Show simple item record

dc.contributor.authorBriš, Radim
dc.date.accessioned2010-11-29T07:42:11Z
dc.date.available2010-11-29T07:42:11Z
dc.date.issued2010
dc.identifier.citationReliability engineering & system safety. 2010, vol. 95, issue 12, p. 1286-1292.en
dc.identifier.issn0951-8320
dc.identifier.urihttp://hdl.handle.net/10084/83455
dc.description.abstractWhen a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 232. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesReliability engineering & system safetyen
dc.relation.urihttp://dx.doi.org/10.1016/j.ress.2010.06.004en
dc.subjectexact computingen
dc.subjectdirected acyclic graphen
dc.subjectunavailability quantificationen
dc.titleExact reliability quantification of highly reliable systems with maintenanceen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1016/j.ress.2010.06.004
dc.identifier.wos000283760000004


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record