Zobrazit minimální záznam

dc.contributor.authorRokbani, Nizar
dc.contributor.authorKrömer, Pavel
dc.contributor.authorTwir, Ikram
dc.contributor.authorAlimi, Adel M.
dc.date.accessioned2019-10-14T08:59:06Z
dc.date.available2019-10-14T08:59:06Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Intelligent Engineering Informatics. 2019, vol. 7, issue 4, p. 384-398.cs
dc.identifier.issn1758-8715
dc.identifier.issn1758-8723
dc.identifier.urihttp://hdl.handle.net/10084/138837
dc.description.abstractThe travelling salesman problem (TSP) is a hard combinatorial optimisation problem and a popular benchmarking problem at the same time. The TSP has also a number of practical real-world and industrial applications, such as routing in internet of things, IoT, networks, path planning in robotics and many others. In this paper, a new hybrid algorithm for the TSP is proposed; it combines gravitational particle swami optimisation (PSOGSA) and ACO, and is called ant supervised by gravitational particle swami optimisation with a local search, PSOGSA-ACO-LS. PSOGSA is used to optimise ACO settings while a local search mechanism, 2-Opt is employed by ACO to ameliorate its local solutions. The proposed method is evaluated using a set a test benches from the TSPLib database including: eil51, berlin52, st70, eil76, rat99, eil101, kroA100, and kroA200. Experimental results show that ACO-GPSO-LS is able to solve the set of TSP instances listed below including the large TSP data sets: kroA100, eli101 and kroA200.cs
dc.language.isoencs
dc.publisherInderscience Publisherscs
dc.relation.ispartofseriesInternational Journal of Intelligent Engineering Informaticscs
dc.relation.urihttp://doi.org/10.1504/IJIEI.2019.101565cs
dc.subjectparticle swarm optimisationcs
dc.subjectPSOcs
dc.subjectant colony optimisationcs
dc.subjectACOcs
dc.subjecttravelling salesman problemcs
dc.subjectTSPcs
dc.subjectlocal searchcs
dc.subjecthybridisationcs
dc.titleA new hybrid gravitational particle swarm optimisation-ACO with local search mechanism, PSOGSA-ACO-Ls for TSPcs
dc.typearticlecs
dc.identifier.doi10.1504/IJIEI.2019.101565
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume7cs
dc.description.issue4cs
dc.description.lastpage398cs
dc.description.firstpage384cs
dc.identifier.wos000481479600005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam