Zobrazit minimální záznam

dc.contributor.authorHančl, Jaroslav
dc.contributor.authorNair, Radhakrishnan
dc.contributor.authorPulcerová, Simona
dc.contributor.authorŠustek, Jan
dc.date.accessioned2011-06-06T06:58:02Z
dc.date.available2011-06-06T06:58:02Z
dc.date.issued2011
dc.identifier.citationProceedings of the Edinburgh Mathematical Society (Series 2). 2011, vol. 54, issue 2, p. 411-422.en
dc.identifier.issn0013-0915
dc.identifier.issn1464-3839
dc.identifier.urihttp://hdl.handle.net/10084/84627
dc.description.abstractContinuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.en
dc.language.isoenen
dc.publisherEdinburgh Mathematical Societyen
dc.relation.ispartofseriesProceedings of the Edinburgh Mathematical Society (Series 2)en
dc.relation.urihttp://dx.doi.org/10.1017/S0013091509000091en
dc.subjectexpressible seten
dc.subjectp-adic numbersen
dc.subjectKhinchin–Lutz Theoremen
dc.titleOn expressible sets and p-adic numbersen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1017/S0013091509000091
dc.identifier.wos000290771300011


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam