Show simple item record

dc.contributor.authorPanda, Mrutyunjaya
dc.contributor.authorAbraham, Ajith
dc.contributor.authorTripathy, B. K.
dc.date.accessioned2016-04-15T08:12:13Z
dc.date.available2016-04-15T08:12:13Z
dc.date.issued2016
dc.identifier.citationIntelligent Decision Technologies. 2016, vol. 10, no. 2, p. 115-128.cs
dc.identifier.issn1872-4981
dc.identifier.issn1875-8843
dc.identifier.urihttp://hdl.handle.net/10084/111483
dc.description.abstractThis paper aims at providing the concept of information granulation in Granular computing based pattern classification that is used to deal with incomplete, unreliable, uncertain knowledge from the view of a dataset. Data Discretization provides us the granules which further can be used to classify the instances. We use Equal width and Equal frequency Discretization as unsupervised ones; Fayyad-Irani's Minimum description length and Kononenko's supervised discretization approaches along with Fuzzy logic, neural network, Support vector machine and their hybrids to develop an efficient granular information processing paradigm. The experimental results show the effectiveness of our approach. We use benchmark datasets in UCI Machine Learning Repository in order to verify the performance of granular computing based approach in comparison with other existing approaches. Finally, we perform statistical significance test for confirming validity of the results obtained.cs
dc.language.isoencs
dc.publisherIOS Presscs
dc.relation.ispartofseriesIntelligent Decision Technologiescs
dc.relation.urihttp://dx.doi.org/10.3233/IDT-150243cs
dc.subjectGranular computingcs
dc.subjectdiscretizationcs
dc.subjectsupervised modelcs
dc.subjectunsupervised modelcs
dc.subjecthybrid modelcs
dc.subjectstatistical significancecs
dc.titleSoft granular computing based classification using hybrid fuzzy-KNN-SVMcs
dc.typearticlecs
dc.identifier.doi10.3233/IDT-150243
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue2cs
dc.description.lastpage128cs
dc.description.firstpage115cs
dc.identifier.wos000372032100003


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record