Zobrazit minimální záznam

dc.contributor.authorJespersen, Bjørn
dc.date.accessioned2017-03-10T10:17:24Z
dc.date.available2017-03-10T10:17:24Z
dc.date.issued2016
dc.identifier.citationDialectica. 2016, vol. 70, issue 4, p. 531-547.cs
dc.identifier.issn0012-2017
dc.identifier.issn1746-8361
dc.identifier.urihttp://hdl.handle.net/10084/116921
dc.description.abstractA property modifier is a function that takes a property to a property. For instance, the modifier short takes the property being a Dutchman to the property being a short Dutchman. Assume that being a round peg is a property obtained by means of modification, round being the modifier and being a peg the input property. Then how are we to infer that a round peg is a peg? By means of a rule of right subsectivity. How are we to infer that a round peg is round? By means of a rule of left subsectivity. This paper puts forward two rules (one general, the other special) of left subsectivity. The rules fill a gap in the prevalent theory of property modification. The paper also explains why the rules are philosophically relevant.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesDialecticacs
dc.relation.urihttps://doi.org/10.1111/1746-8361.12159cs
dc.rights© 2017 The Author dialectica © 2017 Editorial Board of dialecticacs
dc.titleLeft subsectivity: how to infer that a round peg is roundcs
dc.typearticlecs
dc.identifier.doi10.1111/1746-8361.12159
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume70cs
dc.description.issue4cs
dc.description.lastpage547cs
dc.description.firstpage531cs
dc.identifier.wos000392729500003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam