dc.contributor.author | Bouchala, Jiří | |
dc.date.accessioned | 2018-03-23T07:21:38Z | |
dc.date.available | 2018-03-23T07:21:38Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Electronic Journal of Differential Equations. 2005, art. no. 08. | cs |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | http://hdl.handle.net/10084/125268 | |
dc.description.abstract | We study the existence of the weak solution of the nonlinear boundary-value problem
-(vertical bar u'vertical bar(p-2)u')' = lambda vertical bar u vertical bar(p-2)u + g(u) - h(x) in (0, pi), u(0) = u(pi) = 0,
where p and lambda are real numbers, p > 1, h is an element of L-p' (0, pi) (p' = p/p-1) and the nonlinearity g : R -> R is a continuous function of the Landesman-Lazer type. Our sufficiency conditions generalize the results published previously about the solvability of this problem. | cs |
dc.format.extent | 227164 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | Texas State University | cs |
dc.relation.ispartofseries | Electronic Journal of Differential Equations | cs |
dc.relation.uri | https://ejde.math.txstate.edu/Volumes/2005/08/bouchala.pdf | cs |
dc.rights | © 2005 Texas State University - San Marcos. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | p-Laplacian | cs |
dc.subject | resonance at the eigenvalues | cs |
dc.subject | Landesman-Lazer type conditions | cs |
dc.title | Strong resonance problems for the one-dimensional p-Laplacian | cs |
dc.type | article | cs |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.firstpage | art. no. 08 | cs |
dc.identifier.wos | 000208973900008 | |