Zobrazit minimální záznam

dc.contributor.authorCima, Vojtěch
dc.contributor.authorBöhm, Stanislav
dc.contributor.authorMartinovič, Jan
dc.contributor.authorDvorský, Jiří
dc.contributor.authorAshby, Thomas J.
dc.contributor.authorChupakhin, Vladimir
dc.date.accessioned2018-11-30T06:50:30Z
dc.date.available2018-11-30T06:50:30Z
dc.date.issued2018
dc.identifier.citationAdvances in Intelligent Systems and Computing. 2018, vol. 611, p. 397-406.cs
dc.identifier.isbn978-3-319-61565-3
dc.identifier.issn2194-5357
dc.identifier.issn2194-5365
dc.identifier.urihttp://hdl.handle.net/10084/133293
dc.description.abstractWe have developed HyperLoom - a platform for defining and executing scientific workflows in large-scale HPC systems. The computational tasks in such workflows often have non-trivial dependency patterns, unknown execution time and unknown sizes of generated outputs. HyperLoom enables to efficiently execute the workflows respecting task requirements and cluster resources agnostically to the shape or size of the workflow. Although HPC infrastructures provide an unbeatable performance, they may be unavailable or too expensive especially for small to medium workloads. Moreover, for some workloads, due to HPCs not very flexible resource allocation policy, the system energy efficiency may not be optimal at some stages of the execution. In contrast, current public cloud providers such as Amazon, Google or Exoscale allow users a comfortable and elastic way of deploying, scaling and disposing a virtualized cluster of almost any size. In this paper, we describe HyperLoom virtualization and evaluate its performance in a virtualized environment using workflows of various shapes and sizes. Finally, we discuss the Hyperloom potential for its expansion to cloud environments.cs
dc.format.extent225706 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computingcs
dc.relation.urihttps://doi.org/10.1007/978-3-319-61566-0_36cs
dc.rightsCopyright © 2018, Springer International Publishing AGcs
dc.subjectcloudcs
dc.subjectvirtualizationcs
dc.subjectdistributed environmentscs
dc.subjectscientific workflowscs
dc.subjectHPCcs
dc.titleHyperLoom possibilities for executing scientific workflows on the cloudcs
dc.typeconference papercs
dc.identifier.doi10.1007/978-3-319-61566-0_36
dc.relation.projectideu-repo/grantAgreement/EU/H2020/671555/
dc.relation.projectideu-repo/grantAgreement/MSMT/NPU II/LQ1602/
dc.relation.projectideu-repo/grantAgreement/MSMT/LM2015070
dc.rights.accessopenAccesscs
dc.type.versionsubmittedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.volume611cs
dc.description.lastpage406cs
dc.description.firstpage397cs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

  • OpenAIRE [5085]
    Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).

Zobrazit minimální záznam