Zobrazit minimální záznam

dc.contributor.authorBělohlávek, Radim
dc.date.accessioned2018-03-26T12:06:53Z
dc.date.available2018-03-26T12:06:53Z
dc.date.issued2000
dc.identifier.citationInformation Sciences. 2000, vol. 128, issue 1-2, p. 91-103.cs
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/10084/125367
dc.description.abstractWe introduce a bidirectional associative memory (BAM). The stable points of the memory are naturally interpreted as (non-sharp) concepts - the memory performs association of extents and intents of concepts. We show that this memory is stable and that the set of all stable points forms a complete lattice. We propose a learning algorithm and prove that it enables perfect learning provided the training set forms a consistent conceptual structure. Examples demonstrating the results are presented. Unlike in the case of other associative memories (M. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, London, 1995) the formal apparatus, architecture, dynamics and convergence proof etc. are based on algebraic structures of fuzzy logic in narrow sense.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInformation Sciencescs
dc.relation.urihttps://doi.org/10.1016/S0020-0255(00)00044-Xcs
dc.rights© 2000 Elsevier Science Inc. All rights reserved.cs
dc.subjectfuzzy logiccs
dc.subjectbidirectional associative memorycs
dc.subjectstabilitycs
dc.subjectlearningcs
dc.subjectconceptscs
dc.titleFuzzy logical bidirectional associative memorycs
dc.typearticlecs
dc.identifier.doi10.1016/S0020-0255(00)00044-X
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume128cs
dc.description.issue1-2cs
dc.description.lastpage103cs
dc.description.firstpage91cs
dc.identifier.wos000088915700005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam