Zobrazit minimální záznam

dc.contributor.advisorSnášel, Václavcs
dc.contributor.authorJahan, Ibrahim Salemcs
dc.date.accessioned2015-07-23T05:17:43Z
dc.date.available2015-07-23T05:17:43Z
dc.date.issued2015cs
dc.identifier.otherOSD002cs
dc.identifier.urihttp://hdl.handle.net/10084/110404
dc.descriptionImport 23/07/2015cs
dc.description.abstractNowadays, with the progress of science and technology in the field of signal analysis, data analysis and data mining are becoming very significant factors in science and engineering applications. Extracting useful knowledge from experimental raw datasets, measurements, observations and analysis, and understanding complex data have all become global matters of interest. Raw datasets, most commonly collected from complex phenomena, either express integrated results of several hidden, related variables, or they are a set of underlying, hidden components of factors. The complex raw dataset first must be decomposed by a dimensional reduction method, i.e. matrix decomposition, to extract hidden information or hidden factors of a complex raw dataset. One very complex and high-dimension data type is the EEG signal. EEG data has several applications (e.g. diagnosis of brain disease) that can be used to improve control devices to better aid the handicapped in interacting with their surroundings. Once we have successfully analyzed and classified EEG signals, we can assign each mental task to a unique control command. For this purpose, and within the scope of our work, we have employed several techniques, i.e. Faster Fourier Transform (FFT), Polynomial Curve Fitting, Turtle Graphics, LZ complexity, and a Self Organizing Map (SOM) neural network. In the future, we plan to also employ other Dynamic Time Warping (DTW) technique. We have combined these techniques to recognize and classify either EEG signals or mental tasks. We have carried out some experiments on EEG data. The first experiment was on EEG data for recognition of EEG hand movement signals, while the second and third experiments focused on the detection of index finger movement. A fourth experiment, for the classification of EEG data based on Dynamic Time Warping (DTW), is in progress. Our maximum classification accuracy rate in the first three experiments reached 96%. Results for the fourth experiment are pending, however, results from our previous experiments have shown improved accuracy rates when compared to other methods. Our conclusion also addresses comparisons between our method and other existing methods.cs
dc.format75 l. : il.cs
dc.format.extent2115696 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.subjectElectroencephalography (EEG), EEG Data, EEG Classification, EEG Pattern Recognition, Feature Extraction, LZ complexity, Self Organizing Map, Dynamic Time Warping.cs
dc.titleEEG Data Analysis in HMI Representationen
dc.title.alternativeEEG Data Analysis in HMI Representationcs
dc.typeDisertační prácecs
dc.identifier.signature201500461cs
dc.identifier.locationÚK/Sklad diplomových pracícs
dc.contributor.refereeŠenkeřík, Romancs
dc.contributor.refereePenhaker, Marekcs
dc.contributor.refereeČermák, Petrcs
dc.date.accepted2015-06-11cs
dc.thesis.degree-namePh.D.cs
dc.thesis.degree-levelDoktorský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Fakulta elektrotechniky a informatikycs
dc.description.categoryPrezenčnícs
dc.description.department460 - Katedra informatikycs
dc.thesis.degree-programInformatika, komunikační technologie a aplikovaná matematikacs
dc.thesis.degree-branchInformatikacs
dc.description.resultvyhovělcs
dc.identifier.senderS2724cs
dc.identifier.thesisSAL0043_FEI_P1807_1801V001_2015
dc.rights.accessopenAccess


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam