Zobrazit minimální záznam

dc.contributor.authorLando, Tommaso
dc.contributor.authorBertoli-Barsotti, Lucio
dc.date.accessioned2016-09-27T14:54:02Z
dc.date.available2016-09-27T14:54:02Z
dc.date.issued2016
dc.identifier.citationMETRON: International Journal of Statistics. 2016, vol. 74, no. 2, p. 177-192.cs
dc.identifier.issn0026-1424
dc.identifier.issn2281-695X
dc.identifier.urihttp://hdl.handle.net/10084/112071
dc.description.abstractThe Lorenz dominance is a primary tool for comparison of non-negative distributions in terms of inequality. However, in most of cases Lorenz curves intersect and the ordering is not fulfilled, so that some alternative (weaker) criteria need to be to introduced. In this context, the second-degree Lorenz dominance, which emphasizes the role of the left (or right) tail of the distribution, is especially suitable for ranking single-crossing Lorenz curves. We introduce a new ordering, namely disparity dominance, which emphasizes inequality in both of the tails, and we show that, in turn, it is especially suitable for ranking double-crossing Lorenz curves. We argue that the two approaches are basically complementary, although in both cases the Gini coefficient is crucial for the ranking. Moreover, we can use some well-known results of majorization theory to obtain classes of functionals that are consistent with the aforementioned weak preorders, and that can therefore be used as finer inequality indices.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesMETRON: International Journal of Statisticscs
dc.relation.urihttp://dx.doi.org/10.1007/s40300-016-0087-6cs
dc.rights© Sapienza Università di Roma 2016cs
dc.subjectLorenz dominancecs
dc.subjectinequalitycs
dc.subjectmajorization orderingcs
dc.subjectstochastic dominancecs
dc.subjectGini indexcs
dc.titleWeak orderings for intersecting Lorenz curvescs
dc.typearticlecs
dc.identifier.doi10.1007/s40300-016-0087-6
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume74cs
dc.description.issue2cs
dc.description.lastpage192cs
dc.description.firstpage177cs
dc.identifier.wos000381579300004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam