A novel MapReduce Lift association rule mining algorithm (MRLAR) for Big Data
dc.contributor.author | Oweis, Nour Easa | |
dc.contributor.author | Fouad, Mohamed Mostafa | |
dc.contributor.author | Oweis, Sami R. | |
dc.contributor.author | Owais, Suhail Sami Jebour | |
dc.contributor.author | Snášel, Václav | |
dc.date.accessioned | 2016-07-13T08:37:24Z | |
dc.date.available | 2016-07-13T08:37:24Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | International Journal of Advanced Computer Science and Applications. 2016, vol. 7, no. 3, p. 151-157. | cs |
dc.identifier.issn | 2158-107X | |
dc.identifier.issn | 2156-5570 | |
dc.identifier.uri | http://hdl.handle.net/10084/111851 | |
dc.description.abstract | Big Data mining is an analytic process used to dis-cover the hidden knowledge and patterns from a massive, com-plex, and multi-dimensional dataset. Single-processor's memory and CPU resources are very limited, which makes the algorithm performance ineffective. Recently, there has been renewed inter-est in using association rule mining (ARM) in Big Data to uncov-er relationships between what seems to be unrelated. However, the traditional discovery ARM techniques are unable to handle this huge amount of data. Therefore, there is a vital need to scal-able and parallel strategies for ARM based on Big Data ap-proaches. This paper develops a novel MapReduce framework for an association rule algorithm based on Lift interestingness measurement (MRLAR) which can handle massive datasets with a large number of nodes. The experimental result shows the effi-ciency of the proposed algorithm to measure the correlations between itemsets through integrating the uses of MapReduce and LIM instead of depending on confidence. | cs |
dc.format.extent | 681582 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | The Science and Information (SAI) Organization Limited | cs |
dc.relation.ispartofseries | International Journal of Advanced Computer Science and Applications | cs |
dc.relation.uri | http://dx.doi.org/10.14569/IJACSA.2016.070321 | cs |
dc.rights | This is an open access publication licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Big Data | cs |
dc.subject | data mining | cs |
dc.subject | association rule | cs |
dc.subject | MapReduce | cs |
dc.subject | Lift interesting measurement | cs |
dc.title | A novel MapReduce Lift association rule mining algorithm (MRLAR) for Big Data | cs |
dc.type | article | cs |
dc.identifier.doi | 10.14569/IJACSA.2016.070321 | cs |
dc.rights.access | openAccess | |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 7 | cs |
dc.description.issue | 3 | cs |
dc.description.lastpage | 157 | cs |
dc.description.firstpage | 151 | cs |
dc.identifier.wos | 000377220600021 |
Files in this item
This item appears in the following Collection(s)
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).
Except where otherwise noted, this item's license is described as This is an open access publication licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.