informácie dôležité pre svoju vlastnú činnosť, ale aj informácie o podnikoch v okolí. Riadiace a organizačné činnosti sa nedajú vykonávať bez kvalitného prijímania, poskytovania a spracovávania informácií, ktoré sú veľmi dôležité taktiež pre konkurencieschopnosť podniku.

A práve tu prichádzajú na radu informačné technológie. V dnešnej dobe sú presné, rýchle a hlavne kvalitné informácie nesmierne dôležité pre udržanie tempa a v boji s ostatnými konkurentmi. Preto je dôležité disponovať kvalitným softvérom v podobe informačného systému, ktorý v tomto boji razantne pomôže.

Spracovanie dát sa samo o sebe v informačných systémoch rieši najčastejšie voľbou databázovej technológie. Pri ukladaní dát a ich spracovaní sa sprostredkováva špecialný programový produkt, ktorý sa nazýva systém riadenia bázy dát. Tento programový produkt uchováva dáta vo svojej databáze.

Pre informačný systém je nutné vytvoriť kvalitnú dátovú základňu, aby pri centralizácii dát nedochádzalo k rôznym databázovým problémom, akými sú napríklad redundancia a iné.

Vo svojej bakalárskej práci sa zameriam na vybranú časť dátovej základne, ktorá sa týka skladovej evidencie podniku Offim, s. r. o. Pre túto tému som sa rozhodol na základe požiadaviek zo strany vedenia, ktorí sa zmienili o určitých nedostatkoch ich súčasného informačného systému. Cieľom práce je teda vytvorenie návrhu časti informačného systému, ktorý bude zaisťovať poskytovanie informácií, vedenie evidencie objednávok, príjemiok, výdajok, bude poskytovať informácie o stave skladu a ktorý zefektívnič činnosť konečného užívateľa.
2 Teoretické východiská pre riešenie

Pri riadení podniku sa stretávame s potrebou hromadného spracovania veľkého množstva údajov s veľkým množstvom objektov. Týmito objektmi môžu byť napríklad čísla faktúry, označenie tovaru, číslo dodávky a podobne. Pre udržiavanie týchto údajov je treba tieto údaje niekam zaznamenať na vhodné médium, akým môže byť papier, CD, DVD, harddisk, či iné. Ďalej je potreba urobiť zmeny, výber podľa určitých kritérií, odvodzovať alebo počítať nové údaje z už uložených, triediť podľa určitých kritérií, zaznamenávať vzťahy medzi údajmi a tiež vydávať informácie o údajoch vo vhodnej grafickej podobe. Základnými pojmami spracovania dát sú:

2.1 Dáta
- dáta sú formálnym vyjadrením skutočnosti takým spôsobom, aby ich bolo možné ďalej prenášať či spracovávať,
- zobrazujú v danom okamžiku stav reality a preto sa nemôžu meniť, môžeme iba získavať nové dáta v inom časovom okamžiku,
- príkladom môžu byť fyzicky zaznamenané znalosti, skúsenosti, poznatky alebo tiež výsledky pozorovania procesov, prejavov a prvkov reálneho sveta,
- základným zmyslom zhromažďovania a spracovania dát je vytvorenie informácie

2.2 Informácie
- informácie sú zhromaždené a spracované dáta, ktoré majú pre svojho príjemcu určitý význam,
- sú pre svojho príjemcu podkladom pre rozhodovanie
- informácia existuje iba vo vzťahu k užívateľovi (príjemcovi) a je subjektívna
- informácie, ktoré vystupujú z informačného systému by mali byť včasné, presné, relevantné, overiteľné a komplexné.

2.3 Informačné technológie

Informačná technológia je súhrnom hardwarového, softwarového, databázového a komunikačného vybavenia podporujúceho určitú triedu aplikácií, Kaluža (1996).

Informačný systém - všeobecne tak môžeme nazvať organizáciu údajov vhodnú pre systémové spracovanie dát.
Položka - je to najmenší logický nedeliteľný prvok v štruktúre dát.

Záznam - vyjadruje postupnosť položiek popisujúcich objekt, ktorá má ucelený význam. Záznamom môže byť jeden riadok v relácii.

2.4 Databázový systém

Skladá sa z databázy a systému riadenia bázy dát (SRBD). Medzi hlavné vlastnosti databázových systémov patrí, Kaluža et al. (2005):

- **Odstránenie redundancie dát** – čo je odstránenie údajov, ktoré sa vyskytujú vo viacerých súboroch, aby sa zabránilo ich nekonzistencii. Z praktického hľadiska by mala byť menšia redundancia zachovaná, ale databázový systém ju musí mať pod plnou kontrolou.

- **Nezávislost dát** – dátové štruktúry nie sú závislé na aplikačných programoch,

- **Zdieľanie dát** – existujúce i budúce aplikácie využívajú rovnaké dáta,

- **Ochrana dát** – zabezpečenie proti neoprávnenému prístupu, ktoré sa rieši pridelením prístupových prav jednotlivým užívateľom správcu databázy.

- **Pružnosť** – je vlastnosťou databázových systémov, ktorá úplne jednoduchým spôsobom (pomocou dotazov) vyberá dáta z databázy podľa okamžitých potrieb užívateľov. Užívateľ preto nie je obmedzený len na dopredu programovo pripravené aplikácie.

2.4.1 Databáz

Niektoré tiež zvaná báza dát alebo dátová základňa. Rozumie sa ňou súhrn vzájomne súvisiacich dát uložených bez redundancií a slúžiacich rade aplikácií, Kaluža et al. (2005). SRBD

Je programové vybavenie (software), ktoré slúži k vymedzeniu štruktúry databázy, jej naplneniu dátami, aktualizácii dát a k výberu údajov podľa potrieb užívateľa prostredníctvom aplikačných programov, Kaluža et al. (2005). Jedná sa o riadiaci systém databázy, ktorý sa nachádza medzi dátami a aplikačnými programami, ktoré využíva užívateľ, viď Obr. 2.1.
Zabezpečuje tieto nasledujúce základné funkcie:

- **Definovanie štruktúry databázy** – zaisťuje popis zloženia a usporiadania viet a charakterov údajov. Štruktúra všetkých súčastí databázy je uložená v dátovom slovníku.
- **Naplnenie databázy dátami** – uloženie dát podľa štruktúry v dátovom slovníku.
- **Aktualizácia obsahu databázy** – zmena dát, ich uloženie alebo zmazanie.
- **Výber dát** – podľa určitých požiadaviek užívateľa.

Skladá sa z týchto častí:

- **Prekladače databázových jazykov** – „prekladajú“ príkazy definujúce príkazy dátovej štruktúry a operácie s nimi do formy zrozumiteľnej výkonným programom,
- **Programy pre prácu s dátovým slovníkom** – zaisťujú napĺňanie a aktualizácie dátového slovníku,
- **Výkonné programy databázy** – vykonávajúce funkcie SRBD. Spolupracujú s operačným systémom a využívajú dátový slovník.
- **Služobné programy** – slúžia ku správe databázy a zaisťujú radu doplnkových funkcií (informácie o stave, výkonnosti a zabezpečení databázy).

2.4.2 Dátový slovník

Štúdium, ktorý definuje štruktúru a zloženie dátovej základne a obsahuje metadáta potrebné pre správu dát. Dátový slovník zahŕňa zoznam všetkých dátových objektov v databáze, mená a popis všetkých dátových prvkov a ich vzťahov, údaje o integritných oznámeniach, mená užívateľov a evidenciu udelených práv a oprávnení, kontrolné informácie (napr. o prístupových cestách k dátam, o autorovi určitého objektu).
2.4.3 **Databázová technológia**

Je súhrn nástrojov a technik využívajúcich sa v súvislosti s databázami.

2.5 **Dátové modelovanie**

Model je abstrakciou, odrázom reálneho sveta z pohľadu designera realizujúceho ciele, ktoré má projekt dosiahnuť, (Kaluža 1996).

2.5.1 **Trojúrovňová koncepcia dátového modelovania**

V tabuľke Tab. 2.1 nájdeme prehľad trojúrovňovej koncepcie dátového modelovania:

Tab. 2.1: Trojúrovňová koncepcia

<table>
<thead>
<tr>
<th>Charakteristika modelu</th>
<th>Úroveň modelovania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sémantická</td>
</tr>
<tr>
<td>Konštruktory</td>
<td>Objekt</td>
</tr>
<tr>
<td>Forma popisu</td>
<td>Voľná slovná</td>
</tr>
<tr>
<td>Zdroj</td>
<td>Vstupné požiadavky</td>
</tr>
<tr>
<td>Výsledok</td>
<td>Objektová štruktúra</td>
</tr>
</tbody>
</table>

Pre **dátové modelovanie sa využíva trojúrovňová koncepcia**, ktorá sa skladá z nasledujúcich fáz, Kaluža (1996):

- sémantické modelovanie,
- konceptuálne modelovanie,
- logické modelovanie.

1. Identifikácia vstupných dátových požiadaviek,
2. Špecifikácia dátových objektov a ich charakteristik,
V tejto fáze dátového modelovania ide o to graficky znázorniť štruktúru entít a vztåhov medzi nimi, vzniknutý transformáciou objektov nájdených nositeľmi entít a vztåhov, Kaluža (1996).

Konceptuálny dátový model – V tejto fáze dátového modelovania ide o to graficky znázorniť štruktúru entít a vztåhov medzi nimi, vzniknutých transformáciou objektov nájdených nositeľmi entít a vztåhov, Kaluža (1996).

Vychádza sa zo sémantického modelu:

1. Vymedzenie štruktúry entít,
2. Priradenie primárnych kľúčov entitám,
3. Definovanie vztåhov,
4. Integrácia jednotlivých častí modelu.

Logický dátový model je transformáciou konceptuálneho modelu a jeho výsledkom je relačná štruktúra:

1. Vytvorenie sústavy predbežných relácií,
2. Priradenie zostávajúcich atribútov,
3. Revízia konceptuálneho modelu,
4. Normalizácia modelu,
5. Špecifikácia domén.

2.5.2 Sémantické modelovanie

- **Identifikácia vstupných dátových požiadaviek**
 Vstupné dátové požiadavky môžeme získat’ rôznymi spôsobmi. Je to buď rozhovor projektanta s užívateľmi systému, štúdium písomných materiálov (textové materiály, formuláre, dátové štuktúry obsiahnuté v starších aplikáciách) alebo dotazníkom. Jednotlivé spôsoby sa dajú vzájomne kombinovať.
Špecifikácia dátových objektov a ich charakterístik

Špecifikujú sa jednotlivé objekty tvoriace dátovú štruktúru. Objekt môže byť špecifikovaný nasledujúcim spôsobom:

Názov objektu: Pracovník
Popis: Zoznam pracovníkov firmy
Charakteristiky: Rodné číslo, meno, priezvisko, adresa

Korekcia štruktúry dátových objektov

Podstatou tejto fázy je analýza vzniknutej objektovej štruktúry, identifikácia a odstránenie negatívnych javov, ktorými sú, Kaluža (1996):

- synonymá a homonymá objektov a ich charakteristik,
- redundancia (nadbytočnosť) - viacnásobné uchovávanie dát v rámci jednej databáze,
- rozporné definície rovných prvkov objektívnej reality.

Takto upravená objektová štruktúra je vstupným podkladom pre konceptuálne modelovanie.

2.5.3 Konceptuálne modelovanie

Konceptuálne modelovanie sa drží týchto štyroch fáz:

1. Vymedzenie štruktúry entít

V tejto fáze sa grafickým aparátom s priradením vlastných mien vymedzi štruktúra entít modelu.

2. Priradenie primárnych kl'účov entítam

3. Definovanie vzťahov

V tejto fáze sa riešia vzťahy medzi jednotlivými dvojicami entít. K vzniknutým vzťahom medzi entitami sa priradí kardinalita a voliteľnosť a vyznačia sa príslušné konštruktory v E-R diagrame. Viď kapitola 2.5.4.

4. Integrácia jednotlivých časťí modelu

Prevaďa sa u rozsiahlych projektov, u ktorých pracuje súčasne viac ľudí na niekoľkých jeho častiach. Tieto časti sa potom integrujú do jedného veľkého konceptuálneho

2.5.4 Postup pri tvorbe E-R modelu

Dátový model je založený na aplikácii diagramov E-R, ktoré svoju dátovú štruktúru vyjadrujú v tvare entít (zobrazenie objektov modelovanej reality) a vzťahov (väzby medzi objektmi) spolu s ich kvalifikáciou (voliteľnosť účasti vo vzťahu a kardinalita, ktorá vyjadruje všeobecné počet výskytov jednej entity v príslušnej k výskytom druhej entity, ktorá sa zúčastňuje vo vzťahu). Obsah grafickej interpretácie modelu je opät uložený vo výrokovom tvare v dátovom slovníku.

Obr. 2.2: Modelové prostriedky E-R diagramu

--- voliteľná časť

Kardinalita 1:n

2.5.5 Základné konštruktory E-R modelovania

Entita

Obr. 2.3: Entita

Zdroj: Vlastný

Atribút

Atribút môže byť meno, priezvisko, číslo pracovníka, adresa a pod. Z hľadiska prehľadnosti je vhodnejšie atribúty uvádzať v samostatnom zozname.

Zložený atribút

Je skupina atribútov majúca spoločný význam. Týmto zloženým atribútom môže byť napríklad adresa, ktorá je zložená z ulice, mesta, PSČ, čísła popisného.

Doména

Vzťah

• *Stupeň vzťahu*

Stupeň vzťahu znamená, kolko entít je asociovaných v jednom vzťahu. Vzťahy môžu byť unárne (rekurzívne), kde je vo vzťahu asociovaná iba jedna entita. Dalej sú vzťahy binárne (dve entity), ternárne (tri entity) atd.
• **Kardinalita vzťahu**

- **1:1** – jeden k jednému viď. Obr. 2.4

Obr. 2.4: Kardinalita 1:1

- **1:n** – jeden k mnoha viz. Obr. 2.5

Obr. 2.5: Kardinalita 1:n

- **m:n** – mnoho k mnoha viz. Obr. 2.6

Obr. 2.6: Kardinalita m:n

• **Voliteľnosť vzťahu**

Kľúč reprezentuje skupinu atribútov identifikujúcich výskyt danej entity. Existuje niekoľko typov kľúčov:

- **Kandidátne kľúče**

Kľúč, ktorý jednoznačne identifikuje výskyt danej entity.
Platí, že:

1. neexistujú dva výskyty entity E, ktoré majú rovnakú hodnotu kandidátnego klúča,

2. ak sa vypustí ktorákoľvek časť kandidátnego klúča entity E, vlastnosť jedna prestane platit', Kaluža (1996).

- **Primárný klúč**

- **Alternatívny klúč**

Je kandidátny klúč, ktorý neboli vybraný ako primárny klúč.

- **Cudzí klúč**

Slabá entita

Je entita s primárnym klúčom obsahujúcim cudzí klúč. Tzn., že táto entita je bez vlastného primárneho klúča, ktorý by ju jednoznačne identifikoval. V E-R modeli je slabá entita znázornená zdvojeným obdĺžnikom.

Obr. 2.7: Slabá entita

![Slabá entita](image)

2.6 Logické relačné modelovanie

2.6.1 Vytvorenie sústavy predbežných relácií

Predbežnou reláciou rozumieme ako reláciu určenú iba svojim menom a kandidátmi klúčmi. V tejto fáze dôjde k prevedeniu dátového modelu z grafickej do výrokovej formy. Pri prevode modelu je doľažité dodržať dve východiskové podmienky relačného modelovania:

- žiadna hodnota primárného klúča nemôže byť prázdna,
každá n-tica z danej relácie odkazujúca sa na inú reláciu sa nesmie odkazovať na existujúcu n-ticu, Kaluža (1996).

Relácia

Relácia je dvojrozmerná štruktúra, ktorá obsahuje dáta. Je tvorená záhlavím a vlastnou tabuľkou. Záhlavie obsahuje mená atribútov; vlastná tabuľka je tvorená stĺpcami, ktoré sú hodnotami atribútov, a riadkami, ktoré predstavujú jednotlivé výskyty modelovanej entity, Kaluža et al. (2005).

Entita

Entita je do relačného modelu transformovaná obyčajným prepisom.

Vztah

2.6.2 Prirádenie zostávajúcich atribútov

2.6.3 Revízia konceptuálneho modelu

2.6.4 Normalizácia modelu

V tejto časti sa budeme zaobierať odstránením problémov, ako sú viachodnotové atribúty a nežiadosť funkčné závislosti relácií. Všetky neklúčové atribúty sú funkčne závislé na primárnom klúči, ďalšie funkčné závislosti však pôsobia problém pri rušení, vkladaní a aktualizácii dát v databáze. Odstránenie vyššie označených problémov je prevedené pomocou procesu normalizácie dát, tzn. Prevádzanie modelu do stále vyšších normálnych form, Kaluža (1996):
• **Prvá normálna forma**

V prvej normálnej forme sa relácie nachádzajú, ak sú všetky atribúty atomické, tzn. ďalej nedeliteľné.

• **Druhá normálna forma**

V druhej normálnej forme je relácia, ak je v prvej normálnej forme a každý nekľúčový atribút je funkčne závislý na primárnom klúči relácie, Kaluža (1996).

• **Tretia normálna forma**

Relácia je v tretej normálnej forme, ak je v druhej normálnej forme a každý nekľúčový atribút je netranzitne závislý na primárnom klúči.

• **Boyce-Coddova normálna forma**

Relácia je v Boyce-Coddovej normálnej forme, ak každý determinant funkčnej závislosti je zároveň kandidátnym klúčom, Kaluža (1996).

Ďalej existujú ešte dve vyššie normálne formy, ale pre potreby mojej práce mi stačí prevedenie iba do Boyce-Coddovej normálnej formy a preto ich nebudem podrobnejšie vysvetlovať.

2.6.5 Špecifikácia domén

V tejto fáze sa stanovia charakteristiky platných hodnôt tvoriacich domény a tieto sa priradia jednotlivým atribútom. Jedná sa o:

- typ (číselný, znakový, dátum),
- dĺžka (počet znakov),
- rozsah (medze od - do),
- prípustné hodnoty (vymenované dovolené hodnoty),
- formát (štruktúra hodnôt),
- jedinečnosť (kandidátny klúč),
- prípustnosť nulových hodnôt,
- textový popis.
2.7 Funkčný model systému

Funkčný model popisuje z akých procesov a ich nadväzností sa realita skladá a zároveň aké procesy budú tvoriť informačný systém, ak má byť verným modelom reality, Řepa (1999).

2.7.1 Hierarchia DFD

Popíšovanie procesov so sebou niesie rozpor medzi úplnosťou popísania celku a miery podrobnosti, do akého zájsté. Z praktického hľadiska by bolo veľmi nereálné naráz popísať komplexný celok vrátane podrobného popisu procesov, a preto sa používa hierarchická abstrakcia typu agregácie.

Táto hierarchia sa teda dá popísať tromi úrovňami:
1. Vrchná úroveň
2. Rada stredných úrovní
3. Spodná úroveň

Na vrchole tejto hierarchie je iba jeden DFD – tzv. kontextový diagram, ktorý zastrešuje celý systém ako jednu funkciu. Nižšia úroveň, ktorá je bezprostredným rozkladom vrcholovej úrovne, je DFD úrovne 0. Táto úroveň obsahuje základné funkcie, ich vzťahy. Tu sa klade dôraz na úplnosť popísania a nezachádza sa do podrobnosti.

Ďalšie úrovne už nepopisujú systém ako celok, ale skôr sa zameriavajú na subsystémy a určité časti systému. Takýmto spôsobom sa dá pokračovať až na funkcie elementárne, Řepa (1999).

2.7.2 DFD – Data Flow Diagramy

Diagramy dátových tokov slúžia predovšetkým ku grafickému znázorneniu funkčného modelu informačných systémov. Je jedným zo základných nástrojov konceptuálneho funkčného modelu. Prakticky nám uľahčuje pohľad na procesy a funkcie, ktoré prebiehajú v rámci informačného systému.

Základné prvky, ktoré by mal obsahovať kvalitný diagram dátových tokov, sú:
1. Proces
2. Dátový tok (Data Flow)
3. Dátový sklad (Data Store)
4. Terminátor (externá entita)

Proces – Proces nám znázorňuje transformáciu dát, ktorá vedie k vyprodukovaniu výstupu (transformácia vstupu na výstup). Graficky sa znázorňuje najčastejšie elipsou, Řepa (1999). Procesy sa delia na procesy dátové a riadiace:

1. Dátový proces – funkcia:

2. Riadiaci proces:

Vyjadruje určitý algoritmus riadenia (vzájomných časových náväzností) procesov v určitej časti systému. Používa sa k zachyteniu real-time charakteristik aplikácie. Úlohou nie je spracovávať dátá, Řepa (1999).

Dátový tok vyjadruje akejkoľvek presun dát alebo informácií systému a to z okolia do systému alebo zo systému do okolia. Dátový tok musí byť pomenovaný a vždy niesť známy obsah, Řepa (1999).

3 Charakteristika podniku a analýza súčasného stavu riešenej problematiky

3.1 Charakteristika podniku

Spoločnosť OFFIM, s. r. o. bola založená v roku 1997, ako pobočka české firmy OFFIM. Neskôr bola prevedená na fyzickú osobu a od roku 2009 znova na trhu pôsobí ako spoločnosť s ručením obmedzeným.

Hlavný záber tvorí sortiment, ktorý je určený hlavne na zariadenie verejných interiérov, ako sú reštaurácie, bary, čakacie priestory hotelov, bánk, nemocníc, podnikov, a v neposlednom rade aj pre malospotrebiteľa pri zariadení svojho moderného bývania.

V ponuke sa nachádzajú:
- stoličky, barové stoličky,
- stoly,
- centrálné podnože, sklápacie podnože,
- sedacie systémy.

Základným prvkom nábytku je kov kombinovaný s dreveným a čalúnením. Vedľa štandardných prevedení uvedených v katalógu a cenníku spoločnosť ponúka možnosť variácií a obmien svojich výrobkov podľa požiadaviek zákazníkov, prípadne aj zhotovenie originálnych modelov podľa individuálnych predstáv.

3.2 Rozhovor s majiteľkou podniku

Pre zber informácií, na základe ktorých by som mohol určiť smer môjho návrhu informačného systému som zvolil metódu individuálneho osobného rozhovoru.

Uskutočnil som štandardizovaný rozhovor, ktorého podklady sú uvedené v prílohe. Pri starostlivom rozhodovaní, akým spôsobom získam informácie, na ktorých základe budem postupovať pri návrhu dátovej základne IS skladovej evidencie som dospel k záveru, že individuálny rozhovor bude tou najvhodnejšou voľbou.

Do úvahy pripadá ešte dotazník, ale vzhľadom k tomu, že s celým informačným systémom pracuje jedna osoba, osobný rozhovor poskytoval váčšší priestor na získanie relevantných informácií a ku kladaniu prípadných doplňujúcich otázok. Tento fakt beriem ako
najväčšiu výhodu. Tým, že bol rozhovor uskutočnený s vedúcou firmou, som získal informácie takého charakteru, ktoré mi umožnili s nimi ďalej jednoduššie pracovať. Ďalšou výhodou osobného rozhovoru je subjektívny pocit, ktorý som pri rozhovore získal a na jeho základe som mohol lepšie zvážiť dôležitosť poskytnutých informácií, ktoré mi pomohli pri vytváraní modelovanej reality.

V mojom rozhovore som použil otázky, ktoré boli formulované takým spôsobom, aby bola odpoveď respondenta smerovaná k mnou očakávaným informáciám. Otázok som položil 5, z toho prvé 3 boli otvorené a posledné 2 formou škály.

Prvá otázka znala, aký systém pre vedenie skladovej evidencie v súčasnej dobe firma používa. Odpoveď znala, že sa jedná o český informačný ekonomický softvér SB KOMPLET.

Na druhú otázku, či súčasný systém funguje bez problémov som dostal vyčerpávajúcejšiu odpoveď, v ktorej majiteľka popisovala všetky funkcie tohto systému, ktoré využívajú, čo znamená účtovníctvo, fakturáciu, evidenciu dodávateľov a odberateľov, skladovú evidenciu. problém vzniká pri daňovej evidencii, ktorá sa aktualizuje podľa českého daňového systému, avšak nie aj podľa slovenského. Tu vzniká množstvo prácnego a časovo náročného ručného prepočítavania a zadávania dát do systému.

V tretej otázke som sa snažil zistiť, či súčasný IS obsahuje pre firmu všetky podstatné informácie a funkcie. Majiteľka po krátkom zamyslení odpovedala, že až na spomínaný problém s daňovou evidenciou je tento informačný systém pre ich potreby dostačujúci a poskytuje všetky potrebné informácie a funkcie.

Vo štvrtej otázke som zisťoval dostupnosť informácií skladovej evidencie, ktoré mala respondentka ohodnotiť na stupnici od 1 do 4, kde 1 znamená, že informácie sú dostupné a 4 predstavuje nedostupnosť informácií. V tejto otázke dostali všetky body hodnotenie 1.

Posledná piata otázka mi mala poskytnúť odpoveď, či sú všetky získané informácie zo súčasného systému dostačujúce. Tu opäť dostali všetky body hodnotenie 1 okrem prvého bodu, ktorý sa týka evidencie stavu na skladie. Tento bod bol ohodnotený známkou 2 – menej dostačujúce z dôvodu nedostatočného poskytovania výstupov.
3.3 Analýza súčasného stavu riešenej problematiky

Spoločnosť OFFIM, s. r. o. v súčasnosti na svoje riadenie využíva software SB KOMPLET. Je to český informačný ekonomický systém vzájomne previazaných programových modulov určených k spracovaniu a riadeniu ekonomiky malých a stredne veľkých firiem. Tento systém má veľmi široké využitie. Vedenie firmy je s jeho fungovaním spokojné a nevidí na ňom žiadnu slabosť, ktorá by súvisela s jeho fungovaním, získaváním a zadávaním informácií. Tento stav môže byť aj následkom dlhoročného využívania práve tohto systému. Ďalšia jeho veľká výhoda je, že všetky relevantné dáta sú súčasťou práve jedného informačného systému. Napriek tomu sa firma rozhodla tento informačný systém vymeniť. Dôvodom tohto rozhodnutia je problém s daňovým systémom, ktorý sa po reformách mení každým update-om len podľa aktuálnych daňových sadzieb v Českej republike, avšak nie na Slovensku. Tu nastávajú pre firmu zbytočné problémy a práce prepočítavanie a ukladanie daňových poplatkov a sadzieb.

V súčasnosti vykonáva všetky funkcie potrebné k vedeniu podniku jeho majiteľa, takže komplexnosť a interakcia medzi jednotlivými zadávanými vstupmi musí byť čo najvyššia. V prípade nejednotnosti systému by bola táto práca ešte zdálo aj náročnejšia. V súčasnosti vykonáva všetky funkcie potrebné k vedeniu podniku jeho majiteľa, takže komplexnosť a interakcia medzi jednotlivými zadávanými vstupmi musí byť čo najvyššia. V prípade nejednotnosti systému by bola táto práca ešte zdálo aj náročnejšia.

3.3.1 Výsledky šetrenia

Z rozhovoru s majiteľom firmy a zároveň používateľom súčasného informačného systému vyplynulo, že tento informačný systém vykazuje veľmi závažnú chybu – daňový systém sa aktualizuje len s českými daňovými normami, avšak nie so slovenskými a preto sa musia všetky informácie týkajúce sa daňového systému prepocítávať ručne.

Tento problém je natoľko závažný, že aj napriek spokojnosti s ostatnými funkciami a fungovaním aktuálneho systému sa firma rozhodla pre jeho výmenu.

Nakoľko by komplexné riešenie tohto problému bolo veľmi náročné a hlavne by niekoľkonásobne prevyšovalo štandardy stanovené pre bakalársku prácu, mi vedenie firmy pridelilo navrhnutie časti informačného systému, ktorý bude zastrešovať skladovú evidencię. Mojou úlohou v tejto práci je teda na základe získaných informácií a spozorovaných skutočností zostaviť dátovú základňu pre časť nového informačného systému, ktorý bude fungovať na podobnom princípe ako súčasný. Tento návrh môže potom poverená firma použiť ako podklad pre zostavenie komplexného informačného systému.
Požiadavky na systém:
- evidencia odberateľských objednávok,
- správa objednávok zaslaných vlastným dodávateľom,
- správa cenníku,
- správa skladovej evidencie,
- evidencia príjemiek,
- evidencia výdajok.
4 Návrh racionálizovaného riešenia skladovej evidencie

Po predchádzajúcich popise a analýze súčasného stavu som na základe konzultácií a rozboru s vedením firmy vypracoval návrh riešenia.

4.1 Návrh dátového modelu

Pre dátové modelovanie boli pre tvorbu dátovej základne vybrané tieto dátové objekty:
- Dodávateľ
- Objednávka k dodávateľovi
- Položka objednávky k dodávateľovi
- Skladová karta
- Cenník
- Príjemka
- Položka príjemky
- Výdajka
- Položka výdajky
- Odberateľ
- Objednávka od odberateľa
- Položka objednávky od odberateľa

4.2 Sémantický model

Názov objektu: Dodávateľ
Popis: Slúži pre poskytovanie informácií o dodávateľoch a ich identifikačných číslicach.
Charakteristiky: číslo dodávateľa, IČO, názov spoločnosti, adresa, telefónne číslo, e-mail, číslo účtu.

Názov objektu: Objednávka dodávateľovi
Popis: Objednávka obsahuje informácie o objednanom materiáli u dodávateľa. Je tu uvedené, čo je predmetom danej zákazky, termín dokončenia objednávky a jej stav (vybavená, nevybavená). Slúži ako podklad pre príjemku.
Charakteristiky: Identifikačné číslo objednávky, číslo dodávateľa, dátum zadania, termín dokončenia, stav.
Názov objektu: Položka dodávateľskej objednávky
Popis: Táto položka obsahuje informácie o jednotlivých položkách objednávky. Jedná sa hlavne o cenu, objednané množstvo a náklady firmy, ktoré pri nej vzniknú.
Charakteristiky: Číslo objednávky, číslo položky, číslo tovaru, poradie položky, množstvo, cena bez DPH, náklady.

Názov objektu: Príjemka
Popis: Táto položka obsahuje informácie o prijatom tovare. Príjemka dorazí spolu s tovarem do firmy a zachytáva základné informácie o dodávateľovi a dátum dodania. Tento doklad slúži pre následnú evidenciu na hlavný sklad a zároveň pre potreby účtovníctva.
Charakteristiky: ID príjemky, názov dodávateľa, ulica, číslo popisné, mesto, PSČ, dátum dodania.

Názov objektu: Položka príjemky
Popis: Je súčasťou príjemky. Slúži predovšetkým pre udanie množstva danej položky.
Charakteristiky: ID príjemky, ID dodávateľskej objednávky, číslo tovaru, množstvo, cena.

Názov objektu: Výdajka
Popis: Táto položka obsahuje informácie o odoslanom tovare. Výdajka dorazí spolu s tovaram k odberateľovi a slúži pre evidenciu na sklade. Tento doklad slúži zároveň pre potreby účtovníctva.
Charakteristiky: ID výdajky, názov odberateľa, ulica, číslo popisné, mesto, PSČ, dátum dodania.

Názov objektu: Položka výdajky
Popis: Táto položka je súčasťou výdajky. Zachytáva ID výdajky, podrobné informácie o odoslanom tovare, ako jeho číslo, názov, množstvo a cenu a číslo objednávky.
Charakteristiky: ID výdajky, ID objednávky odberateľa, číslo tovaru, množstvo, cena.

Názov objektu: Skladová karta
Popis: Tento objekt zachytáva pohyby tovaru. Zaznamenávajú sa tu prúmy tovaru, výdavky zo skladu, sleduje sa aktuálny stav zásob a poskytuje výstupy.
Charakteristiky: Identifikačné číslo skladovej karty, číslo tovaru, popis, dátum dodania, dátum vydania, množstvo, cena.
Názov objektu: Cenník
Popis: Táto položka obsahuje informácie pre zákazníka (odberateľa), podľa ktorých zostaví svoju objednávku.
Charakteristiky: ID cenníku, číslo tovaru, názov, popis, cena.

Názov objektu: Odberateľ
Popis: Odberateľovi ako zákazníkovi odpovedá fyzická alebo právnická osoba, ktorá si vo firme objednáva určitý produkt. Odberateľ je jednoznačne identifikovaný svojím identifikačným číslom.
Charakteristiky: číslo odberateľa, IČO, názov spoločnosti, adresa, telefónne číslo, e-mail, číslo účtu, bankové spojenie, zmazané.

Názov objektu: Objednávka od odberateľa
Popis: Objednávka obsahuje informácie o prijatej zákazke objednanej odberateľom. Je tu uvedené, čo je predmetom danej zákazky, termín dokončenia objednávky a jej stav (vybavená, nevybavená).
Charakteristiky: Identifikačné číslo objednávky, názov, dátum prijatia, číslo objednávky, termín dokončenia, stav.

Názov objektu: Položka odberateľskej objednávky
Popis: Táto položka obsahuje informácie o jednotlivých položkách objednávky. Jedná sa hlavne o cenu, objednané množstvo a náklady firmy, ktoré pri nej vzniknú.
Charakteristiky: Číslo objednávky, číslo položky, číslo tovaru, poradie položky, množstvo, cena bez DPH, náklady.

4.3 Konceptuálny model
Identifikačné označenie jednotlivých atribútov je jednoznačné z nasledujúcich tabuliek (Tab. 4.1: Dodávateľ až Tab. 4.12:Položka objednávky od odberateľa).
Tab. 4.1: Dodávateľ

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Číslo dodávateľa</td>
<td>ID_dod</td>
</tr>
<tr>
<td>IČO dodávateľa</td>
<td>ICO_dod</td>
</tr>
<tr>
<td>Názov dodávateľa</td>
<td>nazov_dod</td>
</tr>
<tr>
<td>Ulica</td>
<td>ulica</td>
</tr>
<tr>
<td>Číslo popisné</td>
<td>cis_pop</td>
</tr>
<tr>
<td>Mesto</td>
<td>mesto</td>
</tr>
<tr>
<td>PSČ</td>
<td>psc</td>
</tr>
<tr>
<td>Štát</td>
<td>stat</td>
</tr>
<tr>
<td>Telefón</td>
<td>telefon</td>
</tr>
<tr>
<td>E-mail</td>
<td>e_mail</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.2: Objednávka dodávateľovi

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID objednávky</td>
<td>ID_obj_dod</td>
</tr>
<tr>
<td>Dátum zadania</td>
<td>dat_zadania</td>
</tr>
<tr>
<td>Dátum dokončenia</td>
<td>dat_dokoncenia</td>
</tr>
<tr>
<td>Stav</td>
<td>stav</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.3: Položka dodávateľskej objednávky

<table>
<thead>
<tr>
<th>Položka dodávateľskej objednávky</th>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID objednávky</td>
<td>ID_obj_dod</td>
</tr>
<tr>
<td></td>
<td>ID položky</td>
<td>ID_pol_dod</td>
</tr>
<tr>
<td></td>
<td>Poradie položky</td>
<td>por_pol</td>
</tr>
<tr>
<td></td>
<td>Číslo tovaru</td>
<td>ID_tov</td>
</tr>
<tr>
<td></td>
<td>Množstvo</td>
<td>mnoozstvo</td>
</tr>
<tr>
<td></td>
<td>Cena bez DPH</td>
<td>cena_bez_dph</td>
</tr>
<tr>
<td></td>
<td>Náklady</td>
<td>naklady</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.4: Príjemka

<table>
<thead>
<tr>
<th>Príjemka</th>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID príjemky</td>
<td>ID_prijemky</td>
</tr>
<tr>
<td></td>
<td>Názov dodávateľa</td>
<td>nazov_dod</td>
</tr>
<tr>
<td></td>
<td>Ulica</td>
<td>ulica</td>
</tr>
<tr>
<td></td>
<td>Číslo popisné</td>
<td>cis_pop</td>
</tr>
<tr>
<td></td>
<td>Mesto</td>
<td>mesto</td>
</tr>
<tr>
<td></td>
<td>PSČ</td>
<td>psc</td>
</tr>
<tr>
<td></td>
<td>Dátum dodania</td>
<td>dat_dodania</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.5: Položka príjemky

<table>
<thead>
<tr>
<th>Položka príjemky</th>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID príjemky</td>
<td>ID_prijemky</td>
</tr>
<tr>
<td></td>
<td>Číslo tovaru</td>
<td>ID_tov</td>
</tr>
<tr>
<td></td>
<td>Množstvo</td>
<td>mnoozstvo</td>
</tr>
<tr>
<td></td>
<td>Cena</td>
<td>cena</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.6: Skladová karta

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID skladovej karty</td>
<td>ID_sklad_karta</td>
</tr>
<tr>
<td>Popis tovaru</td>
<td>popis</td>
</tr>
<tr>
<td>Množstvo</td>
<td>mnozstvo</td>
</tr>
<tr>
<td>Cena</td>
<td>cena</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.7: Výdajka

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID výdajky</td>
<td>ID_vydajky</td>
</tr>
<tr>
<td>Názov odberateľa</td>
<td>nazov_odb</td>
</tr>
<tr>
<td>Ulica</td>
<td>ulica</td>
</tr>
<tr>
<td>Číslo popisné</td>
<td>cis_pop</td>
</tr>
<tr>
<td>Mesto</td>
<td>mesto</td>
</tr>
<tr>
<td>PSČ</td>
<td>psc</td>
</tr>
<tr>
<td>Dátum dodania</td>
<td>dat_dodania</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.8: Položka výdajky

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID výdajky</td>
<td>ID_vydajky</td>
</tr>
<tr>
<td>ID objednávky odberateľa</td>
<td>ID_obj_odb</td>
</tr>
<tr>
<td>Číslo tovaru</td>
<td>ID_tov</td>
</tr>
<tr>
<td>Množstvo</td>
<td>mnozstvo</td>
</tr>
<tr>
<td>Cena</td>
<td>cena</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.9: Cenník

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID cenníku</td>
<td>ID_cenník</td>
</tr>
<tr>
<td>Číslo tovaru</td>
<td>ID_tov</td>
</tr>
<tr>
<td>Popis tovaru</td>
<td>popis_tov</td>
</tr>
<tr>
<td>Cena</td>
<td>cena</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.10: Odberateľ

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Číslo odberateľa</td>
<td>ID_odb</td>
</tr>
<tr>
<td>IČO odberateľa</td>
<td>ICO_odb</td>
</tr>
<tr>
<td>Názov odberateľa</td>
<td>nazov</td>
</tr>
<tr>
<td>Ulica</td>
<td>ulica</td>
</tr>
<tr>
<td>Číslo popisné</td>
<td>cis_pop</td>
</tr>
<tr>
<td>Mesto</td>
<td>mesto</td>
</tr>
<tr>
<td>PSČ</td>
<td>psc</td>
</tr>
<tr>
<td>Štát</td>
<td>stat</td>
</tr>
<tr>
<td>Telefón</td>
<td>telefon</td>
</tr>
<tr>
<td>E-mail</td>
<td>e_mail</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.11: Objednávka od odberateľa

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID objednávky</td>
<td>ID_obj_odb</td>
</tr>
<tr>
<td>Dátum zadania</td>
<td>dat_zad</td>
</tr>
<tr>
<td>Dátum dokončenia</td>
<td>dat_dok</td>
</tr>
<tr>
<td>stav</td>
<td>stav</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.12: Položka objednávky od odberateľa

<table>
<thead>
<tr>
<th>Atribút</th>
<th>Identifikačné označenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID objednávky</td>
<td>ID_obj_odb</td>
</tr>
<tr>
<td>ID položky objednávky</td>
<td>ID_pol</td>
</tr>
<tr>
<td>Číslo tovaru</td>
<td>ID_tov</td>
</tr>
<tr>
<td>Poradie položky</td>
<td>por_pol</td>
</tr>
<tr>
<td>Množstvo</td>
<td>mnozstvo</td>
</tr>
<tr>
<td>Cena bez DPH</td>
<td>cena_bez_dph</td>
</tr>
<tr>
<td>Náklad</td>
<td>naklad</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

4.4 E-R diagram

Schéma 4.1: E-R diagram

Zdroj: Vlastný
4.5 Logický dátový model

4.5.1 Predbežné relácie

PK – Primary key – primárny klúč
FK – Foreign key – cudzí klúč

dodavatel (ID_dod PK, ...)
obj_dod (ID_obj_dod PK, ID_dod FK, ...)
polozka_obj_dod (ID_obj_dod PK, ID_pol PK, ID_tov FK, ...)
prijemka (ID_prijemky PK, ...)
pol_prijemky (ID_prijemky PK, ID_pol_prijemky PK, ID_tov FK, ...)
slad_karta (ID_sklad_karta PK, ID_tov FK, ...)
cennik (ID_tov PK, ...)
odberatel (ID_odb PK, ...)
obj_odb (ID_obj_odb PK, ID_odb FK, ...)
polozka_obj_odb (ID_obj_odb PK, ID_pol PK, ID_tov FK, ...)
vydajka (ID_vydajky PK, ...)
pol_vydajky (ID_vydajky PK, ID_pol_vydajky PK, ID_tov FK, ...)

4.5.2 Úplné relácie

Predmety v tabuľkách neobsahujú relácie typu M:N. Nemusí sa preto vytvárať ďalšia tabuľka, ktorá by rozdelila reláciu typu M:N na dve relácie typu 1:N.

dodavatel (ID_dod PK, ICO_dod, spolocnost, ulica, cis_pop, mesto, psc, stat, telefon, e_mail)
obj_dod (ID_obj_dod PK, ID_dod FK, dat_zad, dat_dok, vybavene)
polozka_obj_dod (ID_obj_dod PK, ID_pol PK, ID_tov FK, por_pol, mnozstvo, cena_bez_dph, naklad)
prijemka (ID_prijemky PK, ID_dod FK, miesto_dodania, datum_dorucenia)
pol_prijemky (ID_prijemky PK, ID_pol_prijemky PK, ID_tov FK, cis_tovaru, mnozstvo, cena)

sklad_karta (ID_sklad_karta PK, ID_tov FK, popis, dat_prij, dat_odosl, mnozstvo)

cennik (ID_tov PK, popis, cena)

odberatel (ID_odbh PK, ICO odbh, nazov, ulica, cis_pop, mesto, psc, stat, telefon, e_mail)

obj_obj (ID_obj_pobj FK, ID_odbh FK, dat_zad, dat_dok, vybaveno)

polozka_obj_obj (ID_obj_pobj FK, ID_pol PK, ID_tov FK, por_pol, mnozstvo, cena_bez_dph, naklad)

vydajka (ID_vydajky PK, ID_odbh, miesto_dodania, datum_doručenia)

pol_vydajky (ID_vydajky PK, ID_pol_vydajky PK, ID_tov FK, cis_tovaru, mnozstvo, cena)

4.6 Popis relácii databázy a špecifikácia domén

Špecifikáciu domén môžeme vidieť v nasledujúcich tabuľkách (Tab. 4.1 Popis relácie dodávateľ až Tab. 4.12 Popis relácie výdajka).

[dt = dátový typ, v = veľkosť, k = kľúč, j = jedinečnosť]

Pozn.: V prípade nezadanej hodnoty v dátovom type je táto hodnota rovná ako hodnota naposledy zadaná.

Tab. 4.13: Popis relácie dodávateľ

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_dod</td>
<td>text</td>
<td>6</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>Číslo dodávateľa</td>
</tr>
<tr>
<td>ICO_dod</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>IČO dodávateľa</td>
<td></td>
</tr>
<tr>
<td>spolocnost</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Názov spoločnosti</td>
<td></td>
</tr>
<tr>
<td>ulica</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Ulica</td>
<td></td>
</tr>
<tr>
<td>cis_pop</td>
<td>10</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Číslo popisné</td>
<td></td>
</tr>
<tr>
<td>mesto</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Mesto</td>
<td></td>
</tr>
<tr>
<td>psc</td>
<td>5</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>PSČ</td>
<td></td>
</tr>
<tr>
<td>stat</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Štát</td>
<td></td>
</tr>
<tr>
<td>telefon</td>
<td>24</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Telefón</td>
<td></td>
</tr>
<tr>
<td>e_mail</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>e-mail</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.14: Popis relácie objednávka dodávateľa

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_obj_dod</td>
<td>automatické číslo</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID objednávky dodávateľa</td>
<td></td>
</tr>
<tr>
<td>ID_dod</td>
<td>text</td>
<td>6</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Číslo dodávateľa</td>
</tr>
<tr>
<td>dat_zad</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Dátum zadania</td>
<td></td>
</tr>
<tr>
<td>dat_dok</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Dátum dokončenia</td>
<td></td>
</tr>
<tr>
<td>stav</td>
<td>logický</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Stav</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.15: Položka objednávky dodávateľa

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_obj_dod</td>
<td>text</td>
<td>10</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID objednávky dodávateľa</td>
</tr>
<tr>
<td>ID_pol</td>
<td>6</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>ID položky</td>
<td></td>
</tr>
<tr>
<td>ID_tov</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Číslo tovaru</td>
<td></td>
</tr>
<tr>
<td>por_pol</td>
<td>číslo</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Poriadie položky</td>
<td></td>
</tr>
<tr>
<td>mnozstvo</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Množstvo</td>
<td></td>
</tr>
<tr>
<td>cena_bez_dph</td>
<td>mena</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Cena bez DPH</td>
<td></td>
</tr>
<tr>
<td>naklad</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Náklad</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.16: Popis relácie príjemka

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_prijemky</td>
<td>text</td>
<td>10</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID príjemky</td>
</tr>
<tr>
<td>ID_dod</td>
<td>6</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>ID dodávateľa</td>
<td></td>
</tr>
<tr>
<td>miesto_dodania</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Miesto dodania</td>
<td></td>
</tr>
<tr>
<td>dat_doručenia</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Dátum doručenia</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.17: Popis relácie položka príjemky

<table>
<thead>
<tr>
<th>Položka príjemky</th>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_prijemky</td>
<td>text</td>
<td>10</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID príjemky</td>
<td></td>
</tr>
<tr>
<td>ID_pol_prijemky</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>ID položky príjemky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_tov</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Číslo tovaru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mnozstvo</td>
<td>číslo</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Množstvo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cena</td>
<td></td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Cena</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.18: Popis relácie skladová karta

<table>
<thead>
<tr>
<th>Skladová karta</th>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_sklad_karta</td>
<td>text</td>
<td>6</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID skladovej karty</td>
<td></td>
</tr>
<tr>
<td>ID_tov</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Číslo tovaru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>popis</td>
<td>50</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Popis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dat_prij</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Dátum prijatia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dat_odosl</td>
<td></td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Dátum odoslania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mnozstvo</td>
<td>číslo</td>
<td>5</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Množstvo</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.19: Popis relácie cenník

<table>
<thead>
<tr>
<th>Cenník</th>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_tov</td>
<td>text</td>
<td>8</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>Číslo tovaru</td>
<td></td>
</tr>
<tr>
<td>popis</td>
<td>50</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Popis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cena</td>
<td>mena</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td>Cena</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.20: Popis relácie odberateľ

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_odb</td>
<td>text</td>
<td>6</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>Číslo odberateľa</td>
</tr>
<tr>
<td>ICO_odb</td>
<td>8</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>IČO odberateľa</td>
</tr>
<tr>
<td>nazov</td>
<td>30</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Názov</td>
</tr>
<tr>
<td>ulica</td>
<td>30</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Ulica</td>
</tr>
<tr>
<td>cis_pop</td>
<td>10</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Číslo popisné</td>
</tr>
<tr>
<td>mesto</td>
<td>30</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Mesto</td>
</tr>
<tr>
<td>psc</td>
<td>5</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>PSČ</td>
</tr>
<tr>
<td>stat</td>
<td>30</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Štát</td>
</tr>
<tr>
<td>telefon</td>
<td>24</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Telefón</td>
</tr>
<tr>
<td>e_mail</td>
<td>30</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>e-mail</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.21: Popis relácie objednávka odberateľa

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_obj_odb</td>
<td>text</td>
<td>áno</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>ID objednávky odberateľa</td>
</tr>
<tr>
<td>ID_odb</td>
<td>6</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Číslo odberateľa</td>
</tr>
<tr>
<td>dat_zad</td>
<td>dátum a čas</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Dátum zadania</td>
</tr>
<tr>
<td>dat_dok</td>
<td>dátum a čas</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Dátum dokončenia</td>
</tr>
<tr>
<td>stav</td>
<td>logický</td>
<td>nie</td>
<td>án</td>
<td>nie</td>
<td>nie</td>
<td>Stav</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
Tab. 4.22: Popis relácie položka objednávky odberateľa

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_obj_odb</td>
<td>text</td>
<td>8</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID objednávky odberateľa</td>
</tr>
<tr>
<td>ID_pol</td>
<td>6</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>ID položky</td>
</tr>
<tr>
<td>ID_tov</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Číslo tovaru</td>
</tr>
<tr>
<td>por_pol</td>
<td>číslo</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Poradie položky</td>
</tr>
<tr>
<td>mnozstvo</td>
<td></td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Množstvo</td>
</tr>
<tr>
<td>cena_bez_dph</td>
<td>mena</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Cena bez DPH</td>
</tr>
<tr>
<td>naklad</td>
<td></td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Náklad</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.23: Popis relácie výdajka

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_vydajky</td>
<td>text</td>
<td>10</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID výdajky</td>
</tr>
<tr>
<td>ID_odb</td>
<td>6</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>ID odberateľa</td>
</tr>
<tr>
<td>miesto_dodania</td>
<td>30</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Miesto dodania</td>
</tr>
<tr>
<td>datum_dorucenia</td>
<td>dátum a čas</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Dátum doručenia</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Tab. 4.24: Popis relácie výdajka

<table>
<thead>
<tr>
<th>atribút</th>
<th>dt</th>
<th>v</th>
<th>k</th>
<th>null</th>
<th>j</th>
<th>popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_vydajky</td>
<td>text</td>
<td>10</td>
<td>áno</td>
<td>nie</td>
<td>áno</td>
<td>ID výdajky</td>
</tr>
<tr>
<td>ID_pol_vydajky</td>
<td>10</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>ID položky výdajky</td>
</tr>
<tr>
<td>ID_tov</td>
<td>8</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Číslo tovaru</td>
</tr>
<tr>
<td>mnozstvo</td>
<td>5</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Množstvo</td>
</tr>
<tr>
<td>cena</td>
<td>mena</td>
<td>nie</td>
<td>áno</td>
<td>nie</td>
<td></td>
<td>Cena</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
4.7 Funkčný model

Na základe analýzy súčasného stavu som zhodnotil požiadavky na systém, ktoré vyplynuli z rozhovoru s vedením firmy. Podľa týchto požiadaviek som zostavil funkčný model systému, ktorý je zobrazený v schéme 4.2. Podľa horizontálneho členenia funkčného modelu je navrhnutý DFD diagram úrovne 0 (Schéma 4.3: DFD – 0. úroveň). Podrobnejšie spracovanie problému je zachytené v schéme 4.4: DFD – 1. úroveň, ktorá je zostavená podľa vertikálneho rozčlenenia 4. bodu funkčného modelu.

DFD diagramy sú vytvorené v programe Data modeler, ktorý je produktom spoločnosti ORACLE.

Schéma 4.2: Funkčný model

Zdroj: Vlastný
Schéma 4.3: DFD – 0. Úroveň

Zdroj: Vlastný
Schéma 4.4: DFD – 1. úroveň

Zdroj: Vlastný
4.7.1 Dekompozícia funkcií

Tab. 4.25: Dekompozícia funkcií

<table>
<thead>
<tr>
<th>Funkcia</th>
<th>O účelovej popísanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Správa cenníku</td>
<td>Jedná sa o funkciu, ktorá zabezpečuje pridávaní nových aktualizácií a súčasných údajov o cenníku.</td>
</tr>
<tr>
<td>2. Správa objednávok k dodávateľovi</td>
<td>Funkcia umožňuje správu objednávok zaslaných vlastným dodávateľom.</td>
</tr>
<tr>
<td>3. Evidencia odberateľských objednávok</td>
<td>Funkcia, ktorá umožní evidovať a uschovávať informácie z odberateľských objednávok.</td>
</tr>
<tr>
<td>4. Správa skladovej evidencie</td>
<td>Funkcia, ktorá umožní kontrolu stavu skladu a zachytávanie pohyboch na skladových kartách.</td>
</tr>
<tr>
<td>4.1 Spracovanie odberateľských objednávok</td>
<td>Funkcia zachytávajúca informácie o prijatých objednávkach od zákazníka.</td>
</tr>
<tr>
<td>4.2 Kontrola skladovej karty</td>
<td>Jedná sa o funkciu, ktorá zaznamenáva stav skladovej karty k aktuálnemu dátumu a poskytuje informácie na základe ktorých sa zasielajú objednávky k dodávateľom.</td>
</tr>
<tr>
<td>4.3 Spracovanie objednávok k dodávateľovi</td>
<td>Funkcia, ktorá zaznamenáva spracovanie objednávky vystavenej na dodávateľa na základe informácií zistených o nedostatočnom stave na sklad.</td>
</tr>
<tr>
<td>4.4 Spracovanie príjimiek</td>
<td>Funkcia, ktorá obsahuje informácie zaznamenané ako prírastky na skladovú kartu.</td>
</tr>
<tr>
<td>4.5 Spracovanie skladovej karty</td>
<td>Táto funkcia umožňuje vytvorenie novej skladovej karty a zachytáva príjmy a výdavky zo skladovej karty.</td>
</tr>
<tr>
<td>4.6 Spracovanie výdajok</td>
<td>Jedná sa o funkciu obsahujúcu informácie zaznamenané ako úbytky zo skladovej karty.</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

4.7.2 Popisy dátových tokov a úložísk

Popis dátových tokov DFD – 0. úroveň

Tab. 4.26: Dátové toky DFD – úroveň 0.

<table>
<thead>
<tr>
<th>Dátový tok</th>
<th>O účelovej popísanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Požiadavky na firmu</td>
<td>Zákazník si zadá požiadavky a potrebne informácie o produktoch, ktoré od firmy požaduje.</td>
</tr>
<tr>
<td>(ZÁKAZNIK > správa cenníkov)</td>
<td>Táto funkcia umožní zákazníkovi zobrazenie požadovaných produktov.</td>
</tr>
<tr>
<td>Výstup pre zákazníka</td>
<td>Informácie a zmeny v cenníku sú uložené v dátovom úložisku CENNÍKY.</td>
</tr>
<tr>
<td>(správa cenníkov > ZÁKAZNIK)</td>
<td>Uloženie informácií o cenníku</td>
</tr>
<tr>
<td>(správa cenníkov > CENNÍKY)</td>
<td>Uloženie informácií o cenníku</td>
</tr>
<tr>
<td>Funkcia</td>
<td>Opis</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Výber informácií o cenníku
(CENNÍKY > správa cenníkov)</td>
<td>Spätne vyvolaná funkcia, ktorá zobrazí zadané údaje a zmeny v cenníku.</td>
</tr>
<tr>
<td>Objednávka zákazníka
(ZÁKAZNIK > správa odb_objednávok)</td>
<td>Zákazník odošle svoje požiadavky prostredníctvom objednávky.</td>
</tr>
<tr>
<td>Potvrdenie objednávky zákazníka
(správa odb_objednávok > ZÁKAZNIK)</td>
<td>Spätne vyvolaná funkcia zobrazí zákazníkovi stav a potvrdenie jeho objednávky.</td>
</tr>
<tr>
<td>Uloženie odb纳čských objednávok
(správa odb_objednávok > ODBERATEĽSKÉ OBJEDNÁVKY)</td>
<td>Do úložiska ODBERATEĽSKÉ OBJEDNÁVKY sú uložené informácie o objednávках.</td>
</tr>
<tr>
<td>Výber info o odb纳čských objednávках
(ODBERATEĽSKÉ OBJEDNÁVKY > správa odb_objednávok)</td>
<td>Z dátového úložiska je možné spätne vyvolať informácie o prijatých objednávках.</td>
</tr>
<tr>
<td>Kontrola stavu na skладe
(správa odb_objednávok > správa skladovej evidencie)</td>
<td>Táto funkcia zabezpečuje možnosť kontroly skladovej evidencie a zistiť či je požadovaný zostatok dostávajúci k splneniu objednávky.</td>
</tr>
<tr>
<td>Informácie o stavu na skladе
(správa skladovej evidencie > správa odb_objednávok)</td>
<td>Spätne potvrdenie informácií týkajúcich sa stavu skladovej zásoby na skladových kartách.</td>
</tr>
<tr>
<td>Uloženie info o skladových kartách
(správa skladovej evidencie > SKLADOVÁ EVIDENCIA)</td>
<td>Informácie o stave skladových kariet uložené do dátového úložiska SKLADOVÁ EVIDENCIA.</td>
</tr>
<tr>
<td>Výber info o skladovej evidencii
(SKLADOVÁ EVIDENCIA > správa skladovej evidencie)</td>
<td>Funkcia vyvolaná pre zistenie stavu skladových kariet z dátového úložiska SKLADOVÁ EVIDENCIA.</td>
</tr>
<tr>
<td>Vystavenie objednávky
(správa skladovej evidencie > správa objednávok k dodávateľovi)</td>
<td>Na základe zisteného stavu na skladových kartách odošle objednávku dodávateľovi.</td>
</tr>
<tr>
<td>Kontrola objednávok
(správa objednávok k dodávateľovi > správa skladovej evidencie)</td>
<td>Funkcia umožňujúca kontrolu objednávok odošlaných dodávateľovi.</td>
</tr>
<tr>
<td>Uloženie info o firemných objednávkach
(správa objednávok k dodávateľovi > OBJEDNÁVKY K DODÁVATEĽOVII)</td>
<td>Táto funkcia zabezpečuje uloženie informácii o odslaných objednávках do dátového úložiska OBJEDNÁVKY K DODÁVATEĽOVII.</td>
</tr>
<tr>
<td>Výber info o firemných objednávках
(OBJEDNÁVKY K DODÁVATEĽOVII > správa objednávok k dodávateľovi)</td>
<td>Z dátového úložiska OBJEDNÁVKY K DODÁVATEĽOVII sa vytiha požadované informácie o odslaných objednávках.</td>
</tr>
<tr>
<td>Objednávka k dodávateľovi
(správa objednávok k dodávateľovi > správa)</td>
<td>Funkcia informujúca o stave objednávok odošlaných dodávateľovi.</td>
</tr>
<tr>
<td>DODÁVATEL'</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Potvrdenie objednávky k dodávateľovi</td>
<td>Táto funkcia informuje o potvrdení a zaznamenaní objednávky dodávateľom.</td>
</tr>
<tr>
<td>(DODÁVATEL' > správa objednávok k dodávateľovi)</td>
<td></td>
</tr>
<tr>
<td>Prijatie dodacieho listu</td>
<td>Funkcia poskytujúca informácie o prijatí dodacieho listu od dodávateľa.</td>
</tr>
<tr>
<td>(DODÁVATEL' > správa skladovej evidencie)</td>
<td></td>
</tr>
<tr>
<td>Kontrola dodacích listov</td>
<td>Spätné vyvolaná funkcia podávajúca informácie o prijatých dodacích listoch od dodávateľa.</td>
</tr>
<tr>
<td>(správa skladovej evidencie > DODÁVATEL')</td>
<td></td>
</tr>
<tr>
<td>Zaslanie dodacieho listu</td>
<td>Táto funkcia zachytáva dodacie listy zaslané firmou zákazníkovi.</td>
</tr>
<tr>
<td>(správa skladovej evidencie > ZAKAZNIK)</td>
<td></td>
</tr>
<tr>
<td>Kontrola zaslaných dodacích listov</td>
<td>Funkcia vyvolaná spätné umožňujúca kontrolu zaslaných dodacích listov k firemným zákazníkom.</td>
</tr>
<tr>
<td>(ZAKAZNIK > správa skladovej evidencie)</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Popis dátových tokov DFD – 1. úroveň

Tab. 4.27: Dátové toky DFD – úroveň 1.

<table>
<thead>
<tr>
<th>Požiadavky na firmu</th>
<th>Zákazník odošle požiadavku na firmu v podobe objednávky.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ZAKAZNIK > spracovanie odberateľských objednávok)</td>
<td></td>
</tr>
<tr>
<td>Uloženie objednávok</td>
<td>Údaje z objednávky prijatej od zákazníka sa uložia do dátového úložiska OBERATEĽSKÉ OBJEDNÁVKY1.</td>
</tr>
<tr>
<td>(spracovanie odberateľských objednávok > OBERATEĽSKÉ OBJEDNÁVKY1)</td>
<td></td>
</tr>
<tr>
<td>Spracovanie požiadaviek na firmu</td>
<td>Funkcia, ktorá vyšle dátu pre kontrolu skladovej karty, aby bolo jasné, či sa požadovaný tovar musí objednať alebo existuje jeho zásoba na sklede.</td>
</tr>
<tr>
<td>(spracovanie odberateľských objednávok > kontrola skladovej karty)</td>
<td></td>
</tr>
<tr>
<td>Uloženie informácií</td>
<td>Informácie zo skladovej karty sa ukladajú do dátového úložiska SKLADOVÁ EVIDENCIA1.</td>
</tr>
<tr>
<td>(kontrola skladovej karty > SKLADOVÁ EVIDENCIA1)</td>
<td></td>
</tr>
<tr>
<td>Výber a kontrola informácií</td>
<td>Výber a kontrola informácií z dátového úložiska ohľadom aktuálneho stavu na sklede.</td>
</tr>
<tr>
<td>(SKLADOVA EVIDENCIA1 > kontrola skladovej karty)</td>
<td></td>
</tr>
<tr>
<td>Prevedenie požiadaviek</td>
<td>Firma posíla svoju objednávku vlastnému dodávateľovi.</td>
</tr>
<tr>
<td>(kontrola skladovej karty > spracovanie objednávok k dodávateľovi)</td>
<td></td>
</tr>
<tr>
<td>Uloženie objednávok firmy</td>
<td>Táto funkcia umožňuje uloženie informácií</td>
</tr>
<tr>
<td>Funkcia</td>
<td>Odešelenie objednávok k dodávateľovi</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Príjem dodacieho listu</td>
<td>(DODÁVATEĽ > správa príjemiek)</td>
</tr>
<tr>
<td>Uloženie info o prijatých položkách</td>
<td>(správa príjemiek > správa skladovej karty)</td>
</tr>
<tr>
<td>Vytvorenie skladovej karty</td>
<td>(SKLADOVÁ EVIDENCIA1 > správa skladovej karty)</td>
</tr>
<tr>
<td>Uloženie info zo skladovej karty</td>
<td>(správa skladovej karty > správa výdajok)</td>
</tr>
<tr>
<td>Vystavenie výdajky</td>
<td>(správa skladovej karty > správa výdajok)</td>
</tr>
<tr>
<td>Zaslanie dodacieho listu</td>
<td>(správa výdajok > ZÁKAZNIK)</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný

Dátové úložiská

Tab. 4.28: Dátové úložiská

<table>
<thead>
<tr>
<th>Dátové úložisko</th>
<th>Složenie a funkcie</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKLADOVÁ EVIDENCIA</td>
<td>Slúží ako úložisko nových, aktualizovaných a zmenených dát o stave na sklade a skladových kartách, ktoré sú súčasťou firemného informačného systému.</td>
</tr>
<tr>
<td>ODBERATEĽSKÉ OBJEDNÁVKY</td>
<td>Toto úložisko slúži na uloženie údajov o zákazníkoch, prijatých objednávkach a na ich kontrolu.</td>
</tr>
<tr>
<td>DODÁVATEĽSKÉ OBJEDNÁVKY</td>
<td>Toto dátové úložisko poskytuje údaje o odoslaných objednávkach odberateľom o ich obsahu a o odberateľoch samých.</td>
</tr>
<tr>
<td>CENNÍKY</td>
<td>Toto dátové úložisko obsahuje informácie o nových, aktualizovaných a zmenených cenníkoch.</td>
</tr>
</tbody>
</table>

Zdroj: Vlastný
5 Zhodnotenie výsledkov návrhu

Hlavným cieľom mojej bakalárskej práce bolo navrhnúť také dátové základne pre firmu OFFIM, s. r. o., ktorá by odpovedala požiadavkám spoločnosti stanoveným podľa aktuálnych potrieb pre vedenie skladovej evidencie.

Navrhnutý dátový model bol zostavený s ohľadom na veľmi prepracovanú dátovú základňu súčasne používaneho softvéru a preto som tento návrh mierne zjednodušil. Firma poverená na zostavenie nového a kompletného informačného systému môže teda v prípade potreby použiť môj návrh a kompletovať ho s ostatnými časťami, ktoré neboli obsiahnuté a riešené v mojej práci k dosiahnutiu finálneho a komplexného systému.

Cieľom mojej práce bolo totiž navrhnúť jednoduchý a rýchly prístup k požadovaným informáciám a dáta z hľadiska skladovej evidencie. Taktiež návrh dátového modelu by mal vyhovovať užívateľom pri jeho používaní a mal by čo najjednoduchšie zaistiť všetky požadované dáta.

Funkčný model zobrazuje, kde budú dáta uložené, akým smerom by v rámci vybraného informačného systému mali prúdiť a ako si tieto požadované dáta môžeme vyžiadať.
6 Záver

V tejto práci som vytvoril návrh informačného systému pre skladovú evidencie spoločnosti OFFIM, s. r. o.. Z hľadiska komerčného využitia by sa tento model mohol ešte rozvinúť a je nutné ho spojiť a zosúladit s ostatnými časťami, aby vznikol ucelený informačný systém vhodný pre použitie a zavedenie do chodu firmy. Myslím, že sa mi moje ciele podarilo naplniť a s výsledkom práce som spokojný.

V druhej kapitole som popísaný teoretické východiskové návrhu informačného systému, z ktorých som vychádzal po celú dobu tvorby mojej práce. Zdôraznil som dôležitosť informačných systémov, získanie relevantných informácií a ich analýza pre potreby firmy. Ďalej som popísal charakteristiku a postup dátového modelovania. Celá práca sa nesie v zmysle trojúrovňovej koncepcie modelovania a všetky pojmy s nimi súvisiace pri realizovaní tejto práce boli dostatočne vymedzené a popísané.

V tretej kapitole som charakterizoval spoločnosť OFFIM, s. r. o. a oblast jej podnikania. Nasledovala analýza súčasného stavu riešenej problematiky, v ktorej sa mi na základe individuálneho rozhovoru s vedením firmy podarilo odhalit nedostatky systému a zistiť základné požiadavky potrebné pre návrh novej dátovej základne a správne fungovanie tvoreného systému.

Štvrtá kapitola sa nesie v známení návrhu racionalizovaného riešenia skladovej evidencie. Na základe naštudovanej teórie z prechádzajúcich kapitol a praktických skúseností získaných počas doby štúdia som za pomocí podkladov získaných z rozhovoru a obdržaných podkladov zostavil sémantický model. Tento model slúžil ako východiskový pre konceptuálny a následne aj relačný model. Ďalej je v tejto kapitole vytvorený funkčný model odvodený od zostaveného E-R modelu a informačné toky, ktoré v systéme kolujú. Tieto sú popísané v tabuľkách a graficky znázornené pomocou Data Flow Diagramov, ktoré uľahčujú predstavu funkčnosti tohto informačného systému.

V piatej časti som zhodnotil výsledky riešenia daného problému a sú tu uvedené prínosy navrhnutého systému.

Túto prácu považujem z hľadiska použiteľnosti v praxi za kompletnú a môžem konštatovať, že navrhnutá dátová základňa môže prispieť i k zjednodušeniu práce zamestnancom, ktorí s výslednou aplikáciou prídu do styku.
Zoznam použitej literatúry

Zoznam použitých skratiek

<table>
<thead>
<tr>
<th>Skratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>E – R model</td>
<td>Entity-relationship model</td>
</tr>
<tr>
<td>IS</td>
<td>Informační systém</td>
</tr>
<tr>
<td>DFD</td>
<td>Data Flow diagram</td>
</tr>
<tr>
<td>SRBD</td>
<td>Systém riadenia báze dát</td>
</tr>
<tr>
<td>TEL</td>
<td>Telefon</td>
</tr>
<tr>
<td>ICO</td>
<td>Identifikační číslo</td>
</tr>
<tr>
<td>PSC</td>
<td>Poštovní směrovací číslo</td>
</tr>
<tr>
<td>PK</td>
<td>Primary key – primárný kľúč</td>
</tr>
<tr>
<td>FK</td>
<td>Foreign key – cudzí kľúč</td>
</tr>
</tbody>
</table>
Prohlášení o využití výsledků bakalářské práce

Prohlašuji, že

- jsem byl(a) seznámen(a) s tím, že na mou diplomovou (bakalářskou) práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo;
- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou (bakalářskou) práci užít (§ 35 odst. 3);
- souhlasím s tím, že jeden výtisk diplomové (bakalářské) práce bude uložen v Ústřední knihovně VŠB-TUO k prezenčnímu nahlédnutí a jeden výtisk bude uložen u vedoucího diplomové (bakalářské) práce. Souhlasím s tím, že bibliografické údaje o diplomové (bakalářské) práci budou zveřejněny v informačním systému VŠB-TUO;
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona;
- bylo sjednáno, že užít své dílo, diplomovou (bakalářskou) práci, nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat přiměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě dne 09. 07. 2010

………………………………
jméno a příjmení studenta

Adresa trvalého pobytu studenta:
Milochov 123, 017 06 Považská Bystrica
Slovenská republika
Príloha: Osnova štandardizovaného rozhovoru

Otázka č.1:
Aký systém pre vedenie skladovej evidencie v súčasnej dobe používate?

Otázka č.2:
Funguje Váš súčasný systém bez problémov?

Otázka č.3
Obsahuje systém pre Vás všetky podstatné informácie a funkcie?

Otázka č.4
Sú pre Vás informácie zo súčasného systému skladovej evidencie ľahko dostupné?
Hodnotenie (1=dostupné, 2=méně dostupné, 3=málo dostupné, 4=nedostupné)

<table>
<thead>
<tr>
<th>Časť IS</th>
<th>Hodnotenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Evidencia dodávateľov</td>
<td></td>
</tr>
<tr>
<td>Vytváranie a evidencia objednávok</td>
<td></td>
</tr>
<tr>
<td>Vytváranie evidencia príjemiek</td>
<td></td>
</tr>
<tr>
<td>Vytváranie a evidencia výdajok</td>
<td></td>
</tr>
</tbody>
</table>

Otázka č.5:
Sú pre Vás informácie získané zo súčasného systému skladovej evidencie dostačujúce?
Hodnotenie (1=dostačující, 2=menej dostačujúce, 3=málo dostačujúce, 4=nedostačujúce)

<table>
<thead>
<tr>
<th>Časť IS</th>
<th>Hodnotenie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Evidencia dodávateľov</td>
<td></td>
</tr>
<tr>
<td>Vytváranie a evidencia objednávok</td>
<td></td>
</tr>
<tr>
<td>Vytváranie a evidencia príjemiek</td>
<td></td>
</tr>
<tr>
<td>Vytváranie a evidencia výdajok</td>
<td></td>
</tr>
</tbody>
</table>