Zobrazit minimální záznam

dc.contributor.authorBouchala, Jiří
dc.date.accessioned2018-03-23T07:21:38Z
dc.date.available2018-03-23T07:21:38Z
dc.date.issued2005
dc.identifier.citationElectronic Journal of Differential Equations. 2005, art. no. 08.cs
dc.identifier.issn1072-6691
dc.identifier.urihttp://hdl.handle.net/10084/125268
dc.description.abstractWe study the existence of the weak solution of the nonlinear boundary-value problem -(vertical bar u'vertical bar(p-2)u')' = lambda vertical bar u vertical bar(p-2)u + g(u) - h(x) in (0, pi), u(0) = u(pi) = 0, where p and lambda are real numbers, p > 1, h is an element of L-p' (0, pi) (p' = p/p-1) and the nonlinearity g : R -> R is a continuous function of the Landesman-Lazer type. Our sufficiency conditions generalize the results published previously about the solvability of this problem.cs
dc.format.extent227164 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherTexas State Universitycs
dc.relation.ispartofseriesElectronic Journal of Differential Equationscs
dc.relation.urihttps://ejde.math.txstate.edu/Volumes/2005/08/bouchala.pdfcs
dc.rights© 2005 Texas State University - San Marcos.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectp-Laplaciancs
dc.subjectresonance at the eigenvaluescs
dc.subjectLandesman-Lazer type conditionscs
dc.titleStrong resonance problems for the one-dimensional p-Laplaciancs
dc.typearticlecs
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.firstpageart. no. 08cs
dc.identifier.wos000208973900008


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2005 Texas State University - San Marcos.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2005 Texas State University - San Marcos.