A scalable FETI-DP algorithm for a coercive variational inequality

DSpace/Manakin Repository

aaK citaci nebo jako odkaz na tento záznam použijte identifikátor: http://hdl.handle.net/10084/56564

Show simple item record

dc.contributor.author Dostál, Zdeněk
dc.contributor.author Horák, David
dc.contributor.author Stefanica, Dan
dc.date.accessioned 2006-09-26T09:11:17Z
dc.date.available 2006-09-26T09:11:17Z
dc.date.issued 2005
dc.identifier.citation Applied numerical mathematics. 2005, vol. 54, issues 3-4, p. 378-390. en
dc.identifier.issn 0168-9274
dc.identifier.uri http://hdl.handle.net/10084/56564
dc.description.abstract We develop an optimal algorithm for the numerical solution of coercive variational inequalities, by combining FETI algorithms of dual-primal type with recent results for bound constrained quadratic programming problems. The discretized version of the model problem, obtained by using the FETI-DP methodology, is reduced by the duality theory of convex optimization to a quadratic programming problem with bound constraints. The resulting problem is solved by a new algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. We present convergence bounds that guarantee the scalability of the algorithm. These results are confirmed by numerical experiments. en
dc.language.iso en en
dc.publisher North-Holland en
dc.relation.ispartofseries Applied numerical mathematics en
dc.relation.uri http://dx.doi.org/10.1016/j.apnum.2004.09.009 en
dc.subject domain decomposition method en
dc.subject primal substructuring method en
dc.subject natural coarse-space en
dc.subject contact problems en
dc.subject lagrange multipliers en
dc.subject convergence en
dc.subject projections en
dc.subject systems en
dc.title A scalable FETI-DP algorithm for a coercive variational inequality en
dc.type article en
dc.identifier.location Není ve fondu ÚK en
dc.identifier.doi 10.1016/j.apnum.2004.09.009
dc.identifier.wos 000230317100006

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search



My Account