Zobrazit minimální záznam

dc.contributor.authorRachůnek, Jiří
dc.contributor.authorŠalounová, Dana
dc.date.accessioned2011-03-16T09:52:27Z
dc.date.available2011-03-16T09:52:27Z
dc.date.issued2011
dc.identifier.citationSoft computing. 2011, vol. 15, no. 1, p. 199-203.en
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttp://hdl.handle.net/10084/84364
dc.description.abstractBounded residuated lattice ordered monoids (RlR-monoids) are a common generalization of pseudo-BLBL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. We investigate bounded RlR-monoids satisfying the general comparability condition in connection with their states (analogues of probability measures). It is shown that if an extremal state on Boolean elements fulfils a simple condition, then it can be uniquely extended to an extremal state on the RlR-monoid, and that if every extremal state satisfies this condition, then the RlR-monoid is a pseudo-BLBL-algebra.en
dc.language.isoenen
dc.relation.ispartofseriesSoft computingen
dc.relation.urihttp://dx.doi.org/10.1007/s00500-010-0545-7en
dc.subjectbounded residuated l-monoiden
dc.subjectpseudo-BLBL-algebraen
dc.subjectheyting algebraen
dc.subjectpseudo-MV-algebraen
dc.subjectfilteren
dc.subjectnormal filteren
dc.subjectgeneral comparability propertyen
dc.subjectBoolean elementen
dc.subjectstateen
dc.subjectextremal stateen
dc.titleExtremal states on bounded residuated l-monoids with general comparabilityen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1007/s00500-010-0545-7
dc.identifier.wos000286197800020


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam