Zobrazit minimální záznam

dc.contributor.authorOlivera, A. C.
dc.contributor.authorGarcía-Nieto, J. M.
dc.contributor.authorAlba, Enrique
dc.date.accessioned2015-04-28T12:14:12Z
dc.date.available2015-04-28T12:14:12Z
dc.date.issued2015
dc.identifier.citationApplied Intelligence. 2015, vol. 42, issue 3, p. 389-405.cs
dc.identifier.issn0924-669X
dc.identifier.issn1573-7497
dc.identifier.urihttp://hdl.handle.net/10084/106712
dc.description.abstractNowadays, the increasing levels of polluting emissions and fuel consumption of the road traffic in modern cities directly affect air quality, the city economy, and especially the health of citizens. Therefore, improving the efficiency of the traffic flow is a mandatory task in order to mitigate such critical problems. In this article, a Swarm Intelligence approach is proposed for the optimal scheduling of traffic lights timing programs in metropolitan areas. By doing so, the traffic flow of vehicles can be improved with the final goal global target of reducing their fuel consumption and gas emissions (CO and N O x ). In this work we optimize the traffic lights timing programs and analyze their effect in pollution by following the standard HBEFA as the traffic emission model. Specifically, we focus on two large and heterogeneous urban scenarios located in the cities of Malaga and Seville (in Spain). When compared to the traffic lights timing programs designed by experts close to real ones, the proposed strategy obtains significant reductions in terms of the emission rates (23.3 % CO and 29.3 % N O x ) and the total fuel consumption.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesApplied Intelligencecs
dc.relation.urihttp://dx.doi.org/10.1007/s10489-014-0604-3cs
dc.titleReducing vehicle emissions and fuel consumption in the city by using particle swarm optimizationcs
dc.typearticlecs
dc.identifier.doi10.1007/s10489-014-0604-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume42cs
dc.description.issue3cs
dc.description.lastpage405cs
dc.description.firstpage389cs
dc.identifier.wos000351110600001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam