Non-transitive generalizations of subdirect products of linearly ordered rings

DSpace/Manakin Repository

aaK citaci nebo jako odkaz na tento záznam použijte identifikátor: http://hdl.handle.net/10084/57281

Show simple item record


dc.contributor.author Rachůnek, Jiří
dc.contributor.author Šalounová, Dana
dc.date.accessioned 2006-10-20T09:16:09Z
dc.date.available 2006-10-20T09:16:09Z
dc.date.issued 2003
dc.identifier.citation Czechoslovak mathematical journal. 2003, vol. 53, no. 3, p. 591-603. en
dc.identifier.issn 0011-4642
dc.identifier.issn 1572-9141
dc.identifier.uri http://hdl.handle.net/10084/57281
dc.description.abstract Abstract Weakly associative lattice rings (wal-rings) are non-transitive generalizations of lattice ordered rings (l-rings). As is known, the class of l-rings which are subdirect products of linearly ordered rings (i.e. the class of f-rings) plays an important role in the theory of l-rings. In the paper, the classes of wal-rings representable as subdirect products of to-rings and ao-rings (both being non-transitive generalizations of the class of f-rings) are characterized and the class of wal-rings having lattice ordered positive cones is described. Moreover, lexicographic products of weakly associative lattice groups are also studied here. en
dc.language.iso en en
dc.publisher Akademie věd České republiky. Matematický ústav en
dc.relation.ispartofseries Czechoslovak mathematical journal en
dc.relation.uri http://dx.doi.org/10.1023/B:CMAJ.0000024505.21040.c2 en
dc.subject weakly associative lattice ring en
dc.subject weakly associative lattice group en
dc.subject representable wal-ring en
dc.title Non-transitive generalizations of subdirect products of linearly ordered rings en
dc.type article en
dc.identifier.location Ve fondu ÚK en
dc.identifier.doi 10.1023/B:CMAJ.0000024505.21040.c2
dc.identifier.wos 000186018800008

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Navigation

Browse

My Account

Statistics