Zobrazit minimální záznam

dc.contributor.authorKubíček, Jan
dc.contributor.authorTimkovič, Juraj
dc.contributor.authorPenhaker, Marek
dc.contributor.authorOczka, David
dc.contributor.authorKovářová, Veronika
dc.contributor.authorKřesťanová, Alice
dc.contributor.authorAugustynek, Martin
dc.contributor.authorČerný, Martin
dc.date.accessioned2019-09-27T07:26:19Z
dc.date.available2019-09-27T07:26:19Z
dc.date.issued2019
dc.identifier.citationAdvances in Electrical and Electronic Engineering. 2019, vol. 17, issue 2, p. 194-201.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/138778
dc.description.abstractClinical retinal image analysis is an import aspect of clinical diagnosis in ophthalmology. Retinopathy of Prematurity (ROP) represents one of the most severe retinal disorders in prematurely born infants. One of the ROP clinical signs is the presence of retinal lesions endangering the vision system. Unfortunately, the stage and progress of these findings is often only subjectively estimated. A procedure such as this is undoubtedly linked to subjective inaccuracies depending on the experience of the ophthalmologist. In our study, a fully autonomous segmentation algorithm to model retinal lesions found using RetCam 3 is proposed. The proposed method used a combination of retinal image preprocessing and active contours for retinal lesion segmentation. Based on this procedure, a binary model of retinal lesions that allowed retinal lesions to be classified from a retinal image background was obtained. Another important aspect of the model was feature extraction. These features reliably and automatically described the development stage of an individual lesion. A complex procedure such as this has significant implications for ophthalmic clinical practice in substituting manual clinical procedures and improving the accuracy of routine clinical decisions.cs
dc.language.isoencs
dc.publisherVŠB - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in Electrical and Electronic Engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v17i2.3045cs
dc.rights© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERINGcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectactive contourcs
dc.subjectbinary modelcs
dc.subjectfeature extractioncs
dc.subjectimage segmentationcs
dc.subjectRetCam 3cs
dc.subjectretinal lesionscs
dc.titleDetection and segmentation of retinal lesions in RetCam 3 images based on active contours driven by statistical local featurescs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v17i2.3045
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume17cs
dc.description.issue2cs
dc.description.lastpage201cs
dc.description.firstpage194cs
dc.identifier.wos000472599800012


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING